
國 立 交 通 大 學

生物資訊所

碩 士 論 文

MuSiC and MuSiC-ME：有效率的限制型多重序

列比對工具

MuSiC and MuSiC-ME: Efficient Tools for

Multiple Sequence Alignment with Constraints

研 究 生：黃彥斌

指導教授：盧錦隆 教授

中 華 民 國 九 十 三 年 六 月

MuSic and MuSiC-ME：有效率的限制型多重序列比對工具

MuSiC and MuSiC-ME: Efficient Tools for Multiple Sequence

Alignment with Constraints

研 究 生：黃彥斌 Student：Yen Pin Huang

指導教授：盧錦隆 教授 Advisor：Prof. Chin Lung Lu

國 立 交 通 大 學

生 物 資 訊 所

碩 士 論 文

A Thesis Submitted to Institute of Bioinformatics

College of Biological Science and Technology

National Chiao Tung University in partial Fulfillment of the Requirements

for the Degree of Master in

Biological Science and Technology

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

2d¿b

ÊÞÓ’m£l�ÞÓíä�2, Ö½å�ªú (Multiple Sequence Alignment) Ê

ê¨!ÄñCŸë”å�íÞÓ<2,u'�àí	x�¦�ÞÓçðúå�í

!Z/Š?/Æ“É[˛�ø<�¥íw…, àº“¶Pí{!� }äÈíÂvœ�

§”!¯í¶P� 3Öíº4£\è4í Motifs � Ä¤, ÊdÖ½å�ªúív

`, ÞÓçðı�?�ø_	x?Déø<!Z4í/Š?4í/\G4í�A|

C{!ªJ§ªÊø–� Í7, ñ‡˛�íÖ½å�ªú	x×·Ì¶Å—¥�

Û°, ÄÑFb·É;Wå�íqñ §ª7�I7wFÊ!Z/Š?/Æ“,˛

øím7� Ä¤, Ê¥_�d2, Bb3bíñíu û˝ê�ø�˚ÑÌ„�

íÖ½å�ªú	xVj²¥_½æ�¥_	xorUà6�pÖ‘íå�£ø

<Ì„‘K, ©_Ì„‘Kú@Êå�,ø<!Z4í/Š?4í/\è4í�A

|C{!, Í(ßÞø Ö½å�ªúU)ø<Å—Ì„‘Kí�A|C{!§

ªÊø–� BbSà7F‚í Progressive íj¶Vj²Ì„�íÖ½å�ªú½

æ� 9õ,, ¥_j¶í�-Êk?´ql|�^0íÆ�¶Vj²Ì„�s‘

å�ªú½æ (Constrained Pairwise Sequence Alignment Problem)� BbSà Dy-

namic Programming £ Divide-and-Conquer ¥s�.°íj¶}�ql|ø_Ê

vÈ,�^0£Çø_Ê˛È,�^0íÆ�¶V°)|7“íÌ„�ís‘å

�ªú� Í(, Bby;W¥s�Æ�¶}�ê�|s_Ì„�Ö½å�ªú	

x: MuSiC (Multiple Seuqnece Alignment with Constraints) £ MuSiC-ME (Memory-

Efficient MuSiC)� °v, Bb6‚àø<zÕèƒ (¨Ö SARS) í 3′ UTR å�V

¿t¥s�	xíªà4, 1*wFßÞíå�ªú2vƒÊ SARS èƒ2}~

LA Pseudoknot !ZíÒi�

i

Abstract

Multiple sequence alignment (MSA) has received much attention in the fields of

bioinformatics and computational biology because it is very useful for discovering

the biological meanings of sequences. Usually, biologists may have advanced knowl-

edge about the structures/functionalities/evolutionary relationships of sequences of

interest, such as active site residues, intramolecular disulfide bonds, substrate bind-

ing sites, enzyme activities and conserved motifs (consensuses). They would ex-

pect an MSA program that is able to align these sequences such that the struc-

tural/functional/conserved bases (i.e., nucleotides or residues) are aligned together.

However, most available MSA programs cannot satisfy such a requirement because

they generate an alignment based only on the content of the sequences, ignoring the

known functional/structural/conserved information. Hence, in this thesis, we study

and develop a so-called constrained multiple sequence alignment (CMSA) tool, which

takes as input the sequences and several user-specified constraints, each with corre-

sponding to the known functional/structural/conserved bases, and generates an output

of alignment in which the bases corresponding to a user-specified constraint are aligned

together. We use the progressive approach to design efficient programs for heuristi-

cally solving the CMSA problem. The kernel of this approach is an efficient algorithms

for optimally solving the constrained pairwise alignment (CPSA) problem. We use

two different approaches, called as dynamic programming and divide-and-conquer, to

design a time-efficient algorithm and a memory-efficient algorithm respectively for opti-

mally solving the CPSA program. Based on those two algorithms, we then develop two

programs, called MuSiC (Multiple Sequence Alignment with Constraints) and MuSiC-

ME (Memory-Efficient MuSiC), respectively. To demonstrate the applicabilities of our

programs, we test them on a data set of RNA sequences of 3′ UTRs of several coron-

aviruses, including SARS, for detecting a fragment in the 3′ UTR of SARS that is able

to fold into a stable pseudoknotted structure, where such a pseudoknot is considered

to be involved in the RNA replication of coronaviruses.

ii

Ð á

>áBíNû`¤c–»4��-íNû, `û7BrÖdû˝íj¶, 1/Ê

Bû˝,`X@½v, .Àw�íTX›Œ; >á{%6Œ¬Bí�Å, J£v�

2¥Bí°ç� ç!_£�¤; >áðAí< DXM, éB)JÌRÌ?íêA

î=çP�

iii

Contents

Chinese Abstract i

Abstract ii

Acknowledgement iii

1 Introduction 1

2 Preliminaries 5

2.1 Problem Formulation . 5

2.2 Progressive multiple sequence alignment 6

3 Algorithms 9

3.1 Constrained pairwise sequence alignment 9

3.1.1 Dynamic programming method 9

3.1.2 Divide and conquer method . 13

3.2 Constrained multiple sequence alignment 23

4 Implementation and Discussion 25

4.1 MuSiC . 25

4.2 MuSiC-ME . 28

5 Conclusions 31

References 33

iv

List of Figures

3.1 The schematic diagram of four adjacent entries of G, where entry

(i, j, k) consists of three nodes Mk,MD
k and MI

k corresponding to

Mk(i, j),MD
k (i, j),MI

k(i, j), respectively. 12

3.2 Schematic diagram of divide and conquer approach: two light gray areas

are the reduced subproblems after middle position (imid, jmid, kmid) is

determined, each of which will be further divided into two subproblems

of dark gray areas. 14

3.3 The grid locations of E(k−1), E(k) and the values in Vk−1 and Vk when

the entry (i, j, k) of G, marked with ”?”, is reached for the computation. 17

4.1 The interface of MuSiC. 26

4.2 The partial display of the resulting CMSA of MuSiC by aligning the

sequences of SARS-TW1 3′ UTR with those of other five coronaviruses. 27

4.3 The diagram of the predicted pseudoknot in the 3′ UTR of SARS-TW1

ranging from 29460 to 29521 bp. 28

4.4 The interface of MuSiC-ME. 29

4.5 The partial display of the resulting CMSA of MuSiC-ME by aligning the

sequences of SARS-TW1 3′ UTR with those of other five coronaviruses. 30

4.6 The partial display of the resulting MSA of Clustal W 1.82 by aligning

the 3′ UTR sequences of six coronaviruses, where the bases not in the

pseudoknots are marked with dots. 30

v

Chapter 1

Introduction

Multiple sequence alignment (MSA) is one of the fundamental problems in bioinfor-

matics and computational biology that have been studied extensively, because it is

a useful tool in the phylogenetic analyses among various organisms, identification of

conserved motifs and domains in a group of related proteins, secondary and tertiary

structure prediction of a protein/RNA and so on [4, 5, 14, 23, 24]. The sum-of-pairs

score is widely used for selecting an optimal MSA. This kind of MSA problem, called

sum-of-pairs MSA (SPMSA) problem, can be solved by extending the dynamic pro-

gramming algorithm of Needleman and Wunsch for aligning two sequence [22]. In the

worst case, it needs to take O(2knk) time to align k sequences of length n. This expo-

nential time limits the dynamic programming technique to align only a small number

of short sequences. Actually, the SPMSA problem has been shown to be NP-complete

[3, 40], which means that it seems to be impossible to design an efficient algorithm to

find the mathematically optimal alignment. Hence, some approximate and heuristic

methods are introduced to overcome this problem.

For the approximate methods, Gusfield [13] first proposed a polynomial time ap-

proximation algorithm with performance ratio of 2 − 2
k
. Then Pevzner [26] improved

the performance ratio to 2 − 3
k
. Recently, Bafna, Lawler and Pevzner [2] further im-

proved the performance ratio to 2 − l
k

for any fixed l. It is worth mentioning that

Li, Ma and Wang [19] have given a polynomial time approximation scheme for finding

a multiple sequence alignment within a constant band, which is often useful in many

1

practical cases. For the heuristic methods, the most widely used heuristic methods are

so-called progressive strategies [8, 11, 16, 35, 37].

Usually, biologists may have advanced knowledge about the struc-

tures/functionalities/evolutionary relationships of sequences of interest, such as

active site residues, intramolecular disulfide bonds, substrate binding sites, enzyme

activities and conserved motifs (consensuses). They would expect an MSA program

that is able to align these sequences such that the structural/functional/conserved

bases (i.e., nucleotides or residues) are aligned together. However, the currently

existing MSA tools, such as CLUSTAL W, do not guarantee that the generated

alignments meet such a requirement that some particular bases would be aligned

together. Hence, Tang et al. [34] defined and studied the so-called constrained

multiple sequence alignment (CMSA) problem that given the input sequences with

several user-specified constraints, generates an MSA in which the bases corresponding

to a user-specified constraint are aligned together, where each user-specified constraint

corresponds to the know functional/structural/constrained bases. Tang et al. designed

a dynamic programming algorithm for finding an optimal constrained alignment of

two sequences and then used it as a kernel to develop a constrained multiple sequence

alignment tool based on the progressive method, where each constraint used by Tang

et al. is a single base. Their proposed algorithm for two sequences runs in O(γn4)

time and consumes O(n4) space, where γ is the number of the constrained bases and

n is the maximum length of sequences. Later, this result was improved independently

to O(γn2) time and O(γn2) space using the same approach of dynamic programming

[7, 44].

In fact, each of the columns requested to be aligned together can represent a con-

served site of a protein/DNA/RNA family and each conserved site may consist of a

short segment of bases, instead of a single base. In other words, the user-specified

constraint may be a fragment of bases. For some applications, biologists may further

expect that some mismatches are allowed among the bases of the columns requested

to be aligned. Hence, in this thesis, we consider a more generalized CMSA problem

in which the user-specified constraints are a fragment of bases and some mismatched

2

may occur in the columns requested to be aligned.

We use the progressive approach to design efficient programs for heuristically solving

the CMSA problem. The kernel of this approach is an efficient algorithms for optimally

solving the constrained pairwise alignment (CPSA) problem. First of all, we use the

dynamic programming technique to design an algorithm of O(γn2) time and O(γn2)

space optimally solving CPSA and then use this algorithm as the kernel to develope

CMSA tool, called as MuSiC (Multiple Sequence Alignment with Constraints). The

result greatly increases the performances and practical usage of the CMSA tools devel-

oped by the progressive approach. However, the requirement of O(γn2) memory still

limits it to align a set of short sequences, at most several hundreds of bases. To align

large genomic sequences, there is a need to design a memory-efficient algorithm for the

CPSA problem, which is the key limiting factor relating to the applicable extent of

the progressive CMSA tools. Hence, in the second part, we adopt the so-called divide-

and-conquer approach to design a memory-efficient algorithm for optimally solving the

CPSA problem, which runs in O(γn2) time, but consumes only O(γλn) space, where

λ is the maximum of the lengths of constraints and usually λ << n in practical appli-

cations. Based on this algorithm, we have finally developed a memory-efficient CMSA

tool, called as MuSiC-ME (Memory-Efficient MuSiC), using the progressive approach.

To demonstrate the applicabilities of our programs, we test them on a data set of

RNA sequences of 3′ untranslated regions (UTRs) of several coronaviruses, including

SARS, for detecting a fragment in the 3′ UTR of SARS that is able to fold into a stable

pseudoknotted structure, where such a pseudoknot is considered to be involve in the

RNA replication of coronaviruses.

The rest of this thesis is organized as follows. In Chapter 2, we give the formal def-

inition of the CMSA problem we study in this thesis and also introduce the main steps

of the adopted progressive MSA. In Chapter 3, we first use the dynamic programming

technique to design a time-efficient algorithm for optimally solving the CPSA problem,

then use the divide-and-conquer technique to design a memory-efficient algorithm for

the CPSA problem, and finally used the progressive approach to develop two CMSA

programs. In Chapter 4, we demonstrate the applicability of our developed programs

3

by testing them on a data set of RNA sequences. Finally, we make some conclusions

in Chapter 5.

4

Chapter 2

Preliminaries

2.1 Problem Formulation

Let S = {S1, S2, · · · , Sk} be the set of k sequences over the alphabet Σ. Then a

multiple sequence alignment (MSA) of S is a rectangular matrix consisting of k rows

of characters of Σ ∪ {-} such that no column consists entirely of dashes and removing

dashes from row i leaves Si for any 1 ≤ i ≤ k. The sum-of-pairs score (SP score) of

an MSA is defined to be the sum of the scores of all columns, where the score of each

column is the sum of the scores of all distinct pairs of characters in the column. In

practice, the score of the pair of two dashes is usually set to zero. Then the problem

of finding an MSA of S with the optimal SP score is the so-called sum-of-pairs MSA

problem [4, 5, 14, 23, 24].

Let l(P) be the length of a fragment sequence P . Let dH(P ′, P ′′) denote the Ham-

ming distance between two fragments P ′ and P ′′ of equal length (i.e., l(P ′) = l(P ′′)),

which is equal to the number of mismatched pairs in the alignment of P ′ and P ′′ with-

out any gap. Given an alignment L of S, a band is defined as a block of consecutive

columns in L (i.e., a submatrix of L). For any band B of L, B(Si) denotes the frag-

ment of Si whose residues/nucleotides are all in the band B, where 1 ≤ i ≤ k. A

sequence S = s1s2 . . . sλ is said to appear in L if L contains a band B of λ columns, say

x1, x2, . . . , xλ, such that the characters of column xj, where 1 ≤ j ≤ λ, are all equal

to sj, or equivalently, B(Si) = S for each 1 ≤ i ≤ k. If dH(B(Si), S) ≤ l(S) × ε for

5

a given error ratio 0 ≤ ε < 1 (i.e., some mismatches are allowed between B(Si) and

S), then S is said to approximately appear in L. From the biological viewpoint, S can

be considered as the consensus among the fragment sequences in B and hence S is

also called as an induced consensus by the band B. For any two sequences S ′ and S ′′,

S ′ ≺ S ′′ is used to denote that S ′ (approximately) appears strictly before S ′′ in L (i.e.,

their corresponding bands do not overlap). Let C = (C1, C2, . . . , Cγ) be a ordered set of

γ constraints, each Ci = ci,1ci,2 . . . ci,λi
with length of λi. Then the constrained multiple

sequence alignment (CMSA) of S with respect to C is defined to be an MSA L of S in

which all constraints of C approximately appear in the order C1 ≺ C2 ≺ . . . ≺ Cγ such

that dH(Bj(Si), Cj) ≤ λj × ε for each band Bj whose induced consensus is Cj, where

1 ≤ i ≤ k and 1 ≤ j ≤ γ. Given a set S of k sequences along with an ordered set C of γ

constraints and an error ratio ε, the so-called constrained multiple sequence alignment

problem is to find a CMSA w.r.t. C with the optimal SP score.

2.2 Progressive multiple sequence alignment

The progressive approach is one of the widely used heuristics for efficiently finding a

good MSA of several sequences. The ideas behind it are as follows [8, 11, 16, 35, 37]:

1. Compute the distance matrix by aligning all pairs of sequences: Usually, this

distance matrix is obtained by applying FASTA [20, 27] or the dynamic pro-

gramming algorithm of Needleman and Wunsch [22] to each pair of sequences.

2. Construct the guide tree from the distance matrix: For the existing progressive

methods, they mainly differ in the method used to build the guide tree for di-

recting the order of alignment of sequence. To build the guide tree, for example,

PILEUP (a program of GCG packages) uses UPGMA (Unweighted Pair-Group

Method using Arithmetic mean) method [33] and CLUSTAL W [37] uses NJ

(Neighbor-Joining) method [31].

3. Progressively align the sequences according to the branching order in the guide

tree: Initially, the closest two sequences in the tree are aligned using the normal

6

dynamic programming algorithm. After aligning, this pair of sequences is fixed

and any introduced gaps cannot be shifted later (i,e., once a gap, always a gap).

Then the next two closest pre-aligned groups of sequences are joined in the same

way until all sequences have been aligned. (Here, we may consider a sequence as

an aligned group of a sequence.) To align two groups of the pre-aligned sequences,

the score between any two positions in these two groups is usually the arithmetic

average of the scores for all possible character comparisons at those positions.

We call this kind of scoring methods as a set-to-set scoring.

In fact, MST has been used as a significant tool for data classification in the fields of

biological data analysis. In [34], Tang et al. proposed a variant of progressive method

by using the Kruskal MST to construct the guide tree, called Kruskal merging order

tree. The Kruskal merging order tree of k sequences is constructed as follows. First,

we create a complete graph G = (V, E) of k sequences in a way that each vertex of

V represents a sequence and each edge e of E is associated with a weight d(e) to

represent the distance between the corresponding sequences of its end-vertices. Then

we use the Kruskal’s algorithm [18] to construct the Kruskal MST of G, denoted by T .

For completeness, we describe the Kruskal method for constructing T as follows.

1. Sort all edges of E in non-decreasing order according to their distances.

2. Initially, T is empty. Then we repeatedly add the edges of E in non-decreasing

order to T in a way that if the currently adding edge e to T dose not create a

cycle in T , then we add e to T ; otherwise, we discard e.

Next, according to the Kruskal MST T , we build the Kruskal merging order tree

TK as follows.

1. Let V = {v1, v2, . . . , vk} and e1, e2, . . . , ek−1 be the edges of T with d(e1) ≤

d(e2) ≤ . . . ≤ d(ek−1).

2. For each vertex vi ∈ V , we create a tree Ti such that Ti contains only a node vi.

For the purpose of merging trees, we consider Ti as a rooted tree by designating

vi as its root, and define the merge of two tree Ti and Tj respectively rooted at

7

vi and vj to be a new tree rooted at a new vertex u such that vi and vj become

the children of u.

3. For each eK = (vi, vj), where K increases from 1 to k − 1, we find the trees Ti

and Tj containing vi and vj respectively and then merge them into a new tree.

This process is continued until the remaining is only one tree. Then this final

tree is the so-called Kruskal merging order tree TK.

The construction of G for k sequences can be done in O(k2) time and the computation

of the Kruskal’s MST T of G can be done in O(k2 log k) time. Then the construction of

TK from T can be implemented by the disjoint set union and find algorithm proposed

by Gabow and Tarjan [12] in O(m + k) time, where m denotes the number of union

and find operations. It is not hard to see that m = O(k) and hence the construction

of TK takes O(k) time. Therefore, the total time complexity of constructing TK is

O(k2 log k).

8

Chapter 3

Algorithms

Here, we describe our algorithms to efficiently solve the CMSA problem based on the

progressive approach adopted by Tang et al. [34]. The ideas behind this progressive

approach are first to design an efficient algorithm to optimally solve the constrained

pairwise sequence alignment (CPSA) and then use it as a kernel to progressively align

the input sequences into a CMSA according to the branching order of a guide tree.

The main different part of our progressive algorithm from Tang’s is the algorithms for

solving the CPSA problem. In the following, we first use the dynamic programming

technique to design a time-efficient algorithm for optimally solving the CPSA problem,

then use the divide-and-conquer technique to design a memory-efficient algorithm for

the CPSA problem, and finally use the progressive approach to develop two CMSA

programs.

3.1 Constrained pairwise sequence alignment

3.1.1 Dynamic programming method

In this section, we shall use dynamic programming method to design a time-efficient

algorithm for solving the CPSA problem with two given sequences A = a1a2 . . . am and

B = b1b2 . . . bn, a given order set C = (C1, C2, . . . , Cγ) of γ constraints and a given error

threshold ε.

For any two characters a, b ∈ Σ, let σ(a, b) denote the score of aligning a with b.

9

The gap penalty adopted here is the so-called affine gap penalty that penalizes a gap

of length l with wo + l × we, where wo > 0 is the gap-open penalty and we > 0 is

the gap-extension penalty. For convenience, let Ai = a1a2 . . . ai, Bj = b1b2 . . . bj and

Ck = (C1, C2, . . . , Ck), where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ γ. LetMk(i, j) denote the

score of an optimal constrained alignment of Ai and Bj w.r.t. Ck. Clearly, Mγ(m, n)

is the score of an optimal constrained alignment of A and B w.r.t. C. L is called as a

semi-constrained alignment of Ai and Bj w.r.t. Ck if it is a constrained alignment of

Ai and Bj w.r.t. Ck−1 and also ends (or begins) with a band whose induced consensus

is equal to a prefix of Ck (or a suffix of C1). Nk(i, j, h) is defined to be the score of an

optimal semi-constrained alignment of Ai and Bj w.r.t. Ck that ends with an induced

consensus equal to Ck,h, where Ck,h = ck,1ck,2 . . . ck,h. Let MD
k (i, j) and MI

k(i, j) be

the maximum scores of all constrained alignments of Ai and Bj w.r.t. Ck that end with

a deletion pair (i.e., (ai,−)) and an insertion pair (i.e., (−, bj)), respectively. By the

definition, it is not hard to derive the recurrence of Mk(i, j), where 1 ≤ i ≤ m and

1 ≤ j ≤ n, as follows. If k = 0, then

Mk(i, j) = max


Mk(i− 1, j − 1) + σ(ai, bj),

MD
k (i, j),

MI
k(i, j).

If 1 ≤ k ≤ γ, then

Mk(i, j) = max



Mk(i− 1, j − 1) + σ(ai, bj),

MD
k (i, j),

MI
k(i, j),

Nk(i, j, λk).

Clearly, Nk(i, j, λk) = Mk−1(i−λk, j−λk)+Σ0≤h≤λk−1σ(ai−h, bi−h), if dH(Ai(λk), Ck) ≤

λk × ε and dH(Bj(λk), Ck) ≤ λk × ε, where Ai(λk) = ai−λk+1 . . . ai and Bj(λk) =

bj−λk+1 . . . bj. Otherwise, Nk(i, j, λk) = −∞. To simply describe the computation of

MD
k (i, j) and MI

k(i, j), we introduce another notation MS
k (i, j) which is defined to be

the maximum score of all constrained alignments of Ai and Bj w.r.t. Ck that end with

a substitution pair (i.e., (ai, bj)). Let LD
k (Ai, Bj) denote the alignment of Ai and Bj

10

with score MD
k (i, j) which ends with a deletion pair (ai,−). Let L′ be the portion of

LD
k (Ai, Bj) before the last aligned pair (ai,−). Then there are three possibilities when

we consider the last aligned pair of L′.

Case 1: The last aligned pair of L′ is a substitution pair. Then the score of L′ is

MS
k (i − 1, j) and (ai,−) is charged by a gap-open penalty and a gap-extension

penalty in MD
k (i, j). Hence, MD

k (i, j) = MS
k (i− 1, j)− wo − we.

Case 2: The last aligned pair of L′ is a deletion pair. Then the score of L′ is MD
k (i−

1, j) and (ai,−) is charged by only one gap-extension penalty inMD
k (i, j). Hence,

MD
k (i, j) = MD

k (i− 1, j)− we.

Case 3: The last aligned pair of L′ is an insertion pair. Then the score of L′ is

MI
k(i − 1, j) and (ai,−) is charged by a gap-open penalty and a gap-extension

penalty in MD
k (i, j). Hence, MD

k (i, j) = MI
k(i− 1, j)− wo − we.

In summary, we have

MD
k (i, j) = max


MS

k (i− 1, j)− wo − we,

MD
k (i− 1, j)− we,

MI
k(i− 1, j)− wo − we.

However, by including an extra MD
k (i− 1, j)−wo −we into the right-hand site of the

above recurrence, we can reformulate the above recurrence as

MD
k (i, j) = max


Mk(i− 1, j)− wo − we,

MD
k (i− 1, j)− we.

Similar to the discussion above, the recurrence of MI
k(i, j) can be derived as

MI
k(i, j) = max


Mk(i, j − 1)− wo − we,

MI
k(i, j − 1)− we.

The initializations of Mk(i, j),MD
k (i, j) and MI

k(i, j) for all 0 ≤ k ≤ γ are as follows.

• If k = 0, then Mk(0, 0) = 0, MD
k (0, 0) = MI

k(0, 0) = −∞, Mk(i, 0) =

MD
k (i, 0) = −wo − iwe and MI

k(i, 0) = −∞ for all 1 ≤ i ≤ m, and Mk(0, j) =

MI
k(0, j) = −wo − jwe and MD

k (0, j) = −∞ for all 1 ≤ j ≤ n.

11

PSfrag replacements

(i− 1, j − 1, k) (i− 1, j, k)

(i, j − 1, k) (i, j, k)

NkNk

NkNk

MkMk

MkMk

MD
kMD

k

MD
kMD

k

MI
kMI

k

MI
kMI

k

0

0 0

00
0

0 0

0

0 0

0

−wo − we

−wo − we

−
w

o
−

w
e

−
w

o
−

w
e

−we

−we

−
w

e

−
w

eσ(ai, bj)

Figure 3.1: The schematic diagram of four adjacent entries of G, where

entry (i, j, k) consists of three nodes Mk,MD
k and MI

k corresponding to

Mk(i, j),MD
k (i, j),MI

k(i, j), respectively.

• If 1 ≤ k ≤ γ, then Mk(0, 0) = 0, MD
k (0, 0) = MI

k(0, 0) = −∞, Mk(i, j) =

MD
k (i, j) = MI

k(i, j) = −∞ for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

According to the recurrences above, we can design an algorithm to compute

Mγ(m, n) and its corresponding constrained alignment using the technique of dy-

namic programming as follows. For convenience, we can depict the recurrences of

matrices Mk,MD
k ,MI

k and Nk for all 0 ≤ k ≤ γ by a 3D grid graph G, which

consists of (m + 1) × (n + 1) × (γ + 1) entries and each entry (i, j, k) consists of

four nodes Mk,MD
k , MI

k and Nk corresponding to Mk(i, j),MD
k (i, j),MI

k(i, j), and

Nk(i, j, λk), respectively. Figure 3.1 illustrates the relationship of four adjacent entries

(i, j, k), (i−1, j, k), (i, j−1, k) and (i−1, j−1, k) of G for each fixed k. Note that there

is a directed edge, which is not shown in Figure 3.1, with weight Σ0≤h≤λk−1σ(ai−h, bj−h)

from the Mk−1 node of the entry (i − λk, j − λk, k − 1) to the Nk node of the entry

(i, j, k). Then each path from M0(0, 0) node of entry (0, 0, 0) to Mγ(m, n) node of

entry (m, n, γ) corresponds to a constrained alignment of A and B w.r.t. C. As a re-

12

sult, an optimal constrained alignment of A and B can be obtained by backtracking a

shortest path from Mγ(m,n) to M0(0, 0) in G. It is not hard to see that the algorithm

costs both computer time and memory in the order of O(γmn). We call the above

algorithm based on the dynamic programming approach as CPSA-DP algorithm.

3.1.2 Divide and conquer method

In this section, we shall use divide-and-conquer method to design a memory-efficient

algorithm for solving the CPSA problem with two given sequences A = a1a2 . . . am and

B = b1b2 . . . bn, a given order set C = (C1, C2, . . . , Cγ) of γ constraints and a given error

threshold ε.

Recall that Hirschberg [17] developed a linear-space algorithm for solving the longest

common subsequence problem based on the technique of divide and conquer. Since

then, this strategy has been extended to yield a number of memory-efficient algorithms

for aligning biological sequences [6, 21]. In this paper, we generalize the Hirschberg’s

algorithm so that it is able to deal with the constrained pairwise sequence alignment. As

compared with others, our generalization is more complicated because the grid graph

G we deal with here is 3D, instead of 2D, and the input sequences are accompanied

with several constraints which need to be considered carefully. The central idea of

our memory-efficient algorithm is to determine a middle position (imid, jmid, kmid) on

an optimal path from M0(0, 0) to Mγ(m,n) in G so that we are able to divide the

constrained alignment problem into two smaller constrained alignment problems, then

these smaller constrained alignment problems are continued to be divided in the same

way, and finally the optimal constrained alignment is obtained completely by merging

the series of the calculated mid-points (see Figure 3.2 for an illustration).

Before describing our algorithm, some notation must be introduced as follows. Let

Ai and Bj denote the suffixes ai+1ai+2 . . . am and bj+1bj+2 . . . bn of A and B, respectively,

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let Ck denote the ordered subset (Ck+1, Ck+2, . . . , Cγ) for

1 ≤ k ≤ γ. Define Mk(i, j) to be the score of an optimal constrained alignment of Ai

and Bj w.r.t. Ck, and define MS
k (i, j),MD

k (i, j) and MI
k(i, j) to be the maximum score

of all constrained alignments of Ai and Bj w.r.t. Ck that begin with a substitution pair

13

PSfrag replacements

M0(0, 0)

Mγ(m,n)imid

kmid

jmid

Figure 3.2: Schematic diagram of divide and conquer approach: two light gray areas

are the reduced subproblems after middle position (imid, jmid, kmid) is determined, each

of which will be further divided into two subproblems of dark gray areas.

(i.e, (ai+1, bj+1)), a deletion pair (i.e., (ai+1,−)) and an insertion pair (i.e., (−, bj+1)),

respectively. Let Ck(h) = (C1, C2, . . . , Ck−1, Ck,h) and Ck(h) = (Ck,h, Ck+1, . . . , Cγ),

where Ck,h = ck,h+1ck,h+2 . . . ck,λk
. Let N k(i, j, h) denote the score of an optimal semi-

constrained alignment L of Ai and Bj w.r.t. Ck(h) that begins with a band whose

induced consensus is equal to Ck,h. Note that the recurrences for computing matrices

Mk,M
S

k ,MD

k , MI

k and N k can be developed similarly as those for computing Mk,

MS
k , MD

k , MI
k andNk, respectively. Clearly, MS

k (i, j) = Mk(i−1, j−1)+σ(ai, bj). For

simplicity, let Ai(h) (respectively, Bj(h)) denote the suffix of Ai (respectively, Bj) with

length of h (i.e., Ai(h) = ai−h+1 . . . ai and Bj(h) = bj−h+1 . . . bj). If dH(Ai(λk), Ck) ≤

λk × ε and dH(Bj(λk), Ck) ≤ λk × ε, then we can reformulate the recurrence of Nk as

follows: Nk(i, j, 1) = Mk−1(i− 1, j− 1)+σ(ai, bj) and Nk(i, j, h) = Nk(i− 1, j− 1, h−

1) + σ(ai, bj) for each 1 < h ≤ λk.

Next, we describe our divide-and-conquer algorithm, called as CPSA-DC algorithm,

for computing an optimal constrained alignment between A and B w.r.t. C as follows.

The key point is to determine the middle position (imid, jmid, kmid) of the optimal path

in G to divide the problem into two subproblems, each of which is recursively divided

into two smaller subproblems using the same way. Given an alignment L, we use

14

score(L) to denote the score of L. Let Lγ(A, B) be an optimal constrained alignments

of A and B w.r.t. C and clearly score(Lγ) = Mγ(m, n). Let imid = bm
2
c. Then

we partition Lγ(A, B) into two parts by cutting it at the position immediately after

aimid
and we let L1

γ(A, B) denote the part containing aimid
and L2

γ(A, B) denote the

remaining part. Let bjmid
be the last character in L1

γ(A, B) from B, and let kmid be

the largest index so that a prefix of Ckmid
with length hmid appears in L1

γ(A, B). Then

there are two possibilities when we consider the last aligned pair of L1
γ(A, B).

Case 1: The last aligned pair of L1
γ(A, B) is a substitution pair (i.e., (aimid

, bjmid
)).

In this case, we have Mγ(m, n) = score(Lγ(A, B)) = score(L1
γ(A, B)) +

score(L2
γ(A, B)). If (aimid

, bjmid
) is not a constrained column in Lγ(A, B), then

L1
γ(A, B) is an optimal constrained alignment of Aimid

and Bjmid
w.r.t. Ckmid

ending

with a substitution pair (aimid
, bjmid

), and L2
γ(A, B) is an optimal constrained alignment

of Aimid
and Bjmid

w.r.t. Ck. Hence, Mγ(m, n) = MS
kmid

(imid, jmid)+Mkmid
(imid, jmid).

If (aimid
, bjmid

) is a constrained column in Lγ(A, B), then L1
γ(A, B) is an optimal semi-

constrained alignment of Aimid
and Bjmid

w.r.t. Ckmid
(hmid) ending with a band B1

whose induced consensus is equal to Ckmid,hmid
. If hmid < λkmid

, then L2
γ(A, B) is an

optimal semi-constrained alignment of Aimid
and Bjmid

w.r.t. Ckmid
(hmid) beginning

with a band B2 whose induced consensus is equal to Ckmid,hmid
. Moreover, the induced

consensus of the merge of B1 and B2 have to be equal to Ckmid
. In this case, we

have Mγ(m, n) = Nkmid
(imid, jmid, hmid) +N kmid

(imid, jmid, hmid). If hmid = λkmid
, then

L2
γ(A, B) is an optimal constrained alignment of Aimid

and Bjmid
w.r.t. Ckmid

(hmid), and

hence Mγ(m,n) = Nkmid
(imid, jmid, λkmid

) +Mkmid
(imid, jmid).

Case 2: The last aligned pair of L1
γ(A, B) is a deletion pair (i.e., (aimid

,−)).

If the first aligned pair in L2
γ(A, B) is not a deletion pair, then Mγ(m, n) =

max{MD
kmid

(imid, jmid)+M
S
kmid

(imid, jmid),MD
kmid

(imid, jmid)+M
I
kmid

(imid, jmid)}. If the

first aligned pair in L2
γ(A, B) is a deletion pair, then Mγ(m, n) = MD

kmid
(imid, jmid) +

MD

kmid
(imid, jmid) + wo. Since the open penalty of the gap containing aimid

and aimid+1

in Lγ(A, B) is charged twice by MD
kmid

(imid, jmid) and MD
kmid

(imid, jmid), we need to

compensate it by adding wo.

15

In summary, the recurrence of Mγ(m,n) is derived as follows.

Mγ(m, n) = max



MD
kmid

(imid, jmid) +MS
kmid

(imid, jmid),

MD
kmid

(imid, jmid) +MI
kmid

(imid, jmid),

MD
kmid

(imid, jmid) +MD

kmid
(imid, jmid) + wo,

MS
kmid

(imid, jmid) +Mkmid
(imid, jmid),

Nkmid
(imid, jmid, hmid) +N kmid

(imid, jmid, hmid),

Nkmid
(imid, jmid, λkmid

) +Mkmid
(imid, jmid)


By adding extra MD

kmid
(imid, jmid) +MD

kmid
(imid, jmid) into the right-hand side, the

above recurrence is not changed, but can be reformulated as follows.

Mγ(m,n) = max



MD
kmid

(imid, jmid) +Mkmid
(imid, jmid),

MD
kmid

(imid, jmid) +MD
kmid

(imid, jmid) + wo,

MS
kmid

(imid, jmid) +Mkmid
(imid, jmid),

Nkmid
(imid, jmid, hmid) +N kmid

(imid, jmid, hmid),

Nkmid
(imid, jmid, λkmid

) +Mkmid
(imid, jmid)


In other words, jmid, kmid and hmid are the indices j, k and h, where 1 ≤ j ≤ n,

0 ≤ k ≤ γ and 1 ≤ h < λk, such that the following maximal value is the maximum.

max



MD
k (imid, j) +Mk(imid, j),

MD
k (imid, j) +MD

k (imid, j) + wo,

MS
k (imid, j) +Mk(imid, j),

Nk(imid, j, h) +N k(imid, j, h),

Nk(imid, j, λk) +Mk(imid, j)


Now, we show how to use O(γλn), instead of O(γmn), memory to determine

jmid, kmid and hmid, where λ = max1≤k≤γ λk and usually λ << m. In fact, a single

matrix E of size (γ + 1)× (n + 1) with each entry E(k, j) of (λ + 4) space is enough to

compute Mk(imid, j), MS
k (imid, j), MD

k (imid, j) MI
k(imid, j) and Nk(imid, j, h), where

1 ≤ j ≤ n, 0 ≤ k ≤ γ, 1 ≤ h ≤ λk. When reaching the entry (i, j, k) of 3D grid graph

G, we use entry E(k, j) of E to hold the most recently computed values of Mk(i, j),

MS
k (i, j), MD

k (i, j) MI
k(i, j) and Nk(i, j, h), which clearly needs a total of λk +4 space.

Note that the old values in entry E(k, j) will be moved into an extra entry, called as Vk

16

PSfrag replacements
i

i

i− 1

k

E(k)

E(k − 1)

vk−1,k

j

j

Vk

Vk−1

?

Figure 3.3: The grid locations of E(k − 1), E(k) and the values in Vk−1 and Vk when

the entry (i, j, k) of G, marked with ”?”, is reached for the computation.

whose space is equal to E(k, j), before they are overwritten by their newly computed

values. Before moving the old values in E(k, j) into Vk, however, we need to first move

Mk(i−1, j−1) in Vk into a space, called as vk,k+1. The mechanism above will enable us

to compute Nk(i, j, 1), which needs to refer to Mk−1(i− 1, j− 1) that is kept in vk−1,k,

and computeNk(i, j, h) for each 2 ≤ h ≤ λk, which needs to refer toNk(i−1, j−1, h−1)

that is kept in Vk, compute MS
k (i, j) which needs to refer Mk(i−1, j−1) that is kept in

Vk, and finally we are able to compute Mk(i, j). Figure 3.3 shows the grid locations of

E(k− 1), E(k) and the values in Vk−1 and Vk when we reach the entry (i, j, k) of G for

the computation, where E(k) denotes the the kth row of E. Hence, the totally needed

space for computing and storing all Mk(imid, j), MS
k (imid, j), MD

k (imid, j) MI
k(imid, j)

and Nk(imid, j, h) is the sum of the space of matrix E, the space of all Vk, 0 ≤ k ≤ γ,

and the space of all vk,k+1, 0 ≤ k < γ, which is equal to O(γλn). Similarly, the

process of computing and storing all Mk(imid, j), M
S
k (imid, j), M

D
k (imid, j) M

I
k(imid, j)

and N k(imid, j, h) still needs O(γλn) space. Hence, the determination of jmid, kmid and

hmid can be done in O(γλn) space. The details of CPSA-DC algorithm are described

as follows, where the program code of BestScoreRev is similar to that of BestScore and

hence is omitted.

17

Algorithm CPSA-DC(istart, iend, jstart, jend, kstart, kend)

Input: Sequences aistart . . . aiend
and bjstart . . . bjend

with constraints (Ckstart , . . . , Ckend
)

Step 1: if (istart > iend) or (jstart > jend) then

Align the nonempty sequence with spaces;

else

imid = b istart+iend

2
c;

BestScore(istart, imid, jstart, jend, kstart, kend);

BestScoreRev(imid + 1, iend, jstart, jend, kstart, kend);

end if

Step 2: max = −∞;

for j = jstart − 1 to jend do

for k = kstart − 1 to kend do

if MD
k (·, j) +Mk(·, j) > max then

max = MD
k (·, j) +Mk(·, j);

jmid = j; kmid = k; type = case 1;

end if

if MD
k (·, j) +MD

k (·, j) > max then

max = MD
k (·, j) +MD

k (·, j);

jmid = j; kmid = k; type = case 2;

end if

if MS
k (·, j) +Mk(·, j) > max then

max = MS
k (·, j) +Mk(·, j);

jmid = j; kmid = k; type = case 3;

end if

if k ≥ 1 then

for h = 1 to λk − 1 do

if (H1(k,h)+H1(k,h)
λk

≤ ε) and (H2(k,h)+H2(k,h)
λk

≤ ε) then

if Nk(·, j, h) +N k(·, j, h) > max then

max = Nk(·, j, h) +N k(·, j, h);

jmid = j; kmid = k; hmid = h; type = case 4;

18

end if

end if

end for

if (H1(k,λk)
λk

≤ ε) and (H2(k,h)
λk

≤ ε) then

if Nk(·, j, λk) +Mk(·, j) > max then

max = Nk(·, j, λk) +Mk(·, j);

jmid = j; kmid = k; hmid = h; type = case 5;

end if

end if

end if

end for

end for

Step 3: if type = case 1 then

CPSA-DC(istart, imid − 1, jstart, jmid, kstart, kmid);

Align aimid
with a space;

CPSA-DC(imid + 1, iend, jmid + 1, jend, kmid + 1, kend);

end if

if type = case 2 then

CPSA-DC(istart, imid − 1, jstart, jmid, kstart, kmid);

Align aimid
aimid+1 with two spaces;

CPSA-DC(imid + 2, iend, jmid + 1, jend, kmid + 1, kend);

end if

if type = case 3 then

CPSA-DC(istart, imid − 1, jstart, jmid − 1, kstart, kmid);

Align aimid
with bjmid

;

CPSA-DC(imid + 1, iend, jmid + 1, jend, kmid + 1, kend);

end if

if type = case 4 then

CPSA-DC(istart, imid − hmid, jstart, jmid − hmid, kstart, kmid − 1);

Align aimid−hmid+1 . . . aimid+λk−hmid
with bjmid−hmid+1 . . . bjmid+λk−hmid

;

19

CPSA-DC(imid + λk − hmid + 1, iend, jmid + λk − hmid + 1, jend, kmid + 1, kend);

end if

if type = case 5 then

CPSA-DC(istart, imid − λk, jstart, jmid − λk, kstart, kmid − 1);

Align aimid−λk+1 . . . aimid
with bjmid−λ+1 . . . bjmid

;

CPSA-DC(imid + 1, iend, jmid + 1, jend, kmid + 1, kend);

end if

Algorithm BestScore(istart, iend, jstart, jend, kstart, kend)

Input: Sequences aistart . . . aiend
and bjstart . . . bjend

with constraints (Ckstart , . . . , Ckend
)

Output:

Step 1: /* Reindex */

m = istart − iend + 1; n = jstart − jend + 1; γ = kstart − kend + 1;

Step 2: /* Initialization */

for j = 0 to n do

for k = 0 to γ do

if (j = 0) and (k = 0) then Mk(·, j) = 0; else Mk(·, j) = −∞;

if (j = 0) or (k > 0) then MI
k(·, j) = −∞; else MI

k(·, j) = −wo − jwe;

MS
k (·, j) = MD

k (·, j) = −∞;

if k ≥ 1 then

for h = 1 to λk do

Nk(·, j, h) = −∞;

end for

end if

end for

end for

Step 3: /* Computation */

for i = 1 to m do

for k = 0 to γ do /* For the case of j = 0 */

20

Vk(Mk(·, 0)) = Mk(·, 0);

if k ≥ 1 then

for h = 1 to λk do

Vk(Nk(·, 0, h)) = Nk(·, 0, h));

Vk(H1(k, h)) = H1(k, h);

Vk(H2(k, h)) = H2(k, h);

end for

end if

MS
k (·, 0) = MI

k(·, 0) = −∞;

Mk(·, 0) = MD
k (·, 0) = −wo − jwe;

end for

for j = 1 to n do /* For the case of j > 0 */

for k = 0 to γ do

tempk(Mk(·, j)) = Mk(·, j) ;

if k ≥ 1 then

for h = 1 to λk do

tempk(Nk(·, j, h)) = Nk(·, j, h);

tempk(H1(k, h)) = H1(k, h);

tempk(H2(k, h)) = H2(k, h);

end for

end if

MS
k (·, j) = V (Mk(·, j)) + σ(aistart+i−1, bjstart+j−1);

MD
k (·, j) = max{MD

k (·, j)− we,Mk(·, j)− wo − we};

MI
k(·, j) = max{MI

k(·, j − 1)− we,Mk(·, j − 1)− wo − we};

if k ≥ 1 then

for h = 1 to λk do

if h = 1 then

Nk(·, j, h) = vk−1,k + σ(aistart+i−1, bjstart+j−1);

if aistart+i−1 6= ck,h then H1(k, h) = 1; else H1(k, h) = 0;

if bjstart+j−1 6= ck,h then H2(k, h) = 1; else H2(k, h) = 0;

21

else

Nk(·, j, h) = Vk(Nk(·, j, h− 1)) + σ(aistart+i−1, bjstart+j−1);

if aistart+i−1 6= ck,h then H1(k, h) = H1(k, h− 1) + 1;

if bjstart+j−1 6= ck,h then H2(k, h) = H2(k, h− 1) + 1;

end if

end for

end if

Mk(·, j) = max


MD

k (·, j),MI
k(·, j),Nk(·, j, λk)

Vk(Mk(·, j)) + σ(aistart+i−1, bjstart+j−1),

;

vk,k+1 = Vk(Mk(·, j));

Vk(Mk(·, j)) = tempk(Mk(·, j));

if k ≥ 1 then

for h = 1 to λk do

Vk(N (·, j, h)) = tempk(Nk(·, j, h));

H1(k, h) = tempk(H1(k, h));

H2(k, h) = tempk(H2(k, h));

end for

end if

end for

end for

Now, we analyze the time complexity of our CPSA-DC algorithm for solving the

constrained pairwise sequence alignment. As illustrated in Figure 3.2, after determining

the middle position (imid, jmid, kmid) of the optimal path in G, we can divide the original

problem into two subproblems, each of which further can be recursively divided into

two smaller subproblems using the same way. Note that regardless of where the optimal

path passes through (imid, jmid, kmid), the total size of the two reduced subproblems is

just half the size of the original problem, where the size is measured by the number

of the entries in G. In is not hard to see that the time complexity of determining the

middle position of each subproblem at each recursive stage is proportional to the size of

22

the subproblem. Let T denote the size of the original problem (i.e., T = γmn). Then

the total time complexity of our CPSA-DC algorithm is equal to T + T
2

+ T
4

+ · · · = 2T ,

which is twice as high as the CPSA-DP algorithm.

3.2 Constrained multiple sequence alignment

In this section, we use Algorithm CPSA-DP and CPSA-DC in previous section as

kernels to design two CMSA algorithms, called Algorithm CMSA-DP and CMSA-DC

respectively, for progressively aligning the input sequences into a CMSA according

to the branching order of a guide tree, where the guide tree we use here is the so-

called Kruskal merging order tree. We refer the reader to Section 2 for the details of

constructing the Kruskal merging order tree. Except for the adopted CPSA kernel,

CMSA-DP and CMSA-DC have the same execution steps, which are described as

follows.

1. Compute the distance matrix D by globally aligning all pairs of sequences using

Algorithm CPSA-DP or CPSA-DC , where D(i, j) denotes the distance between

sequences Si and Sj.

2. Create a complete graph G from the distance matrix D and then compute the

Kruskal merging order tree Tk from G to serve as the guide tree.

3. Progressively align the sequences according to the branching order of the guide

tree Tk in a way that the currently two closest pre-aligned groups of sequences

are joined by applying Algorithm CPSA-DP or CPSA-DC to these two groups of

sequences, where the score between any two positions in these two groups is the

arithmetic average of the scores for all possible character comparisons at those

positions.

In the following, we analyze the time complexity of Algorithm CMSA-DP/CMSA-

DC. It is not hard to see that step 1 costs O(γk2n2) time, where n is the maximum

of the lengths of k sequences. According to the paper of Tang et al. [34] , step 2 can

be done in O(k2 log k) time. In step 3, there are at most O(k) iterations for calling

23

Algorithm CPSA-DP/CPSA-DC, whose time complexity is O(γn2), to join two pre-

aligned groups of sequences. Hence, the time complexity of step 3 is O(γkn2). Clearly,

the cost of Algorithm CMSA-DP/CMSA-DC is dominated by step 1 and hence its time

complexity is O(γk2n2).

24

Chapter 4

Implementation and Discussion

4.1 MuSiC

We use Java language to implement the CMSA-DP algorithm as a web server, called

as MuSiC, which is a short for Multiple Sequence Alignment with Constraints. It can

be easily accessed via a simple web interface (see Figure 4.1). The input of the MuSiC

system consists of a set of protein/DNA/RNA sequences and a set of user-specified

constraints, each with a fragment of bases that (approximately) appears in all input

sequences. The output of MuSiC is a constrained multiple sequence alignment in which

the fragments of the input sequences whose bases exhibit a given degree of similarity

to a constraint are aligned together. The use of the proposed MuSiC system is illus-

trated below to help to detect a fragment of an RNA sequence in the 3′ untranslated

region (UTR) of the SARS-TW1 sequence, which can fold itself into a pseudoknot

structure. The structural elements in the 5′ and 3′ UTRs of a plus-straind RNA virus

have been postulated to be involved in RNA replication, transcription and transla-

tion by interacting with viral or cellular proteins. Much evidence supports the fact

that the pseudoknots in 3′ UTRs among coronaviruses participate in the replication

of RNA [43]. The SARS (Severe Acute Respiratory Syndrome) virus, which caused

several hundreds of deaths since its outbreak in early 2003, is a novel type of coron-

avirus, so a pseudoknot is expected to be observed in its 3′ UTR. By comparing the

sequences of the phylogenetically conserved pseudoknots among many coronaviruses,

25

Figure 4.1: The interface of MuSiC.

Williams et al. found that these sequences contain several fragments of conserved

nucleotides (consensuses). They found 12 consensuses, say CU, CA, AA, GG, C, UG,

A, G, AG, U and A, among coronaviruses including HCV-229E (human coronavirus),

PEDV (porcine epidemic diarrhea virus), TGEV (porcine transmissible gastroenteritis

virus), BCV (bovine coronavirus) and MHV (mouse hepatitis virus). To determine

whether or not the 3′ UTR of SARS has a pseudoknot, SARS-TW1 (AY291451) was

chosen as the test subject and the MuSiC system was used to align the sequence of

the 3′ UTR of SARS-TW1 with those of the detected pseudoknots in the 3′ UTRs

of BCV, MHV, PEDV, TGEV and HCV-229E coronaviruses. The consensuses de-

scribed above were used as the constrained sequences in the proposed MuSiC system

and then the default scoring matrix and gap penalties were chosen with the initial

setting ε = 0. As a result, no CMSA was found to satisfy the requirement, because

the postulated pseudoknot in the 3′ UTR of SARS-TW1 may comprise the fragments

that are only partially, rather than completely, similar to the constraints. Hence, this

26

Figure 4.2: The partial display of the resulting CMSA of MuSiC by aligning the se-

quences of SARS-TW1 3′ UTR with those of other five coronaviruses.

case was tested again with letting ε = 0.5 so that in the band of the resulting CMSA,

of length two or three, no more than one mismatch may exist between the fragment

of each input sequence and the constraint. Consequently, as indicated in Figure 4.2 ,

a satisfied CMSA was found. Note that, the band of the resulting CMSA that corre-

sponds to a constraint is black and its corresponding constraint is displayed beneath it.

In some bands of this resulting CMSA, such as the fourth, sixth and ninth, at most one

mismatch exists between the fragment of each input sequence and the corresponding

constraint. Moreover, the part of SARS-TW1 aligned with the pseudoknot sequences

of other coronaviruses is interspersed with only two gaps of length one. This finding

suggests that this part of SARS-TW1 may fold itself into a pseudoknot structure and

possibly be involved in replicating SARS viruses. Therefore, this SARS-TW1 fragment

is further validated by applying PKNOTS, developed by the Eddy group [30], to de-

termine whether it can fold itself into a pseudoknot structure with a stable free energy.

Consequently, this fragment of SARS-TW1 indeed folds itself into a stable pseudoknot

whose base pairings have a topology, as indicated in Figure 4.3 , that is very similar

to those of other coronaviruses described in the literature [43]. However, whether or

not this SARS-TW1 fragment participates in replicating the RNA of SARS must be

investigated experimentally in the laboratory.

27

PSfrag replacements

5′

CUACU CUUGUGC
GAACACG

AGAAUGAAUUCUCG

CAAAUCAAU
GUUUAGUUA

A

UAG

ACUUUAA 3′

Figure 4.3: The diagram of the predicted pseudoknot in the 3′ UTR of SARS-TW1

ranging from 29460 to 29521 bp.

4.2 MuSiC-ME

We also use Java language to implement the CMSA-DC algorithm as a web server,

called as MuSiC-ME that is short for Memory-Efficient tool for Multiple Sequence

Alignment with Constraints (see Figure 4.4). It is worth mentioning that for MuSiC-

ME, the letters representing the constraints are not just the individual bases, but also

the IUPAC (International Union of Pure and Applied Chemistry) codes. For example,

nucleotides N and R have the meanings of any bases and purine (i.e., A or G), respectively.

To demonstrate the practicability of our MuSiC-ME system, we also use it to detect

a fragment of an RNA sequence in the 3′ UTR of the SARS-TW1 sequence being able

to fold into a stable pseudoknot.

In this test, we aligned the sequence of the 3′ UTR of SARS-TW1 with those of

the 3′ UTRs of BCV, MHV, PEDV, TGEV and HCV-229E coronaviruses, and used

the consensuses as described before as the constraints. Since these constraints are

too short, they occur frequently in the large genomic sequences. For our purpose, we

further combine a few of constraints into a new and larger constraint as follows. Among

the consensuses above, the first and second (respectively, ninth and tenth) consensuses

are located in the 5′ (respectively, 3′) end of stem 1 and they are separated by other 4

(respectively, 4) bases, and the seventh and eighth (respectively, eleventh and twelfth)

consensuses are located in the 5′ (respectively, 3′) end of stem 2 and they are separated

by other 3 (respectively, 3) bases. Since both stems 1 and 2 contain no loops, we are

able to combine the consensuses in the same stem into a new and larger constraint.

Hence, we have new constraints like CUNNNNC for the 5′ end of stem 1, GNNNNAG for the

28

Figure 4.4: The interface of MuSiC-ME.

3′ end of stem 1, UNNNA for the 5′ end of stem 2, and UNNNA for the 3′ end of stem 2.

Finally, we got eight constraints with the order of (CUNNNNC, A, AA, G, C, UNNNA,

GNNNNAG, UNNNA) for this test. After running MuSiC-ME, a satisfied CMSA was found

as shown in Figure 4.5. This resulting CMSA implies that the fragment of SARS-TW1

between the first band and the last band may fold into a pseudoknot structure that

is possibly involved in replicating SARS viruses. In fact, the fragment is the one we

found in the test with MuSiC and hence it can fold into a stable pseudoknot as shown

in Figure 4.3.

Note that above test was run on IBM PC with 1.26 GHz processor and 128 MB

RAM under Linux system. Under this limited memory environment, the instance can

not be executed by the MuSiC system whose kernel, the CPSA-DP algorithm, was

implemented by the dynamic programming approach, due to running out of memory.

The input sequences above were also tested by Clustal W 1.82, the most commonly

used MSA tool. According to its resulting MSA as shown in Figure 4.6, the fragments

29

Figure 4.5: The partial display of the resulting CMSA of MuSiC-ME by aligning the

sequences of SARS-TW1 3′ UTR with those of other five coronaviruses.

of all pseudoknots, including our detected pseudoknot for SARS-TW1, are not able

to be aligned well so that it is difficult for us to identify the exact fragment of the

SARS-TW1 pseudoknot from this MSA.

Figure 4.6: The partial display of the resulting MSA of Clustal W 1.82 by aligning

the 3′ UTR sequences of six coronaviruses, where the bases not in the pseudoknots are

marked with dots.

30

Chapter 5

Conclusions

In this thesis, we studied a generalized CMSA problem, which is to find a CMSA for

the input sequences with several user-specified constraints such that the fragments of

the input sequences whose bases exhibit a given degree of similarity to a constraint

are aligned together. In this model, each of the user-specified constraint may be a

fragment of bases, instead of a single base only, and the adopted gap scoring is the so-

called affine gap penalty that penalizes a gap once for opening and then proportionally

to its length.

First, we adopted the dynamic programming and divide-and-conquer techniques

to design a time-efficient algorithm and a memory-efficient algorithm respectively for

optimally solving the CPSA problem. Based on these two kernel algorithms, we de-

veloped two CMSA programs, called as MuSiC and MuSiC-ME respectively, using the

progressive approach. The MuSiC program generates a good CMSA efficiently, but its

high memory requirement limits it to align a set of short sequences, at most several

hundreds of bases. The MuSiC-ME program made it possible to align several large-

scale sequences with constraints through the desktop PC with the limited memory.

In this system, moreover, the letters allowed to represent the constraints are the IU-

PAC codes, which will enable the user to define a more flexible constraints or combine

several small constraints with fixed distances into a large one. The practicabilities of

MuSiC and MuSiC-ME were also demonstrated by helping us to detect the fragment

of the 3′ UTR of SARS that is able to fold itself into a stable pseudoknot for possibly

31

participating in replicating the RNA of SARS.

32

References

[1] Altschul, S. & Lipman, D. (1989) Trees stars and multiple biological sequence

alignment. SIAM Journal on Applied Mathematics, 49, 197–209.

[2] Bafna, V., Lawler, E. L. & Pevzner, P. A. (1997) Approximation algorithms for

multiple sequence alignment. Theoretical Computer Science, 182, 233–244.

[3] Bonizzoni, P. & Vedova, G. D. (2001) The complexity of multiple sequence align-

ment with SP-score that is a metric. Theoretical Computer Science, 259, 63–79.

[4] Carrillo, H. & Lipman, D. (1988) The multiple sequence alignment problem in

biology. SIAM Journal on Applied Mathematics, 48, 1073–1082.

[5] Chan, S. C., Wong, A. K. C. & Chiu, D. K. Y. (1992) A survey of multiple sequence

comparison methods. Bulletin of Mathematical Biology, 54, 563–598.

[6] Chao, K. M., Hardison, R. C. & W, W. M. (1994) Recent developments in linear-

space alignment methods: a survey. Journal of Computational Biology, 1, 271–

291.

[7] Chin, F. Y. L., Ho, N. L., Lamy, T. W., Wong, P. W. H. & Chan, M. Y. (2003)

Efficient constrained multiple sequence alignment with performance guarantee. In

Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB 2003)

pp. 337–346 IEEE, Los Alamitos, CA.

[8] Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. Nu-

cleic Acids Research, 16, 10881–10890.

33

[9] Deiman, B. & Pleij, C. W. A. (1997) Pseudoknots: a vital feature in viral RNA.

Seminars in Virology, 8, 166–175.

[10] Depiereux, E. & Feytmans, E. (1992) MATCH-BOX: a fundamentally new al-

gorithm for the simultaneous alignment of several protein sequences. Computer

Applications in the Biosciences, 8, 501–509.

[11] Feng, D. F. & Doolittle, R. F. (1987) Progressive sequence alignment as a prereq-

uisite to correct phylogenetic trees. Journal of Molecular Evolution, 25, 351–360.

[12] Gabow, H. & Tarjan, R. (1985) A linear-time algorithm for a special case of disjoint

set union. Journal of Computer and System Sciences, 30, 209–221

[13] Gusfield, D. (1993) Efficient methods for multiple sequence alignment with guar-

anteed error bounds. Bulletin of Mathematical Biology, 55, 141–154.

[14] Gusfield, D. (1997) Algorithms on Strings, Trees, and Sequences: Computer Sci-

ence and Computational Biology. Cambridge University Press.

[15] Hein, J. (1989) A new method that simultaneously aligns and reconstruct ancestral

sequences for any number of homologous sequences, when the phylogeny is given.

Molecular Biology and Evolution, 6, 649–668.

[16] Higgins, D. & Sharpe, P. (1988) CLUSTAL: a package for performing multiple

sequence alignment on a microcomputer. Gene, 73, 237–244.

[17] Hirschberg, D. (1975) A linear space algorithm for computing maximal common

subseqeuences. Communications of the ACM, 18, 341–343.

[18] Kruskal, J. (1956) On the shrtest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7, 48–50.

[19] Li, M., Ma, B. & Wang, L. (2000) Near optimal multiple alignment within a band

in polynomial time. In Proceedings of the Thirty Second Annual ACM Symposium

on Theory of Computing (STOC 2000) pp. 425–434 ACM Press, Portland.

34

[20] Lipman, D. & Pearson, W. (1985) Rapid and sensitive protein simularity search.

Science, 227, 1435–1411.

[21] Myers, E. W. & Miller, W. (1988) Optimal alignment in linear space. CABIOS,

4, 11–17.

[22] Needleman, S. & Wunsch, C. (1970) A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Evolution, 48, 443–453

[23] Nicholas, H. B., Ropelewski, A. J. & Deerfield, D. W. (2002) Strategies for multiple

sequence alignment. Biotechniques, 32, 592–603.

[24] Notredame, C. (2002) Recent progresses in multiple sequence alignment: a survey.

Pharmacogenomics, 3, 131–144.

[25] Notredame, C., Higgins, D. G. & Heringa, J. (2000) T-Coffee: a novel method

for fast and accurate multiple sequence alignment. Journal of Molecular Biology,

302, 205–217.

[26] Pevzner, P. A. (1992) Multiple alignment, communication cost, and graph match-

ing. SIAM Journal on Applied Mathematics, 52, 1763–1779.

[27] Pearson, W. (1991) Searching protein sequence libraries: Computation of the sen-

sitivity and selectivity of the Smith-Waterman and FASTA algorithm. Genomics,

11, 635–650.

[28] Pleij, C. W. A. (1994) RNA pseudoknots. Current Opinion in Structural Biology,

4, 337–344.

[29] Ravi, R. & Kececioglu, J. (1998) Approximation algorithms for multiple sequence

alignment under a fixed evolutionary tree. Discrete Applied Mathematics, 88,

355–366.

[30] Rivas, E. & Eddy, S. (1999) A dynamic programming algorithm for RNA structure

prediction including pseudoknots. Journal of Molecular Biology, 285, 2053–2068.

35

[31] Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new mothod for

reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

[32] Schuler, G. D., Altschul, S. F. & Lipman, D. J. (1991) A workbench for multiple

alignment construction and analysis. Proteins: Structure, Function and Genetics,

9, 180–190.

[33] Sneath, P. & Sokal, R. (1973) Numerical Taxonomy. Freeman, San Francisco, CA.

[34] Tang, C. Y., Lu, C. L., Chang, M. D. T., Tsai, Y. T., Sun, Y. J., Chao, K. M.,

Chang, J. M., Chiou, Y. H., Wu, C. M., Chang, H. T. & Chou, W. I. (2003)

Constrained multiple sequence alignment tool development and its application to

RNase family alignment. Journal of Bioinformatics and Computational Biology,

1, 267–287.

[35] Taylor, W. R. (1987) Multiple sequence alignment by a pairwise algorithm.

CABIOS, 3, 81–87.

[36] Taylor, W. R. (1994) Motif-biased protein sequence alignment. Journal of Com-

putational Biology, 1, 297–310.

[37] Thompson, J. D., Higgs, D. G. & Gibson, T. J. (1994) CLUSTAL W: improv-

ing the sensitivity of progressive multiple sequence alignment through sequence

weighting, position specific gap penalties, and weight matrix choice. Nucleic Acids

Research, 22, 4673–4680.

[38] Thompson, J. D., Plewniak, F., Thierry, J.-C. & Poch, O. (2000) DbClustal: rapid

and reliable global multiple alignments of protein sequences detected by database

searches. Nucleic Acids Research, 28, 2919–2926.

[39] Wang, L. & Gusfield, D. (1997) Improved approximation algorithms for tree align-

ment. Journal of Algorithms, 25, 255-273.

[40] Wang, L. & Jiang, T. (1994) On the complexity of multiple sequence alignment.

Journal of Computational Biology, 1, 337–348.

36

[41] Wang, L., Jiang, T. & Gusfield, D. (2000) A more efficient approximation scheme

for tree alignment. SIAM Journal on Computing, 30, 283–299.

[42] Wang, L., Jiang, T. & Lawler, E. (1996) Approximation algorithms for tree align-

ment with a givn phylogeny. Algorithmica, 16, 302–315.

[43] Williams, G. D., Chang, R.-Y. & Brian, D. A. (1999) A phylogenetically conserved

hairpin-type 39 untranslated region pseudoknot functions in coronavirus RNA

replication. Journal of Virology, 73, 8349–8355.

[44] Yu, C. T. (2003). Efficient algorithms for constrained sequence alignment prob-

lems. Master’s thesis Department of Computer Science and Information Manage-

ment, Providence University.

37

	封面
	MuSic and MuSiC-ME：有效率的限制型多重序列比對工具
	MuSiC and MuSiC-ME: Efficient Tools for Multiple Sequence Alignment with Constraints

