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Source Model for Transform Video Coder and
Its Application—Part |I: Fundamental Theory

Hsueh-Ming HangSenior Member, IEEEand Jiann-Jone Chen

_Abstract—A source model describing the relationship between our knowledge, been fully explored. An attempt is made by
bits, distortion, and quantization step sizes of a large class of Hang et al. [7], but it does not contain rigorous theoretical
block-transform video coders is proposed. This model is initially justification. On the other hand, several studies on source

derived from the rate-distortion theory and then modified to . -
match the practical coders and real image data. The realistic modeling [8], [9] based on the empirical data have been

constraints such as quantizer dead-zone and threshold coefficient 'eported. Although the empirical approach is rather useful in
selection are included in our formulation. The most attractive practice, it does not provide us with insights on the principles
feature of this model is its simplicity in its final form. It enables us  of video coder operations and the amount of information
to predict the bits needed to encode a picture at a given distortion contained in an image sequence. In addition, because it is
or to predict the quantization step size at a given bit rate. There . L ’ .

are two aspects of our contribution: one, we extend the existing derived from. the training data, one may worry about its
results of rate-distortion theory to the practical video coders, and robustness—its performance on the unknown data because
two, the nonideal factors in real signals and systems are identified, these data may be rather different from the training data
and their mathematical expressions are derived from empirical statistically.

data. One application of this model, as shown in the second part ; : ;

of this paper, is the buffer/quantizer control on a CCITT P x 64 Our approach in this paper belongs to t.he analytic approz_ach
k coder with the advantage that the picture quality is nearly Categ(_)ry. We decompose both the coding syst(?m and im-
constant over the entire picture sequence. age signal into components of known mathematical models
and then combine them together to form a complete de-
scription. The theoretical foundation of this approach is the
rate-distortion theory. A few elements in our model already
exist in the literature. Our contribution is two fold. One, we

l. INTRODUCTION combine and extend the existing results to the standard-type

RANSFORM coding is a very popular technique in imag&ideo coders, and two, the nonideal factors in real signals

compression. It is one of the key components in th’@"ld systems are incorporated as adjustable parameters to
international video communication standards [1]-[3]. Oftegompensate their bias effects on the ideal model. The goal
the communication channel poses constraints on the bit ritdo build a general source coding model that can be used to
it can accept, the video coder bit rate control or output bufféfedict the coder behavior by taking simple and basic measures
control becomes one of the critical problems in designir@f signals such as variances.
a video compression system. In order to predict the effectThis paper is organized as follows. We first briefly review
(output bit rate) due to the adjustment of coding parametefge rate distortion theory of Gaussian signals and uniform
it is very desirable to be able to construct a source model tiftantizers that are relevant to our coder source model. In
can estimate the bits produced by a video coder for a chosegctions Ill and IV, we derive the source model by putting
set of coding parameters. the known elements together with our own extensions. The

There are two approaches in constructing such a souR@rameters in our model, which are originally derived from

model: 1) the analytic approach that constructs a mathematigory, are adjusted to match real pictures and the standard
description of a coder by analyzing the structure and behavktding algorithms in practical applications. The impact of
of every component in the coder and 2) the empirical approate nonideal factors in picture and practical coders on our
that derives the input/output relationship of a coder bas€gurce model are discussed in Sections V-A and V-B. The
on the observed data. Although the analytic model of Rumerical values of model parameters computed based on
simple quantizer already existed for a long time [4]-[6], ththe compressed image data are described in Section V-C.
complete analysis of a standard transform coder has not,Sgction VI summarizes the results presented in this paper.

Index Terms—Image coding, rate distortion theory, source
coding.

Il. RATE-DISTORTION MODEL OF QUANTIZER
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Compressed ~ Can possibly be achieved at bit rake In (1) and (2),6 is a

Components Cossy Coding |-&it Stream dummy parameter whose value is decided by a selefted

or R value. The above formulas suggest that to achieve the
optimum coding performance, the frequency components of

Signal — power less thar® should be discarded and #&amount of
—— ] Transform . distortion should be imposed on every one of the retained
7 frequency components.
In reality, we cannot use infinite length transforms to
decompose a signal sequence. A typical approach is to partition
Fig. 1. Signal decomposition using transform. a signal sequence into nonoverlapped blocks and perform

block transformation on each data block separately. There
are two problems associated with this approach. One is the
correlation among the neighboring blocks, which can be
The following results known in information theory are the&ignificant for the low frequency components. A part of

bases of our future discussions. First, if a (composite) signfils correlation can be reduced by applying another layer
can be decomposed into two or more independent componegScorrelation reduction techniques on the low frequency
then its (total) rate-distortion function can be derived direc“é’omponents of nearby blocks. The other problem is the power
from the rate distortion functions of the individual COMPOgpectrum used in (1) and (2). Practically, the signal power
nents. In theory, there is no loss of compression efficiency é'ﬂectrum has to be estimated from data samples. A simple
decomposing qcomposite signal intq simpler components azmd popular spectrum estimation method is plegiodogram
then compressing eagh component mdepend_ently [6]. that computes the spectrum based on the weighted average of
. Se_cond, the rate dl_s,Fortlon functions of a féwiependent the Fourier transforms of nonoverlapped data blocks [11]. This
!Qentlcally d!smbUted(""d') sources are known suc_h as th?n thod is consistent with the finite-size transform we use in
lid. Gaussian sequence. Based on the proposition stat aa compression if we view the block transform components

in the above, the rate-distortion functions of signals wit a ) L ) :
memory can be derived by decomposing these signals i the discrete approximation of the ideal continuous power

independent components with known rate-distortion functiondP€Ctrum. Assuming a uniform sampling grid in the frequency

An example is the stationary Gaussian process. We can appmain: (1) and (2) can thus be approximated by the following

Fourier transform to it and transformed frequency componerti$crete versions:

are i.i.d. Gaussian sequences. This procedure also suggests

a way for compression. That is, awptimal procedure for R :i Z log Q(wi) 3)
compressing stationary random processes is to transform a 7oL 82 7y

composite signal into independent components and then apg.%

A. Stationary Gaussian Process

w; €A

the ordinary data compression techniques to each component 1 1
separately [10]. A pictorial illustration of this concept is shown D(Re) = i3 Z 0+ i3 Z P (ws) (4)
in Fig. 1. wi EAL wi €81

The well-known rate distortion function of a discrete station-
ary Gaussian procegs:(n)} under the mean square distortiorwhere L is the number of samples in a data block, and

criterion is given as [6], [10] wi=1-2r/L,i=0,1,-.., L—1. This is exactly the system
represented by Fig. 1 witlh components.
o One may note that (3) can be rewritten as
Ro=L [ log, T g @) Y ®)
471' A 9
and . D(w;
D(R 1 6d 1 ®(w)d 2 “ RQZH & ©
( 9) = % /Al w + % B (CU) W ( ) w; €AY

_ ) . wherea = 1.386. An interesting property of the above equa-
whered > 0 and®(w) is the power spectrum density function;jo, is that the exponential function of bit rate is proportional to
of {z(n)}, and the product of the variances of the signhal components rather

than the sum of variances.
{RegionA]L : {w € (—m, 7] and ®(w) > 6} A case of interest is that at low distortion whehy =
RegionB; : (—w, 7] — A;. (—m, ] (or By is empty), (4) become® = 6. And thus,
(5) becomes
An interpretation of the above formula is thdt, is the
minimum bit necessary to achieve an average distorfibn LR L-1 O(w;)
by an ideal coder of possibly unbounded complexity and time b B = TT —5=
delay. Similarly,D(R) is the minimum average distortion that =0

(6)
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or Entropy of Uniform Quantizer

D=E. ¢ «RD) (7) el T T S S T
: : : o : Reference:

where

AN ; ; —— \ Unifarm.;. ...

o §oNe

=

w
T

Essentially, we are approximating a joint Gaussian sourc
by multiple ii.d. Gaussian sources. If the approximations | 1 : _
errors can be viewed as white noise, because the power of 3f-i e B Sy
high frequency components is much lower than that of low : : ’ :
frequency components for typical images, the SNR values : : : : :
of high frequency components are smaller. According to (7) - : § : S
and (8), the total distortion is proportional to the product of : : : : S

lrogg'(bns)

4- ,,,,,,, ............. N3 ............. .............

. [¢] SREERLRCERR TR e P e R EET T B =it
component power. Hence, a 50% error in one component ; i i N ; ; ;
would translate to 50% total error. Therefore, we should “ N ,ugjlmp_sil c,'s‘,.gna}_mnd;)rdvdmm}] 2 3

weight the higher frequency components less in the process of _ , _ y
selecting quantization parameters in coding. In addition, tﬁgﬁsi'y fﬁgéi?(fg&;g?gm quantizer for sources of different probability
unequal frequency weighting also matches the uneven human
visual sensitivity.

There are two frequency weighting approaches. One is using ; : : : : _
the uneven frequency-dependent weights in assigning bits to [~ P o oo P
each frequency component in (3). The other is using uneven Mc,cfm : 5 |
weights in computing the total distortion in (4). A special case | @ -~  Unifon
of the former, frequency-weighted bit allocation, is discussed o T Lol
in Section II-C. A study of the latter, the frequency—weighted‘§ : : : : : Bl
distortion case, has been described in [12]. Both approache;s;,o.smi ............. S S R i
in fact, would lead to similar yet not identical results. % 5 5 5 5 5 :

An interesting point of (7) is that the bits and distortion
of a (composite) signal are decided by a single paramBter
which is the product of all the components’ variances. Thusg : _ : : : :
we may callE the entropy varianceof a signal. It represents = ,1 ... : § : SO ..........
the complexityof the signal. The signal entropy is proportional : : ; A :
toIn E. In theory, two signals of the same ordinary variance
require different numbers of bits in coding if theéntropy 0
variancesare significantly different. -4 3 2 0 2 3

Assuming the 2-D signals we are dealing with are separable ot el sirlsignl sundard deviudon]
in the horizontal and the vertical directions, then all thBig. 3. Mean square error of uniform quantizer for sources of different
above properties can readily be extended to the 2-D sign&R¥
without significant modifications. The Karhunen-eve (K—L)
transform is recognized as the optimal transform for decor-A uniform midtread quantizer (in which zero is a recon-
relating signals and packing the signal energy to the fewestuction level) is often used in a practical coding system.
number of transform coefficients. However, K-L transform i$ypica||y, the reconstruction levels are the centers of the
data dependent and is computationally intensive because itiégision regions, i.ef{kA;k = ..., =1,0,1, -}, where
derived from the signal autocovariance function. In practical is the quantization step size. The behavior of such a
applications, the separable discrete cosine transform (DCT)jigantizer has been analyzed for inputs with known probability
often adequate for most of the natural pictures and thusditributions. Except for the uniform distribution, closed-

Mcan Square Error of Uniform Quantizer
T T

....... : Gaussign

error/s:

04k . ,,,,,,,,,, (RSSO J

n_sguare

m

widely used [12]. form formulas of entropyHq(-), and distortion,dg(-), for
L arbitrary probability distributions are generally unavailable.
B. Quantization The formulation of Ho(-) andig(:) for uniform, Gaussian,

The lossy compression element in Fig. 1 is often, in practicand Laplacian distributions are described in the Appendix. The
implemented by a quantizer and an entropy coder such ragnerical values of these functions are plotted in Figs. 2 and
in JPEG and MPEG. Although the vector quantizer offer3. The “Reference” curves in Figs. 2 and 3 are computed using
potentially better compression efficiency, the scalar quantiz®) and (10) withe? = 1 (see below).
is often used in real systems not only due to its simplicity but It is known that, at high bit rates (small distortion), the
also due to its adaptability to the local pictorial data as wibits (b)) versus distortion Ip) relation of an entropy-coded
be discussed in Section IV. uniform quantizer for a zero-mean i.i.d. sour&d-) can be
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Scalar
Quantizer]
) - L] Compressed
S
Signal Transform |2 Qizlﬁtrizer Data | | Entropy |Bit Stream
i = Model Coder
Scalar
Quantizer
Fig. 4. Practical image transform coder.
approximated by the following formulas [4], [12]: principles, namely, a transform (DCT) used to decompose
1 52 1 52 the original pictures into nearly independent components, a
b(D) = — log, <62 . —X> = oo log, <62 . —X> uniform scalar quantizer used to reduce the output levels, and
@ D @108y © D © 2 VLC used to further compress the output bit stream. As
compared to that described in Sections II-A and 1I-B, the in-
and o
) dividual entropy coders are replaced by a data model followed
D(b) = A_ ) (10) by an entropy coder. The objective of transformation and data
B model together is to produce (nearly) statistically independent
Thus dafta. sequences so that they can be coded separately with high
A2 efficiency.
= =52 (11) The data model used in [1]-[3] simply rearranges the
B transform coefficients in a zigzag scan order. That is, the

where 3 is 12 and« is 1.386 & 2/log,e¢) for uniform, 2-D array of a block of DCT coefficients are assembled

Gaussian, and Laplacian distribution3,is source dependentto form a zigzag scanned 1-D linear array or vecior=

and is about one for uniform distribution, 1.4 for GaussiafXo - Xz-1], in which the lower frequency’s DCT co-
and 1.2 for Laplacian, ang2 is the signal variance. As efficients are usually associated with smaller indices. When
shown by Figs. 2 and 3, the above approximations are fai,t@,e coefficients are ordered in this fashion, the variances of
accurate when the quantization step size is smaller than figefficients are approximately monotonically decreasing [2].

signal standard deviation. Combining (9) and (10) we obtailf the transformed source vectoX’ = [Xo --- Xp_4]is
) stationary and every frequency component is independent, then
b(A) = 1 log, <62 B 0’_);) (12) the average entropy per blocK,( Xy, ---, Xr—1), equals the
« A sum of the entropies of all the components.

This gives us a more direct relation betwdeand A. According to [12] and [14], the conditions discussed in

In image coding, bits are typically spent on a small percerfl€ @bove, to a great extent, satisfied; that is, the frequency
age of dominant transform coefficients of which the allocatégPMmPonents (transform coefficients) are nearly i.i.d. sources,
bit rates are often higher than a couple of bits per coefficiefff€ distortion of quantized coefficients are relatively small,
Although there is no simple and accurate formula for the lo@d the VLC performance is close to that of the ideal entropy
variance coefficients, these coefficients do not affect the overdider- Then, the behavior of such a transform coder can be
model very much since their contribution in bits is relativelfcee”veOI from (9) or (11) by combining all the components

small. Therefore, the above formulas, although are accurit@€ther. Assuming the probability distribution of tiefre-
for medium to high bit rates, they are still practically useffU€ncy components is either uniform, Gaussian, or Laplacian,
for all the bit rates of interest. and b; is the average bits of thgh entropy-coded, quantized

In a real system, the ideal entropy coder is typically replac&@€fficient, the total average bits of such a source is

by a variable-length coder (VLC), a simplified version of L—1

Huffman code [13]. Assuming this VLC is nearly as efficient b(D) = 1 Z bi(D;) (13)
as the ideal entropy coder, the bits produced by this V&,C, L o

may be approximated by, 1 -b, whereb is the ideal entropy 1 L—1 9

bits of the quantizer outputs, asg ;. is a scaling factor (for =— log, [H <63 . ‘L)] (14)
adjustment) greater than one. Under this assumption, (12) may La i=0 D;

still be used for a practical scalar quantizer with a modified
value of o (to be discussed in Section V). where D;, o;, and ¢Z are the distortion, the variance, and
the ¢ parameter associated with thth component. Since

Ill. PRACTICAL TRANSFORM CODER D; = A}/p; (10)

h
L
h
L

S

A practical image transform coder, such as the DCT coders o
used in [1]-[3], can be represented by the general block D=
diagram in Fig. 4. It follows roughly the aforementioned

I AN

(15)

1
<
I
o
<
I
o
=B
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where A; is the quantization step size of tlith component, L., is the size of setd,, and
and j; is the 8 parameter associated with that component.

. e 1/L

Due to the frequency-dependent visual sensitivity of human Bi- 2. o2

perception [12], bits assigned to a frequency component should F= H <T)] :
be adjusted according to their perceptual threshold. Thus, €Az !
the quantization step size of each transform coefficient,
(t=0,---, L —1) can be different in JPEG [2] and MPEG
[3]. In addition, the quantization step sizes in MPEG are ma
of two componentsy,, a quantization scaling factor for the
entire picture block, andW;, i =0, ---, L —1}, a weighting
matrix whose elements are used as multiplicative factors to IV. THRESHOLD TRANSFORM CODER
produce the true step sizes in quantization. In other words,n digital image coding, theory and practice do not agree
A; = gs - W;. On the other hand, the H.261 specificatiogompletely due to several nonideal factors. First, the assump-
assumes that all the step sizes in a block are identical [1], tfighs undertaken by theory (in the previous sections) such as
is, W; = 1 for all i. The frequency-dependent step size desigtgodicity and stationary of image sources do not hold exactly
implies a frequency-weighted bit allocation scheme discussgf real data. Second and more importantly, the human visual
in Section II-A in the sense that some frequency componerfgstem is highly nonlinear and cannot be approximated by
get assigned fewer bits because their actual step sizes useg Kimple distortion measure such as the mean square error

Using optimization techniques, Netravali and Haskell derived
imilar but not identical results under the frequency-weighted
tortion criterion [12].

quantization are larger; that is [from (12)] (MSE). For example, a very small percentage of a coded
1 B2 o? picture bearing visible artifacts does not affect the overall MSE
bi(gs) = -, loge <+W21> (16)  very much; however, a human viewer can easily pick up the
LME distorted areas, and thus the entire picture quality is rated low.
Therefore, (14) and (15) become Therefore, in image coding we have to deal with not only the
L 1 = B 2. o2 statistical behavior of the entire picture (objective criterion)
b(D) =— log, [(—2> . H <Z+21>] but also the fidelity of individual samples embedded in their
La e =0 Wi texture neighborhood (subjective criterion).
1 {_ F} (17) Several intuitive schemes have been proposed to solve
o OBe q? the above problem. Instead of selecting a fixed number of
with transform coefficients according to their average variances
as suggested by the theory, we select the coded coefficients
L-1 Bi- 2. o2 L by their magnitudes, the so-calledreshold transform cod-
F= H <#)] ing. The direct implementation of threshold coding requires
=0 ¢ transmitting thethreshold mask-locations of the chosen co-
and efficients—which often needs a significant number of bits. A
9 L—1 11,9 popular approach is rearranging the transform coefficients in
=% Wi . (18) a fixed scanning order, transmitting them sequentially until
L i=0 Bi the last above-threshold coefficient is hit, and then appending

They completely describe the bits and distortion behavior of AR end_-of-block code to cgn(;lude this data block. The exact
MPEG or JPEG transform coder under the ergodic Gauss%l'ﬁalys's of S,UCh a coder IS involved and may not be worth
signal assumption. A special case thiat= 3 and WW; = 1 for the effqrts since the real image data do npt rr}atch'exgctly
all i has been reported in [7]. our stationary model assumption. The following simplification

In reality, a frequency component may have effective seems to be_ sufﬁment_for. 'mage coding purpose. .
variance (= ¢ - o2) less than the weighted distortiof? - Our focus is on the bit-distortion model, i.e., the average bits

¢2/f;. Also, as the theory predicts, the value f is close ant_:i distortion associated with gty_pic_al block. Assuming that
to 12 wheno; is much higher thanV; - ¢,, but its value may T; |s_the thresho[d valu‘e used in _plck|.ng up thie transform
be different ifo; is close to or smaller thab; - ¢,. We then coefﬂqgnt;l that is, thath poefﬂment is set to zero before
need to go back to (3) and (4), and modify (17) and (18) ganUzmg if !ts magnitude is Iess_ thdn. Apopullalr varlar_1t of
the following: this scheme is thdegd zone}uantlzer—the decision region of_
B the zero reconstruction level is larger than the decision region
qf(L“‘z/L)] =F.c? (19) used for the other reconstruction levels. In both cases and the
2 w2 1 combined situation, the analysis of such quantizers is similar
D= qfs Z Bi + L Z o} (20) 1o that of a simple uniform quantizer; however, the decision
icdz €82 levels and the reconstruction levels have to be modified in
where regions of4, and B, are the analysis equations. Details of the above modifications are
W2 . o2 described in the Appendix.
As: {L €{0,1,---, L—1}and(¢? - 0?) > 14(15} For variousthreshold (T") values, the entropy versus dis-
pi tortion curves of a uniform quantizer with a dead zone set
By: {0,1,--+, L—1}— 4, ton-A,n = 1,2, 3, are plotted in Figs.5 and 6. The
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Referencecurves shown on those plots are the asymptotibese curves and have about the same value for all the three

formulas described by (9) and (10). distributions. Therefore, replacing;(-) in (23) by «(:), we
In image coding, the quantization step sizes of significaobtain
frequency components are usually smaller than the signal Bi(qs) -
standard deviation; therefore, (10) and (12) are reasonably b(gs) = Z log, { SW Z}
good approximations if;, 3, ande? are adjusted appropriately. (_Zs) i€As g
The values of these parameters, in general, depend{izom 1 Z o bEOB
a/A. However, for a fixed and a certain range of step sizes, ( = Be s L
they can be approximated by constants. When the step size 1 1
gets larger, (10) and (12) become less accurate. But in these = - log, ¢+ ——
cases the bits produced by those coefficients are very small and c(gs) o(qs)
thus do not change very much the total bits. Extensions and { 1 ) |:/3i((Js) e 03}
e . . R Z log, | — 55—
modifications of these parameters are described in the next L W
section. e
Assuming that the bits on the average needed to encode talgs) - bros }
an above-threshold transform coefficient are represented by L
[from (12)]
— ooy, 24 G2 (25)
ST (AL T) Be A? where

() :% Z log [M} Falg,)- bEOB . (26)

wherei € A,, T; is the threshold value used in picking up )

the ith transform coefficient, ang;(-) and ¢ are source-
dependent parameters. The average bits number of a pik&l
becomes

@ = Fg.) e ()? (27)
— Z bi(A:) + bros (22) With F'(g;) = exp{G(gs)}. Note that we denotg(s;, ¢;) by
i, B3:(gs) in the above equations for simplicity.

The direct use of (25) seems to be fairly complicated—it
wherebgop are the bits for the end-of-block signal. needs to estimate a number of parametess;)’'s, 5 (-)’'s
If the weighting matrix in (17) is adopted, the average bitand ¢2, computed from image data. If, however, we could
and the average distortion can be made more explicit assume that the picture to be coded is not much different from
the picture that has already been coded in the sense that the

B 1 1 a;, (3, ande? remain about the same in the neighborhood of
b(gs) =— Z ————log, gs that we are dealing with, then thé parameter in (27) can
L | & oiles,To) be estimated from thiandg, of the coded pictures. Typically,
Bilgs, T3) - €2 - 0 the « value is less picture-dependent, only thesalue has to
< W2 g2 : ) + beos (23) Dbe estimated from image data. Consequently, the entire model
i 05 identification procedure can be relatively simple.
and
Z {/3 v } +> > 0l (29 V. MODEL PARAMETERS
€4z 1) ZEBz For a practical application, the parameters of the above

model have to be adjusted to cope with the specific video coder

Since the threshold transform coding with weighting matrixsed and the real picture characteristics. The meaning of the
is invented to match the subjective distortion criterion, thgarameters in our model (23) and (24) suggests the following
mean square error distortion calculation, (24), is not as usefabdifications. First, since? is a factor mainly determined
as the bits calculation, (23), which can be used to adjust thg probability distribution, we assumé is a constant£1.2
guantization step for regulating encoder buffer and controllirfgr Laplacian source, say) for the rest of analysis. Second,
picture quality. the value of3(c/A, T') is no longer constant for smadl/A;

If T; is chosen to bfconstant - W; - g;] with roughly however, those values can be precalculated and stored in a
the sameconstantvalue for all the coefficients, then, /3, table for real-time applications. Third, the constafit-1.386)
and €2 can be expressed as functions @f and W; only. is replaced by a parametric functiar(q;) = 1.386 - as(gs)
Also, in most image coding cases, the ac components hdasecompensate for the mismatch between the ideal model and
approximately Laplacian distribution and the dc componerd,practical video coder. Although these parametets:( and
uniform or Gaussian distribution [12]. Hence, theg-) values /) may be somewhat related, for simplicity we study them
are similar for all the frequency components as indicatexparately. We will elaborate on the second and the third items
by Fig. 5, in whiche,(-)'s are proportional to the slopes ofbelow.
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A. Model Parameteps

We wish to find the model parametgrfor different’7” and
(¢/A) under the assumption that is a constant=£1.2). If
the quantization error is i.i.d. and is uniformly distributed, o5
the theoretical value ofi is 12. This is approximately true
when the quantization step is much smaller than the signal
variance (the left portion of Fig. 7). However, the above
assumption is not valid for large quantization step sizes.
Since the high frequency transform coefficients are roughl§1s
Laplacian distributed, we are interested in the Laplacian cases.
Combining (21) and (A9) in the Appendix, we obtain the
B(A /o, T) value for theLaplacian probability distribution

Practical Model Parameter-- Beta

30

201

/3 <§7 T) — 10 . ea~HQ~[A/cr,T+A/2}' (28) 5
2, (2
‘ (A)
0 -3 -2 -1 0 1 2

The 3 values calculated based on this formula are plotted in “ log_e(step_size/signal_standard_deviation)

Fig. 7. From Fig. 7, we find thaB increases abruptly after

log, (A/o) exceeds a threshold valuer1.3). This is because Fig. 7. Model parametes for various dead-zone valuegY and quantiza-
when the quantization step size is very large (comparing g step sizes (delta).
the signal variance), quantization errors can no longer be o

treated as uniformly distributed. Therefore, the distortion go8&€ Somewhat correlated; hence, another multiplicative factor,
up at a slower pace than the asymptotic formula predict%.i(Zl)v is introduced to correct the original i.i.d. assumption.
Eventually, the distortion saturates when it approaches theird, the VLC table in image coding standards is built based
signal variance (Fig. 6). However, in order to use the sarf® the probability of zero coefficient runs and coefficient
distortion function, (10), for the cases that their distortion i§Vels,p (run, leve), rather than orp(Xo, Xy, ---, Xz_1).
approaching signal variance, the correspondingalues are Therefore, the average encoded bits per block are higher than
made growing exponentially (Fig. 7). In real-time appncaﬂonghe theoretical block_ entropy. We_denote this inefficiency of
it is not likely to compute(A/o, T) directly based upon VLC table by the third multiplicative parametef,;.(< 1).

the above equations. For a specific system, MPEG say, (yambining these factors together as a whole, we obtain

choose a fixed” (I' = 1 - A in this instance) and build L-1 L-1

a look-up table for real-time use. We did the same thing in Z Higeat(Xi) =55 Z Hpractical(X)

the following simulations. One may note from Fig. 5(c) that =0 1=0

entropy~0 whenlog, (A/o) > 1.5. Hence the look-up table =5y Sq + Hpractical(Xo, -+, Xp—1)
needs only to store thg values forlog, (A/o) smaller than =S, S Sute - bitsye

1.5. Forlog, (A/o) >1.5, the corresponding distortion value 1

is o2, and in this case, based on the original definitiorgof =g+ Ditsue (29)

(10), 8 becomegg? - W?)/(e% - 02). On the other extreme for

log, (A/o) < —4, a constant of 12 is assigned fio where bitg,;. represents the real coded bits. All the above

multiplicative scaling factors are functions of quantization
scale §,). Hence, the overall facta# is, in general, a function
of ¢,. Practically, we only need to estimate the overall factor
Mismatches between the theoretical entropy model and thg;,) from the real data. Therefore, (27) is still valid when
real VLC coded bits are discussed in this section. Several sdals replaced by bitg./L, as long as the new(q,) includes
ing factors are observed and estimated from experimental dta nonideal factorsS.
to compensate for the mismatches. In Sectionlls initially In summary, the originad [a(gs) in (25) and (27)] is now
treated as constant(.386), but later analysis suggests thaeplaced byl.386 - «s(gs), Wherea,(g;) is a function ofgs,
« varies depending upon the value of quantization step sizand it includes the nonideal factors in entropy coding. Once we
First, the probability density functions (PDF’s) of the adecide the3 value (Section V-A), (27) can be used to compute
coefficients are not ideal Laplacian distribution of equal varixs(gs) from data. An H.261-type coding structure is used as
ance. This PDF mismatch, shown in Fig. 8, results in a smalkn example. Since the dc coefficients are coded with fixed
entropy for real transform coefficients than the predicted vallength codewords and their coding is independent of the ac
based on Laplacian assumption. As the quantization stepefficients coding, we concentrated on the statistical analysis
increases, the probability of the quantized values around zefdhe ac coefficients. Fig. 9 shows the(g ) values computed
grows much larger than that of the other intervals, and tfi@m the intracoded frames of several video sequences at
PDF mismatch problem becomes even more serious. We thilifferent ¢, values. In this experiment, the values are taken
introduce a multiplicative facta$,(>1) to compensate for the from Fig. 7,W; is set to “1” for all the frequency components,
difference. Second, the transform coefficients within a blo@dnd bgog is neglected.

B. Nonideal Factors in a Practical Coder and Parameter
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Fig. 9. Model parametetv;(g¢;) for various pictures.

| Tave/20]-0.0096—0.02 andb,, = |Gave/10]-0.3— [ Tave/20]-
0.37 + 0.80.

Thus far, we have obtained the parametric formulas(af )
[=1.386 - vs(¢s)] and 3(c/A). These expressions can be used
to estimate the bits needed to encode a picture with a prechosen
guantization scale.

C. Bits Prediction

If the coded bits can be predicted prior to the quantization
and VLC operations, then the coding process can be well
controlled. Based on (25), (27), and the parametér$ and
3(-) described in the preceding subsection, bits needed to
encode a picture for a given distortion (quantization step)
can be estimated if the variances of transform coefficients
are available. The picture characteristics from coding point of
view are completely specified by the functidf(q,) in (27).

r,j;gis function, F'(¢;), can thus be considered as the measure

Laplacian density functions of the same variance, and the dotted lines @kpicture coding complexity and therefore is namedding

Gaussian density functions of the same variance.

complexity functiori If we keep «(gs) in (27) as a constant
and allow F(q,) to vary to accommodate for the varying

It can be seen that the,(q,) values are getting larger &(¢s), the computation in quantizer control procedure can
and approaching one when the quantization scales are getfiign be simplified somewhat. In this case, the resuligat )
small. This is because the quantized coefficients are Id§scalled ‘modified /'(¢;)” and is denoted byF™(g;). For
correlated at small quantization scales. Hence, the encod&sy distinction, we call’(q,) the “original F'(g;)" denoted
bits are well estimated by our original entropy model. FAY £°(gs) if it is computed using (27) directly based on
larger quantization step sizes, the original model predicts fewie variances of block transform coefficients. Some examples

bits than the true bits. To compensate for this fact,g,) is

significantly smaller than one for largg.

of F™(.) and F°(-) are shown in Fig. 10. An interesting
observation is that both™(-) and £*(-) can be approximated

In order to use our model in predicting coded bits, we lookather well by a linear equation (for each picture separately)
for a simple arithmetic expression afg, ). A first-order linear Wheng,'s are relatively small (between 10 and 30), which are
curve fitting is obtained from experimental data as follows: the most frequently used values in practice. In other words

as((ls) =0Qa Qs+ ba

(30)

F(gs) = ar - qs +br (31

wherea, andb, are two picture dependent constants. Sinaghere ar and by are two picture-dependent constants. We
Tave = Zf‘:Q o;/(N—1) is an indication of image complexity, can see from Fig. 10(a) and (b) that the coded bits of different
we derive the following empirical formulas for typical valuegictures are reflected on their corresponding coding complexity

of g aNdby : Go = Gaye - 7 X 1074 + | Gave/10] - 0.0018 —

functions. If the picture contents do not change significantly
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Encoded bits for different quant. step. 1st “um step sizes for block-transform coders. This source model is
sh ' ; . initially derived based on rate-distortion theory. The realistic
\ constraints such as quantizer dead-zone and threshold coeffi-
A ] cient selection are included in our formulation. The picture
4 sales e , ] complexity from a coding point of view can be measured
3‘5_;_‘.\ issa | and computed from the entropy variance which is the product
: of all the component’'s variances of image signals. When the
. model is used in real video coding, image characteristics and
25 .z\‘\ swing - ——-—- _ nonideal factors of a practical video coder are accommodated
Al B by parameterizing the model constants. If the parameter values
AN are properly chosen, the coding behavior can be well estimated
RN 1 by the proposed model. In brief, there are two aspects of
Wb RN | our contribution. One, we extend the existing results of rate-
~\_. T distortion theory to the practical video coders, and two, the
o5 S _ T e L] nonideal factors in real signals and systems are identified and
~ T S s 50 -'”'-‘”-'-610'-' their mathematical expressions are derived from experimental
Quantization Step data. One application of this source model, as shown in the
(a) second part of this paper, is the buffer/quantizer control in
video coders with the advantage that the picture quality is
kept nearly constant over the entire picture sequence.

Values of F(gs) for different pictures, 1st *.lum

8000— T

T
modified original

7000 sales o o}

i APPENDIX
. ENTROPY AND DISTORTION OF UNIFORMLY
RO QUANTIZED UNIFORM AND LAPLACIAN SOURCES
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The behavior of a uniform quantizer can be analyzed by
the following equations for inputs with known probability
distributions. Assuming that the probability density function of
Rt a zero-mean i.i.d. sourck is px (x), the entropy bits produced
g RN i by this uniform quantizer can be calculated by

3000}
2000}
x . . , ' , Ho(A)= Y Px[k]-log Pxlk] (A1)

= N
Quantization Step h=—N

®) where
Fig. 10. The coding complexity function for various pictures (the first (h+1/2)A
frame in those picture sequences). (a) Coded bits per pixel for various Pulk _/
k] =
(

Q
|

X

*o
% C
*
*

quantization step sizes and (b) the modiffétl, ) (F™ (¢, )) and the original

px(z)dx (A2)
F(gs)(F°(gs)) values.

k—1/2)A
and the mean square quantization error is
between two nearby frames, th€(q,) computed from the
previous frame can still be used to estimate the bits of the N (h+1/2)A
current frame at 5|_m|Ia_r step sizes. _ _ _ do(A) = / (z — kA)QpX(a:) de (A3)
We should keep in mind that the above bits model is derived e N Y (k=1/2)A
based on several assumptions of the statistical behavior of

data. For real pictures and picture sequences, the stationafjidere N decides the total number of quantization levels
and ergodicity assumptions are not completely satisfied. ¢#v 4+ 1), chosen sufficiently large to eliminate almost all the
addition, this simple model uses essentially odfyg;) to overloaded guantization errors.

estimate the bits needed to encode an entire picture. Although

a(g,) is made a function of;, it is not possible to cover all g yniform Distribution

the nonstationarity and data-dependency fully by only a couple . . L

of parameters. Therefore, a small amount of estimation errord\SSUMINg th2a'F a zero-mean uniform distribution i.i.d. source
cannot be avoided. with variances; is quantized by a uniform quantizer described

above. Then, the entropy of the outputs is [5]
VI. CONCLUSIONS

2
In this paper, we derive a source model that describes Ho(A) 1 - <12L>

(A4)
the relationship between bits, distortion, and quantization A?
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and the mean square quantization error is For Laplacian distribution let A = \/i/aL p=c 2 and
p1 = e Moo—a/2),
A? The entropy (in bits) and distortion can be derived
do(A) = — - (A5)
12
A p—— -
C. Gaussian Distribution Hq oL go|=—(1—p1)log, (1 —p1)
The probability density function of a zero-mean Gaussian ) p )
source with variance?, is = /1 (logy pr- (1= p) + 1—p logy p—1
@ 1 { 22 } (A9)
Tr) = €exX — 5 (-
pPa /—27r p 20’%

and
Unfortunately, there are no closed form formulas of (Al) and

(A3) for Gaussian distribution. However, in this case, it is not 2
difficult to compute their numerical values using (A1) and dolor, A, go] = gop <A DY _90)
(A3). The results are shown in Figs. 5(b) and 6(b). When 9 2. A
A/o is reasonably small, the PDpx(x) is approximately + v <T> <
constant in a\-width interval. We then obtain the asymptotical

behavior of such a quantizer at high bit rates as indicated py . - .
(9) and (10). H we take the centroid of the decision regidifk], h[k]] as

the reconstruction level, we obtain

p'p1>. (A10)
1-p

D. Laplacian Distribution

A1V
The probability density function of a zero-mean Laplacian dQ(min)[oLs A, go] = — p1 - <go -5+ X)
source with variances? is

2 A’pep
pi(a) = —m ~VEal/on), Ao AW
AV 20’L
Thus A uniform quantizer without dead zone may be considered
(k+1/2)A as a special case of the above with= A. In this case, the
Prlk] = / o1 o—V2(zl/o1) g corresponding entropy and distortion are
(k—-1/2)A V20L
= Ll 8/ V301 _ o~ (VEA o0 () Ho [%} — Hy(JB) + /p [1 N 1;12(% (A12)

The general formulas of entropy and distortion of uniformly-
guantized Laplacian source with dead-zone are given belowand

E. Dead Zone
Assume that the first reconstruction level of a quantizer with

A 1IN 2 ANopep
2 A X271 = p)2

dQ(min)[O—Lv A] = —p1 <_ +

dead-zone igj, then the2 N + 1 reconstruction levels are (AL3)
where
0, k=0
ylFl=q 9o+ (k=14a, k>0 Hap) = plogy - +(1—p) logy ——. Al4
ot (k+ DA, k<0, 2(p) = p & (1-p) g7, (A14)
If the corresponding input decision regions are selected asg. Threshold
o+ A A =0 If a dead-zone quantizer also has a threshbldnd T’ >
B ot o= ) FT (g0 — A/2), then (A7) and (A8) are modified to
(1K), hlK]) = A £
(s - 3w+ 5 ) k0 -
then (A2) and (A3) are modified to -T
-7
h[k] d E=—Fk
PX[k] :/ pX(-T) dx (A7) /I[M pX(-I) X, T
U[k] Px[k] = hiK] (A15)
and / px(z)dz, k=kp
T
N hk] ) h[k]
do(a) = 3 /l[ G @ 69 [ pxtwyn, otverise
k=—N Vi \ ik
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and [9] W.-Y. Sun, H.-M. Hang, and C. B. Fong, “Scene adaptive parameters
selection for MPEG syntax based HDTV coding,”$ignal Processing
T of HDTV, L. Stengeret al, Eds. Elsevier Science, 1994, vol. V.
_ 2 [10] A. J. Viterbi and J. K. OmuraPrinciples of Digital Communications
dQ(A) - /_T . pX(x) dx and Coding. New York, NY: McGraw-Hill, 1979.
7 [11] A. V. Oppenheim and R. W. Schafdbjscrete-Time Signal Processing.
2 Englewood Cliffs, NJ: Prentice Hall, 1989.
+ / (37 - y[—kT]) Px (37) dx [12] A. N. Netravali and B. G. HaskelDigital Pictures: Representation and
{[—kT] Compression. New York, NY: Plenum, 1988.
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— 2 MA: Addison-Wesley, 1991.
+/T (a: y[kT]) px (a:) du [14] K. R. Rao and P. YipDiscrete Cosine Transform: Algorithms, Advan-
—kr=1 R[] tages, Applications. San Diego, CA: Academic, 1990.
+ Y (@ = ylk])?*px (z) du
ke_n VK]
N hIk] Hsueh-Ming Hang (S'79-M'84—-SM'91) received
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