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Abstract

This work presents a method for profile-profile comparison. The proposed
method uses two kinds of profiles, sequence profile and secondary structure profile, to
increase the accuracy of profile comparison:-Our method is PROF?. Besides the
sequence profile-profile comparison, we make it-can input any profile style to
improve the flex of program. The proposed profile-profile comparison tool allows for
gaps, global alignment and local alignment to detect weak similarities between protein
families. In comparison of two sequence profiles, the parameters of the local

alignment have been optimized to produce alignments that are greater than original

one. On the other way, the combination program PROF? which represents the
combination of sequence and secondary structure information has much accuracy then

the output of PROF? which just include sequence information when we implement

a practical tool.

The proposed results show that this tool detects more similarities between
protein fold of distant homology than the previous methods. At the same time, we
found that including the secondary structure information could increase the accuracy

before much false positive occurred. It could be useful for creating general tools.
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Introduction

The automated methods for determining the relationship of two proteins become
increasingly important because of the rapid growth of the number of known protein
sequences. In the traditionally, the method that the unknown sequence is compared
with each known sequence in the database, one at a time, is called a pair-wise
alignment. In the previous literatures, some researches indicating two similar
sequences may imply a common evolutionary ancestry between these two
corresponding proteins. Homologous sequences usually have the same fold and the

close or related biological structure or function® %3*,

The pairwise sequence alignment is useful to detect the similarity of two proteins.
In the coarse evolution, protein sequences. ,may have mutations or insertions.
Moreover, in many cases, proteins may: still have high sequence similarity but not
share the similar structures. According to-previous literatures, if the identity of these
two sequences beyond the 25% = 30%, called the-twilight zone, sequence-sequence
comparison is hard to detect the relationship™ °. A great deal of work has been done to
develop tools that can detect such fields. The methods involving profile-sequence
comparisons include several widely accepted searching protocols. PSI-BLAST’ and
IMPALA?® use the same profile schema and scoring system. PSI-BLAST constructs a
profile using an iterative method from the hits obtained after the previous iteration
step. Then PSI-BLAST inputs such profile and searches the database. Nonetheless,
PSI-BLAST may miss weak sequence similarities and include the unrelated sequences
into the profiles. In such case, the iterative against method will contain more unrelated
sequences and produce a worse profile. IMPALA is a sequence-profile comparison
tool based on PSI-BLAST. It is designed to search a database of profiles with a given

sequence. SAM-T99° is another successful approach for the profile-sequence



comparison. It uses the alignment to predict the secondary structure and to build a
hidden Markov models (HMM)'% ! that is then used to search the PDB for similar
proteins. As a further step in the use of the alignment information, several methods
have been developed for the comparison of multiple alignments to multiple
alignments. The COMPASS™ (comparison of multiple protein alignments with
assessment of statistical significance) method involves the construction of local
profile-profile alignments allowing gaps by means of a dynamic programming

algorithm.

Our method bases on the Jeasen-Shannon divergence between probability
dirstributions™® which is used in the other program prof _sim'*. In the proposed
method, we use the different parameters with prof _sim for local alignment and

modify the alignment score to get higher accuracy in the begging.

Methodology

Definition of sequence profile

The sequence profiles are created by the PSI-BLAST. Generally, a profile is a
representation of a group of related protein sequence which is usually based on
multiple sequence alignment. First, PSI-BLAST searches the database and finds out
some sequences, then creates general architecture of the score matrix. Second, it will
use pairwise alignment to construct a multiple sequence alignment result. Third,
PSI-BLAST gives weights for sequences within the multiple sequence alignment and
evaluates the effective number of independent observations which the multiple
sequence alignment constitutes. Fourth, PSI-BLAST also can estimate target
frequencies and construct the matrix score. Fifth, PSI-BLAST uses the profile into
next iteration. After a lot of iterating searches, we get the profile in which reflects the

likelihood of observing any amino acid k at position i.



The profile is defined as series of probability distributions P = p,p,p,...p,
when n is the length of the sequence and p, is a probability distribution over the 20

amino acids at position i. We can think a profile isa 20xn matrix.
Definition of secondary structure profile

In the proposed method, we combined two different profiles to make the
accuracy increase. One is the sequence profile created by PSI-BLAST and the other is
secondary structure profile. The secondary profile is based on PSI-BLAST position
specific scoring matrix. We use the database search to get some position specific
scoring matrices in which are created by each sequence appear in the form of a
20x M position-specific scoring matrix from five iterations of a PSI-BLAST search,
where M is the length of the target:seguencés\We use the PSIPRED™ procedure to
predict the secondary structures: The scoring matrix for a window of 15 positions,
centered on the target residue; is used.as the input to the SVM™ (Support vector

machine). Then the calculated ‘probabilities of each secondary structure will be

transferred from % to —%. The equation is as below:

[arctan(votex 2) + ]
p= 2 "

T

where the p is probability for each secondary structure and the vote is the internal

output given from SVM. The 8x M profile is the secondary structure profile.
The data set

The SCOP 1.50 classification of protein structures as a test set to calculated some

parameters for PROF? and PROF? programs, the PROF? is profile-profile

comparison tool just using sequence information and the PROF?® means the



PROF? using combinational information which combine the sequence information
and secondary structure information; this manually created database contains 24186
protein domains classified into 1296 protein families, 820 superfamilies, 548 folds
and seven classes. We select some seed family sequences to run PSI-BLAST against
their own family. Some families for which there is only one member or for which
PSI-BLAST failed to generate a profile were represented by a profile generated
directly from the seed sequence using the original BLOSUMG62 frequency matrix. The

flow charts are listed on the Figure 1 and Figure 2.

We reduce some seed profiles which are all profiles within families that contain
only one sequence. Finally, we get 1075 seed sequence profiles and select subset of
563 families. Those are all families within superfamilies that contain at least two other
families. Using the same conditions, there are 2155 protein profiles chosen from

SCOP 1.63 as our data set.
Profile-profile comparison tool

The proposed profile-profile comparison is applied using dynamic program
which is in the same way sequence-sequence alignment. The difference of
sequence-sequence alignment is that the sequence-sequence comparison uses
BLOSUMG62 to give the score for different pairs of aligned amino acids, but the
profile-profile comparison uses the similarity score. The similarity score will be

introduced in the following.
The divergence score

We define two profiles P =p,p,p,;...p, and Q=q,q,q;...0,, where n and

m are the lengths of the profiles and p;,q; are probability distributions over the 20

letter alphabets of amino acid. We will define the similarity score based on this

9



statistical feature.

A common method used to measure the statistical similarity between two

probability distribution p,(x) and g,(x) isthe Kullback-Leibler (KL)

divergence®” :
KL 2 p,
D“[p, la,]=3" py log, F )
k=1 0«

This measure has disadvantage which is asymmetric and unbounded. We can

find a better method from literature issued by Jensen-Shannon (JS) divergence:

D*[p, llg;]=2D"[p, I r]+(@-2)D" [q; IIr] 3)
in where
r=Ap, +(1-4)q, (4)

where the A is a prior weight and-it'is'suggested.te be %

The significant score

After a calculated statistical score, we would consider if it is significant enough.
Image that we have two random sequences and let PSI-BLAST create their profiles
each resemble the overall distribution of amino acid in the database. In such case, are
those profiles significantly similar? Obviously not, they may be similar by chance.

For this problem, we use significant score to judge:
§=D"[r|IR] 5)

in where P, is background probability which defined as the overall amino acid

distribution in a large database such as SWISSPROT. r is the source distribution

10



from two comparing profiles. We can use these two score to create out dynamic

program scoring function:

Score(p;.d;) =%(1— D)1+S)

:%(1—DJS[pi I, Ja+D>[r1R,) ©)

This Score(pi,qj) is called “column score”. According to the equation (3), the

measure is symmetric and ranges between 0 and 1 where the divergence for identical
distributions is 0. There are four situations in the column score. (i) (D->0)(S->0) pair
means this scoring scheme distinguishes two distributions that each one is similar to
the background distribution. (ii) (D-:>0)(S->1) pair means that those profiles are very
similar and they are far from the background:distribution. (iii) (D->1)(S->0) pair
means that those profiles are dissimilar.and the common source of those profiles is
similar to the background distribution. (iv) (D->1)(S->1) pair means that those
profiles are dissimilar and they are similar to the background distribution. No matter

which situation, those scores locate on the 0 to 1.
Optimization of parameters

The primary requirement is that the PROF? program can input not only
PSI-BLAST profiles but also other protein profiles created by many different protein
features from our laboratory when we implemented this profile-profile comparison
tool. By referring to many previous famous alignment programs, we know that a few
parameters are very important and they also affect the alignment results a lot. In order
to get these parameters, we adapt SCOP 1.50 as our test set. The profile similarity

scores range from 0 to 1 are defined in the previous section. For local alignments, the

11



similarity function, Score(a ,b), must satisfies two requirements: one is the mean
value of Score(a ,b) which must be negative (Otherwise, the extension of a random
match would tend to increase its score, which is contradicting the idea of local
similarity.). The other is the maximum value of Score(a ,b) must be positive ( That
means that the possibility of the match with a positive score.). These criteria are
satisfied by all standard scoring matrices, such as BLOSUM and PAM matrices. Our
profile similarity scores must be adjusted to meet these requirements. Therefore, we
divide our program to two parts for our substitution matrix to satisfy those
requirements. The first part is to use the shift value to transfer all scores to fit the rules.

The second part is the find-tuning.

First, the shift value must be determined because the substitution matrix scores
are reasonable if those must satisfy thoserequirements. In order to satisfy such rules,
we choose the top 100 families “of the SCOP database. Each family has a seed
sequence described above. We: state.the-amino -acid at position i of the seed
sequence as the seed amino acid of the "i =th* profile column. Two seed amino acids
are defined as similar, neutral, or dissimilar based on their BLOSUMG62 scoring
matrix, with positive, zero and negative substitution scores. There are four
classifications of column pairs: (1) a column with itself (we called the identical
columns), (2) different columns that are associated with the similar seed amino acids
(similar columns), (3) different columns with mutually neutral seed amino acids
(neutral columns), (4) different columns with dissimilar seed amino acids (dissimilar
columns). The Figure 3 shows the smallest value of distribution of neutral columns
locates in 0.42, so the shift should be higher than 0.42. There is no threshold which
can clearly distinguish two distributions form the gray area. We hope the inferences of

dissimilar columns are the smallest, thus the point 0.5 will be the upper bound of shift

12



values. For the combinational profiles of primary information and secondary structure

information, we use the same procedure to determine the range of shift value.

Second, the adjusting method which makes the results better is different from
other alignment programs. When we use the adjusting linear equation, we find the
different values of the substitution matrix. Because of the different values of the
substitution matrix, the values of gaps, gap extensions, and shift values comparatively

become better. The adjusting linear equation is described as below:
S(x)=ax+b (7

where a and b are constants chosen from the results of SCOP 1.50 and S(x) is one of

the value of substitution matrix.

According to previous requirements, we canimply. that:

X<=2 (8)
a

X, i (9)
a

The X is the mean of those values calculated from equation (6) after shifting and a

and b are the same constant with equation (7). Such equation also indicates that there
are infinite combinations for constants for a and b. After shifting, the mean is -0.0055,

average maximum is 0.081, and average minimum is -0.0582 gotten from the test set,

SCOP 1.50. Hence, the range of the ratio is -0.081 < b < 0.0055. In this case, one of

a

the parameters could be assigned arbitrarily by us. We make the value of a from 22 to
24, because the results of ROC curve, is introduced on the below section, are better.
Then the value of b will locate between -1.782 and 0.132. In the other way, such

method is just a fine-tuning for the gap, gap-extension and shift values. We use the

13



best result in the true positive numbers in the 200" false positive as our final
parameters. According to the average value of new substitution, the parameter, a, will
not influence much for result, therefore, we adjusted the parameter, a. Actually, the
parameter “a” fine-tunes to gap and gap extension and the parameter “b” does for the
shift value. Fortunately, such method could discover parameters of gap, gap extension,
and shift values better than the parameters which Yona suggested. The Figure 4
exhibits the influence of different parameters. Doing little adjustment in the parameter
“b” will cause the huge difference in the whole ROC curve. Finally, we choose the

triangle line in our chart and the pair of the parameters is 23 and -0.3.
Integrating secondary structure with primary structure

The Jeasen-Shannon divergence -can  detect the similarity of two different
distributions, so we will treat the primary and.secondary information separately. The
new profiles extended from the original-sequence profiles. We augment the profile
columns of sequence information-to _make a probability distribution over 28 values

(the 20 amino acids plus 8 secondary structures defined in DSSP.

We give the weight & to secondary structure information, and 1-6 for

sequence information where 6 form O to 1:

SCORE(p;,q;) = (1-0)xSCORE,; (p;,0;) +Ix SCORE,, (p;,q;) (10)

where the SCORE,; (p;,q;) is the similarity score of primary profile for the row,
p;, in the first profile and the row, g, in the secondary profile. The Figure 7 shows
the different true positive in the 50" false positive. It implies the best & is 0.03.

Statistical significance

For the sequence alignment, the distribution of alignment scores should be like

14



the extreme value distribution because the true positive pairs are minorities in whole
pairs. In our method, we estimated the E-values through the distributions of scores
obtained during the local alignment and used them as criteria to determine the pairs
which are true positive or not. Comprehensively speaking, the pairwise profile
comparison is applied to use parameters which we defined previously. One profile
compares with others except itself and such procedure will produce a lot of scores
recorded on a file, called a score list. This score list indicates where the position of the

profile will be, and then the evd-fit program which was written by Chen-hsiung in our

laboratory referred to the fit function in gnuplot (www.gnuplot.info) using the
nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. The Figure 5 shows
the differences of the ROC curves whether the evd-fit program can be run. The evd-fit
procedure is shown on the Figure .6: We collect all. scores which compared with other

profiles to be an input for evd-fit program, then get the A and k for the E-value.

Results and Discussion

ROC analysis

The quality measure is the receiver operating characteristic (ROC)*® which is
evaluated by means of a plot of the true positive fractions versus the false positive
fractions using a continuously various decision threshold. In order to plot such curve
for a specific method, we first sort the results by their E-values calculated by using the

evd-fit program and count the numbers of true positive until the 50™ false positive

occur. The result of ROC,, using the SCOP 1.50 as the database is represented on

the Figure 8. We can observe when the first false positive occurs, the PROF? has

the best result. Actually, it is more practical when we implement a general tool for
remote homologues detection. The other concern is the numbers of true positive in the

high false positive. The Figure 9 exhibits the result of ROC,,,, and it presents the

15



higher accuracy of PROF? and PROF? when the 1000™ false positive happened.

Obviously, the proposed method is the preferable choice than others, and this
method indicates our parameter is better than other programs. Even though Yona and
we sample in the same dataset, why can we get better results from PROF? than
from prof-sim? We believe the fine-tuning for the gap penalty and shift value is the
key point. From the Figure 4, it displays the different results in the different
parameters and we could find that they will cause huge change. Besides, the evd-fit
procedure is also noticeable. The prof-sim program always uses the same parameters,
A and k for the E-value calculation, but our program uses different parameters for
different comparison pairs. Because our procedure could make better parameters for
E-value to different dataset, such result; ofsvariance in the SCOP1.63 exhibited in

Figure 10 and Figure 11 became more apparently.

Lindahl’s benchmark

In order to test the performance of our. program, we adopt the Lindahl’s
benchmark®®. There are 976 protein sequences in this dataset. Also we use all against

all pair-wise alignment and plot ROC curve and sens-spec plot for each SCOP levels.

Sens-spec plots analysis

Sens-spec plots®® 2! describes how many of the possible true positive in whole

pairwise alignment are detected at a given confidence level. It defines two values:

TP
Sensitivity = —— 11
U SIS (11)

Specificity = TPTP (12)

+FP
where TP being the number of correct hits having a score above threshold, FN being

the number of correct hits with a score less than threshold and FP being the number of

16



false hits that have a score above threshold.

The Figure 12, Figure 13 and Figure 14 exhibit different results for fold,
superfamily and family in the Lindahl dataset with three different programs,
PSI-BLAST, IMPALA and PROF?. As we know, the architecture of SCOP database
is class, fold, superfamily and family. According to the original paper of Lindahl
benchmark, when we calculate the true positive of superfamily level of a pair, we
ignore it which is the same family. We call that is superfamily only. Those three charts
show that the PROF? has the best result than other programs. The other hand, we
also compare our program with prof_sim. We can find that our programs are better
than others and especially in the fold level (Figure 14), there are significant

differences.
Conclusions

In the proposed study, it=shows that-our program can get better result than
previous research and it means that we.can-find out.-a better template for an unknown
sequence exactly. At the same time, ‘we: find that to add secondary structure
information is indeed increasing the accuracy before the much false positive occurred.

Our program is a good profile-profile comparison tool, because it does not only
input sequence profiles but also use another profile as the input. We can use our
program to make a general website for detecting remote homologues and combine

other information into the profile to increase its sensitivity.
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Figures

SCOP 1.50

Classes

|
Fol‘ds

Superfamily 1 Superfamily n

| | |
family 1 || family 2 || family 3 ‘ family 1 ‘ ‘ family 2 ‘

Figure 1

The SCOP hierarchy architecture is classes, folds, superfamilies and families. There
are several sequences in each family. We chose the seed sequence which has the
nearest distance with the other sequences in the one family. For example, there are
seven sequences in the “family 2” which belonged to “superfamily 1”, and the “seq 7”

is the seed sequence.
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DB for a family seed

family seed

seq’/

: }

PSI-BLAST
ARNDCQEGHILKMFPSTWYV } 20 amino
acid types
Sequence
length
C position-specific scoring matrix
Figure 2

The seq 7 is the query sequence,-and the other'sequences which belong to the same
family with seq 7 are the database for the PSI-BLAST. After the PSI-BLAST, we can

get a sequence profile (position-specific scoring matrix) which represents the family.
The profile is defined as series of probability distributions P = p,p,p,...p, whenn

is the length of the sequence and p; is a probability distribution over the 20 amino

acids at position i.
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Similarity Score
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Figure 3

There are four classifications of column pairs: (1) a column with itself (we called the

identical columns), (2) different columns that are associated with the similar seed

amino acids (similar columns), (3) different columns with mutually neutral seed

amino acids (neutral columns), (4) different columns with dissimilar seed amino acids

(dissimilar columns).
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ROC
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Figure 4

The numbers in the brackets are the different parameters for PROF?. It implies that
a little change in the parameters will cause huge different result in the ROC curve.
The pink square is the original result which adjusted by any parameters and the dark

triangle is the better result in the 200™ false positive.
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ROC200 Fold Level
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Figure 5
The green line is the result created by PROF? without the EVD fit procedure, and

the red line is the result created by PROF? using the EVD fit procedure.
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EVD-FIT procedure

; ovd-fit
program

profile profile
A M| = | ScoreAN,
N, | = | ScoredN,
N, | = | ScoreAN,
N. | = | ScoreN,
Figure 6

l

/L‘A‘AA

The profile “A” belongs to the subset separated from SCOP1.50 dataset chosen by the

rules of mentioned before and the profiles, N, ~N_ are all profiles in that dataset.

After the profile-profile comparison, the ScoreAN, ~ ScoreAN, will be collected as

the input of evd-fit program. The A, and K, are specific parameters for profile

“A” to calculate e-value.
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Figure 7

The effect of the mixture parameter+ 8-.on the performance. Performance is measured

by the number of true relations that are detected before the 50™ false positive.
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Figure 8

The result of SCOP1.50 in the ROC,,. The PROF? and PROF? are our programs

for profile-profile comparison. When the first false positive occurred, the PROF?
had the best result in all programs. A true positive id defined as a connection between

families within the same fold.
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Figure 9

The result of SCOP1.50 in the ROC,,,, . After the 700" false positive, the PROF?

and PROF? perform well then the COMPASS.
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The result of SCOP1.63 in the ROC,,
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The result of SCOP1.63 in the ROC,,,
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Figure 12

Lindahl’s benchmark for finding same family-only relationships. (a) The percentage

of same family relationship (true positives) is plotted as a function of different family

relationships (false positives). (b) Same data are plotted in terms of specificity

(TP/(TP+FP)) versus sensitivity (TP/(TP+FN)).
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Figure 13

Lindahl’s benchmark for finding same superfamily-only relationships. Curves are as
described for Figure 12, but true positives are defined as same superfamily

relationships and false positives are defined as different superfamily relationships.
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Figure 14
Lindahl’s benchmark for finding same fold-only relationships. Curves are as
described for Figure 12, but true positives are defined as same fold relationships and

false positives defined as different fold relationships.
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