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MuLiSA: 多重配體結構比對為基礎之蛋白質功能片段及重要氨基酸之預測

分析 

 

學生：林建宏                      指導教授：楊進木 

 

國立交通大學生物資訊所碩士班 

 

摘    要 

 

由於快速大量增加的蛋白質序列相關資訊及蛋白質多樣性，僅利用蛋白

質序列來預測並鑑定蛋白質功能是一件相當重要且急迫的任務。在這篇論

文中，我們發展了一個新的方法來鑑定與配體結合的蛋白質高度保留氨基

酸及 motifs。在 MuLiSA（多重配體結構比對）這個新方法中，我們首先將

多個與配體結合蛋白質的配體重疊，使位在配體結合區域的氨基酸自然而

然地疊合在一起。接著我們利用氨基酸位置及氨基酸序列片段亂度計算的

z-score 來鑑定重要的氨基酸位置及典型的序列片段。當我們鑑定出新的

典型序列片段後，我們會建立該典型序列片段的側寫並用來對預測只擁有

蛋白質序列資訊的蛋白質功能。我們已將此方法應用在三種與配體結合的

蛋白質上：ATP-binding proteins，ADP-binding proteins 和 HEM-binding 

proteins。實驗的結果顯示由我們鑑定出的高度保留氨基酸及典型片段與

配體結合的功能有相當程度的關係，並已鑑定出一些文獻上證實的重要氨

基酸位置。儘管目前所鑑定出的重要片段對擁有特定功能蛋白質的覆蓋度

不高，例如在 ATP-binding proteins，motor proteins 及 HEM-binding 

proteins 的覆蓋率為 23.51%，47.64% 及 13.60%。然而在 kinesin 的功能

預測下準確率高達 86.49%。因此我們相信當我們加大與配體結合之蛋白三

級結構資訊後，我們能增加蛋白質功能預測的準確度並且挖掘出更多新的

資訊供科學家們做更深入的研究。我們發現多重配體結構比對能鑑定出高

度保留的典型序列片段並且在部分的與配體結合蛋白質中比一些傳統蛋白

質結構或序列比對工具，如 CE 及 CLUSTALW 表現更佳。我們認為此多重配

體結構比對技術能幫助科學家們發現與配體結有高度合專一性的氨基酸及

重要的典型片段。 
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MuLiSA: Analysis and Identification of Functional Motifs and Residues in 
Proteins by Multiple Ligand-bound Structure Alignments 

 
Student: Chien-Hung Lin                       Advisor: Jinn-Moon Yang 
 

Institute of Bioinformatics 
National Chiao Tung University 

 
ABSTRACT 

To predict and identify details regarding function from protein sequences is an 
emergency task since the growing number and diversity of protein sequence. Here, we 
develop a novel approach for identifying conservation residues and motifs of ligand-binding 
proteins. In this method, called MuLiSA (Multiple Ligand-bound Structure Alignment), we 
first superimpose the ligands of ligand-binding proteins and then the residues of 
ligand-binding sites are naturally aligned. We identify important residues and patterns based 
on the z scores of the residue entropy and residue-segment entropy. After identifying new 
pattern candidates, the profiles of patterns are generated to predict the protein function from 
only protein sequences. We tested our approach on three kinds of ligand-binding proteins: 
ATP-binding proteins, ADP-binding proteins and HEM-binding proteins. The experiments 
show that the conservation residues and novel patterns we identified are really correlated with 
protein functions of certain ligand-binding proteins and we have also identified conservation 
residues that were verified by previous studies. Although the coverage is not good, such as the 
coverage rate of ATP-binding proteins, motor proteins and HEM-binding proteins are 23.51%, 
47.64 and 13.60%, we also observed that perdition accuracy of kinesin is 86.49%. We believe 
if we broaden the training dataset, we can improve the prediction accuracy and mining more 
new information for researchers to do further research. We found that multiple ligand-bound 
structure alignments can identify conservation patterns and is better than traditional 
alignments such as CE and CLUSTALW in some ligand-binding proteins. We think that this 
multiple ligand-bound structure alignment technique can help researchers to discover 
ligand-binding specificity-determining residues and functional important patterns. 
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Chapter 1 

Introduction 

 

 

1.1 Problem Formulation 

 

Human genome have been sequenced and led to a flood of sequence information. On the 

other hand, recent developments in X-ray crystallography and NMR have made it faster in 

solving protein structures. These data contains a lot of information that can be extracted by 

techniques which were used to visualize the sequence conservation information. 

The residues most related to the functions of a protein are often the most conserved [1]. 

Many studies have demonstrated that most protein domains of same protein families, such as 

PROSITE [2] and Pfam [3], share conserved peptide patterns, called motifs, and some critical 

residues. For example, the phenylalanine and histidine residues are both conserved in the 

aligned sequences of all known functional myoglobins including α- and β-globins, the globins 

of invertebrates, and plant leghemoglobins. The fundamental problems in proteomics include 

both identifying and understanding the role of the essential sites that determine that structure 

and proper function of the proteins. After solving these problems, researchers can apply this 

useful information as a clue to predict protein functions without protein structure information. 

 

1.2 Motivation 

 

Many groups have used the identification of conserved patterns as a method to predict 

protein function. Some of these groups predict protein motifs using principle component 

analysis [4-7]. Other groups use structure alignment [8] or sequence alignment [9] as a 
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method to identify conservation sites. Evolutionary trace analysis was used to predict 

functional patterns in different phylogenic trees and look for functional important residues [8, 

10-13]. However, these methods always use protein structure or protein sequence information 

to predict protein conservation patterns and may miss these conservation patterns because of 

the noises from other protein structures which are far apart from ligand-binding site. 

 

1.3  Related Works 

 

1.3.1 Sequence alignment tools 

 

There are several famous sequence alignment tools, such as CLUSTALW [9], 

T-COFFEE [14], and BLAST [15]. Using protein sequence alignment to search for 

conservation residues is a popular approach now. Here we take CLUSTALW as an example.  

CLUSTALW performs a global multiple sequence alignment through three steps: 

(1) Perform all-against all pair-wise alignments 

(2) Produce a phylogenic tree by alignment scores 

(3) Perform multiple sequence alignments according to phylogenic tree relationships. 

However, CLUSTALW only use protein sequence information and generate alignment 

only depend on “protein side” information. 

 

1.3.2 Structure alignment tools 

 

As in most cases protein functions always have higher relationship with protein 

three-dimensional structures than protein sequences, for proteins with low sequence identity 

may form similar three-dimensional structures and have similar function, using structure 
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alignment as a method to identify conservation residues seems a more convincing approach. 

There are several famous tools, such as DALI [16], VAST[17], CE[8]. Here we take CE as an 

example. 

CE, combinatorial extension, is a fast and accurate structure alignment tools. This 

algorithm uses local aligned fragment pairs (AFPs) to extend alignment path and lead to a 

single optimal alignment. 

However, as CE undergoes structure alignments only focus on “protein side” information, 

when ligand-binding proteins binding with same ligand only have similar structures in 

ligand-binding sites, structure alignments only focus on “protein side” information may be 

disturbed by structure information other than ligand-binding sites and led to bad alignments of 

ligand-binding sites. 

 

1.4  Thesis Overview 

 

In Chapter 2, we proposed a new ligand-based multiple structure alignment approach, 

MuLiSA, multiple ligand-bound structure alignments. The main difference between MuLiSA 

and other tools is that we first superimpose the ligands of proteins but not protein itself. In this 

way, the ligand-binding sites are superimposed naturally. Then we could identify the 

conservation residues according to these positions in which were superimposed along with 

ligands. We also introduced datasets and methods for conservation residues identification, 

pattern identifying and protein function prediction. 

In Chapter 3, we applied MuLiSA to ATP-binding proteins, ADP-binding protein and 

HEM-binding proteins. We verify the structure similarity matrix generated from MuLiSA 

alignment results using SCOP classification and also compare pattern candidates and 

conservation residues we identified with PROSITE patterns. We also use protein sequence 

datasets to verify the profiles of pattern candidates. Finally, we use profiles of pattern 
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candidates to undergo protein function prediction. 

In Chapter 4, we summarized the protein function prediction results of ATP-binding 

proteins, motor proteins (because of the ambiguous annotations about ADP-binding proteins), 

kinesin proteins and HEM-binding proteins. Although the coverage rates are only 23.51%, 

47.64% and 13.60% of ATp-binding proteins, motor proteins and HEM-binding proteins, the 

prediction accuracy of kinesin prediction is as high as 86.49%. We also list several predicted 

proteins and approaches that may improve the alignment performance and possible 

applications of .MuLiSA for future works.  
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Chapter 2 

Materials and Methods 

 

 

2.1 Overview 

 

Identification of conservation patterns and residues in proteins by multiple ligand-bound 

structure alignments encompasses a variety of sequential computational phases, including 

dataset preparation, dataset clustering, multiple ligand-bound structure alignments, 

post-alignment analysis and entropy calculation, tool verify and protein function prediction 

(Figure 1).  

In dataset preparation, we first select one kind of ligand-binding protein that we are 

interested and get ligand-binding protein list from PDBsum [18] database. Because we need 

precise protein structures to identified conservation residues and motifs, we only select 

protein structures resolved by X-ray diffraction. Then we select ligand-binding domains using 

programs from SCOP database [19]. 

In data clustering, we generate all-against-all multiple ligand-bound structure alignments 

of these selected ligand-binding domains and generate one structure similarity matrix and one 

sequence identity matrix for each kind of ligand-binding proteins. Once we have these two 

matrixes, we select non-redundant protein domains, and undergo protein domain clustering. 

In the main step of MuLiSA, first we choose the alignment center domains C of each 

domain cluster based on structure similarity. Second, we undergo C centered multiple 

ligand-bound structure alignment. After we generate the alignments, z-score calculation of 

position entropy can help us to identify conservation residues of each domain cluster. For we 

believed that the functional important motifs mostly composed of functional important 
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residues, we identified pattern candidates by conservation residues extension. 

Finally, we used SCOP [19] and PROSITE [2] databases to verify our results; and then 

we generate profiles of pattern candidates and use them to search for protein sequence with 

these patterns in SWISS-PROT database [20]. 

Appendix A shows the computational steps in the overall workflow and the programs we 

used in this study. 

 

2.2 Preparation of training datasets and verifying datasets 

 

2.2.1 Preparation of ligand-binding protein list 

 

We have applied MuLiSA to three kinds of ligand-binding proteins, which are 

ATP-binding proteins, ADP-binding proteins, and HEM-binding proteins. The ligand-binding 

protein lists were taken from PDBsum database [18].  

 

2.2.2 Preparation of ligand-binding domains 

 

In order to get ligand-binding domains, first we need to get ligand-binding protein 

structures. Protein structure three-dimensional information was downloaded from Protein 

Data Bank (PDB) database[21] according to ligand-binding protein lists getting from 

PDBsum database [18]. The ligand-binding domains were chosen by our program 

GetDomain.c (see appendix B) and were downloaded from Structure Classification of 

Proteins (SCOP) database [19]. 

Ligand-binding domains were chosen with four criteria, they are as follows:  

1. When one of distances between atoms of residues of the domain and atoms of 

ligands is near than 5Å, we think that this domain is a ligand-binding domain. 
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2. Because multiple ligand-bound structure alignment first superimposed the ligands of 

aligned proteins, we only choose protein domains which only bind with one ligand. 

3. We only choose ligand-binding domains which the ligand they bind is only bind by 

one protein domain. 

4. We only choose one protein domain in one protein structure.  

Because the SCOP domain files do not contain ligand information, after choosing these 

domains we must add back ligand information from Protein Data Bank (PDB) database [21] 

into these protein domain files. It must be mentioned that we only choose protein domains 

solved by x-ray crystallography because we think that these structures are more convincing.  

 

2.2.3 Datasets for verification 

 

To verify whether our alignment results is reasonable and can reflect protein function 

information, we use the classification of Structural Classification of Proteins (SCOP) database 

[19] as the benchmark of our structure similarity matrix for non-redundant domain clustering. 

PROSITE patterns from PROSITE database [2] were also used to quality assessment and 

refinement of multiple ligand-bound structure alignments. The protein sequences and 

annotations were downloaded from SWISS-PROT database [20] and were used for profile 

verification and protein function prediction. 

 

2.3 Methods 

 

2.3.1 Multiple ligand-bound structure alignment 

 

 The main idea of this tool is that we try to align together conservation residues of 

proteins at ligand-binding sites by ligand superimposition; and then identify conservation 
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residues and patterns by z-score of entropy calculation. Because we have to change the 

three-dimensional coordinates of proteins along with superimposed ligands, we developed a 

structure superimpose tool to deal with this problem. We developed this program MuLiSA 

from ICP algorithm[22] (see appendix C), this program can make proteins and ligands 

rotation and displacement on three-dimensional space. After we get the superimposed protein 

structures, we regard two residues are aligned together based on three order rules:  

 Rule 1: Cβ or Cα (Gly) atom of amino acid residues in 1Å 

 Rule 2: Cβ or Cα (Gly) atom of same amino acid residues in 4Å 

 Rule 3: Cβ or Cα (Gly) atom of same group amino acid residues in 4Å or Cβ or Cα 

(Gly) atom of different group amino acid residues in 2Å. 

The amino acid groups are defined as follows:  

 Basic amino acids: lysine, arginine, and histidine.  

 Acidic amino acids: aspratate, glutamate, asparagine, and glutamine.  

 Aromatic amino acids: phenylalanine, and tryptophan.  

 Aliphatic amino acids: glycine, alanine, valine, leucine, isoleucine, and 

methionine.  

 Hydroxyl containing amino acids: serine, threonine, and tyrosine;  

 Disulfide-bond forming amino acid: cysteine.  

 Cyclic amino acid: proline.  

In ATP-binding proteins and ADP-binding proteins, because of the high divergence of 

phosphate groups, we aligned whole ligand and only “ribose plus base region” first and then 

choose the better one as the alignment result. 
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2.3.2 Sequence identity matrix and structure similarity matrix 

 

 If two protein domains have similar function and have highly similar structures in 

ligand-binding sites, these two protein domain structures should fit well in three-dimensional 

space. We introduced structure similarities in accordance with multiple ligand-bound structure 

alignments to present this information.  

ST
ab is the structure similarity of protein domain a and protein domain b. La is the length 

(residue numbers) of protein domain a, Lb is the length (residue numbers) of protein domain b, 

and L is the aligned residue number of protein domains a and b. ST
ab is given as 

    { }LLS
ba

T

ab

L
,min

=       (1) 

 We also generate un-gapped sequence identity matrix between protein domains for 

non-redundant protein domain selection based on only aligned residues of protein domains a 

and bSE
ab is the un-gapped sequence identity of protein domain a and protein domain b. mt is 

the number of identical aligned residues of protein domain a and protein domain b; mmt is the 

number of non-identical aligned residues of protein domain a and protein domain b. 

    
mmtmt

mtSE

ab +
=       (2) 

 

2.3.3 Non-redundant protein domains and alignment center C selection 

 

 Redundant protein domains must be removed because the profiles generated from 

alignments may be incredible. We regarded two protein domains are redundant protein 

domains when their structure similarity and sequence identity are both above 0.8; therefore, 

we first cluster these protein domains and only choose one with no mutation residues and with 

the smallest X-ray diffraction resolution.  

In order to generate a convincing multiple alignments, we must choose an alignment 
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center domains C before we generate this alignments. In structure similarity matrixes, the 

non-redundant protein domain of one cluster which has the highest structure similarity with 

other protein domains than others was selected as the alignment center C of this cluster. This 

protein domain was used to be the alignment center of multiple ligand-bound structure 

alignment. Figure 2 shows one example. 

 

2.3.4 Identification of conservation residues and pattern candidates 

 

 To identify these conservation residues, we used entropy (Sp), defined as 

( )∑
=

−=
20

1

ln*
i

pipiP ffS    (3) 

where i and fpi  denote the ith amino acid type, the probability of finding the amino acid type i 

at position p. The entropy is 0 when this position is totally conserved.  

In order to estimate the statistical significance of the position entropy, z-score was 

applied to identify relative conservation positions. 

σ

µ−
= XZ p

p     (4) 

where Zp is the z-score value of position p, σis the standard deviation of all positions entropy,

μis the average value of all positions entropy and Xp is the entropy of position p. We 

identified a conservation position p when Zp > 2.5. 

 To identify pattern candidates, we extend protein segment from conservation residues. 

First we extend from conservation residues to residues with z-score larger than 1.0 next to 

these conservation residues. When there is one “gap” (gap: residues with z-score less than 1.0) 

between two residues, “Gap tolerance” let us to exted the segment. For example, if one is 

larger than 1.0 and the other is larger than 2.5 (the sum of z-score of these two residues is 

larger than 3.5), we linked this “gap” and we extend this protein segment. If n “gaps” occurs, 

the sum of z-score of these two gap gapped residues must larger than n+2 and we can 
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continue to extend the protein segment. We only choose protein segments as pattern 

candidates extending from conservation residues and the length is equal or longer than 5 

residues (Figure 3). 

 

2.3.5 Profile generation 

 

 We generate alignment profiles of pattern candidates (discovered by our MuLiSA) and 

PROSITE patterns from multiple ligand-bound structure alignments. 

              { } 201     where ≤≤= ifPF
i

ppi             (5) 

where PFp is the profile of position p; fp
i is the probability of the ith amino acid type at 

position p. 

 

2.3.6 Profile score calculation 

 

 We use profiles to search for matched protein segments in protein sequences. The search 

window size is the length of profiles and shifts one residue each time. Each protein sequence 

should have N-(n-1) (N is the length of this sequence and n is the length of this pattern) profile 

scores, and we suppose the segment with the highest profile search score of this protein 

sequence should be the pattern candidate that we are looking for. 

 The scoring function is as follows: 

            
n

S

n

p i
piPF∑∑

= == 1

20

1      (6) 

Where S is the profile score, n is the length of a pattern, PFpi is the profile value of amino acid 

type i at position p. The score is 1 when a segment perfectly matches this profile. 
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Chapter 3 

Protein Function Prediction and Conservation Residues Identification of 

ATP-, ADP-, and HEM-Binding Proteins 

 

 

In order to identify the wealth of information present in protein structures, we analyzed 

conservation residues and patterns in multiple ligand-bound structure alignments. 

 To infer a major functional role from residue conservation, a function-based clustering is 

necessary before identifying conservation residues. Statistically, the bias of conservation may 

be from not having enough and convincing data, this is why we remove structures too much 

similar, the redundant domains, select alignment center domain C and generate alignments 

with clusters have more than four protein domains. 

 Most sequence and structure alignment techniques are protein-based alignment; in other 

words, these techniques analyze residue conservation only by comparing protein structure or 

protein sequence similarity. However, local alignment error sometimes happens when the 

sequence identity is less than 25% in sequence alignment or protein structures are much 

similar at regions far away from protein functional important region in structure alignment. 

At the present, we have applied MuLiSA to ATP-, ADP-, and HEM-binding proteins and 

identified several conservation residues and pattern candidates. We have generated sequence 

profiles from multiple alignments and used them to discover protein sequences which may 

have these profiles. We also proved that MuLiSA is better than other tools in several cases 

and can discover functional information when comparing with SCOP [19] and PROSITE 

database[2]. Our major intention was to extract protein structure information from 

ligand-binding proteins and apply this information to protein function prediction. Table 1 

shows some statistics about the dataset we used in this study. We applied MuLiSA to three 
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kinds of ligand-binding proteins; they are ATP-binding proteins, ADP-binding proteins and 

HEM-binding proteins. Through getting ligand-binding protein lists, selecting ligand-binding 

domains, domain clustering, non-redundant domains and alignment center C selection, we use 

MuLiSA and z-score of entropy calculation to identified conservation residues and pattern 

candidates of each cluster. These identified conservation residues may be functional important 

and we survey the literature and it proves that some of these identified conservation residues 

are critical to ligand-binding or correlate with conformation stability. After pattern candidate 

identification, we generate profiles of these pattern candidates and use these profiles predict 

protein functions.  

 

3.1 ATP-binding proteins 

 

3.1.1 Overview  

 

ATP, adenosine triphosphate, is the major energy currency of the cell. It transfers energy 

from chemical bonds to endergonic reactions of the cell. ATP powers most of the 

energy-consuming activities of cells, such as muscle contraction, synthesis of polysaccharides, 

active transport of ions and nerve impulse. Because of ATP is a so important compound and 

because of the large number of experimental data, like ATP-binding protein structures and 

literatures, we choose ATP-binding proteins as our first research target. We have generated 

structure similarity matrix of non-redundant ATP-binding domains for functional-based 

domain clustering, and we also identified conservation residues and pattern candidates. 

Finally, we used profiles of pattern candidates to undergo protein function prediction. 
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3.1.2 Structure similarity matrix and alignment center C selection 

 

Figure 4 shows the structure similarity matrixes and SCOP classifications of 25 

non-redundant ATP-binding domains. When comparing with classifications of SCOP 

database [19], protein domains with higher structure similarities are usually clustered together 

and they are always belong to same SCOP families. As we all agree that SCOP database [19] 

is a convincing domain structural and functional classification database, it tells us that the 

multiple ligand-bound alignment and structure similarity calculation is reasonable and can 

reflect structural and functional information.  

In Figure 4(A), domains belong to the same SCOP families are with same colors. The 

bold values means the structure similarity is larger than the average value of the row; in other 

words, the domain in this row is much similar with these compared domains than others. In 

this matrix, we find that most domains of same SCOP family usually have higher structure 

similarity with each other (see the regions with red frame), it tell us that the multiple 

ligand-bound structure alignment and structure similarity calculation is reasonable and can 

reflect structural and functional information. Figure 4(B) shows the SCOP classification of 

protein domains in Figure 4(A).  

 

3.1.3 Conservation residues identified from ATP-binding domains 

 

After selecting alignment center C of each cluster, we use multiple ligand-bound 

structure alignment tool, MuLiSA, to generate multiple alignments.  

We have identified several conservation residues (with z-score of position entropy > 2.5) 

of protein domains in “Protein kinases catalytic subunit family” and “Class I aminoacyl-tRNA 

synthetases (RS), catalytic domain family”. In Table 2, conservation residues were identified 

and listed; the bold residues are these residues,  verified by previous studies, that are 
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important in ATP-binding or conformation stability [23-32]. For example, in “Human 

Cyclin-Dependent Kinase 2 protein domain (SCOP code: d1hck__)”, we have identified 

residues A31, K129, N132 and D145 which interact with ATP through forming hydrogen 

bonds. Except for these four residues, we also identified six conservation residues and we 

believe that these residues are very likely in playing important role in ATP-binding.  

Figure 5 shows the multiple ligand-bound structure alignment results and the identified 

conservation residues in “Protein kinases, catalytic subunit family” of ATP-binding domains. 

In Figure 5(A), the identified conservation residues, aligned positions with z-score of entropy 

calculation > 2.5, are close to ATP in three-dimensional space. It implies that these 

conservation residues may play important role in ATP-binding. In Figure 5(B), the labeled 

residue numbers belong to protein domain d1phk__, which is the selected alignment center C 

of this cluster; and the red framed region means the PROSITE patterns. We observed that 

most identified conservation residues were on these PROSITE pattern region, it tell us that 

identifying pattern candidates from conservation residues extension may be a reasonable 

approach. 

 

3.1.4 Pattern candidates identified from ATP-binding domains 

 

We have identified pattern candidates of “Protein kinases catalytic subunit family” and 

“Class I aminoacyl-tRNA synthetases (RS), catalytic domain family” of ATP-binding 

domains. Table 3 lists these pattern candidates. We only choose the pattern candidates which 

are equal or longer than 5 residues and extending from identified conservation residues with 

z-score of entropy calculation > 2.5. Table 4 shows the comparison of PROSITE patterns and 

our defined pattern candidates that overlap with PROSITE patterns of ATP-binding domains. 

These pattern candidates are partially overlapping with PROSITE patterns. However, the new 

pattern candidates which do not overlap with PROSITE patterns in Table 3, may be new clues 
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to search for ATP-binding proteins. For example, although the pattern candidate 1 in “Protein 

kinases catalytic subunit family” is overlapping with PROSITE pattern: Serine/ Threonine 

protein kinases active-site signature, there are also pattern candidate 2 and 3 in “Protein 

kinases catalytic subunit family” that do not overlap with PROSITE pattern.We found that 

identified pattern canididates are near ATP in 3-D space, therefore we believe that these two 

pattern candidates may be new clues to search for ATP-binding proteins (Figure 6). 

All of these pattern candidates and PROSITE patterns were used to generate profiles and 

we will use these profiles for protein function prediction. 

 

3.1.5 Profile verification and protein function prediction of ATP-binding proteins 

 

 In order to use profiles generated from our alignments to predict protein function, first 

we need to verify that the profiles we generated from our alignments is reasonable and 

convincing. Therefore, we use protein sequences which have PROSITE patterns: PS00178, 

PS00107, PS00108, PS00411, PS00190, PS00435, PS00436, PS00086 and PS00191. These 

PROSTIE patterns belong to 8 clusters listed in Table 1. Because pattern candidates identified 

from one cluster should be meaningful for sequences of this cluster, when we use profiles 

generated from these pattern candidates to search for protein sequences of this cluster, the 

sequences of this cluster should have higher profile scoring scores. In other words, a good 

pattern candidate can separate protein sequences of the cluster that have this pattern candidate 

from protein sequences of other clusters that don’t have this pattern candidate. 

In order to compare with the performance of pattern candidates and PROSITE patterns, 

we also generated profiles of PROSITE patterns from our multiple alignments. If the 

performance of pattern candidates in one cluster is better than PROSITE patterns, we may 

find a novel pattern that is more meaningful than PROSITE patterns in this cluster. In Figure 

7, we observed that our defined pattern candidate is worse than PROSITE pattern; however, 
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because the profile of PROSITE pattern is generated from our alignment, and the performance 

is good, it proved that the profile generated from our alignments is reasonable and convincing. 

 In order to verify the effectiveness of profiles generated from our alignments in protein 

function prediction, we compare the performance in profile search between dataset 1, which 

contains protein sequences with PROSITE pattern; and dataset 2, which contains protein 

sequences not only with PROSITE pattern but also have “ATP-binding” annotations in 

SWISS-PROT database. In Figure 8, dataset 1 contains protein sequences contain PROSITE 

pattern: aminoacyl-transfer RNA synthetases class-I signature and dataset 2 contains protein 

sequences contain not only PROSITE pattern: aminoacyl-transfer RNA synthetases class-I 

signature but also have “ATP-binding” annotations in SWISS-PROT database. We observed 

that the area under curves of dataset 2 is larger than the area under curves of dataset 1. 

Because the profile of pattern candidates were generated from alignments of ATP-binding 

domains and the protein sequences in dataset 1 are not all have “ATP-binding” annotations in 

“KW” of SWISS-PROT database, we suppose that the profile of pattern candidate is more 

convincing in ATP-binding proteins but not proteins only with PROSITE patterns. 

 In Table 5, we summarized the average hit rate of true positive rate 50%, 60%, 70%, 

80%, 90% and 100% in dataset 1: sequences with PROSITE pattern, and database 2: 

sequences with PROSITE pattern and SWISS-PROT annotations for profile verification. We 

observed that whether in dataset 1 or dataset 2, the hit rate of PROSITE patterns are all higher 

than pattern candidates. Thus, the PROSITE pattern is really meaningful for protein 

sequences which have these PROSITE patterns.  

However, we also observed that the hit rates in dataset 2 are generally higher than hit 

rates in dataset 1. Because dataset 1 only contains sequences with PROSITE patterns but 

database 2 contains sequences with PROSITE pattern and SWISS-PROT annotations, it tell 

us that the profiles we generated from multiple alignments of ATP-binding proteins may be 

more meaningful for protein sequences with “ATP-binding” annotations in SWISS-PROT 
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database. 

Second, we used profiles of pattern candidates and PROSITE patterns of ATP-binding 

proteins to search for SWISS-PROT protein sequences that might have these patterns, and we 

suppose that the protein sequences with these pattern candidates may be ATP-binding 

proteins. We use all profiles of identified pattern candidates to search all protein sequences in 

SWISS-PROT database and give each sequence a profile scoring score. The given profile 

scoring score is the highest score of all profiles search. In this way, we can get a profile 

scoring ranking list in ATP-binding protein prediction (Figure 9). The sequences with higher 

profile score have higher possibility to be ATP-binding proteins. When one protein sequence 

has high profile score but not have “ATP-binding” annotations in SWISS-PROT database, we 

regard this protein might be an ATP-binding protein because it contains this pattern candidate. 

  Figure 9 shows the profile scoring list of protein function prediction in ATP-binding 

proteins. Two points must be mentioned. First, the framed sequences all have “ATP-binding” 

annotations (except for P27604 and P25169); because these sequences all match novel pattern 

candidate, pattern candidate 2 in “Protein kinases catalytic subunit family” , we regard this 

pattern candidate is a new pattern of ATP-binding proteins. Second, the non-labeled 

sequences, P27604 and P25169, are the sequences that match profiles but don’t have 

“ATP-binding” annotations in SWISS-PROT database, hence these two proteins might be the 

ATP-binding proteins but not identified yet. 

In Table 6, we summarized the true-positive rates, profile scoring scores, and z-score of 

profile scoring scores of top 100, 500, 1000, 1500, 2000, 2500 and 3000 ranked sequences in 

profile scoring ranking list. We also compare the hit rates between pattern candidates and 

PROSITE patterns. We observed when protein sequences with profile scoring score 0.600, the 

true positive rate is 82.27% and the z-score is 2.87. Thus when protein sequences with profile 

scoring score higher than 0.600, we can say these protein sequence may be ATP-binding 

proteins with 82.27% confidence. 
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When comparing with the hit rate of our defined pattern candidates and PROSITE 

patterns, we observed that almost all the top 3000 ranked protein sequences with 

“ATP-binding” annotations were all searched by pattern candidates. Although some of pattern 

candidates partially overlapped with PROSITE patterns, it tells us that the pattern candidates 

are useful for protein function prediction in ATP-binding proteins. 

 

3.2 ADP-binding proteins 

 

3.2.1 Overview 

 

ADP, adenosine diphosphate, is a universe energy intermediate of the cell. ADP is the 

hydrolysis product of ATP. It can also transfers energy from chemical bonds to endergonic 

reactions of the cell. The main difference between ATP and ADP is that ATP contains two 

high energy bonds but ADP only have one. Because of ADP is also a universe energy 

intermediate of the cell, it is also an important compound and we choose ADP-binding 

proteins as our second research target.  

We have also generated structure similarity matrix of non-redundant ADP-binding 

domains for functional-based domain clustering, and we also identified conservation residues 

and pattern candidates. Finally, we used profiles of pattern candidates to undergo protein 

function prediction. 

 

3.2.2 Structure similarity matrix of ADP-binding domains 

 

Figure 10 shows the structure similarity matrixes and SCOP classifications of 30 

non-redundant ATP-binding domains. When comparing with SCOP classifications, protein 

domains with higher structure similarity are usually clustered together and they are always 
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belong to same SCOP families. It also tells us that the multiple ligand-bound structure 

alignments and structure similarity calculation in ADP-binding proteins is reasonable and can 

reflect structural and functional information.  

In Figure 10(A), we also observed that most domains of same SCOP family usually have 

higher structure similarity with each other (see the regions with red frame). Figure 8(B) shows 

the SCOP classification of protein domains in Figure 10(A). We also chose alignment center 

C of each cluster in ADP-binding domains. 

 

3.2.3 Conservation residues identified from ADP-binding domains 

 

We have also identified several conservation residues in protein domains of “motor 

proteins family”. In Table 7, conservation residues were identified and listed; the bold 

residues are residues that were announced on literature that are important in ADP-binding or 

conformation stability[33-40]. 

Figure 11 shows the multiple ligand-bound structure alignment result and identified 

conservation residues in “motor proteins family” of ADP-binding domains. In Figure 11(A), 

the identified conservation residues are closed to ADP in three-dimensional space. It implies 

that these conservation residues may play important role in ADP-binding. In Figure 11(B), the 

labeled residue numbers are belonged to protein domain d1goja_, which is the selected 

alignment center C of this cluster, and the red framed region means the PROSITE patterns. 

We observed that most identified conservation residues were on these region, it tell us that 

identifying pattern candidates from conservation residues extension may be a reasonable 

approach. 
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3.2.4 Pattern candidates identified from ADP-binding domains 

 

We have identified pattern candidates of “motor proteins family” of ADP-binding 

domains. Table 8 lists these pattern candidates. Table 9 shows the comparison of PROSITE 

patterns and our defined pattern candidates that overlap with PROSITE patterns in 

ADP-binding domains. These pattern candidates are partially overlapping with PROSITE 

patterns. However, the new pattern candidates which do not overlap with PROSITE patterns 

in Table 8, may be new clues to search for ADP-binding proteins. We also found that 

identified pattern canididates are near ADP in 3-D space, therefore we believe that these three 

pattern candidates may be new clues to search for ADP-binding proteins (Figure 12). All of 

these pattern candidates were also used to generate profiles and we will use these profiles for 

protein function prediction. 

 

3.2.5 Profile verification and protein function prediction of ADP-binding proteins 

 

In order to compare with the performance of pattern candidate and PROSITE patterns, 

we also generated profiles of PROSITE patterns from our multiple alignments. In Figure 13, 

we observed that pattern candidate is worse than PROSITE pattern; however, because the 

profile of PROSITE pattern is generated from our alignments, and the performance is good, it 

also proved that the profile generated from our alignments is reasonable and convincing. 

 In order to verify the effectiveness of profiles generated from our alignments in protein 

function prediction, we also compared the performance in profile search between different 

datasets. However, because of the ambiguous annotations about ADP-binding proteins and we 

only chose one domain cluster, “motor proteins family”, in ADP-binding proteins, we chose 

protein sequences contain not only PROSITE pattern: Kinesin motor domain signature but 

also “motor protein” annotations in SWISS-PROT database. 
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In Figure 14, dataset 1 contains protein sequences with PROSITE pattern: Kinesin motor 

domain signature; dataset 2 contains protein sequences contain not only PROSITE pattern but 

also “motor protein” annotations in SWISS-PROT database. We observed that the area under 

curves of dataset 2 is also larger than the area under curves of dataset 1. Because the profiles 

of pattern candidates were generated from motor protein domains alignments and the protein 

sequences in dataset 1 not all have “motor protein” annotations in SWISS-PROT database, we 

suppose that the profiles of pattern candidates are more convincing in motor proteins but not 

proteins only with PROSITE patterns. 

 In Table 10, we summarized the average hit rate of true positive rate 50%, 60%, 70%, 

80%, 90% and 100% in dataset 1: sequences with PROSITE pattern, and database 2: 

sequences with PROSITE pattern and SWISS-PROT annotations for profile verification. We 

observed that whether in dataset 1 or dataset 2, the hit rate of PROSITE patterns are all higher 

than pattern candidates. Thus, the PROSITE pattern is really meaningful for protein 

sequences which have these PROSITE patterns.  

However, we also observed that the hit rates in dataset 2 are generally higher than hit 

rates in dataset 1. Because dataset 1 only contains sequences with PROSITE patterns but 

database 2 contains sequences with PROSITE pattern and SWISS-PROT annotations, it tell 

us that the profiles we generated may be more meaningful for protein sequences with “motor 

protein” annotations in SWISS-PROT database. 

Second, we used profiles of pattern candidates and PROSITE patterns of motor proteins 

to search for SWISS-PROT protein sequences that might have these patterns; and we suppose 

the protein sequences with these pattern candidates may be motor proteins. We use all profiles 

of identified pattern candidates to search all protein sequences in SWISS-PROT database and 

give each sequence a profile scoring score. The given profile score is the highest score of all 

profiles search. In this way, we can get a profile scoring list in motor protein prediction 

(Figure 15). The sequences with higher profile scoring score have higher possibility to be 
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motor proteins. When one protein sequence has high profile score but not have “motor” 

annotations in SWISS-PROT database, we regard this protein might be an motor protein 

because it contains this pattern candidate. 

  Figure 15 shows the profile scoring list of protein function prediction in motor proteins. 

Two points must be mentioned. First, the framed sequences all have “motor protein” 

annotations; because these sequences all match novel pattern candidates, we regard this 

pattern candidate is a new pattern of motor proteins. Second, the non-labeled sequences are 

the sequences that match profiles but don’t have “motor protein” annotations in 

SWISS-PROT database; hence these proteins might be motor proteins that not identified yet. 

In Table 11, we summarized the true-positive rates, profile scoring scores, and z-score of 

profile scoring scores of top 10, 50, 100, 150, 200, 250 and 300 ranked sequences in profile 

scoring ranking list. We also compared the hit rates between profiles of pattern candidates and 

PROSITE patterns. We observed when protein sequences with profile scoring score 0.875, the 

true positive rate is 91.00% and the z-score is 5.76. Thus when protein sequences with profile 

scoring score higher than 0.875, we can say these protein sequence may be motor proteins 

with 91.00% confidence. 

When comparing the hit rate between profiles of pattern candidates and PROSITE 

patterns, we observed that all the top 300 ranked protein sequences with “motor protein” 

annotations were all searched by pattern candidates. Although some of pattern candidates may 

partially overlap with PROSITE patterns, it tells us that the pattern candidates are useful for 

protein function prediction in motor proteins. 
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3.3 HEM-binding proteins 

 

3.3.1 Overview 

 

Heme is a member of a family of compounds called porphyrins, which consist of four 

pyrrole rings. Heme metabolism is an important metabolic pathway because many important 

hemoproteins contain heme as a prosthetic group. For example, hemoglobin is a very 

important hemoprotein and it is an oxygen carrier in the blood. There are also cytochromes, 

which participate in important electron transfer reactions, and tryptophan oxygenase which is 

a hemoprotein of intermediary metabolism. Therefore, we choose HEM-binding proteins as 

the third research target in our research. 

We have also generated structure similarity matrix of non-redundant HEM-binding 

domains for functional-based domain clustering, and we also identified conservation residues 

and pattern candidates. Finally, we used profiles of pattern candidates to undergo protein 

function prediction. 

 

3.3.2 Structure similarity matrix of HEM-binding domains 

 

Figure 16 shows the structure similarity matrix and SCOP classifications of 

non-redundant HEM-binding domains. Because the structure similarity matrix of all the 

non-redundant HEM-binding domains (131 non-redundant domains) is too large, we only 

choose structure similarity matrix with 40 HEM-binding domains. The protein domains with 

higher structure similarity are also clustered together and always belong to same SCOP 

families.. 

Figure 16 is meaningful. Because ATP and ADP are similar in three-dimensional 

structure, structure similarity matrixes of these two kinds of ligand-binding proteins only tell 
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us that our approach, MuLiSA, can apply to ATP-binding domains and ADP-binding domains. 

However, because HEM structure is different from ATP and ADP, and the structure similarity 

matrix is still similar with SCOP classification, we have confidence that our approach, 

MuLiSA, can apply to different kinds of ligand-binding proteins. 

 

3.3.3 Conservation residues identified from HEM-binding domains 

 

We have also identified several conservation residues of protein domain clusters in 

HEM-binding proteins. In Table 12, conservation residues were identified and listed; the bold 

residues are residues that were announced on literature that are important in HEM-binding or 

conformation stability [41-92]. 

Figure 17 shows the multiple ligand-bound structure alignment result and identified 

conservation residues in “Cytochrome b5 family” of HEM-binding domains. In Figure 17(A), 

the identified conservation residues are closed to heme in three-dimensional space. It implies 

that these conservation residues may play important role in HEM-binding. In Figure 17(B), 

the labeled residue numbers were belonged to protein domain d1cyo__, which is the selected 

alignment center C of this cluster, and the red framed region means the PROSITE patterns. 

We observed that most identified conservation residues were on these region, it also tell us 

that identifying pattern candidates from conservation residues extension may be a reasonable 

approach. 

 

3.3.4 Pattern candidates identified from HEM-binding domains 

 

We have identified pattern candidates of “CCP-like family”, “Cytochrome P450 family”, 

“Cytochrome b5 family”, “monodomain cytochrome c family” and “monodomain cytochrome 

c family” of HEM-binding domains. Table 13 lists these pattern candidates. Table 14 shows 



 26

the comparison of PROSITE patterns and our defined pattern candidates that overlap with 

PROSITE patterns of HEM-binding domains. These pattern candidates are partially 

overlapping with PROSITE patterns. However, the new pattern candidates which do not 

overlap with PROSITE patterns in Table 14, may be new clues to search for HEM-binding 

proteins. All of these pattern candidates were also used to generate profiles and we will use 

these profiles for protein function prediction. 

 

3.3.5 Profile verification and protein function prediction of HEM-binding proteins 

 

In Figure 18, we observed that pattern candidate is better than PROSITE pattern. 

Although this pattern candidate partially overlaps with this PROSITE pattern, it means that 

the pattern candidates may be more meaningful than PROSITE pattern for protein sequences 

with “Heme” annotations in SWISS-PROT database; and because the profile of PROSITE 

pattern is generated from our alignment, it also proved that the profile generated from our 

alignments is convincing. 

 In order to verify the effectiveness of profiles generated from our alignments in protein 

function prediction, we also compare the performance in profile search between datasets 1, 

which contains protein sequences with PROSITE pattern; and dataset 2, which contains 

protein sequences not only with PROSITE pattern but also have “Heme” annotations in 

SWISS-PROT database. In Figure 19, dataset 1 contains protein sequences contain PROSITE 

pattern: cytochrome b5 family, heme-binding domain signature and dataset 2 contains protein 

sequences not only contain PROSITE pattern but also have “Heme” annotations in 

SWISS-PROT database. We observed that the area under curves of dataset 2 is larger than 

area under curves of dataset 1. Because the profiles of pattern candidates were generated from 

HEM-binding domains alignments and the protein sequences in dataset 1 are not all have 

“Heme” annotations in SWISS-PROT database, we suppose that the profile of pattern 
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candidate is more meaningful in HEM-binding proteins but not proteins only with PROSITE 

pattern. 

 In Table 5, we summarized the average hit rate of true positive rate 50%, 60%, 70%, 

80%, 90% and 100% in dataset 1: sequences with PROSITE pattern, and database 2: 

sequences with PROSITE pattern and SWISS-PROT annotations for profile verification. We 

observed that although most hit rates in dataset 1and dataset 2 of PROSITE patterns are all 

higher than our defined pattern candidates, there is an pattern candidate with higher hit rate 

than PROSITE pattern. Although this pattern candidate partially overlaps with this PROSITE 

pattern, it means that the pattern candidates may be more meaningful than PROSITE pattern 

for protein sequences with “Heme” annotations in SWISS-PROT database; and because the 

profile of PROSITE pattern is generated from our alignment, it also proved that the profile 

generated from our alignments is convincing. 

Second, we use profiles of pattern candidates of HEM-binding proteins to search for 

SWISS-PROT protein sequences that might have these pattern candidates, and we suppose 

that the protein sequences with these pattern candidates may be the HEM-binding proteins.  

  In Figure 20, we also observed there are seven protein sequences which match the 

pattern candidates but not have “Heme” annotations in SWISS-PROT database, hence these 

seven proteins might be HEM-binding proteins but not identified yet. 

In Table 16, we summarized true-positive rates, profile scoring scores, and z-score of 

profile scoring scores of top 100, 200, 300, 400, 500, 600 and 700 ranked sequences in profile 

scoring ranking list. We also compared with the hit rate of pattern candidates and PROSITE 

patterns. We observed that when protein sequences with profile scoring score 0.744, the true 

positive rate is 80.50% and the z-score is 4.00. Thus when protein sequences with profile 

scoring score higher than 0.744, we can say these protein sequences may be HEM-binding 

proteins with 80.50% confidence. 

When comparing the hit rate between pattern candidates and PROSITE patterns, we 
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observed that almost all the top 700 ranked protein sequences with annotations were searched 

by pattern candidates. Although some of pattern candidates may partially overlap with 

PROSITE patterns, it tells us the pattern candidates are useful in protein function prediction 

of HEM-binding proteins. 

 

3.4 Tool comparison: multiple ligand-bound structure alignments is better 

than CE and CLUSTALW 

 

 Because multiple ligand-bound structure alignments only focus on ligand-binding sites, 

we neglect noise from protein structure apart from the ligand-binding sites and get the 

functional-dependent alignments of ligand-binding domains. Figure 21 and Figure 22 shows 

two examples: the multiple ligand-bound structure alignments are better than famous 

sequence and structure alignment tools, CLUSTALW and CE. We used PROSITE patterns as 

the benchmark of alignments.  

In Figure 21(A), we find that only the alignments of MuLiSA can align together the 

PROSITE defined patterns together (PROSITE pattern: 

P-x(0,2)-[GSTAN]-[DENQGAPK]-x-[LIVMFP]-[HT]-[LIVMYAC]-G-[HNTG]-[LIVMFYS

TAGPC]) of two domains, d1maua_ and d1gtra2. In Figure 21(B) and 21(C), we find that the 

shift of conservation patterns of CE alignment result. In fact, for CE uses only protein 

structure information to undergo structure alignment, we find that in this case the bad 

alignment of conservation patterns was because of a huge structure similar region apart from 

ATP-binding site, and it did disturb the alignment of PROSITE patterns. In other words, 

through ligand superimposition can only focus on ligand-binding sites and disperse noises 

from other region, thus the identified conservation residues and patterns will be much more 

related to ligand-binding. 

In Figure 22 shows another remarkable example when protein domains belong to 
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different SCOP folds classifications. There are 23 domains belongs to “monodomain 

cytochrome c family” and 5 domains belong to “cytochrome c' family”. We find that CE and 

CLUSTALW both can’t align the PROSITE patterns together when domains belong to 

different SCOP fold; however, MuLiSA aligned these PROSITE patterns well. In other words, 

in spite of protein domains belong to different SCOP fold, alignments focusing on 

ligand-binding site through ligand superimposition can help us to discover conservation 

residues and patterns at ligand-binding sites. 
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Chapter 4 

Conclusions 

 

 

4.1 Summary 

 

We have applied MuLiSA to three kinds of ligand-binding proteins; they are 

ATP-binding proteins, ADP-binding proteins, and HEM-binding proteins. We have identified 

several conservation residues and pattern candidates. We have also proved that these 

identified conservation residues may play important role in ligand-binding or binding site 

conformation stability. We also find that protein sequences with PROSITE patterns of ligand 

correlated signatures not necessarily have annotations in SWISS-PROT database, and the hit 

rate of dataset difference shows that the profiles we generated have higher hit rate in dataset 

contains sequences with PROSITE pattern and SWISS-PROT annotations; it means that the 

profiles we generated from ligand-binding proteins with three-dimensional structures is 

meaningful for protein sequences with SWISS-PROT annotations. When we use these 

profiles to predict protein functions, we find that protein sequences with profile scoring score 

0.744 in HEM-binding proteins prediction have 80.50 % chance to be HEM-binding proteins, 

protein sequences with profile scoring score 0.875 in motor proteins prediction have 82.27 % 

chance to be motor proteins, and protein sequences with profile scoring score 0.600 in 

ATP-binding proteins prediction have 82.27 % chance to be ATP-binding proteins.  

Also, we find that in protein function prediction about ATP-binding proteins, motor 

proteins and HEM-binding proteins, the coverage rates of pattern candidates are 23.51%, 

47.64%, and 13.60%; and the prediction accuracy of kinesin proteins is 86.49% (Table 17). 

Because of the prediction accuracyof kinesin proteins is high, we think the reason of worse 
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prediction accuracy of ATP-binding proteins, motor proteins and HEM-binding proteins 

might be the dataset we used to identify pattern candidates is too small; therefore pattern 

candidates of other proteins were not identified. However, recent developments in X-ray 

crystallography and NMR have made it faster in solving protein structures. In the near future, 

when there are more ATP-binding proteins, motor proteins and HEM-binding proteins 

three-dimensional structures, we can broaden the training dataset and we believe that we can 

identify more pattern candidates and increase the prediction accuracy. 

Table 18 list 10 protein sequences in profile scoring lists of protein function prediction in 

ATP-binding proteins, motor proteins and HEM-binding proteins, and they may have 

potentials to be certain ligand-binding proteins. 

 

4.2 Major Contributions 

 

 We have developed MuLiSA, a multiple ligand-bound structure alignment technique, 

based on functional-dependent ligand information to evaluate residue and pattern 

conservation. The main difference between our tool and others is that we first superimpose the 

ligands of proteins but not protein itself. In this way, the ligand-binding sites are 

superimposed naturally. Then we could identify the conservation residues and pattern 

candidates according to these positions and segments which were superimposed along with 

ligands. Although the prediction accuracy in ATP-binding proteins and HEM-binding 

proteins is not good, we proposed a novel tool to identify ligand-binding 

specificity-determining residues in a different way. This tool may help researchers to looking 

for functional important residues and do further research. 

 

 

 



 32

4.3 Future works 

 

There are still works to do to improve MuLiSA. 

First, the alignment algorithm must be improved. In present results, we observed that 

sometimes there are gaps gapped in well-aligned segments, and the conservation patterns 

always forms secondary structure segment. To solve this problem, adding secondary structure 

information and prevent daps in well-aligned segment in the alignment algorithm may be a 

practicable solution to improve the alignment results. 

Second, if we can find proteins binding similar compounds in different biochemical 

reaction step, such as ATP, ADP and AMP binding by same proteins, through multiple 

ligand-bound structure alignments, we can observe the residue variation in a reaction, and it 

may help us to make it clear that the importance and the role of function-dependent residues 

in a continuous reaction. 

Third, multiple ligand-bound structure alignments can be modified to be an “active 

site-based multiple structure alignments”. When we knows functional important region of 

proteins, we can superimposed these region and identified more functional important residues 

for further research. 
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Table 1. Statistics of proteins, domains and pattern candidates. 

Ligand 

name 

No. of 

proteins 

a 

No. of 

selected 

domains 
b 

No. of  

non-redundant 

domains 

Clusters c 

Selected 

alignment 

center C 

No. of 

important 

residues 

No. of  
pattern 

candidates

Protein kinases 

catalytic subunit 

(7) 

d1phk__ 10 1 

ATP 173 60 46 Class I 

aminoacyl-tRNA 

synthetases (RS), 

catalytic domain 

(4) 

d1maua_ 16 3 

ADP 302 140 73 motor proteins (8) d1goja_ 8 4 

CCP-like (13) d1llp__ 11 3 

Cytochrome P450 
(13) d1eupa_ 12 3 

Cytochrome b5 (5) d1cyo__ 4 1 

Monodomain 
cytochrome c (23)

d1i54a_ 3 1 

Heme 1145 860 131 

Cytochrome c' (4) d1i54a_ d 3 1 

a Number of ligand-binding proteins in PDBsum database. 
b Number of ligand-binding domains selected by our program. 
c The domain clusters that according to structure similarity and SCOP database classification; 
the domain names are based on SCOP database nomenclature. We only choose domain 
clusters with domain number > 3 because the alignments are more statistical meaningful; and 
we only choose domain clusters with PROSITE patterns because we need benchmarks to 
verify our results. The numbers in the parentheses are the non-redundant domain numbers of 
each cluster. 

d We choose same alignment center C of domain clusters: monodomain cytochrome c and 
cytochrome c', because same pattern candidates were identified in these clusters.
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Table 2. Conservation residues identified from ATP-binding domains. 

Family a Domain Conservation residues b
 

d1phk__ G26 A46 L111 D149 K151 P152 N154 L156 D167 T186       

d1atpe_ G50 A70 L128 D166 c K168 P169 N171 L173 D184 T201       

d1qmza_ G11 A31 L87 D127 K129 P130 N132 L134 D145 T165       

d1csn__ G19 A39 L92 D131 K133 P134 N136 L138 D154 T181       

d1hck__ G11 A31 L87 D127 K129 P130 N132 L134 D145 T165       

d1gol__ G30 A50 L110 D147 K149 P150 N152 L154 D165 T188       

d1h1wa_ G89 A109 L167 D205 K207 P208 N210 L212 D223 T245       

Protein kinases 
catalytic subunit 

Z-score e 2.980 2.980 2.980 2.980 2.980 2.980 2.980 2.980 2.980 2.980       

d1maua_ P10 G17 L23 D41 S81 Y125 D132 L135 P172 V179 K192 M193 S194 K195 L206 L272 

d1n77a2 d G17 L23   T186 D194 L197 P228 G274 K243   H15 L253  

d1gtra2+ P35 G42 I47 D67 S100 Y211  L221 P253 G314  M268 S269 K270 L39 L327 

d1h3ea1 P46 G54 L59 D78 S129 Y175 D182 V184  G18 K232 M233 S234 K235 L243 L292 

Class I 
aminoacyl-tRNA 
synthetases (RS), 
catalytic domain

Z-score 2.879 5.218 2.879 2.879 2.879 2.879 2.879 2.879 2.879 2.879 2.879 2.879 2.879 2.879 5.218 2.879 

 

a The SCOP database families. 
b Conservation residues identified by MuLiSA with z-score of entropy calculation > 2.5. 
c Bold residues are residues that were announced on literature which are important in ligand-binding or conformation stability. 
d The spare spaces are gaps in the alignments. 
e The position z-score of entropy calculation. 
+ The reference of this protein domain was not found; hence no residues were labeled. 
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Table 3. Pattern candidates identified from ATP-binding domains 

Family Domain Pattern candidates a 

 1 b 2 3 
d1phk__ 
d1atpe_ 
d1qmza_
d1csn__ 
d1hck__ 
d1gol__ 

Protein kinases catalytic subunit 

d1h1wa_
  

 1   

d1maua_

d1n77a2 

d1gtra2+ 

Class I aminoacyl-tRNA 
synthetases (RS), catalytic domain 

d1h3ea1  
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Table 4. Comparison of PROSITE patterns and pattern candidates of ATP-binding 

domains 

Family Domain PROSITE patterns a
 

Pattern 
candidates b

 

 

PS00107 Protein kinases 
ATP-binding region signature. 
[LIV]-G-{P}-G-{P}-[FYWMGST
NH]-[SGA]-{PW}-[LIVCAT]-{PD
}-x-[GSTACLIVMFY]-x(5,18)-[LI
VMFYWCSTAR]-[AIVP]-[LIVMF
AGCKR]-K. c 

PS00108 Serine/ 
Threonine protein 
kinases active-site 
signature. 
[LIVMFYC]-x-[HY]-
x-D-[LIVMFY]-K-x(
2)-N-[LIVMFYCT](3
). 

1 

d1phk__ 

d1atpe_ 

d1qmza_
d1csn__ 
d1hck__ 

d1gol__ 

Protein 
kinases 
catalytic 
subunit 

d1h1wa_

  

 
PS00178 Aminoacyl-transfer RNA synthetases class-I 
signature  
P-x(0,2)-[GSTAN]-[DENQGAPK]-x-[LIVMFP]-[HT]-[LIV
MYAC]-G-[HNTG]-[LIVMFYSTAGPC]. 

1 

d1maua_

d1n77a2 

d1gtra2 

Class I 
aminoacyl-

tRNA 
synthetases 

(RS), 
catalytic 
domain 

d1h3ea1   
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Table 5. Hit rate comparison of dataset difference in profile verification of ATP-binding 

proteins 

Dataset 1 c Dataset 2 d 
Family PROSITE patterns and 

pattern candidates a No. of 
sequence Hit rate e No. of 

sequence Hit rate

Protein kinases 
ATP-binding region 

signature 
85.15% 89.18%

Serine/ Threonine 
protein kinases 

active-site signature. 
85.73% 86.67%

Pattern candidate 1 b 84.79% 86.76%
Pattern candidate 2 64.19% 68.35%

Protein kinases 
catalytic subunit 

Pattern candidate 3 

859 

71.37%

773 

75.43%
Aminoacyl-transfer 
RNA synthetases 
class-I signature 

26.61% 50.42%
Class I 

aminoacyl-tRNA 
synthetases (RS), 
catalytic domain Pattern candidate 1 

1129 

20.18%
1056 

37.43%
 

a PROSITE patterns and pattern candidates that we identified. 
b Pattern candidate 1 of “Protein kinases catalytic subunit family”(see Table 3). 
c Dataset 1: sequences only with PROSITE patterns 
d Dataset 2: sequences with PROSITE patterns and SWISS-PROT annotations 
e Average hit rate when true positive rate are 50%, 60%, 70%, 80%, 90% and 100%. 
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Table 6. Hit rate comparison of pattern candidates and PROSITE patterns in protein 

function prediction of ATP-binding proteins 

No. of top 

ranked 

sequence a 

True-positive rate 

Profile 

scoring 

score 

Z-score of 

profile 

scoring 

score b 

Hit rate of all 

pattern 

candidates 

Hit rate of 

PROSITE 

pattern 

100 100.00% (100) 0.840 6.52 100.00% (100) 0.00% (0) 

500 98.40% (492) 0.720 4.70 100.00% (492) 0.00% (0) 

1000 95.70% (957) 0.650 3.63 99.79% (955) 0.21% (2) 

1500 82.27% (1234) 0.600 2.87 97.65% (1205) 2.35% (29) 

2000 76.65% (1533) 0.583 2.61 80.43% (1503) 19.57% (30) 

2500 70.28% (1757) 0.567 2.37 94.25% (1656) 5.75% (101) 

3000 61.53% (1846) 0.556 2.20 94.53% (1745) 5.47% (101) 
 

a The top ranked sequence number. For example, 100 in this column means the 100 ranked 
sequences with highest profile scoring score in profile scoring ranking list of ATP-binding 
protein prediction. 

b Z-score of profile scoring scores. The average of all SWISS-PROT sequence scores is 
0.411515; the standard deviation of all SWISS-PROT sequence scores is 0.065701. 
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Table 7. Conservation residues identified from ADP-binding domains 

Family Domain Conservation residues 

d1goja_ P16 G88 G93 K94 S206 D235 G238 E240

d1bg2__ P17 G85 G90 K91 S202 D231 G234 E236

d1br2a2 P126 G177 G182 K183 S179 D465 G468 E178

d2ncda_ P357 G434 G439 G440 S551 D580 G583 E585

d1f9ta_ P395 G474 G479 K480 S597 D626 G629 E631

d1i5sa_ P14 G97 G102 K103 S215 D248 G251 E253

d1lkxa_ P50 G101 G106 K107 S103 D386 G389 E102

d2kin.1 P17 G86 G91 K92 S203 D232 G235 E237

motor 
proteins 

Z-score 3.029 3.029 3.029 3.029 3.029 3.029 3.029 3.029



 40

Table 8. Pattern candidates identified from ADP-binding domains 

Family Domain Pattern candidates 
  1 2 3 4 

d1goja_ 

d1bg2__ 

d1br2a2 

d2ncda_ 

d1f9ta_ 

d1i5sa_ 

d1lkxa_ 

motor proteins 

d2kin.1 
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Table 9. Comparison of PROSITE patterns and pattern candidates of ADP-binding 

domains 

Family Domain PROSITE patterns Pattern candidates 

 
PS00411 Kinesin motor domain signature. 
[GSA]-[KRHPSTQVM]-[LIVMF]-x-[LIVMF] 
-[IVC]-D-L-[AH]-G-[SAN]-E. 

4 

d1goja_ 

d1bg2__ 

d1br2a2 

d2ncda_ 

d1f9ta_ 

d1i5sa_ 

d1lkxa_ 

motor 
proteins 

d2kin.1 
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Table 10. Hit rate comparison of dataset difference in profile verification of motor 

proteins 

Dataset 1 b Dataset 2 c 
Family PROSITE patterns and 

pattern candidates a No. of 
sequence d Hit rate e No. of 

sequence Hit rate 

Kinesin motor domain 
signature 99.10% 99.50% 

Pattern candidate 1 69.83% 72.47% 
Pattern candidate 2 83.50% 85.24% 
Pattern candidate 3 97.19% 97.56% 

motor 
proteins 

Pattern candidate 4 

95 

98.35% 

89 

98.75% 
 

a PROSITE patterns and pattern candidates that we identified. 
b Dataset 1: sequences with PROSITE pattern 
c Dataset 2: sequences with PROSITE pattern and SWISS-PROT “motor protein” annotations. 
d Number of sequences recorded which have PROSITE patterns in this cluster. 
e Average hit rate when true positive rate are 50%, 60%, 70%, 80%, 90% and 100%. 



 43

Table 11 Hit rate comparison of pattern candidates and PROSITE patterns in protein 

function prediction of motor proteins 

Top number 

of sequence a 

True-positive 

rate 

Profile 

scoring 

score 

Z-score of 

profile 

scoring 

score b 

Hit rate of all 

pattern candidates 

Hit rate of 

PROSITE 

pattern 

10 100% (10) 1.000 7.44 100.00% (10) 0.00% (0) 

50 100% (50) 1.000 7.44 100.00% (50) 0.00% (0) 

100 91.00% (91) 0.875 5.76 100.00% (91) 0.00% (0) 

150 66.00% (99) 0.750 4.08 100.00% (99) 0.00% (0) 

200 50.50% (101) 0.750 4.08 100.00% (101) 0.00% (0) 

250 40.80% (102) 0.750 4.08 100.00% (102) 0.00% (0) 

300 34.00% (102) 0.667 2.97 100.00% (102) 0.00% (0) 
 

a The top ranked sequence number. 
b Z-score of profile scoring scores. The average of all SWISS-PROT sequence scores is 

0.445968; the standard deviation of all SWISS-PROT sequence scores is 0.074513. 
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Table 12. Conservation residues identified from HEM-binding domains 

Family Domain Conservation residues 
d1llp__ R43 H47 G66 D107 G131 R132 P145 V170 H176 F200 D238  
d1cca__ R48 H52 G65 D106 G129 R130 P145 V169 H175 F198 D235  
d1oafa_ R38 H42 G55 D95 G118 R119 P132 V157 H163 F186 D208  
d1hsr__ R52 H56 G75 D116 G140 R141 P154 V178 H184 F208 D246  
d1h5ma_ R38 H42 G48 D99 G122 R123 P139 V164 H170 F229 D247  
d1b80a_ R43 H47 G66 D107 G131 R132 P145 V170 H176 F200 D238  
d1bgp__ R45 H49 G55 D108 G131 R132 P149 V173 H179 F232 D250  
d1mnp__ R42 H46 G62 D104 G128 R129 P142 V167 H173 F197 D242  
d1fhfa_ R38 H42 G48 D99 G122 R123 P139 V163 H169 F228 D246  
d1pa2a_ R38 H42 G48 D99 G122 R123 P139 V163 H169 F228 D246  

d1qgja_ R38 H42 G48 D96 G119 R120 P135 V159 H165 F224 D242  

d1qpaa_ R43 H47 G66 D107 G131 R132 P145 V170 H176 F200 D238  

d1scha_ R38 H42 G48 D99 G122 R123 P139 V163 H169 F221 D239  

CCP-like 

Z-score 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.662 2.662  
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Table 12. Continued. 

Family Domain Conservation residues 
d1eupa_ A241 G242 E280 R283 D322 R336 F344 G345 G347 H349 C351 G353 
d1dz4a_ V247 G248 E287 R290 D328 R342 F350 G351 G353 H355 C357 G359 
d1bu7a_ A264 G265 E320 R323 D363 R378 F393 G394 G396 R398 C400 G402 
d1cpt__ A267 G268 E306 R309 D348 R362 F370 G371 G373 H375 C377 G379 
d1n6ba_ A294 G295 E351 R354 D394 H408 F425 S426 G428 R430 C432 G434 
d1e9xa_ A256 G257 313 R316 I355 R369 F387 G388 G390 H392 C394 G396 
d1ehea_ A239 G240 E278 R281 D321 R335 F345 G346 G348 H350 C352 A354 
d1gwia_ A242 G243 E281 R284 D324 R339 F348 G349 G351 H353 C355 G357 
d1io7a_ A209 G210 E246 R249 D288 R302 F310 G311 G313 H315 C317 G319 
d1izoa_   E282 R285 D324 R338 Q352 G353 G355 H341 C363 G365 
d1lfka_ A236 G237 E275 R278 D318 R332 F340 G341 G343 H345 C347 G349 

d1n4ga_+ A233 G234 E272 R275 D315 R329 F338 G339 G341 H343 C345 G347 
d1n97a_ A221 G222 E260 R263  R314 F329 G330 G332 R334 C336 G338 

Cytochrome 
P450 

Z-score 2.705 3.208 3.723 3.723 2.705 3.208 3.208 3.208 3.723 2.697 3.723 3.208 
d1cyo__ E11 T33 H39 H63         
d1b5m__ E11 T33 H39 H63         
d1cxya_ E13 T58 H70 H42         
d1icca_ E11 T55 H63 H39         
d1mj4a_ E10 T34 H40 H65         

Cytochrome 
b5 

Z-score 3.253 3.253 3.253 3.253         
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Table 12. Continued. 

Family Domain Conservation residues 

d1i54a_ C14 C17 H18 

d1cot__ C15 C18 H19 

d1c75a_ C32 C35 C36 

d1c2ra_ C13 C16 H17 

d1c52__ C11 C14 H15 

d1c6ra_ C15 C18 H19 

d1cc5__+ C19 C22 H23 

d1ccr__ C22 C25 H26 

d1ycc__ C14 C17 H18 

d1co6a_ C13 C16 H17 

d1ctj__ C15 C18 H19 

d1cxc__ C15 C18 H19 

d1cyi__ C14 C17 H18 

d1dw0a_ C43 C46 H47 

d1f1fa_ C14 C17 H18 

d1fj0b_ C13 C16 H17 

d1gdva_ C14 C17 H18 

d1hroa_ C19 C22 H23 

d1jdla_ C15 C18 H19 

d1ls9a_ C17 C20 H21 

d2mtac_+ C57 C60 H61 

d3c2c__+ C14 C17 H18 

monodomain cytochrome c 

d351c__ C12 C15 H16 

d1a7va_ C113 C116 H117 
d1bbha_ C121 C124 H125 

d1cgo__ C116 C119 H120 

d1cpq__ C118 C121 H122 
Cytochrome c' 

Z-score 3.505 3.505 3.505 
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Table 13. Pattern candidates identified from HEM-binding domains 

Family Domain Pattern candidates 
 1 2 3 

d1llp__ 

d1cca__ 
d1oafa_ 
d1hsr__ 
d1h5ma_ 
d1b80a_ 
d1bgp__ 
d1mnp__ 
d1fhfa_ 
d1pa2a_ 
d1qgja_ 
d1qpaa_ 

CCP-like 

d1scha_ 

 
  

 1 2 3 
d1eupa_ 
d1dz4a_ 

d1bu7a_ 

d1cpt__ 
d1n6ba_ 
d1e9xa_ 
d1ehea_ 
d1gwia_ 
d1io7a_ 
d1izoa_ 
d1lfka_ 
d1n4ga_ 

Cytochrome 
P450 

d1n97a_ 

   

 1   
d1cyo__ 
d1b5m__ 
d1cxya_ 
d1icca_ 

Cytochrome 
b5 

d1mj4a_  
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Table 13. Continued. 

Family Domain Pattern candidates 
 1 

d1i54a_ 

d1cot__ 
d1c75a_ 
d1c2ra_ 
d1c52__ 
d1c6ra_ 
d1cc5__ 
d1ccr__ 
d1ycc__ 
d1co6a_ 
d1ctj__ 
d1cxc__ 
d1cyi__ 
d1dw0a_ 
d1f1fa_ 
d1fj0b_ 
d1gdva_ 
d1hroa_ 
d1jdla_ 
d1ls9a_ 
d2mtac_ 
d3c2c__ 

monodomain cytochrome 
c 

d351c__ 
d1a7va_ 

d1bbha_ 

d1cgo__ 
Cytochrome c' 

d1cpq__ 
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Table 14. Comparison of PROSITE patterns and pattern candidates of HEM-binding 

domains 

Family Domain PROSITE patterns Pattern candidates 

 

PS00436 
Peroxidases active 
site signature. 
[SGATV]-x(3)-[LIV
MA]-R-[LIVMA]-x-
[FW]-H-x-[SAC]. 

PS00435 Peroxidases 
proximal heme-ligand 
signature. 
[DET]-[LIVMTA]-x(2)
-[LIVM]-[LIVMSTAG
]-[SAG]-[LIVMSTAG]
-H-[STA]-[LIVMFY]. 

1 2 

d1llp__ 
d1cca__ 
d1oafa_ 
d1hsr__ 
d1h5ma_ 
d1b80a_ 
d1bgp__ 
d1mnp__ 
d1fhfa_ 
d1pa2a_ 
d1qgja_ 
d1qpaa_ 

CCP-like 

d1scha_    

 
PS00086 Cytochrome P450 cysteine heme-iron 
ligand signature. 
[FW]-[SGNH]-x-[GD]-x-[RKHPT]-x-C-[LIV
MFAP]-[GAD]. 

3 

d1eupa_ 

d1dz4a_ 

d1bu7a_ 

d1cpt__ 
d1n6ba_ 
d1e9xa_ 
d1ehea_ 
d1gwia_ 
d1io7a_ 
d1izoa_ 

d1lfka_ 

d1n4ga_ 

Cytochrome 
P450 

d1n97a_ 
  

 
PS00191 Cytochrome b5 family, 
heme-binding domain signature. 
[FY]-[LIVMK]-x(2)-H-P-[GA]-G 

1 

d1cyo__ 

d1b5m__ 

d1cxya_ 

d1icca_ 

Cytochrome 

b5 

d1mj4a_   
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Table 14. Continued. 

Family Domain PROSITE patterns Pattern candidates 

 
PS00190 Cytochrome c family 
heme-binding site signature. 
C-{CPWHF}-{CPWR}-C-H-{CFYW}.

1 

d1i54a_ 

d1cot__ 
d1c75a_ 
d1c2ra_ 
d1c52__ 
d1c6ra_ 
d1cc5__ 
d1ccr__ 
d1ycc__ 
d1co6a_ 
d1ctj__ 
d1cxc__ 
d1cyi__ 
d1dw0a_ 
d1f1fa_ 
d1fj0b_ 
d1gdva_ 
d1hroa_ 
d1jdla_ 
d1ls9a_ 
d2mtac_ 
d3c2c__ 

monodomain 
cytochrome c 

d351c__ 

d1a7va_ 

d1bbha_ 

d1cgo__ 
Cytochrome c' 

d1cpq__ 
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Table 15. Hit rate comparison of dataset difference in profile verification of HEM-binding 

proteins 

Dataset 1 b Dataset 2 c 
Family PROSITE patterns and 

pattern candidates a No. of 
sequence Hit rate d No. of 

sequence Hit rate 
Peroxidases active site 

signature. 8.86% 100.00%
Peroxidases proximal 

heme-ligand signature. 8.39% 55.72% 
Pattern candidate 1 4.86% 46.67% 
Pattern candidate 2 6.94% 49.81% 

CCP-like 

Pattern candidate 3 

205 

4.95% 

151 

9.54% 
Cytochrome P450 cysteine 
heme-iron ligand signature. 86.05% 86.45% 

Pattern candidate 1 65.49% 68.34% 
Pattern candidate 2 38.09% 40.55% 

Cytochrome P450 

Pattern candidate 3 

687 

86.13% 

675 

86.26% 
Cytochrome b5 family, 
heme-binding domain 

signature. 
79.43% 79.30% Cytochrome b5 

Pattern candidate 1 
88 

77.13% 
78 

82.53% 
Cytochrome c family 

heme-binding site 
signature. 

87.12% 84.08% monodomain 
cytochrome c and 

Cytochrome c' Pattern candidate 1 
1130 

86.93% 
897 

84.02% 
 

a PROSITE patterns and pattern candidates that we identified. 
b Dataset 1: sequences with PROSITE pattern 
c Dataset 2: sequences with PROSITE pattern and SWISS-PROT annotations 
d Average hit rate when true positive rate are 50%, 60%, 70%, 80%, 90% and 100%. 
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Table 16. Hit rate comparison of pattern candidates and PROSITE pattern in protein 

function prediction of HEM-binding proteins 

Top number 

of sequence a 

True-positive 

rate 

Profile 

scoring 

score 

Z-score of 

profile 

scoring 

score b 

Hit rate of all 

pattern 

candidates 

Hit rate of 

PROSITE 

pattern 

100 92.00% (92) 0.798 4.72 100.00% (92) 0.00% (0) 

200 80.50% (161) 0.744 4.00 96.27% (155) 3.73% (6) 

300 69.00% (207) 0.708 3.52 97.10% (201) 2.90% (6) 

400 69.75% (279) 0.692 3.30 87.81% (245) 12.19% (34) 

500 70.40% (352) 0.685 3.21 90.34% (318) 9.66% (34) 

600 60.33% (362) 0.685 3.21 90.61% (328) 9.39% (34) 

700 57.86% (405) 0.669 2.99 91.60% (371) 8.40% (34) 
 

a The top ranked sequence number.  

b Z-score of profile scoring scores. The average of all SWISS-PROT sequence scores is 
0.436928; the standard deviation of all SWISS-PROT sequence scores is 0.071717. 
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Table 17. Prediction accuracy and coverage rates in protein function prediction 

Ligand 
name 

No. of 
SWISS-PROT 

annotated 
protein 

sequence a 

No. of true 
hit of top 

100% 
ranked 

annotated 
sequence b

PROSITE 
pattern 
profile 
search 

All pattern 
candidates 

profile 
search 

Novel 
pattern 

candidates  
profile 
search 

Prediction 
accuracy of 
all pattern 
candidates

ATP 13484 3462 8.43% 
(292) 

91.57% 
(3170) 

62.74% 
(2172) 23.51% 

ADP c 212 101 0% (0) 100% (101) 7.92% (8) 47.64% 

Heme 4111 678 17.55% 
(119) 

82.45% 
(559) 2.95% (20) 13.60% 

Kinesin 111 96 0.00% (0) 100.00% 
(96) 8.33% (8) 86.49% 

 

a Number of annotated SWISS-PROT protein sequences. Annotations: “ATP-binding”, “motor 
protein”, “Heme” and “kinesin” in “KW” of SWISS-PROT database. There are 151047 
protein sequences in SWISS-PROT database. 

b Number of true hit annotated protein sequences of the top 100% ranked protein sequences. 
For example, there are 3462 the true hit protein sequence of top 13484 sequences in 
ATP-binding prediction profile scoring ranking list. 

c We only choose motor proteins as our protein function prediction target. 



 54

Table 18. 10 predicted protein sequences with high scores in profile scoring ranking lists 

of protein function prediction in ATP-binding proteins, motor proteins and HEM-binding 

proteins. 

 
Predicted ATP-binding proteins Predicted motor proteins 

Predicted HEM-binding 
proteins 

1 (295a) P27604b 
(Adenosylhomocysteinasec) 

(85) P44531  
(Ferric cations import 
ATP-binding protein fbpC 1) 

(62) Q60613  
(Adenosine A2a receptor) 

2 (304) P25169 
(Sodium/potassium-transporting 
ATPase beta chain) 

(105) Q9QYX7  
(Piccolo protein) 

(82) P29274  
(Adenosine A2a receptor) 

3 (774) P20357 
(Microtubule-associated protein 2) 

(108) Q9PU36  
(Piccolo protein [Fragment]) 

(83) Q10024  
(Putative diacylglycerol kinase 
K06A1.6) 

4 (855) Q8A407 
(Adenosylhomocysteinase) 

(111) Q9Y6V0  
(Piccolo protein) 

(87) P92127 
(Variant-specific surface 
protein VSP4A1 [Precursor]) 

5 (886) Q92TC1 
(Adenosylhomocysteinase) 

(118) Q96RT7 
(Gamma-tubulin complex 
component 6) 

(96) P55493  
(Hypothetical 65.5 kDa 
protein y4IJ) 

6 (882) Q96RU7  
(Neuronal cell death inducible 
putative kinase) 

(125) Q9JVP2 
(Aminomethyltransferase) 

(98) P46616  
(Adenosine A2a receptor) 

7 (925) P34611 
(B-box type zinc-finger protein ncl-1) 

(126) P35100 
(ATP-dependent Clp protease 
ATP-binding subunit clpA 
homolog, chloroplast 
[Precursor]) 

(108) Q81MN9 
(Polyphosphate kinase) 

8 (938) Q9WTQ6 
(Neuronal cell death inducible 
putative kinase) 

(127) Q8CFL8 
(Zinc finger SWIM domain 
containing protein 3) 

(112) P55019 
(Solute carrier family 12 
member 3) 

9 (947) Q8K4K2 
(Neuronal cell death inducible 
putative kinase) 

(131) Q7MDL6 
(Adenosine deaminase) 

(115) P11413 
(Glucose-6-phosphate 
1-dehydrogenase) 

10 (952) Q89HP6 
(Adenosylhomocysteinase) 

(146) P00815 
(Histidine biosynthesis 
trifunctional protein) 

(121) Q9QZY5  
(T-cell surface glycoprotein 
CD1e [Precursor]) 

 

a Ranking serial number in profile scoring ranking lists. 
b SWISS-PROT accession numbers. 
c Protein name in SWISS-PROT database. 
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Select alignment 
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Protein function 

prediction
 

Figure 1. The workflow of analysis and identification of conservation patterns and residues in 

proteins by MuLiSA. This flow starts from dataset preparation and clustering, followed by 

multiple ligand-bound structure alignments (MuLiSA), tool evaluation and protein function 

prediction. 
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d1gtra2   :   0.3 + 0.39 + 0.34 = 1.03

d1h3ea1  :  1.10 

d1maua2 :  1.19

d1n77a2  :  1.06

10.360.360.34d1n77a2

0.3610.440.39d1maua2

0.360.4410.3d1h3ea1

0.340.390.31d1gtra2

d1n77a2d1maua2d1h3ea1d1gtra2

 
Figure 2. The alignment center C selection. The alignment center C was selected when domain 

of one cluster which has the highest structure similarity with other protein domains than others. 

In this case, we select domain d1maua2 as the alignment center C of this cluster. 
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Figure 3. Identification of conservation residues at positions with z-score > 2.5. (A) The 

multiple alignments of four protein sequences. (B) The entropy and z-score values of each 

position. Figure 2(A) shows the alignment results of 13 protein sequences belongs to 

“Cytochrome P450 family”. The numbers on the top of Figure 2(A) are the residue numbers of 

d1eupa_. The “+” symbols denotes the positions with z-score > 2.5, and we can observe in 

Figure 2(B) that these positions are with z-scores 3.208 and 3.723. The framed region is the 

possible pattern candidate. 
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A

 

 
Figure 4. (A) Structure similarity matrix of 25 non-redundant ATP-binding domains; (B) SCOP 

classification of 25 non-redundant ATP-binding domains. In Figure 4(A), domains belong to 

same SCOP families are with same colors. The bold values means the structure similarity is 

larger than the average value of the row; in other words, the domain in this row is much similar 

with these compared domains than others. In this matrix, we find that most domains of same 

SCOP family usually have higher structure similarity with each other (see the regions with red 

frame), it tells us that the multiple ligand-bound structure alignment and structure similarity 

calculation is reasonable and can reflect structural and functional information. In Figure 4(B), 

protein domains were classified according to SCOP classification hierarchy: class, fold, 

superfamily, and family. The protein domains were named by SCOP database nomenclature. 
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Figure 5. MuLiSA result and identified conservation residues in “Protein kinases, catalytic 

subunit family” of ATP-binding domains. (A) Three-dimensional distributions of identified 

conservation residues and the ligand superimposition. Yellow: d1phk__; blue: d1atpe_; green: 

d1qmza_; red: d1csn__; grey: d1hck__; pink: d1gol__; light blue: d1h1wa_; (B) Multiple 

ligand-bound structure alignment result of “Protein kinases, catalytic subunit family” domains. 

In Figure 5(A), the identified conservation residues, aligned positions with z-score of entropy 

calculation > 2.5, are close to ATP in three-dimensional space. It implies that these 

conservation residues may play important role in ATP-binding. In Figure 5(B), the labeled 

residue numbers belong to protein domain d1phk__, which is the selected alignment center C 

of this cluster; and the red framed region means the PROSITE patterns. We observed that most 

identified conservation residues were on these PROSITE pattern region, it tell us that 

identifying pattern candidates from conservation residues extension may be a reasonable 

approach. 
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Pattern candidate 1

Pattern candidate 2

Pattern candidate 3

ATP

 

Figure 6. Three pattern candidates of “Class I aminoacyl-tRNA synthetases (RS), catalytic 
domain family” on three-dimensional space. Pattern candidate 1 is overlapping with PROSITE 
pattern PS00108; pattern candidate 2 and 3 are novel pattern that we identified. All three 
pattern candidates are closed to ATP; hence they may be important in ATP-binding. 
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Figure 7. Comparison of pattern candidate 1 and PROSITE pattern: Serine/ Threonine protein 

kinases active-site signature in “Protein kinases catalytic subunit family” for profile 

verification of ATP-binding proteins. In ROC curve, the area under curves represents the 

goodness of the test. We observed that our defined pattern candidate is worse than PROSITE 

pattern; however, because of that the profile of PROSITE pattern is generated from our 

alignments, it proved that the profile generated from our alignments is reasonable. 
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Figure 8. Comparison of datasets used in profile search by pattern candidate 1 of “Class I 

aminoacyl-tRNA synthetases (RS), catalytic domain family” of ATP-binding domains. Dataset 

1: protein sequences contain PROSITE pattern: aminoacyl-transfer RNA synthetases class-I 

signature. Dataset 2: protein sequences contain PROSITE pattern: aminoacyl-transfer RNA 

synthetases class-I signature and also have “ATP-binding” annotations in SWISS-PROT 

database. We observed that the area under curves of dataset 2 is larger than area under curves 

of dataset 1. Because the profile of pattern candidates were generated from ATP-binding 

domains alignments and the protein sequences in dataset 1 are not all have “ATP-binding” 

annotations, we think that the profile of pattern candidate is more meaningful in ATP-binding 

proteins but not proteins only with PROSITE pattern. 
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Figure 9. Profile scoring list of protein function prediction in ATP-binding proteins. The 

protein sequences with SWISS-PROT “ATP-binding” annotations were labeled by “+” symbol 

on ATP column. The protein accession numbers in SWISS-PROT database are list on Seq. 

column. Values on “Score” column are the profile scoring scores. The “Pattern column” shows 

the matched protein sequence segment, the residue numbers of the first and the last residues are 

shown. Two points must be mentioned. First, the framed sequences all have “ATP-binding” 

annotations (except for P27604 and P25169); because these sequences all match our new 

finding pattern candidate, we regard this pattern candidate is a new pattern of ATP-binding 

proteins. Second, the non-labeled sequences, P27604 and P25169, are the sequences that match 

profiles but don’t have “ATP-binding” annotations in SWISS-PROT database, hence these two 

proteins might be ATP-binding protein that not identified yet. 
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Figure 10. (A) Structure similarity matrix of 30 non-redundant ADP-binding domains; (B) 

SCOP classification of 30 non-redundant ADP-binding domains. In Figure 10(A), domains 

belong to same SCOP families are with same colors. The bold values means the structure 

similarity is larger than the average value of the row. In this matrix, we find that most domains 

of same SCOP family usually have higher structure similarity with each other (see the regions 

with red frame). In Figure 10(B), protein domains were classified according to SCOP 

classification hierarchy. 
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Figure 11. MuLiSA result and identified conservation residues in “motor proteins family” of 

ADP-binding domains. (A) Three-dimensional distributions of identified conservation residues 

and the ligand superimposition. Yellow: d1goja_; blue: d1bg2__; green: d1br2a2; red: d2ncda_; 

grey: d1f9ta_; orange: d1i5sa_; brown: d2kin.1; light blue: d1lkxa_; (B) Multiple ligand-bound 

structure alignment result of “motor proteins family” domains. In Figure 11(A), the identified 

conservation residues are closed to ADP in three-dimensional space. It implies that these 

conservation residues may play important role in ADP-binding. In Figure 11(B), the labeled 

residue numbers were belonged to protein domain d1goja_, which is the selected alignment 

center C of this cluster, and the red framed region means the PROSITE patterns. 
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Figure 12. Three pattern candidates of “motor proteins family” on three-dimensional space. 
Pattern candidate 4 is overlapping with PROSITE pattern PS00411; pattern candidate 1, 2 and 
3 are novel pattern that we identified. All three pattern candidates are closed to ADP; hence 
they may be important in ADP-binding. 
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Figure 13. Comparison of pattern candidate 4 and PROSITE pattern: Kinesin motor domain 

signature in “motor proteins family” for profile verification of ADP-binding domains. We 

observed that our defined pattern candidate is worse than PROSITE pattern; however, because 

of that the profile of PROSITE pattern is generated from our alignment, it proved that the 

profile generated from our alignments is reasonable. 
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Figure 14. Comparison of datasets used in profile search by pattern candidate 1 of “motor 

proteins family” of ADP-binding domains. Dataset 1: protein sequences contain PROSITE 

pattern: Kinesin motor domain signature. Dataset 2: protein sequences contain PROSITE 

pattern: Kinesin motor domain signature and also have “motor protein” annotations in 

SWISS-PROT database. We observed that the area under curves of dataset 2 is larger than area 

under curves of dataset 1. Because the profile of pattern candidates were generated from motor 

proteins domains alignments and the protein sequences in dataset 1 are not all have “motor 

protein” annotations, we think that the profile of pattern candidate is more meaningful in motor 

proteins but not proteins only with PROSITE pattern. 
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Figure 15. Profile scoring list of protein function prediction in motor proteins. The protein 

sequences with SWISS-PROT “motor protein” annotations were labeled by “+” symbol on 

motor column. The protein accession numbers in SWISS-PROT database are list on Seq. 

column. Values on “Score” column are the profile scoring scores. The “Pattern column” shows 

the matched protein sequence segment, the residue numbers of the first and the last residues are 

shown. Two points must be mentioned. First, the framed sequences all have “motor” 

annotations; because these sequences all match our new finding pattern candidate, we regard 

this pattern candidate is a new pattern of motor proteins. Second, the non-labeled sequences are 

the sequences that match profiles but don’t have “motor protein” annotations in SWISS-PROT 

database; hence these proteins might be motor proteins that not identified yet. 
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Figure 16. (A) Structure similarity matrix of 40 non-redundant HEM-binding domains; (B) 

SCOP classification of 40 non-redundant HEM-binding domains. In Figure 16(A), protein 

domains belong to same SCOP families are with same colors. In this matrix, we find that most 

domains of same SCOP family usually have higher structure similarity with each other (see the 

regions with red frame); it tell us that the multiple ligand-bound structure alignment and 

structure similarity calculation is reasonable and can reflect structural and functional 

information. In Figure 16(B), protein domains were classified according to SCOP classification 

hierarchy: class, fold, superfamily, and family. 
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Figure 17. MuLiSA result and identified conservation residues in “Cytochrome b5 family” of 

HEM-binding domains. (A) Three-dimensional distributions of identified conservation residues 

and the ligand superimposition. Yellow: d1cyo__; blue: d1b5m__; green: d1cxya_; red: 

d1icca_; grey: d1mj4a_; (B) Multiple ligand-bound structure alignment result of “Cytochrome 

b5 family” domains. In Figure 17(A), the identified conservation residues are closed to heme in 

three-dimensional space. It implies that these conservation residues may play important role in 

HEM-binding. In Figure 17(B), the labeled residue numbers were belonged to protein domain 

d1cyo__, which is the selected alignment center C of this cluster, and the red framed region 

means the PROSITE patterns. 
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Figure 18. Comparison of pattern candidate 1 and PROSITE pattern: cytochrome b5 family, 

heme-binding domain signature in “cytochrome b5 family” for profile verification of 

HEM-binding domains in dataset 2. We observed that our defined pattern candidate is a little 

better than PROSITE pattern. Although this pattern candidate partially overlaps with this 

PROSITE pattern, it means that the pattern candidates identified by our approach may be more 

meaningful than PROSITE pattern for protein sequences with “Heme” annotations in 

SWISS-PROT database; and because of that the profile of PROSITE pattern is generated from 

our alignment, it also proved that the profile generated from our alignments is reasonable. 
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Figure 19. Comparison of datasets used in profile search by pattern candidate 1 of “cytochrome 

b5 family” of HEM-binding domains. Dataset 1: protein sequences contain PROSITE pattern: 

cytochrome b5 family, heme-binding domain signature. Dataset 2: protein sequences contain 

PROSITE pattern and have “Heme” annotations in SWISS-PROT database. We observed that 

the area under curves of dataset 2 is larger than area under curves of dataset 1. Because the 

profile of pattern candidates were generated from HEM-binding domains alignments and the 

protein sequences in dataset 1 are not all have “Heme” annotations, we think that the profile of 

pattern candidate is more meaningful in HEM-binding proteins but not proteins only with 

PROSITE pattern. 
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Figure 20. Profile scoring list of protein function prediction in HEM-binding proteins. The 

protein sequences with SWISS-PROT “Heme” annotations were labeled by “+” symbol on 

“Heme” column. We observed there are seven protein sequences which match the pattern 

candidate we identified but not have “Heme” annotations in SWISS-PROT database, hence 

these seven proteins might be HEM-binding protein but not identified yet. 
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Figure 21. The comparison of MuLiSA, CE, and CLUSTALW results of two Class I 

aminoacyl-tRNA synthetases (RS), catalytic domains: d1maua_ and d1gtra2. (A) Alignment 

comparison between three methods. The shadowed region is the PROSITE defined patterns; (B) 

3D structure alignment result of MuLiSA; (C) 3D structure alignment result of CE. In Figure 

21(A), only the alignments of MuLiSA can align the PROSITE defined patterns together 

(PROSITE pattern: 

P-x(0,2)-[GSTAN]-[DENQGAPK]-x-[LIVMFP]-[HT]-[LIVMYAC]-G-[HNTG]-[LIVMFYST

AGPC]) of two domains, d1maua_ and d1gtra2. In Figure 21(B), two ATPs were nearly 

superimposed and the PROSITE patterns also aligned well. However, in Figure 21(C), we can 

see that the PROSITE patterns were shifted. In fact, for CE uses only protein structure 

information to undergo structure alignment, we find that in this case the bad alignment of 

conservation patterns was because of a huge structure similar region apart from ATP-binding 

site, and it did disturb the alignment of PROSITE patterns. 
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Figure 22. The comparison of MuLiSA, CE, and CLUSTALW results of two domain families, 

monodomain cytochrome c and cytochrome c', which have same conservation patterns 

(PROSITE pattern: C-{CPWHF}-{CPWR}-C-H-{CFYW}) but belong to different SCOP fold. 

(A) SCOP classification of HEM-binding domains; (B-1) Alignment result of MuLiSA; (B-2) 

Alignment result of CE; (B-3) Alignment result of CLUSTALW. In Figure 22(A), there are 23 

domains belongs to “monodomain cytochrome c family” and 5 domains belong to “cytochrome 

c' family”. What’s most important is that these two families belong to different folds, it means 

domain structures of these two protein families should be different. In Figure 18(B-2) and 

(B-3), CE and CLUSTALW both can’t align the PROSITE patterns together when domains 
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belong to different SCOP fold; however, in Figure 22(B-1), MuLiSA aligned these PROSITE 

patterns well. For MuLiSA aligned the conservation patterns by ligand superimposition first, 

we think that when proteins have similar function in ligand-binding but with different protein 

structures, MuLiSA can exclude protein structure noise and only focus on ligand-binding sites, 

so MuLiSA aligned well; on the other hand, CE and CLUSTALW consider the whole protein 

structure or sequence information, so information in ligand-binding site may be disturbed by 

whole protein information. 
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Appendix 

A. Flow chart with Programs 

 
In this research, we used six C or C++ language written programs, they are as follows: 

 

1.GetPDBFile.c: get PDB files which are on PDBsum lists. 

2.GetDomain.c: get ligand binding domains from above selected PDB files. 

3.MuLiSA.cpp: ligand superimposition and generate alignments. Thanks for Mr. K.P. 

Liu’s help. 

4.Gen_Matrix.c: generate structure similarity matrixes and sequence identity 

matrixes. 

5.Related Entropy.c: calculate position entropy and z-socre of multiple alignments. 

Profile_Scoring.cpp: search for SWISS-PROT sequences and generate profile scoring 
lists. Thanks for Mr. D.K. Yang’s help. 
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B. Source code of program GetDomain.c 
 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include <string.h> 
#include <stdlib.h> 
//*****************************************Parameter// 
#define NearLigand 5      // Lignad-contact cutoff 
#define LIGAND  "HEM"     // Ligand Name 
#define LIGAND_ATOM 43      // Ligand atom number 
//Parameter****************************************// 
 
 
#define PDBpath "H:\\PDB\\"   // PDB File Path 
#define SCOPpath "H:\\SCOP\\"   // SCOP File Path 
#define targetpath ".\\target\\"   // target path 
#define pdbhead "pdb"    // PDB File Name Head 
#define pdbtail ".ent"    // PDB File Name Tail 
 
#define MAXFILENUM 2000   // MAX File Number 
#define MAXATOM 100000  // MAX Atom Number 
#define MAXRES  1000   // MAX residue number 
#define MAXLEN  150   // MAX length of each line 
#define MAXLIG  50   // MAX number of ligand of one PDB file 
#define MAXLIGANT 100   // MAX atom number of ligand 
#define MAXDOMAIN 50   // MAX number of domain of one PDB file 
#define NAMELEN 5   // PDB ID length+1 
 
void Initial(void);    // Initialize Variables 
void ReadFileList(void);   //* Read File List(outlist.txt) Function 
void GetDomain(void);   //** Get All Domain names 
void GetLigRes(void);   //***// Get Ligand-contact Residues 
void Res_To_Domain(void);  /****/// Find Domains From Residues 
void SCOP_List(void);   //***** Write SCOP List File 
void SCOP_File(void);   //****** Write SCOP File with Ligand 
 
void ReadPDB(int, char*);  //***// Read PDB File to PDBTEMP structure 
void SelectLigRes(int,int);  //***// Select Lignad-Residues distance & Store the Residues inside cutoff 
double Distance(int,int,int);  //***// Count distance 
int Belong_To_Domain(int,int,int,int); /****/// Check Domains & Residues 
 
struct Protein_Domain 
{ 
 char Name[20];    // Store PDB IDs 
 int Useful;    // Useful protein?? (0:NO; 1;YES) 
 int Usefuldomain[MAXDOMAIN]; // Useful domain?? (0:NO; 1;YES) 
 int domainNUM;   // Domain number of protein 
 int ligandNUM[MAXDOMAIN]; // Ligand number of each domain 
 int domain_lig_resnum[MAXDOMAIN][MAXLIG]; // Store residue number of ligand of each 

ligand-contact domain 
 char domain_lig_chain[MAXDOMAIN][MAXLIG][2]; // Store chain ID of ligand of each 
ligand-contact domain 
 char domain_name[MAXDOMAIN][20];   // Store domain names (ex:d1a0a__) 
 char domain_class[MAXDOMAIN][20];   // Store domain class (ex:c.26.1.1) 
 char domain_region[MAXDOMAIN][MAXLEN];  // Store domain region (ex:- or A: or 
A:78-156,A:249-463) 
}Protein[MAXFILENUM]; 
 
struct PDBFile 
{ 
 char HEADER[MAXATOM][7];   // HEADER  
 int ATOM_NUM[MAXATOM];   // Atom Number 
 char ATOM_NAME[MAXATOM][5];  // Atom Name 
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 char RES_NAME[MAXATOM][4];   // Residue Name 
 char CHAIN_ID[MAXATOM][2];   // Chain ID 
 int RES_NUM[MAXATOM];    // Residue Number 
 double X[MAXATOM];     // X-coordinates 
 double Y[MAXATOM];     // Y-coordinates 
 double Z[MAXATOM];     // Z-coordinates 
  
}PDBTEMP; 
 
struct LigInfo 
{ 
 char HEADER[MAXLIGANT][7];     // HEADER  
 int ATOM_NUM[MAXLIGANT];     // Atom Number 
 char ATOM_NAME[MAXLIGANT][5];    // Atom Name 
 char RES_NAME[MAXLIGANT][4];    // Residue Name 
 char CHAIN_ID[MAXLIGANT][2];     // Chain ID 
 int RES_NUM[MAXLIGANT];     // Residue Number 
 double X[MAXLIGANT];      // X-coordinates 
 double Y[MAXLIGANT];      // Y-coordinates 
 double Z[MAXLIGANT];      // Z-coordinates 
  
//}LIGTEMP[MAXLIG]; 
}*LIGTEMP; 
 
struct Ligand_Res 
{ 
 int ligand_num;     // Ligand Number of a File 
 int res_num[MAXLIG];    // Number of Contact Residues of Each Ligand 
 int ligand_resnum[MAXLIG];   // Residue Numbers of Each Ligand 
 char ligand_chain[MAXLIG][2];   // Chain ID of Each Ligand 
 char chain[MAXLIG][MAXRES][2];  // Chain ID of Each Ligand-Contact Residue 
 int res[MAXLIG][MAXRES];   // Residue Number of Each Ligand-Contact Residue 
//}Contact_Res[MAXFILENUM]; 
}*Contact_Res; 
 
static int PDBNUM;  // Store total PDB file number 
static int ATOMNUM;  // Store Atom Numbers of Ligands 
 
void main(void) 
{ 
/* 
 printf("%d\n",sizeof( struct Protein_Domain)*MAXFILENUM); 
 printf("%d\n",sizeof(struct PDBFile)); 
 printf("%d\n",sizeof(struct LigInfo)*MAXLIG); 
 printf("%d\n",sizeof(struct Ligand_Res)*MAXFILENUM); 
 printf("%d\n",(sizeof( struct Protein_Domain)*MAXFILENUM + sizeof(struct PDBFile) + sizeof(struct 
LigInfo)*MAXLIG + sizeof(struct Ligand_Res)*MAXFILENUM)/1024); 
 getch(); 
*/ 
 ATOMNUM=LIGAND_ATOM;   // Get Atom Numbers of Ligands 
 
 Initial();      // Initialize Variables 
 printf("1!!\n"); 
 //getch(); 
 
 ReadFileList();     // Function of read file list (outlist.txt) 
 printf("2!!\n"); 
 //getch(); 
 
 GetDomain();     // Fnction of getting all domain names (SCOP_dir1.65.txt) 
 printf("3!!\n"); 
 //getch(); 
 
 Contact_Res=(struct Ligand_Res*)malloc(MAXFILENUM*sizeof(struct Ligand_Res)); 
 LIGTEMP=(struct LigInfo*)malloc(MAXLIG*sizeof(struct LigInfo)); 
 
 GetLigRes();      // Function of getting ligand-contacting residues  
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 printf("4!!\n"); 
 //getch(); 
 
 free(LIGTEMP); 
 
 Res_To_Domain();     // Function of Find Domains From Residues 
 printf("5!!\n"); 
 //getch(); 
 
 SCOP_List();     // Function of Write SCOP List File 
 printf("6!!\n"); 
 //getch(); 
 
 SCOP_File();     // Function of Write SCOP File with Ligand 
 printf("7!!\n"); 
 
 free(Contact_Res); 
 
} 
 
void Initial(void)   // Function of initialize 
{ 
 int i,j,k; 
 
 for(i=0;i<MAXFILENUM;i++){ 
 
  Protein[i].Name[0]='\0'; 
  Protein[i].Useful=0; 
  Protein[i].domainNUM=0; 
 
  for(j=0;j<MAXDOMAIN;j++){ 
 
   Protein[i].domain_name[j][0]='\0'; 
   Protein[i].domain_class[j][0]='\0'; 
   Protein[i].domain_region[j][0]='\0'; 
   Protein[i].ligandNUM[j]=0; 
   Protein[i].Usefuldomain[j]=0; 
 
   for(k=0;k<MAXLIG;k++){ 
 
    Protein[i].domain_lig_resnum[j][k]=0; 
    Protein[i].domain_lig_chain[j][k][0]='\0'; 
   } 
  } 
 } 
} 
 
void ReadFileList(void)  // Function of read file list (outlist.txt) 
{ 
 
 FILE *list;   // File pointer to read outlist.txt 
 int line;   // Count FILE(line) number 
 
 char ltemp[MAXLEN]; // Temp record 
 
 ///////////////////////////////////////// 
 /// 
 ///Open & Read outlist.txt  
 /// 
 /////////////////////////////////////////// 
 
 if((list=fopen("outlist.txt","r"))==NULL) 
 {  
  printf("Open outlist.txt Error!\n"); 
 } 
 else 
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 { 
  line=0; 
 
  while(fgets(ltemp,MAXLEN,list)!=NULL){  
 
   if(line==0)    // Read total PDB file number 
   { 
    strtok(ltemp," \n"); 
    PDBNUM=atoi(ltemp); 
    //printf("%d\n",PDBNUM); 
   } 
   else     // Store PDB IDs 
   { 
    strtok(ltemp," \n");    
    strncpy(Protein[line-1].Name,ltemp,strlen(ltemp)); 
    Protein[line-1].Name[strlen(ltemp)]='\0'; 
    printf("!!%s!!\n",Protein[line-1].Name); 
    //getch(); 
   } 
 
   line++; 
  } 
 } 
  
 fclose(list); 
} 
 
void GetDomain(void)  // Get All Domain names of proteins 
{ 
 FILE *scop;   // File pointer to read SCOP_dir1.65.txt 
 
 char ltemp[MAXLEN],strtemp[MAXLEN];  // Temp record 
  
 int i,temp;   // Variables 
 
 if((scop=fopen("SCOP_dir1.65.txt","r"))==NULL) 
 {  
  printf("Open SCOP_dir1.65.txt Error!\n"); 
 } 
 else 
 { 
  for(i=0;i<PDBNUM;i++){ //for all PDB 
 
   rewind(scop); 
   Protein[i].domainNUM=0; 
 
   while(fgets(ltemp,MAXLEN,scop)!=NULL){ 
 
    if( strncmp(Protein[i].Name,ltemp+8,4)==0 ) 
    { 
     //Get domain name 
     strncpy(Protein[i].domain_name[Protein[i].domainNUM],ltemp,7);  
     Protein[i].domain_name[Protein[i].domainNUM][7]='\0'; 

printf("3:domain_name:!!%s!!\n",Protein[i].domain_name[Protein[i].domainNUM]); 
 
     // Get domain region 
     strtemp[0]='\0';      
     strcpy(strtemp,ltemp+13); 
     strtok(strtemp," \t\n"); 
        

strncpy(Protein[i].domain_region[Protein[i].domainNUM],strtemp,strlen(strtemp)); 
     Protein[i].domain_region[Protein[i].domainNUM][strlen(strtemp)]='\0'; 

      
printf("domain_region:!!%s!!\n",Protein[i].domain_region[Protein[i].domainNUM]); 

 
     // Get domain class 
     temp=strlen(strtemp);     
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     strtemp[0]='\0'; 
     strcpy(strtemp,ltemp+14+temp); 
     strtok(strtemp," \t\n");   
     strcpy(Protein[i].domain_class[Protein[i].domainNUM],strtemp); 
     Protein[i].domain_class[Protein[i].domainNUM][strlen(strtemp)]='\0'; 

      
printf("domain_class:!!%s!!\n",Protein[i].domain_class[Protein[i].domainNUM]); 

     printf("\n"); 
 
     Protein[i].domainNUM++; 
    } 
   } 
  } 
  fclose(scop); 
 } 
} 
 
void GetLigRes(void)   // Function of getting ligand-contacting residues    
{ 
 FILE *pdb;     // File pointers of pdb file 
 FILE *nopdb,*NMRpdb;   // File pointer of note files (no PDB file & NMR PDB file) 
 
 char filetemp[MAXLEN];   // Temp record file name 
 char ltemp[MAXLEN];   // Temp record 
 int line;     // Count ATOM & HETATM 
 int i,j; 
 
 nopdb=fopen("nopdb.txt","w"); 
 NMRpdb=fopen("NMRpdb.txt","w"); 
 
 printf("PDBNUM:%d\n",PDBNUM); 
 for(i=0;i<PDBNUM;i++){//for all PDB 
 
  printf("%s\n",Protein[i].Name); 
  sprintf(filetemp,"%s%s%s%s",PDBpath,pdbhead,Protein[i].Name,pdbtail); 
  printf("4:%s\t%d\n",filetemp,i); 
 
  //initial 
  for(j=0;j<MAXATOM;j++){ 
 
   PDBTEMP.HEADER[j][0]='\0'; 
   PDBTEMP.ATOM_NUM[j]=0; 
   PDBTEMP.ATOM_NAME[j][0]='\0'; 
   PDBTEMP.RES_NAME[j][0]='\0'; 
   PDBTEMP.CHAIN_ID[j][0]='\0'; 
   PDBTEMP.RES_NUM[j]=0;  
   PDBTEMP.X[j]=0;    
   PDBTEMP.Y[j]=0;    
   PDBTEMP.Z[j]=0;    
  } 
 
  if((pdb=fopen(filetemp,"r"))==NULL)//If no PDB File 
  {  
   printf("Open %s Error!\n",filetemp); 
   fprintf(nopdb,"%s\n",filetemp);//record PDB ID in nopdb.txt 
  } 
  else  // Read PDB File 
  { 
   line=0; 
   while(fgets(ltemp,MAXLEN,pdb)!=NULL){ 
 
    if( strncmp(ltemp,"MODEL",5)==0 )// Neglect NMR structure 
    { 
     printf("NMR:%s\n",Protein[i].Name); 
     fprintf(NMRpdb,"%s\n",Protein[i].Name);//record PDB ID in NMRpdb.txt 
     //getch(); 
     break; 
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    } 
    if(strncmp(ltemp,"HETATM",6)==0 || strncmp(ltemp,"ATOM  ",6)==0) //Get 

HETATM & ATOM 
    { 
     ReadPDB(line,ltemp);  // Read PDB File to PDBTEMP structure 
     line++;    // Count ATOM & HETATM 
    } 
   } 
   fclose(pdb); 
 
   /////// Select ligand-contact residues  (inside cutoff distance) 
 
   SelectLigRes(i,line); 
  } 
 } 
 fclose(nopdb); 
 fclose(NMRpdb); 
} 
 
void ReadPDB(int line, char *ltemp)    // Function of read PDB File to PDBTEMP structure 
{ 
 char strtemp[MAXLEN];     // Temp record 
 
 //printf("%d\n",line); 
 strncpy(PDBTEMP.HEADER[line],ltemp,6);  // Get HEADER 
 PDBTEMP.HEADER[line][6]='\0'; 
 //printf("%s ",PDBTEMP.HEADER[line]); 
 
 strncpy(strtemp,ltemp+7,4);    // Get atom number 
 strtemp[4]='\0'; 
 PDBTEMP.ATOM_NUM[line]=atoi(strtemp); 
 //printf("%5d ",PDBTEMP.ATOM_NUM[line]); 
 
 strncpy(PDBTEMP.ATOM_NAME[line],ltemp+12,4); // Get atom name 
 PDBTEMP.ATOM_NAME[line][4]='\0'; 
 //printf("%s ",PDBTEMP.ATOM_NAME[line]); 
 
 strncpy(PDBTEMP.RES_NAME[line],ltemp+17,3);  // Get residue name 
 PDBTEMP.RES_NAME[line][3]='\0'; 
 //printf("%s ",PDBTEMP.RES_NAME[line]); 
 
 strncpy(PDBTEMP.CHAIN_ID[line],ltemp+21,1);  // Get chain ID 
 if( strncmp(PDBTEMP.CHAIN_ID[line]," ",1)==0 ) 
 { 
  PDBTEMP.CHAIN_ID[line][0]='-'; 
 } 
 PDBTEMP.CHAIN_ID[line][1]='\0'; 
  
 //printf("%s ",PDBTEMP.CHAIN_ID[line]); 
 
 strncpy(strtemp,ltemp+22,4);     // Get residue number 
 strtemp[4]='\0'; 
 PDBTEMP.RES_NUM[line]=atoi(strtemp); 
 //printf("%4d ",PDBTEMP.RES_NUM[line]); 
 
 strncpy(strtemp,ltemp+30,8);     // Get x-coordinate 
 strtemp[8]='\0'; 
 PDBTEMP.X[line]=atof(strtemp); 
 //printf("%5.3lf ",PDBTEMP.X[line]); 
 
 strncpy(strtemp,ltemp+38,8);     // Get y-coordinate 
 strtemp[8]='\0'; 
 PDBTEMP.Y[line]=atof(strtemp); 
 //printf("%5.3lf ",PDBTEMP.Y[line]); 
 
 strncpy(strtemp,ltemp+46,8);     // Get z-coordinate 
 strtemp[8]='\0'; 
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 PDBTEMP.Z[line]=atof(strtemp); 
 //printf("%5.3lf\n",PDBTEMP.Z[line]); 
} 
 
void SelectLigRes(int pdb,int line)     // Function of select Lignad-Residues distance 
& Store the Residues inside cutoff 
{ 
 
 int lig;    // Ligand number 
 int ligatm;   // Ligand atom number 
 int resnumtemp;  // Count ligand change residue number 
 char chainIDtemp[2]; // Change Ligand of chain ID 
 int flag; 
 int i,j,k,l; 
 
 lig=0; 
 ligatm=0; 
 resnumtemp=0; 
 chainIDtemp[0]='\0'; 
 
 //initial 
 Contact_Res[pdb].ligand_num=0; 
 
 for(j=0;j<MAXLIG;j++){ 
 
  Contact_Res[pdb].res_num[j]=0; 
  Contact_Res[pdb].ligand_resnum[j]=0; 
  Contact_Res[pdb].ligand_chain[j][0]='\0'; 
 
  for(k=0;k<MAXRES;k++){ 
 
   Contact_Res[pdb].chain[j][k][0]=0; 
   Contact_Res[pdb].res[j][k]=0; 
  } 
 } 
 
/* 
 struct Ligand_Res 
 { 
  int ligand_num;       // Ligand Number of a File 
  int res_num[MAXLIG];     // Number of Contact Residues of Each Ligand 
  int ligand_resnum[MAXLIG];    // Residue Numbers of Each Ligand 
  char ligand_chain[MAXLIG][2];    // Chain ID of Each Ligand 
  char chain[MAXLIG][MAXRES][2];   // Chain ID of Each Ligand-Contact Residue 
  int res[MAXLIG][MAXRES];    // Residue Number of Each Ligand-Contact 
Residue 
 
 }*Contact_Res; 
*/ 
 //initial 
 for(i=0;i<MAXLIG;i++){ 
 
  for(j=0;j<MAXLIGANT;j++){ 
 
 
   LIGTEMP[i].HEADER[j][0]='\0'; 
   LIGTEMP[i].ATOM_NUM[j]=0;   
   LIGTEMP[i].ATOM_NAME[j][0]='\0';  
   LIGTEMP[i].RES_NAME[j][0]='\0';  
   LIGTEMP[i].CHAIN_ID[j][0]='\0';  
   LIGTEMP[i].RES_NUM[j]=0;   
   LIGTEMP[i].X[j]=0;    
   LIGTEMP[i].Y[j]=0;    
   LIGTEMP[i].Z[j]=0;    
  } 
 } 
/* 
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 struct LigInfo 
 { 
  char HEADER[MAXLIGANT][7];    // HEADER  
  int ATOM_NUM[MAXLIGANT];    // Atom Number 
  char ATOM_NAME[MAXLIGANT][5];   // Atom Name 
  char RES_NAME[MAXLIGANT][4];   // Residue Name 
  char CHAIN_ID[MAXLIGANT][2];    // Chain ID 
  int RES_NUM[MAXLIGANT];    // Residue Number 
  double X[MAXLIGANT];     // X-coordinates 
  double Y[MAXLIGANT];     // Y-coordinates 
  double Z[MAXLIGANT];     // Z-coordinates 
  
 }LIGTEMP[MAXLIG]; 
*/ 
 
 
 for(i=0;i<line;i++){  // Store ligand information 
 
  if( strcmp(PDBTEMP.HEADER[i],"HETATM")==0 && 
strcmp(PDBTEMP.RES_NAME[i],LIGAND)==0 ) 
  { 
   if( resnumtemp==0 ) 
   { 
    resnumtemp=PDBTEMP.RES_NUM[i]; 
    strcpy(chainIDtemp,PDBTEMP.CHAIN_ID[i]); 
    Contact_Res[pdb].ligand_resnum[lig]=PDBTEMP.RES_NUM[i]; 
    Contact_Res[pdb].ligand_chain[lig][0]=PDBTEMP.CHAIN_ID[i][0]; 
    Contact_Res[pdb].ligand_chain[lig][1]='\0'; 
   } 
   if( resnumtemp!=0 && (resnumtemp!=PDBTEMP.RES_NUM[i] || 
strcmp(chainIDtemp,PDBTEMP.CHAIN_ID[i])!=0) )// If more than one Ligand 
   { 
    lig++; 
    ligatm=0; 
    resnumtemp=PDBTEMP.RES_NUM[i]; 
    strcpy(chainIDtemp,PDBTEMP.CHAIN_ID[i]); 
    Contact_Res[pdb].ligand_resnum[lig]=PDBTEMP.RES_NUM[i]; 
    Contact_Res[pdb].ligand_chain[lig][0]=PDBTEMP.CHAIN_ID[i][0]; 
    Contact_Res[pdb].ligand_chain[lig][1]='\0'; 
   } 
    
   strcpy(LIGTEMP[lig].HEADER[ligatm],PDBTEMP.HEADER[i]); 
   //printf("%s ",LIGTEMP[lig].HEADER[ligatm]); 
 
   LIGTEMP[lig].ATOM_NUM[ligatm]=PDBTEMP.ATOM_NUM[i]; 
   //printf("%5d ",LIGTEMP[lig].ATOM_NUM[ligatm]); 
 
   strcpy(LIGTEMP[lig].ATOM_NAME[ligatm],PDBTEMP.ATOM_NAME[i]); 
   //printf("%s ",LIGTEMP[lig].ATOM_NAME[ligatm]); 
 
   strcpy(LIGTEMP[lig].RES_NAME[ligatm],PDBTEMP.RES_NAME[i]); 
   //printf("%s ",LIGTEMP[lig].RES_NAME[ligatm]); 
 
   strcpy(LIGTEMP[lig].CHAIN_ID[ligatm],PDBTEMP.CHAIN_ID[i]); 
   //printf("%s ",LIGTEMP[lig].CHAIN_ID[ligatm]); 
 
   LIGTEMP[lig].RES_NUM[ligatm]=PDBTEMP.RES_NUM[i]; 
   //printf("%5d ",LIGTEMP[lig].RES_NUM[ligatm]); 
 
   LIGTEMP[lig].X[ligatm]=PDBTEMP.X[i]; 
   //printf("%8.3lf ",LIGTEMP[lig].X[ligatm]); 
 
   LIGTEMP[lig].Y[ligatm]=PDBTEMP.Y[i]; 
   //printf("%8.3lf ",LIGTEMP[lig].Y[ligatm]); 
 
   LIGTEMP[lig].Z[ligatm]=PDBTEMP.Z[i]; 
   //printf("%8.3lf\n",LIGTEMP[lig].Z[ligatm]); 
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   //printf("%d\t%d\n",lig,ligatm); 
 
   ligatm++; 
  } 
 } 
 
 Contact_Res[pdb].ligand_num=lig+1;  // Record ligand number of the PDB 
 //printf("%d*****%d\t%d\n",pdb,Contact_Res[pdb].ligand_num,lig); 
 //getch(); 
 
 ////// Count distance of ligand & residue atoms & store it  
 
 //printf("%d\t%d\t%d\n",lig,ATOMNUM,line); 
 for(i=0;i<=lig;i++){      // For each ligand 
 
  for(j=0;j<ATOMNUM;j++){    // For all ligand atoms 
 
   resnumtemp=0; 
 
   for(k=0;k<line;k++){    // For all PDB file lines 
 
    if( strcmp(PDBTEMP.HEADER[k],"ATOM  ")==0) 
    { 
     //printf("%lf\n",Distance(i,j,k)); 
     //getch(); 
 
     if (Distance(i,j,k)<=NearLigand) // If close 
     { 
      //neglect same residue number (more than one atom close to ligand of 
same residue) 
flag=1; 
       
      for(l=0;l<Contact_Res[pdb].res_num[i];l++){ // Check for repeat 
 
      if(Contact_Res[pdb].res[i][l]==PDBTEMP.RES_NUM[k] && 
strcmp(Contact_Res[pdb].chain[i][l],PDBTEMP.CHAIN_ID[k])==0 ) 
       { 
        flag=0; 
       } 
      } 
 
      if(flag==1)// Store information 
      { 
      
 Contact_Res[pdb].chain[i][Contact_Res[pdb].res_num[i]][0]=PDBTEMP.CHAIN_ID[k][0]; 
       Contact_Res[pdb].chain[i][Contact_Res[pdb].res_num[i]][1]='\0'; 
      
 Contact_Res[pdb].res[i][Contact_Res[pdb].res_num[i]]=PDBTEMP.RES_NUM[k]; 
      
 //printf("%5d!!\t%s!!\n",Contact_Res[pdb].res_num[i],Contact_Res[pdb].chain[i][Contact_Res[pdb].res_nu
m[i]]); 
       Contact_Res[pdb].res_num[i]++; 
      } 
 
      /* 
       struct Ligand_Res 
       { 
        int ligand_num;  // Ligand Number of a File 
        int res_num[MAXLIG]; // Number of Contact Residues of 
Each Ligand 
        char chain[MAXLIG][MAXRES][2]; // Chain ID of Each 
Ligand-Contact Residue 
        int res[MAXLIG][MAXRES]; // Residue Number of Each 
Ligand-Contact Residue 
 
       }Contact_Res[MAXFILENUM]; 
      */ 
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     } 
    } 
   } 
  } 
 } 
/*  
 printf("%3d!!\n",Contact_Res[pdb].ligand_num); 
 printf("%s\n",Protein[pdb].Name); 
 
 for(i=0;i<Contact_Res[pdb].ligand_num;i++){ 
 
 
 printf("lig_resnum:%3d\tchain:%s\n",Contact_Res[pdb].ligand_resnum[i],Contact_Res[pdb].ligand_chain[i
]); 
 
  printf("**%d!!\n",Contact_Res[pdb].res_num[i]); 
 
  for(j=0;j<Contact_Res[pdb].res_num[i];j++){ 
 
   printf("%3d\t%s\n",Contact_Res[pdb].res[i][j],Contact_Res[pdb].chain[i][j]); 
  } 
 
 } 
 getch(); 
*/ 
  
} 
 
void Res_To_Domain(void)   // Function of Find Domains From Residues 
{ 
 int domainflag,proteinflag; 
 int i,j,k,l; 
 
 ///////************************Record contact ligand-number of each domain 
 //printf("yes!\n"); 
 for(i=0;i<PDBNUM;i++){      //Each PDB 
  //printf("%d************%d\n",i,PDBNUM); 
 
  for(j=0;j<Contact_Res[i].ligand_num;j++){   //Each ligand of this PDB 
 
   for(k=0;k<Contact_Res[i].res_num[j];k++){  //Each ligand-contact residue of this PDB 
 
    for(l=0;l<Protein[i].domainNUM;l++){  //Each domain of this PDB 
 
     //printf("%d\t%d\t%d\t%d!!!out\n",i,j,k,l); 
     if( Belong_To_Domain(i,j,k,l)!=0 )  // Check Domains & Residues 
     { 
      if( Protein[i].ligandNUM[l]==0 ) 
      { 
      
 Protein[i].domain_lig_resnum[l][Protein[i].ligandNUM[l]]=Contact_Res[i].ligand_resnum[j]; 
      
 Protein[i].domain_lig_chain[l][Protein[i].ligandNUM[l]][0]=Contact_Res[i].ligand_chain[j][0]; 
       Protein[i].domain_lig_chain[l][Protein[i].ligandNUM[l]][1]='\0'; 
 
       Protein[i].ligandNUM[l]++; 
      } 
      else 
      { 
      
 if( Protein[i].domain_lig_resnum[l][Protein[i].ligandNUM[l]-1]!=Contact_Res[i].ligand_resnum[j] ||  
       
 Protein[i].domain_lig_chain[l][Protein[i].ligandNUM[l]-1][0] != Contact_Res[i].ligand_chain[j][0] ) 
       { 
       
 Protein[i].domain_lig_resnum[l][Protein[i].ligandNUM[l]]=Contact_Res[i].ligand_resnum[j]; 
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 Protein[i].domain_lig_chain[l][Protein[i].ligandNUM[l]][0]=Contact_Res[i].ligand_chain[j][0]; 
       
 Protein[i].domain_lig_chain[l][Protein[i].ligandNUM[l]][1]='\0'; 
 
        Protein[i].ligandNUM[l]++; 
       } 
      } 
 
      /* 
      struct Protein_Domain 
      { 
       /////char Name[20];       
       // Store PDB IDs 
       /////int  Useful;       
       // Useful protein?? (0:NO; 1;YES) 
       /////int  Usefuldomain[MAXDOMAIN];    
       // Useful domain?? (0:NO; 1;YES) 
       ////////////int  domainNUM;     
       // Domain number of protein 
       int  ligandNUM[MAXDOMAIN];    
       // Ligand number of each domain 
       int  domain_lig_resnum[MAXDOMAIN][MAXLIG]; 
       // Store residue number of ligand of each ligand-contact domain 
       char domain_lig_chain[MAXDOMAIN][MAXLIG][2];   

// Store chain ID of ligand of each ligand-contact domain 
       ////////////char domain_name[MAXDOMAIN][20];   
       // Store domain names (ex:d1a0a__) 
       ////////////char domain_class[MAXDOMAIN][20];   
       // Store domain class (ex:c.26.1.1) 
       ////////////char domain_region[MAXDOMAIN][20];   
       // Store domain region (ex:- or A: or A:78-156,A:249-463) 
 
      }Protein[MAXFILENUM]; 
      */ 
 
     } 
    } 
   } 
  } 
 } 
 //printf("yes1!\n"); 
  
 for(i=0;i<PDBNUM;i++){ 
 
  printf("5:%s!\n",Protein[i].Name); 
//  printf("Protein[i].domainNUM:%d\n",Protein[i].domainNUM); 
 
//  for(j=0;j<Protein[i].domainNUM;j++){ 
 
//   printf("%s!!%s!!\n",Protein[i].domain_name[j],Protein[i].domain_region[j]); 
//   printf("ligandNUM:%2d!!\n",Protein[i].ligandNUM[j]); 
 
//   for(k=0;k<Protein[i].ligandNUM[j];k++){ 
 
//   
 printf("%d!!!%s!!!\n",Protein[i].domain_lig_resnum[j][k],Protein[i].domain_lig_chain[j][k]);  
  
//   } 
//  } 
//  printf("*********************************************\n"); 
//  getch(); 
 } 
 
 //********** Protein.Usefuldomain tag (Only get domains with only one ligand) 
 
 //printf("Protein.Usefuldomain tag!!\n"); 
 for(i=0;i<PDBNUM;i++){   // Protein.Usefuldomain tag 
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  domainflag=999; 
 
  //printf("Protein[i].domainNUM:%d\n",Protein[i].domainNUM); 
 
  for(j=0;j<Protein[i].domainNUM;j++){ 
 
   //printf("ligandNUM:%2d!!\n",Protein[i].ligandNUM[j]); 
 
   if( Protein[i].ligandNUM[j]==1 && domainflag!=999 ) 
   { 
   
 if( strcmp(Protein[i].domain_region[j]+1,Protein[i].domain_region[domainflag]+1)==0 ) 
    { 
     Protein[i].Usefuldomain[j]=0; 
    } 
    else 
    { 
     Protein[i].Usefuldomain[j]=1; 
    } 
   } 
   if( Protein[i].ligandNUM[j]==1 && domainflag==999 ) 
   { 
    Protein[i].Usefuldomain[j]=1; 
    domainflag=j;; 
   } 
 
   //printf("******%d*****\n",Protein[i].Usefuldomain[j]); 
  } 
 } 
 
 //*** Protein.Useful tag (Only get proteins with only one ligand-contact domain) 
 
 //printf("Protein.Useful tag!!\n"); 
 for(i=0;i<PDBNUM;i++){   // Protein.Useful tag 
 
  proteinflag=0; 
 
  for(j=0;j<Protein[i].domainNUM;j++){ 
 
   if( Protein[i].Usefuldomain[j]==1 ) 
   { 
    Protein[i].Usefuldomain[j]=1; 
    proteinflag++; 
   } 
  } 
  if( proteinflag==1) 
  { 
   Protein[i].Useful=1; 
  } 
 } 
/* 
 for(i=0;i<PDBNUM;i++) 
 { 
  printf("%d!!\t%d!!\n",i,Protein[i].Useful); 
 } 
*/ 
 
} 
 
int Belong_To_Domain(int pdb,int lig,int res,int domain)  // Function of Check Domains & Residues 
{ 
  
 int flag,series_flag;  // flag:1 for belong to domain; series_flag:concern domain_region without 
chain(ex:d1lfi_1 1lfi 1-334 c.94.1.2) 
 int region_num;    // Count region number (ex:2 for A:15-114,A:308-346)seperated by 
"," 
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 char *token; 
 char domains[5][MAXLEN]; // Temp store FULL domain region 
 char chains[5][2];   // Temp store chain IDs of domain region ('A' for A:15-114) 
 int series[5][2];    // Temp store residue series of domain region(ex:15 & 114 for A:15-114) 
 int adjust;    // Count series number (0 & 1) 
 int comma;    // Check domain region number 
 int i; 
 
 //initial 
 for(i=0;i<5;i++){ 
 
  domains[i][0]='\0'; 
  chains[i][0]='\0'; 
  series[i][0]=0; 
  series[i][1]=0; 
 } 
 
/* 
 printf("%s!!\t%s!!\t%s!!\n",Protein[pdb].domain_name[domain],Protein[pdb].domain_region[domain],Prote
in[pdb].domain_class[domain]); 
 printf("\n"); 
 printf("%5d!!\t%s!!\n",Contact_Res[pdb].res[lig][res],Contact_Res[pdb].chain[lig][res]); 
 getch(); 
*/ 
 
 //printf("%d\t%d\t%d\t%d!\n",pdb,lig,res,domain); 
 
 region_num=0; 
 comma=0; 
 for(i=0;i< strlen(Protein[pdb].domain_region[domain]);i++){ 
 
  if( Protein[pdb].domain_region[domain][i]=="," ) 
  { 
   comma=1; 
  } 
 } 
 //printf("comma:%d\n",comma); 
 
 if(comma==1) 
 { 
  //printf("comma=1\n"); 
 
  token=strtok(Protein[pdb].domain_region[domain],","); 
  while(token != NULL){ 
 
   //printf("%d:\t%s\n",region_num,token); 
 
   strcpy(domains[region_num],token); 
   token=strtok(NULL,","); 
   //printf("%s!\n",domains[region_num]); 
   //getch(); 
   region_num++; 
  } 
 } 
 else 
 { 
  //printf("comma!=1\n"); 
  //printf("domains[region_num]:%s!\n",domains[region_num]); 
  //printf("Protein[pdb].domain_region[domain]:%s\n",Protein[pdb].domain_region[domain]); 
 
  strcpy(domains[region_num],Protein[pdb].domain_region[domain]); 
  //printf("domains[region_num]:%s!!\n",domains[region_num]); 
  domains[region_num][strlen(Protein[pdb].domain_region[domain])]='\0'; 
  //printf("domains[region_num]:%s!!!\n",domains[region_num]); 
  region_num++; 
 } 
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 //printf("%d\t%d\t%d\t%d!!\n",pdb,lig,res,domain); 
 
 for(i=0;i<region_num;i++){ 
 
  series_flag=0; 
  if( (65<=domains[i][0] && domains[i][0]<=90) || domains[i][0]==45 || ( (49<=domains[i][0] && 
domains[i][0]<=57) && domains[i][1]==58) ) 
  { 
   //printf("%c!\n",domains[i][0]); 
   chains[i][0]=domains[i][0]; 
   chains[i][1]='\0'; 
   //printf("%s!!\n",chains[i]); 
   //getch(); 
   series_flag=1; 
  } 
  else 
  { 
   chains[i][0]=' '; 
   chains[i][1]='\0'; 
   //printf("%s!!\n",chains[i]); 
  } 
 
  if(series_flag==1) 
  { 
   token=strtok(domains[i],":\t\n ,-"); 
 
   adjust=0; 
   while(token != NULL){ 
 
    //printf("token:%s\n",token); 
    //getch(); 
    token=strtok(NULL,":\t\n ,-"); 
    if(token==NULL) 
    { 
     break; 
    } 
    series[i][adjust]=atoi(token); 
    //printf("%5d!!!\n",series[i][adjust]); 
    adjust++; 
   } 
  } 
  else 
  { 
   token=strtok(domains[i],":\t\n ,-"); 
   adjust=0; 
   while(token != NULL){ 
 
    series[i][adjust]=atoi(token); 
    //printf("%5d!!!\n",series[i][adjust]); 
    token=strtok(NULL,":\t\n ,-"); 
    adjust++; 
   } 
  } 
  //printf("%d!!\n",series[i][0]); 
  //printf("%d!!\n",series[i][1]); 
  //getch(); 
 } 
 
 flag=0; 
 
////////////////Compare domain region & residue number 
 //printf("%d\t%d\t%d\t%d!!!\n",pdb,lig,res,domain); 
 //getch(); 
 
 for(i=0;i<region_num;i++){ 
 
  //printf("%c!!%c\n",chains[i][0],Contact_Res[pdb].chain[lig][res][0]); 
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  //getch(); 
 
  if( chains[i][0]==Contact_Res[pdb].chain[lig][res][0] ) 
  { 
   if( series[i][0]==0 && series[i][0]==0 ) 
   { 
    flag=1; 
   } 
   else 
   { 
    if( series[i][0]<=Contact_Res[pdb].res[lig][res] && 
Contact_Res[pdb].res[lig][res]<=series[i][1] ) 
    { 
     flag=1; 
    } 
   }    
  } 
 } 
 if(flag==1) 
 { 
  return 1; 
 } 
 else 
 { 
  return 0; 
 }  
} 
 
void SCOP_List(void)    // Function of Write SCOP List File 
{ 
 FILE *scoplist;//File pointer to record SCOP list (with & without SCOP file) 
 
 int i,j; 
 
 scoplist=fopen("SCOP_List.txt","w"); 
  
 for(i=0;i<PDBNUM;i++){ 
 
  //printf("!!!!%d!!!!\n",Protein[i].Useful);// 
  if( Protein[i].Useful==1 )// 
  { 
   for(j=0;j<Protein[i].domainNUM;j++){ 
 
    //printf("****%d****\n",Protein[i].Usefuldomain[j]);// 
    if(Protein[i].Usefuldomain[j]==1) // Write domain name, domain region & domain class 
    { 
     fprintf(scoplist,"%s\t%s   \t%s\n",Protein[i].domain_name[j], 
Protein[i].domain_class[j], Protein[i].domain_region[j]); 
    } 
   } 
  } 
 } 
 
 fclose(scoplist); 
} 
 
void SCOP_File(void)    // Function of Write SCOP File with Ligand 
{ 
 FILE *fptr,*fptw,*fptr2; // fptr: read SCOP domain file; fptw: Write SCOP file to target folder; fptr2: read 
PDB file for write ligand information to target SCOP file 
 FILE *nofile; // write noSCOP.txt 
 char path1[MAXLEN],path2[MAXLEN],path3[MAXLEN];  
 char temp[4]; 
 char ltemp[MAXLEN]; 
 char restemp[MAXLEN],chaintemp[2]; 
 int lig_atm; 
 int i,j; 
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 if((nofile=fopen("noSCOP.txt","w"))==NULL) 
 { 
  printf("god\n"); 
  exit(1); 
 } 
  
 else 
 { 
  for(i=0;i<PDBNUM;i++){ 
 
   if( Protein[i].Useful==1 ) 
   { 
    for(j=0;j<Protein[i].domainNUM;j++){ 
 
     if( Protein[i].Usefuldomain[j]==1 ) 
     { 
      temp[0]='\0'; 
      temp[0]=Protein[i].domain_name[j][2]; 
      temp[1]=Protein[i].domain_name[j][3]; 
      temp[2]='\\'; 
      temp[3]='\0'; 
      path1[0]='\0'; 
     
 sprintf(path1,"%s%s%s%s",SCOPpath,temp,Protein[i].domain_name[j],pdbtail); 
      
      if((fptr=fopen(path1,"r"))==NULL) 
      { 
       printf("no!!\n"); 
       printf("path1:%s\n",path1); 
       fprintf(nofile,"%s\n",path1); 
       //fprintf(nofile,"aaaaa\n"); 
       printf("no1!!\n"); 
      } 
      else 
      { 
       fclose(fptr); 
      } 
     } 
    } 
 
   } 
  } 
  fclose(nofile); 
 } 
 
 for(i=0;i<PDBNUM;i++){   // Get domain File without Ligand 
  //printf("yes!!\n"); 
 
  if( Protein[i].Useful==1 ) 
  { 
   //printf("yes1!!\n"); 
   for(j=0;j<Protein[i].domainNUM;j++){ 
 
    if( Protein[i].Usefuldomain[j]==1 ) 
    { 
     //printf("yes2!!\n"); 
     temp[0]='\0'; 
     temp[0]=Protein[i].domain_name[j][2]; 
     temp[1]=Protein[i].domain_name[j][3]; 
     temp[2]='\\'; 
     temp[3]='\0'; 
      
     path1[0]='\0'; 
     sprintf(path1,"%s%s%s%s",SCOPpath,temp,Protein[i].domain_name[j],pdbtail); 
      
     if((fptr=fopen(path1,"r"))==NULL) 
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     { 
      printf("no!!\n"); 
      printf("path1:%s\n",path1); 
      fprintf(nofile,"%s\n",path1); 
      printf("no1!!\n"); 
     } 
     else 
     { 
      //printf("yes3!!\n"); 
      printf("7:path1:%s\n",path1); 
      path2[0]='\0';//SCOP File (get domain) 
      sprintf(path2,"%s%s%s",targetpath,Protein[i].domain_name[j],pdbtail); 
      printf("7:path2:%s\n",path2); 
       
      fptw=fopen(path2,"w"); 
 
      while(fgets(ltemp,MAXLEN,fptr)!=NULL){//Write SCOP File 
 
       if( strncmp(ltemp,"END",3)!=0 ) 
       { 
        //printf("%s!!",ltemp); 
        fprintf(fptw,"%s",ltemp); 
        //printf("write\n"); 
       } 
      } 
 
      path3[0]='\0';//PDB File (get ligand) 
      sprintf(path3,"%s%s%s%s",PDBpath,pdbhead,Protein[i].Name,pdbtail); 
      printf("path3:%s\n",path3); 
 
      fptr2=fopen(path3,"r"); 
    
      lig_atm=0; 
      while(fgets(ltemp,MAXLEN,fptr2)!=NULL){ 
 
       //printf("%s!\n",ltemp);//check1 
       //getch(); 
        
 
       if( strncmp(ltemp,"HETATM",6)==0 ) // Get HETATM 
       { 
        //printf("%s!!\n",ltemp);//check2 
        //getch(); 
 
        restemp[0]='\0';    // Get residue number 
        strncpy(restemp,ltemp+22,4);      
        restemp[4]='\0'; 
 
        chaintemp[0]='\0'; 
        strncpy(chaintemp,ltemp+21,1);  // Get chain ID 
        if( strncmp(chaintemp," ",1)==0 ) 
        { 
         chaintemp[0]='-'; 
        } 
        chaintemp[1]='\0'; 
 
       
 //printf("%d\t%s\n",Protein[i].domain_lig_resnum[j][0],restemp); 
       
 //printf("%c\t%c\n",Protein[i].domain_lig_chain[j][0][0],chaintemp[0]); 
 
        if( Protein[i].domain_lig_resnum[j][0]==atoi(restemp) && 
Protein[i].domain_lig_chain[j][0][0]==chaintemp[0] && lig_atm<LIGAND_ATOM) 
        { 
         //printf("%s!!!\n",ltemp);//check3 
         //getch(); 
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         fprintf(fptw,"%s",ltemp); 
         lig_atm++; 
        } 
       } 
      } 
      fprintf(fptw,"END\n"); 
 
      fclose(fptr); 
      fclose(fptw); 
      fclose(fptr2); 
     } 
    } 
   } 
  } 
 } 
 fclose(nofile); 
} 
 
double Distance(int lig,int ligatm,int atm)     // Function of count distance 
{ 
 double dx,dy,dz; 
 double dis,sum; 
 
 dx=(LIGTEMP[lig].X[ligatm]-PDBTEMP.X[atm])*(LIGTEMP[lig].X[ligatm]-PDBTEMP.X[atm]); 
 dy=(LIGTEMP[lig].Y[ligatm]-PDBTEMP.Y[atm])*(LIGTEMP[lig].Y[ligatm]-PDBTEMP.Y[atm]); 
 dz=(LIGTEMP[lig].Z[ligatm]-PDBTEMP.Z[atm])*(LIGTEMP[lig].Z[ligatm]-PDBTEMP.Z[atm]); 
 
 sum=dx+dy+dz; 
 dis=sqrt(sum); 
 return(dis); 
} 
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C. ICP algorithm 
The flow chart of the algorithm is as follows: 

Input protein structure
and related information

Find out closest points 
between protein structures

最近點的對應

Calculate transfer matrix 
based on structure 

relations

Changing coordinates 
from transfer matrix

Calculate RMSD difference between old 
and new three-dimensional coordinates

Is RMSD variation 
smaller than 

cutoff ?

NO

YES

END

 
Procedures 

 

Step 1: Input protein structure and related information. 

Record three-dimensional coordinates of proteins and ligands.  

 

Step 2: Find out closest points between protein structures. 

 

Step 3: Calculate transfer matrix based on structure relations. 

∑
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 where p is data, x is model, Np is paired points of data, Nx is paired points of model. This 

formula is to calculate the geometry center of data and model.  

 

 

 

This formula is used to calculate Covariance Matrix. 
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This formula is used to calculate Symmetric Matrix, ∆ is [A23 A31 A12]T and Aij is 

ij
Tpxpx )(∑ ∑− , Symmetric Matrix can also be transferred into formula like follows. 

Q =

tr(C)            C12 - C21 C20 - C02 C01 - C10

C12 – C21           2C00 – tr(C)        C01 + C10  C02 + C20     

C20 - C02 C01 + C10 2C11 - tr(C)        C12 + C21

C01 - C10 C02 + C20 C12 + C21 2C22 - tr(C)

 
 When we get Symmetric Matrix, we should calculate eigenvalue of Symmetric Matrix: λ 

and Eigenvector: V [q0,q1,q2,q3], and select the eigenvector with the largest eigenvalue as 

the rotation vector. 
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 The above formulas the rotation matrix generated based on paired points, and the 

optimized translation vector is as follows: 

( )µµ px
RqRq −=

Γ  

 Through the last formula, we can transfer points of different coordinate systems into one 

coordinate system, and get the optimal solution. 

  

Step 4: Transfer model’s coordinates base on matrix. 

 

 When we get the geometry transfer matrix, we can transfer protein residues’ coordinates 

based on superimposed ligand coordinates. The new coordinates are the result of 

ligand-superimpose. 

 

Step 5: Calculate RMSD changes of new coordinates and old coordinates. 

 

We major the similarity of old coordinates and new coordinates by calculating RMSD. 

The formula are as follows: 
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