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BIC-Based Speaker Segmentation Using
Divide-and-Conquer Strategies With
Application to Speaker Diarization
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Abstract—In this paper, we propose three divide-and-con-
quer approaches for Bayesian information criterion (BIC)-based
speaker segmentation. The approaches detect speaker changes by
recursively partitioning a large analysis window into two sub-win-
dows and recursively verifying the merging of two adjacent audio
segments using � , a widely-adopted distance measure of
two audio segments. We compare our approaches to three popular
distance-based approaches, namely, Chen and Gopalakrishnan’s
window-growing-based approach, Siegler et al.’s fixed-size sliding
window approach, and Delacourt and Wellekens’s DISTBIC
approach, by performing computational cost analysis and con-
ducting speaker change detection experiments on two broadcast
news data sets. The results show that the proposed approaches are
more efficient and achieve higher segmentation accuracy than the
compared distance-based approaches. In addition, we apply the
segmentation approaches discussed in this paper to the speaker
diarization task. The experiment results show that a more effective
segmentation approach leads to better diarization accuracy.

Index Terms—Bayesian information criterion (BIC), divide-and-
conquer, speaker change detection, speaker diarization, speaker
segmentation.

I. INTRODUCTION

T HE goal of speaker (audio) segmentation is to detect
speaker (acoustic) change boundaries in an audio stream.

In the last decade, researchers in the speech processing com-
munity have expended a great deal of effort on this problem
because of its application to many speech and audio processing
tasks, such as audio classification [1], [2], automatic transcrip-
tion of audio recordings [3], [4], speaker tracking [5], [6], and
speaker diarization [7], [8].

Existing audio segmentation approaches generally fall into
two categories, namely, distance-based segmentation [9]–[13]
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and model-decoding-based segmentation [4], [11]. In distance-
based segmentation, a distance measure of two audio segments
is defined first, and then an acoustic change detection strategy is
designed based on the distance measure. In contrast to model-
decoding-based segmentation, which detects acoustic changes
in a supervised manner, distance-based segmentation has the
advantage that acoustic changes can be detected in an unsuper-
vised manner, i.e., a priori knowledge about the content of the
input audio stream is unnecessary. In this paper, we focus on
distance-based segmentation.

When low-level acoustic features like mel-scale frequency
cepstral coefficients (MFCCs) are used in distance-based seg-
mentation, the distance measure is usually derived from a sta-
tistical modeling framework. More precisely, it is assumed that
the feature vectors in each of the two audio segments arise from
some probability distribution (e.g., the multivariate Gaussian
distribution); then, the distance between the two segments is
represented by the dissimilarity between the two distributions.
Several distance measures have been proposed, e.g., the Kull-
back–Leibler distance (KL or KL2) [10], the Generalized Like-
lihood Ratio (GLR) [9], [14], [11], [13], [15]–[18], the
Bhattacharyya distance [12], and the XBIC [19]. In addition,
some high-level features have been used for audio segmenta-
tion; e.g., the spectrum flux and zero-crossing rate (ZCR) [20],
[21], and the smoothed zero-crossing rate (SZCR) [22].

Window-growing-based segmentation (WinGrow) [11], [15],
[17], [23], fixed-size sliding window segmentation (FixSlid)
[10], [12], [24]–[26], and DISTBIC [9] are three popular
distance-based segmentation approaches.

1) The WinGrow approach was first proposed by Chen
and Gopalakrishnan [11]. For the distance measure of
two audio segments, they used the Bayesian information
criterion (BIC) [27], [28] to evaluate the following two
hypotheses: 1) the union of the feature vectors of the two
segments forms a Gaussian cluster in the feature space,
and 2) the feature vectors of each segment form a distinct
Gaussian cluster. Then, the difference between the two
evaluation scores, , is used as the distance measure.
In the acoustic change detection procedure, a small anal-
ysis window is put at the beginning of the audio stream
initially. If no change point is detected in that analysis
window, the search range is increased. The decent seg-
mentation accuracy of this approach is widely recognized;
however, as the window size grows, it incurs a heavy com-
putational cost due to numerous computations,
especially when the audio stream contains many long
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homogenous segments. To reduce the computational cost,
Tritschler and Gopinath [29] proposed some heuristics
that ignore the distance computations at locations where
acoustic changes are unlikely to occur. Zhou and Hansen
[17] used Hotelling’s -Statistic, which has the advan-
tage of low computational cost, as the distance measure
in the WinGrow detection process, and only used
to verify the acoustic change candidates. In addition, [15]
and [13] proposed more efficient implementations for the

computation that do not affect the segmentation
accuracy.

2) In FixSlid, a certain distance measure is used to evaluate
the dissimilarity between two adjacent windows that slide
along the audio stream to produce a distance curve; then,
some heuristic thresholds are used to judge whether the lo-
cations of peaks are acoustic changes. To detect the change
boundary associated with a short homogeneous segment,
the size of the analysis window is usually set at a small
value (e.g., 2 s). This is a dilemma because a small anal-
ysis window does not contain sufficient feature vectors to
obtain a reliable distance statistic. For this approach, the
KL2, GLR, and derived from the uni-Gaussian
model are popular distance measures because they have
the advantage of low computational cost; however, their
effectiveness may be limited due to the limited general-
ization ability of uni-Gaussian. In [25], the authors pro-
posed a bilateral scoring approach for calculating the dis-
tance between two segments based on adapted Gaussian
mixture models (GMMs). Because of the good generaliza-
tion ability of GMMs, this approach has been shown to be
more effective than WindGrow and XBIC, which are de-
veloped on the basis of the uni-Gaussian model; however,
it suffers from a higher computational cost due to the re-
quirement for the adaptation of GMMs and calculation of
mixture likelihoods in the distance measure.

3) Under the DISTBIC approach, the input audio stream is
first segmented by FixSlid; then, the acoustic change can-
didates are verified sequentially by segment merging using

. In practical use of this approach, FixSlid is usu-
ally applied to over-segment the audio stream to ensure a
low miss detection rate at the cost of a high false alarm
rate; then, the segment merging process is applied to reduce
false alarms while maintaining the low miss detection rate.
This approach is highly efficient. Moreover, it has been re-
ported that this approach achieves decent segmentation ac-
curacy [9]. The sequential segment merging process can
be replaced by the hierarchical agglomerative clustering
(HAC), which has been widely used in many speaker di-
arization systems [7], [8], [30]. However, it is not as effi-
cient as DISTBIC because of the essential computational
cost of HAC.

Although WinGrow is more efficient than the adapted-GMMs
approach while maintaining high segmentation accuracy, the
computational cost is still quite considerable when applying
it to a large-scale task, e.g., the indexing of a database con-
taining thousands of audio recordings. Therefore, more efficient
segmentation approaches are desirable. In this paper, we pro-
pose three divide-and-conquer approaches for distance-based

speaker segmentation. The first approach (DACDec1) detects
speaker changes by recursively partitioning a large analysis
window into two sub-windows at the position with the largest
positive value obtained by Chen’s one-change-point
detection algorithm [11], rather than by applying a size-growing
analysis window. All the divided points are output as change
points. The second approach (DACDec2), which is a variant
of DACDec1, recursively partitions a large analysis window
into two sub-windows at the position with the largest
value, no matter whether it is larger than zero or not. It then
recursively verifies whether the divided points with negative

values calculated in the division stage are speaker
changes based on the new measurements of their left
and right neighbor segments. The third approach (DACDec3)
is a recursive variant of DISTBIC. It recursively partitions
an audio stream at the locations of speaker change candi-
dates obtained by FixSlid, and then recursively verifies those
candidates based on the measurements of their left
and right neighbor segments. To compare the performance
of WinGrow, FixSlid, DISTBIC, the HAC-based approach
and the proposed approaches, we conducted speaker change
detection experiments on two broadcast news data sets, namely
the MATBN corpus [31] and the broadcast news data in the
2003 NIST rich transcription evaluation data (RT03) [32]. For
the efficiency comparison, we analyzed their computational
costs and reported their respective run times in the experiments.
The experiment results show that DACDec1 and DACDec2’s
recursive (top-down) multiple-change-point detection strategies
are more effective and efficient than WinGrow’s bottom-up
multiple-change-point detection strategy. The results also
show that, by providing a more effective and efficient segment
merging process, DACDec3 outperforms DISTBIC and the
HAC-based approach. Moreover, it achieves similar segmen-
tation accuracy as WinGrow at a much lower computational
cost. We applied the segmentation approaches discussed in this
paper to the speaker diarization task, where the segmentation
result is input to a HAC speaker clustering module. The exper-
iment results on RT03 show that a more effective segmentation
approach leads to better diarization accuracy.

The remainder of this paper is organized as follows. To help
explain our proposed approaches, we review the dis-
tance measure and the WinGrow approach in Section II. We
then present the proposed divide-and-conquer approaches for
speaker segmentation in Section III. In Section IV, we ana-
lyze the computational costs of the baseline approaches and
the proposed approaches. Section V details the experiments on
speaker segmentation, Section VI details the application of the
segmentation approaches to the speaker diarization task, and
Section VII contains some concluding remarks.

II. WINDOW-GROWING-BASED SEGMENTATION

We review the distance measure of two audio seg-
ments in Section II-A and window-growing-based segmentation
(WinGrow) in Section II-B.

A. as the Distance Measure of Two Audio Segments

1) Model Selection and BIC: Given a data set
and a set of candidate models
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, the purpose of model selection
is to choose the model that best fits the distribution of from

. When using the Bayesian Information Criterion (BIC) for
model selection, the BIC value of for is

(1)

where , is the maximum-likelihood estimate of the
parameter set of , and is the number of parameters of

. The model with the largest BIC value will be selected.
2) as the Distance Measure: Given two

audio segments represented by feature vectors,
and ,

we evaluate the following two hypotheses [11]

(2)

posits that and are derived from the same multivariate
Gaussian, while posits that they are derived from two distinct
multivariate Gaussians.

Let and . Then, the value
can be computed as the difference between the BIC values of

and as follows:

(3)

where , , and are, respectively, the sample mean vectors
of , , and ; , , and are, respectively, the sample
covariance matrices of , , and ; and is the dimension of
the feature vector [13]. The larger the value of , the less
similar the two segments will be; thus, the larger the distance
between the two segments will be. When , the
distance between two segments is equivalent to the GLR dis-
tance [11], [33].

B. Window-Growing-Based Segmentation

1) One-Change-Point Detection: Let the feature vectors of
the input audio stream be . In Chen and
Gopalakrishnan’s one-change-point detection algorithm [11]
(denoted as OCD-Chen in this paper), it is assumed that there
is at most one change point in . Then, the
value for is computed as

(4)

Fig. 1. Diagram of the multiple-change-point detection in window-growing-
based segmentation (WinGrow). The audio stream contains three segments,
namely Seg1, Seg2, and Seg3; � and � denote the change points.

where , , and are, respec-
tively, the sample covariance matrices of ,

, and . If
, the time index

corresponding to the maximum value is output as the change
point; otherwise, there is no change point in . It is not
necessary to compute the value for time indices within
the ranges 1 to and to because in these
cases the number of samples in or is insufficient to
give a reliable estimate of the parameters. Empirically, it is
appropriate to set at a value within the range 30 to 50 for
practical applications. According to the BIC theory, the penalty
factor in (4) is 1; however, in practical segmentation tasks, it
is usually adjusted to allow a tradeoff between error types.

2) Multiple-Change-Point Detection: OCD-Chen outputs at
most one change point, even though there are multiple change
points in the analysis window. To detect multiple change points
in an audio stream, as shown in Fig. 1, OCD-Chen can be
applied sequentially to a sliding, size-growing analysis window
whose initial size is samples. The window repeatedly
grows by samples until a change point is detected or its
size exceeds a predefined upper bound . Here, the upper
bound ensures the search efficiency [13], [15]. If a change
point is detected during the window growing step, the detection
process restarts at that change point with an analysis window
of samples. When the size of the window grows to ,
it is repeatedly shifted by samples until a change point is
detected or the analysis window reaches the end of the audio
stream. In this way, the change points in the audio stream can
be detected sequentially.

III. DIVIDE-AND-CONQUER-BASED SEGMENTATION

In this section, we present three implementations of the
divide-and-conquer paradigm for detecting multiple change
points in an analysis window. Note that the proposed approaches
are based on the same assumption as that of WinGrow, i.e., the
feature vectors of audio segments from different speakers are
derived from different Gaussian distributions.
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Fig. 2. (a) Audio stream comprised of three speech segments, each derived from a distinct speaker. � and � are the change points. (b) The ���� curve
obtained by applying OCD-Chen to the audio stream in (a).

Fig. 3. Illustration that data samples distribute as three Gaussian clusters. For
this case, generally, two Gaussians �� � fit the distribution of the data better
than one Gaussian �� � if the samples belonging to the same Gaussian cluster
are used together to estimate the parameters.

A. DACDec1 Approach

We use the example in Fig. 2 to explain the concept of divide-
and-conquer-based segmentation. It is assumed that the audio
stream in Fig. 2(a) consists of three homogeneous segments de-
rived from different speakers. Initially, OCD-Chen is applied in
an analysis window that covers the entire audio stream. After
the change point has been detected with the curve
in Fig. 2(b), the audio stream is divided into two analysis win-
dows. Then, OCD-Chen is recursively applied in these two win-
dows to search for the remaining change points so that can
be detected. This approach, called DACDec1, allows us to detect
the change points by a divide-and-conquer (DAC) strategy. As
described in Algorithm 1, DACDec1 terminates (returns) if no
change point is detected by OCD-Chen in the analysis window
or the size of the analysis window is smaller than a predefined
value, denoted as samples. In the Divide stage, the anal-
ysis window is partitioned into two sub-windows at the change
point detected by OCD-Chen. Then, the sub-windows are input
to DACDec1 in the Solve sub-instances stage. Finally, the Com-

bine stage outputs all the change points detected in step 1) and
step 4) (i.e., the Solve sub-instances stage).

Algorithm 1

Require: : the analysis window

Ensure: : the set of change points detected in

Begin

1) detect whether there is a change point in by
OCD-Chen;

2) //Check termination

if (there is no change point in or the size of is
smaller than

; //empty set

goto End; //return

3) //Divide

let be the change point detected in 1);

divide into two sub-windows, and , at ;

4) //Solve sub-instances

;
;

5) //Combine

;

End

1) Discussion: In general, when the data samples are derived
from more than one Gaussian distribution, two Gaussians (the

hypothesis) fit the distribution of the data better than one
Gaussian (the hypothesis) if the samples belonging to the
same Guassian are used together to estimate the parameters. For
example, Fig. 3 schematically illustrates a case where the three
audio segments are derived from three different speakers and
their feature vectors distribute as three Gaussian clusters. This
case explains why the values at and in Fig. 2(b)
are positive. From the above perspective, if the homogeneous
segments in the analysis window of DACDec1 are always de-
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Fig. 4. (a) Audio stream comprised of three speech segments; the first and third segments are derived from the same speaker (Speaker1), while the second is
derived from another speaker (Speaker2). (b) The���� curve obtained by applying OCD-Chen to the audio stream in (a). (c) The diagram of the hypothesis test
at the change point � in (b). (d) The diagram of the hypothesis test at the non-change point � in (b).

rived from different speakers during the recursive process, we
can be confident that, at each change point, the hypothesis
will fit the data better than the hypothesis; thus, the
value will be positive.

However, if two or more segments in the analysis window are
derived from the same speaker, the performance of DACDec1
may decline dramatically. For example, in Fig. 4(a), the first and
third segments are derived from the same speaker (Speaker1),
while the second segment is derived from another speaker
(Speaker2). When applying OCD-Chen to the audio stream in
Fig. 4(a) with the same value of BIC used in the example in
Fig. 2, we obtain the curve in Fig. 4(b). The curve still
has two peaks at the change points and because the
hypothesis models the distribution of the data samples better
at change points than it does at non-change points. We use
Fig. 4(c) and (d) to explain this perspective. Fig. 4(c) diagram-
matically illustrates the two hypotheses at , where all the
data samples of Speaker2 (the circles) are used with those of
Speaker1 (the stars) to estimate one Gaussian in . In contrast,
at the non-change point in Fig. 4(b), as shown in Fig. 4(d),
the data samples of Speaker2 are divided into two parts, each
of which is combined with the data samples of Speaker1 (one
with the stars and the other with the diamonds) to estimate a
distinct Gaussian in . Clearly, the hypothesis in Fig. 4(c)
fits the data better than that in Fig. 4(d).

In this example, we have peaks at and . However, their
values are negative, and no change point will be output

by OCD-Chen because, as illustrated in Fig. 4(c), over-fits
the data samples of Speaker1 and obtains a smaller BIC value
than that of . We may adjust the value of so that, at ,

the value will be positive (i.e., the hypothesis test favors
). However, this may result in false alarms when the recur-

sive process continues to detect change points in a homogeneous
segment. In other words, it is difficult to determine a reliable
value for an audio stream like the example in Fig. 4(a). More-
over, it is infeasible to adjust the value of for each specific
audio stream in practical applications.

B. DACDec2 Approach

To overcome the performance limitation caused by unreliable
measurements of the over-fitting cases in DACDec1, we

developed an alternative implementation of the divide-and-con-
quer paradigm, called DACDec2. In this approach (Algorithm
2), the value is not used to check the termination in the
Check Termination stage because it may be unreliable, as illus-
trated in Figs. 2 and 4. The recursive process terminates (returns)
when the size of the analysis window is smaller than sam-
ples. In the Divide stage, the analysis window is partitioned into
two sub-windows at the time index that has the largest
value located by OCD-Chen. Then, the sub-windows are input
to DACDec2 in the Solve Sub-Instances stage. In the Combine
stage, is labeled as a change point if the value at
calculated in the Divide stage is positive; otherwise, it needs
to be verified using its two neighboring segments and . In
the verification process, is only labeled as a change point if

.

Algorithm 2

Require: : the analysis window
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Ensure: : the set of change points detected in

Begin

1) //Check termination

if (the size of is smaller than )

; //empty set

goto End; //return

2) //Divide

apply OCD-Chen to and let be the time index
with the largest value;

divide into two sub-windows, and , at ;

3) //Solve sub-instances

;
;

4) //Combine

if ( calculated in 2) is positive)

;

else

let be the segment on the left of in and
be the segment on the right of in ;

if is a change point

;

else // is not a change point

merge and ;

End

Fig. 5 illustrates a recursive tree that simulates the recursive
process of DACDec2 on the audio stream in Fig. 4(a). We as-
sume that there are no miss and false alarm errors in the de-
tection process. In the figure, each tree node corresponds to a
divide-point (i.e., ) in the analysis window; the number inside
the node indicates the order of the division, while the number
below the node indicates the order in which the divide-point is
verified in the Combine stage. In Fig. 4(b), Node 1 has a
negative value in the Divide stage; however, it will be
labeled as a change point by the verification process with seg-
ments and in the Combine stage. Node 2

has a positive value in the Divide stage; thus, it is
labeled as a change point and verification is not necessary. Seg-
ments and will be used for verifying Node 3; segments

and will be used for verifying Node 4, and so on.
1) Advantages of DACDec1 and DACDec2: We use Fig. 6

to explain the potential advantages of using DACDec1 and
DACDec2 for speaker change detection. In the figure, there are
two change points, and . For WinGrow, if there is a false
alarm error at near , the detection process restarts at ,
but the false alarm error may lead to miss errors in the sub-
sequent detection process. For example, if the three segments
are derived from different speakers, like the case in Fig. 2(a),
it is very likely that will be detected and will be missed
because the analysis window does not contain sufficient data
from Seg1. On the other hand, if Seg1 and Seg3 are spoken by
the same speaker and Seg2 is from another source, may be
missed for the same reason mentioned above. If is missed,

Fig. 5. Recursive tree that simulates the recursive process of DACDec2 on the
audio stream in Fig. 4(a).

Fig. 6. Example of the WinGrow detection process. The audio stream contains
two change points� and� , and the detection process generates a false alarm
error at � .

we may suffer from the unreliable measurement issue
as the example in Fig. 4 when OCD-Chen continues to detect

; thus, may also be missed.
In DACDec1, the Divide stage partitions the audio stream into

two sub-streams at the point with the largest positive
value. As shown in Fig. 4(c) and (d), change points usually have
larger values than non-change points; thus, false alarm
errors may only occur after the true change points have been
detected, and they will not lead to miss errors in the subsequent
detection process. For example, in Fig. 6, the false alarm errors
in Seg1 only occur after has been detected, and so on.

In DACDec2, false alarm errors may not cause a true change
point with a positive value calculated in the Divide stage
to be missed; however, the false alarm points’ neighboring true
change points with negative values calculated in the Di-
vide stage may be missed. For instance, for the example in Fig. 4,
DACDec2 first divides the audio stream at and generates the
recursive tree shown in Fig. 5. needs to be verified in the
Combine stage because its value calculated in the Di-
vide stage is negative, as shown in Fig. 4(b). However, if there
is a false alarm point near , it may be missed. We explain this
phenomenon as follows. In Fig. 5, the boundary between seg-
ments and (i.e., Node 6) is verified before . If it is
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Fig. 7. Diagram of the detection process of SeqDACDec1 and SeqDACDec2.
If a change point is detected in the fixed-size analysis window by DACDec1 or
DACDec2, the window is moved to the change point with the largest time index.
Otherwise, it is moved forward by �� samples, where � denotes the window
size, and � � �.

detected as a change point, and are used to verify
. However, the number of data samples in segment may

be insufficient to obtain a reliable measurement, thus
may be missed. On the other hand, if DACDec2 first divides the
audio stream at and outputs a false alarm point at near ,
like the case in Fig. 6, may be missed for the same reason.
Even so, missing may not cause DACDec2 to miss be-
cause, in the Divide stage, will be determined whether it is a
change point using complete, pure Seg2 and Seg3; therefore, it
is very likely that the value will be positive. In contrast,
WinGrow may not be able to use complete, pure Seg2 and Seg3
for speaker change detection if is missed.

2) Sequential Segmentation by DACDec1 and DACDec2:
For a long audio stream, such as a one-hour broadcast news
program, the segmentation task becomes computationally
intractable when DACDec1 or DACDec2 are used to detect
change points. Moreover, if the initial analysis window contains
too many segments, it may be difficult for OCD-Chen to find an
appropriate value to obtain robust measurements for
the various hypothesis tests in the recursive process. Therefore,
in practical applications, we apply DACDec1 and DACDec2
in a large analysis window of fixed-size (e.g., 20 seconds) that
moves from the beginning to the end of the audio stream to de-
tect the speaker changes sequentially. The proposed sequential
segmentation algorithms, SeqDACDec1 and SeqDACDec2,
are shown in Fig. 7. In SeqDACDec1 (or SeqDACDec2), if a
change point is detected in the fixed-size analysis window by
DACDec1 (or DACDec2), the window is moved to the change
point with the largest time index. Otherwise, it is moved forward
by samples, where denotes the window size, and .
Note that a small will allow a missed change point to be
checked again by DACDec1 (or DACDec2) in the subsequent
fixed-size analysis window. Like WinGrow, SeqDACDec1 and
SeqDACDec2 are suitable for online applications.

C. DACDec3 Approach

The third implementation (DACDec3) of the divide-and-con-
quer paradigm is detailed in Algorithm 3. In DACDec3, we use
FixSlid instead of OCD-Chen to detect the divide-points of an
input audio stream. As shown in Fig. 8(a), given the distance
curve obtained by FixSlid using the GLR [9] distance measure,
the time index associated with the peak that has the largest
GLR value within the interval is con-
sidered a divide-point. In this example, all the peaks except

Fig. 8. (a) Distance curve obtained by FixSlid using the GLR distance measure,
where the time index � associated with the peak that has the largest GLR value
within the interval �� � ����	
� � � ����	
� is considered a divide-point
in DACDec3. On this curve, all the peaks, except �, are divide-points. (b) The
recursive tree representation of DISTBIC_pR based on the divide-points in (a)
for the audio stream in Fig. 5.

are divide-points. Let be the set of divide-points obtained
by FixSlid. As described in Algorithm 3, DACDec3 returns if a
divide-point is not found in . In the Divide stage, the anal-
ysis window is partitioned at the time index of the divide-point
with the largest GLR value. Then, in the Combine stage, each di-
vide-point is evaluated to determine whether it is a change point
based on the measurement of its two neighboring seg-
ments and .

Algorithm 3

Require: : the analysis window

: the divide-points in
obtained by FixSlid using the GLR distance measure

: denotes the
GLR value at for

Ensure: : the set of change points detected in

Begin

1) //Check termination

if ( is empty)

; //empty set



148 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 1, JANUARY 2010

goto End; //return

2) //Divide

search in and let be the divide-point
whose GLR value is the largest in ;

let be the time index of ; divide into two
sub-windows, and , at ;

divide into two sub-sets,
and

;

divide into two sub-sets,
and
;

3) //Solve sub-instances

;
;

4) //Combine

let be the segment on the left of in and be
the segment on the right of in ;

if // is a change point

;

else // is not a change point

merge and ;

;

End

The major difference between DACDec2 and DACDec3 is
as follows. DACDec2 detects change points by OCD-Chen in
the Divide stage. Then, only the divide-points with negative

values calculated in the Divide stage are verified by seg-
ment merging based on the values of their neighboring
segments in the Combine stage. In contrast, DACDec3 detects
change points by verifying all the input divide-points indicated
by FixSlid using segment merging. For example, if we apply
FixSlid to the audio stream in Fig. 5 and obtain the distance
curve in Fig. 8(a), the recursive tree for DACDec3 will be the
same as that in Fig. 5. In this case, DACDec2 finds the change
point using OCD-Chen in the Divide stage, while DACDec3
finds it in the Combine stage using segment merging; however,
both DACDec2 and DACDec3 find the change point in the
Combine stage.

There is a close link between DISTBIC [9] and DACDec3.
In DISTBIC, a distance curve is first generated by FixSlid, and
then the “significant” local maximums on the distance curve are
evaluated to determine whether they are change points by a se-
quential, left-to-right (in time order) segment merging process.
As shown in Fig. 9, a local maximum is significant if

and , where is

the standard deviation of the distance values on the distance
curve, is a positive real number, and and are, re-

spectively, the locations associated with the right minimum and
left minimum around the local maximum. If DISTBIC takes the
divide-points of DACDec3 as change point candidates to be ver-
ified (we denote this approach as DISTBIC_pR), it is identical to
applying DACDec3 in that the recursive division is performed in
a right-to-left manner, whereas the recursive segment merging
is performed in a left-to-right manner. As shown in Fig. 8(b),

Fig. 9. Significant local maximum on the distance curve.

Node 8 is verified by segments and first, then Node 7
is verified by segments and , and so on.

DACDec3 should be more effective than DISTBIC_pR be-
cause it evaluates the divide-points with smaller GLR values
to determine whether they are change points before those with
larger GLR values. In contrast, in DISTBIC_pR, the divide-
points are simply verified sequentially without considering the
GLR information. The advantage of DACDec3 can be seen by
comparing the recursive tree of DACDec3 in Fig. 5 to that of
DISTBIC_pR in Fig. 8(b). In DACDec3, may be verified
with segments and , which are complete ho-
mogeneous segments of Speaker1 and Speaker2, respectively;
whereas, in DISTBIC_pR, can only be verified with seg-
ments and or segments and , where only a
small portion of Speaker2’s data is used.

In addition to the recursive (sequential) segment merging
process of DACDec3 (DISTBIC_pR), one can use the hierar-
chical agglomerative clustering (HAC) to merge the segments
obtained with DACDec3’s divide-points [7], [8], [30]. We
denote this segmentation approach as FixSlidHAC_pR. Com-
pared to DACDec3 (or DISTBIC_pR), which performs segment
merging locally, FixSlidHAC_pR performs segment clustering
globally. When performing HAC, each segment is considered
as a cluster initially; then, in each merging step, the two clusters
with the smallest distance are merged into a new cluster. The
globality feature of FixSlidHAC_pR is particularly beneficial
to the speaker diarization task because the segment merging
process groups the segments into clusters such that each cluster
contains segments of the same speaker. However, this feature
might not be as beneficial to the speaker segmentation task
because the goal is to merge adjacent segments into longer seg-
ments. For example, in Fig. 5, the goal of the segment merging
process in the speaker segmentation task is to merge segments

and into one larger segment and to merge segments
, and into another larger segment, rather than to

merge these five segments into one cluster. In FixSlidHAC_pR,
if segment is incorrectly merged with a segment of a
different speaker, say , the error will propagate in the
following clustering process. DACDec3 might not suffer the
same fate because its locality constraint enforces that segment

is first checked with its neighboring segment, or .
Therefore, we think DACDec3’s segment merging process
meets the goal of speaker segmentation better than that of
FixSlidHAC_pR. Moreover, it is clear that the computational
cost of FixSlidHAC_pR is much larger than that of DACDec3
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Fig. 10. Audio stream comprised of � � � homogeneous segments, each con-
taining � samples. The stream is divided at the �th change point.

due to the essential computational cost of the HAC-based
global clustering process.

Like DACDec1 and DACDec2, DACDec3 can also be applied
sequentially in a fixed-size analysis window for online applica-
tions.

IV. COMPUTATIONAL COST ANALYSIS

WinGrow, DACDec1, and DACDec2 detect acoustic changes
by applying the OCD-Chen process to the analysis window.
From (4), it is clear that the computational cost of is
mainly from the cost of calculating covariance matrices, which
is proportional to the number of data samples. Let the time cost
of calculating with samples be , where repre-
sents the time unit; then, denotes the time cost of applying
OCD-Chen to an analysis window of samples.1

To simplify the analysis, we assume that each homogeneous
segment in the input audio stream (i.e., the initial analysis
window for DACDec1, DACDec2, and DACDec3) contains
samples. Moreover, we assume the detection process is perfect,
i.e., miss and false alarm errors never occur.

1) For DACDec1: Let denote the time cost of applying
DACDec1 to an audio stream of change points (i.e., ho-
mogeneous segments). When the audio stream is divided at the
th change point, as shown in Fig. 10, we obtain the following

recursive expression of

(5)

where is the time cost of finding the divide-point
by OCD-Chen; and are the time costs of ap-
plying DACDec1 in the left sub-stream and the right sub-stream,
respectively. We have , since it represents the time
cost of applying OCD-Chen to a -sample homogeneous seg-
ment.

We assume that the division occurs at each change point with
equal probability; therefore, the average time cost of DACDec1
is

(6)

After the algebraic manipulation detailed in the Appendix, we
obtain

(7)

1As mentioned in Section II-B1, the ���� value is not computed for sam-
ples at the beginning and the end of the analysis window. However, to simplify
the analysis, we assume that the ���� value is computed for each sample of
the window.

2) For DACDec2: Compared to DACDec1, DACDec2 incurs
an additional time cost in the Combine stage as it has to deter-
mine whether the divide-point with a negative value cal-
culated in the Divide stage is a change point. The cost is be-
cause each of the divide-point’s two neighboring segments con-
tains samples. To simplify the analysis, we assume that each
divide-point must be verified, even though its value cal-
culated in the Divide stage is positive. Hence, the average time
cost of DACDec2 is

(8)
Unlike DACDec1, DACDec2 recursively partitions each ho-

mogeneous segment of samples until the analysis window is
smaller than the predefined minimum value . Therefore,

is equivalent to the time cost of applying DACDec2 to an
-sample stream in which each sample can be a divide-point.

The cost of finding a divide-point in an -sample stream in the
Divide stage is . In the Combine stage, the cost of veri-
fying the divide-point is at most because the two segments
used for verification are sub-segments of the -sample segment.
Therefore, the upper bound of is

(9)

where . After the algebraic manipulation detailed in
the Appendix, we obtain

(10)

Then, we can solve the recursive equation in (8) with in
(10). After the algebraic manipulation detailed in the Appendix,
we obtain

(11)

3) For FixSlid, DACDec3, and DISTBIC_pR: Suppose
FixSlid uses GLR as the distance measure and the
analysis window consists of samples. Then, the time cost of
FixSlid is

(12)

DACDec3 and DISTBIC_pR incur a higher time cost than
FixSlid when verifying divide-points in the segment merging
process. Suppose the audio stream is equally divided into

sub-segments of samples, where . Since
we assume that the segmentation derived by DACDec3 and
DISTBIC_pR is perfect, each of the change points is also a
divide-point and the time cost of segment merging verification
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is less than for each divide-point. Therefore, the time cost
of DACDec3 and DISTBIC_pR is less than

(13)

4) For WinGrow: We analyze the case where the maximum
window size is large enough to ensure that the search
process always restarts at a true change point.2 In this case, the
analysis window initialized with a small number of
samples grows repeatedly by samples until it contains more
than samples, so that there is at least one change point in .
Suppose needs to grow to samples to detect the change
point, where ; then, the time cost of sequentially detecting

change points will be

(14)

After the th change point has been detected, the detection
process continues to search in the last homogeneous segment;
the time cost is

(15)

In practical applications, both and are set at small
values. To simplify the analysis, we assume . Then,
the time cost of WinGrow is

(16)

5) Discussion: From (7), (11)–(13), and (16), it is obvious
that FixSlid, DACDec3, and DISTBIC_pR are more efficient
than DACDec1, DACDec2, and WinGrow.

DACDec1 and DACDec2 are more efficient than WinGrow
when the input audio stream is composed of long homoge-
neous segments. For example, if the frame rate is 100 frames
per second (i.e., there are 100 feature vectors for a one-second
audio stream), it is appropriate to set the value of and at
100. Moreover, the value of can be set at 1.5 generally. Then,
for a 30-s audio stream (which consists of 3000 feature vectors)
containing only one change point (i.e., and ),
the speedups of DACDec1 and DACDec2 over WinGrow are

2Without this assumption, the time cost analysis for WinGrow might be in-
tractable. However, this assumption is appropriate for many kinds of real-world
data. For example, in our experiments on the broadcast news data described in
Section V, it is appropriate to set� at 20 seconds, which is longer than most
of the homogeneous segments in the data set.

2.55 and 1.78, respectively. When there is no change point in
the 30-s stream, the speedups of DACDec1 and DACDec2 over
WinGrow are 10.51 and 3.51, respectively. In contrast, when
the audio stream is composed of short homogeneous segments,
WinGrow is more efficient than DACDec1 and DACDec2. For
example, for a 30-s stream containing five change points (i.e.,

and ), the speedups of DACDec1 and DACDec2
over WinGrow are 0.42 and 0.37, respectively.

V. EXPERIMENTS ON SPEAKER SEGMENTATION

We conducted experiments on a synthetic data set using Se-
qDACDec1 and SeqDACDec2 to verify the unreliable
measurement issue in DACDec1, and on two real-world broad-
cast news data sets to evaluate the performances of the baseline
and proposed segmentation approaches.

For feature extraction, we used a 32-ms Hamming window
shifted with a step of 10-ms to extract 24 mel-frequency cep-
stral coefficients as the acoustic features [11]. There were 100
24-dimensional feature vectors in a 1-s audio stream.

For the performance evaluation, we used the Receiver Oper-
ating Characteristic (ROC) curve to show the various miss de-
tection (MD) rates and false alarm (FA) rates yielded by ad-
justing the threshold parameters. A true change point was
counted as a miss detection if there was no hypothesized change
point within (a -s window centered on ); and
a hypothesized change point was counted as a false alarm if
there was no true change point within . The miss
detection rate (MDR) and false alarm rate (FAR) are defined as

number of MD
number of true change points

number of FA
number of hypothesized change points

A. Experiments On the Synthetic Data

1) Data Set Description: We used the training data of six
speakers from the 2001 NIST speaker recognition evaluation
corpus [34] to create three artificial audio streams of conver-
sational speech as the synthetic data set. The speech from
speaker#5077 and speaker#5232 was divided into three-second
utterances and interlaced to form an audio stream of conver-
sational speech of two speakers. In the same way, the speech
from speaker#5326 and speaker#5333 was used to form the
second audio stream; and the speech from speakers#5446 and
speaker#5269 was used to form the third audio stream. There
were 231 speaker change points in total in the three audio
streams.

2) Experiment Results: Fig. 11 shows the ROC curves
obtained by running SeqDACDec1 and SeqDACDec2 on the
synthetic data with different analysis window sizes. was set at
0.25, in DACDec1 and DACDec2 was set at one second
(i.e., 100 samples), and the penalty factor in was set
at 0.7 initially and increased to 1.7 in 0.05 increments. The

distance was evaluated every 0.1 s in both approaches;
that is, the resolution for change point detection was 0.1 s. The
tolerance for counting the number of miss detection or false
alarm was set at 0.5 seconds. From the figure, we observe that
SeqDACDec2 outperforms SeqDACDec1 for every window
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Fig. 11. ROC curves obtained by running SeqDACDec1 and SeqDACDec2 on
the synthetic data using 10-s, 20-s, and 30-s analysis windows. � denotes the
size of the analysis window.

size. Moreover, SeqDACDec2 yields similar performances
at different window sizes, whereas the performance of Se-
qDACDec1 declines significantly when the window size is
increased from 10 s to 20 or 30 s. In other words, SeqDACDec2
is more robust to the size of the analysis window than Seq-
DACDec1. The experiment results conform to the discussion
in Section III; that is, DACDec1 might not work as well as
DACDec2 if the condition that the homogeneous segments in
the analysis window are derived from different acoustic sources
is not met.

B. Experiments on Broadcast News Data

1) Data Set Description: We evaluated FixSlid, FixS-
lidHAC_pR, DISTBIC_pR, DISTBIC, WinGrow, and the
proposed methods on two broadcast news data sets. The broad-
cast news data in the 2003 NIST rich transcription evaluation
data [32], which is comprised of six 30-min audio streams
recorded from channels ABC, NBC, CNN, PRI, VOA, and
MNB, was used as the evaluation set (denoted as RT03).
Three one-hour broadcast news programs (PTSND-20011203,
PTSND-20011204, and PTSND-20011205) selected from
the MATBN corpus [31] were used as the development set
(denoted as MATBN3hr). To be consistent with RT03, each file
in MATBN3hr was divided into two 30-min audio streams in
the experiments. According to the manual transcriptions, there
were 1261 and 444 speaker change points in MATBN3hr and
RT03, respectively. Note that, in the evaluation, we ignored
the hypothesized change points that locate in the non-speech
regions labeled in the transcription when evaluating the seg-
mentation errors because the detection of acoustic changes
within the non-speech regions was outside the scope of this
study.

Fig. 12 shows the empirical cumulative distributions of the
size of homogeneous segments in the two data sets. As shown in

Fig. 12. Empirical cumulative distributions of the size of homogeneous seg-
ments in MATBN3hr and RT03.

Fig. 13. Multistage HAC that consists of BIC clustering (HAC-BIC), gender/
bandwidth classification and SID clustering (HAC-SID).

the figure, the average length of the segments in RT03 is longer
than that in MATBN3hr.

2) Parameter Setting and System Description: For FixSlid,
we used the GLR distance as the distance measure of two ad-
jacent windows. In the experiments, the window size was fixed
at two seconds; and the value of used to evaluate the “signifi-
cant” local maximum, as shown in Fig. 9, was set at 0.4 initially,
and increased to 2 in 0.05 increments to obtain the ROC curve.
For DACDec3, DISTBIC_pR, and FixSlidHAC_pR, the param-
eter pRange was tuned with the development set. For WinGrow,
the values of and were set at 1 s and s, respec-
tively; and the values of and were tuned with the
development set. For SeqDACDec1 and SeqDACDec2, was
fixed at 0.25; and and in DACDec1 and DACDec2 were
tuned with the development set. For each BIC-based segmenta-
tion approach, various values for were applied in order
to obtain the ROC curve. Like the above experiments on the syn-
thetic data, the resolution for change point detection was 0.1 s
for all the approaches. However, the tolerance for counting the
number of miss detection or false alarm was set at one second
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Fig. 14. ROC curves for MATBN3hr obtained by (a) DACDec3 and DISTBIC_pR with different pRange values, and (b) FixSlid, DACDec3_SP, DISTBIC, and
DACDec3.

rather than 0.5 s. Basically, we made this change because of the
limited precision of human reference annotation.

For FixSlidHAC_pR, we first applied FixSlid with the
threshold parameter pRange to segment the input audio stream,
then we pruned non-speech regions within the audio seg-
ments and grouped the segments using HAC with multiple
stages, which have been applied in state-of-the-art speaker
diarization systems [7], [8], [30], [35]. As shown in Fig. 13,
we applied HAC with as the inter-cluster distance
measure (HAC-BIC) for initial clustering; the clustering
process was stopped if the smallest value among all
the cluster pairs was larger than zero. Then, we classified the
resultant clusters into four classes, namely, male speech with
studio/wide-bandwidth condition (WM), male speech with
telephone/narrow-bandwidth condition (TM), female speech
with studio condition (WF), and female speech with telephone
condition (TF). After the gender/bandwidth classification, we
applied HAC with the cross log-likelihood ratio derived from
GMMs as the inter-cluster distance measure (HAC-SID) to the
four classes, individually [7]. The cross log-likelihood ratio is
defined as

(17)
where and are, respectively, the GMMs for clusters
and , which are MAP-adapted from the universal background
model (UBM [36]) . Here, only Gaussian mean vectors were
adapted, and the relevant factor for controlling the adaptation
rate was experimentally set at 16. reveals the simi-
larity between and . Therefore, when applying this mea-
sure in HAC, the two clusters with the largest value
are merged; and the clustering process is terminated when it
is smaller than a predefined stopping threshold. We used 15
MFCCs and energy plus their delta coefficients, which were nor-
malized by feature warping, as the speech feature for HAC-SID
[7]. We used the 1998 DARPA/NIST HUB-4 broadcast news

TABLE I
EERS OF FIXSLIDHAC_pR, DACDec3, AND DISTBIC_pR ON

MATBN3hr, WHERE M AND F DENOTE THE MISS DETECTION RATE

AND THE FALSE ALARM RATE, RESPECTIVELY

evaluation test data to train the UBMs for WM and WF, and the
NIST 2000 speaker recognition evaluation corpus for TM and
TF; each of the UBMs contained 128 mixture Gaussians.

3) Experiment Results: We first evaluated all the segmen-
tation approaches on MATBN3hr. Fig. 14(a) shows the ROC
curves obtained by DACDec3 and DISTBIC_pR with different
pRange values. From the figure, we observe that DACDec3
outperforms DISTBIC_pR; and the best setting of pRange
for DACDec3 and DISTBIC_pR are 0.5 s and 1 s, respec-
tively. Table I shows the results of FixSlidHAC_pR, where
for each pRange case, various settings for and the stopping
threshold in HAC-SID were evaluated to obtain the lowest
equal error rate (EER). From the table, we observe that FixS-
lidHAC_pR achieves the lowest EER with s.
Both DACDec3 and DISTBIC_pR achieve a lower EER com-
pared to FixSlidHAC_pR; this shows that DACDec3’s recursive
and DISTBIC_pR’s sequential strategies for segment merging
outperform the hierarchical agglomerative approach.

We also evaluated DACDec3 using the “significant” local
maximums obtained by FixSlid as the divide-points (de-
noted as DACDec3_SP). We ran DACDec3_SP and DISTBIC
with and . From Fig. 14(b), it is clear
that DACDec3_SP and DISTBIC substantially outperform
FixSlid, while DACDec3_SP outperforms DISTBIC. More-
over, DACDec3 with s (the line marked with
diamonds) slightly outperforms DACDec3_SP. In our experi-
ence, pRange is easier to tune than . Therefore, we did not
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Fig. 15. ROC curves for MATBN3hr obtained by (a) SeqDACDec1 with� � � s and analysis windows of different size ���. (b) SeqDACDec2 with � �
� s and analysis windows of different size ���. (c) SeqDACDec1 with � � � s and � � �� s, SeqDACDec2 with � � � s and � � �� s, DACDec3 with
������ � �	� s, WinGrow with � � � s and � � �� s, DISTBIC_pR with ������ � � s, and FixSlid with a 2-s sliding window.

analyze DACDec3_SP and DISTBIC further in the remaining
experiments for speaker change detection.

When conducting the experiments, we found that it was
appropriate to set at 3 s and at 20 s for WinGrow.
For both SeqDACDec1 and SeqDACDec2, it was appropriate
to set at two seconds and the window size at 20 s.
Fig. 15(a) shows the ROC curves obtained by SeqDACDec1
with analysis windows of different size. Unlike the results for
the synthetic data in Fig. 11, the results with 10-s and 20-s
analysis windows are similar. This is because, in the broadcast
news data, if a 10-s or 20-s analysis window contains multiple
homogeneous segments, the segments are usually derived from
different speakers. For SeqDACDec2, the results for 10-s , 20-s,
and 30-s analysis windows are similar, as shown in Fig. 15(b).
The ROC curves obtained by the different approaches are
shown in Fig. 15(c). We observe that the proposed approaches,
namely, SeqDACDec1, SeqDACDec2, and DACDec3, outper-
form the other approaches, while SeqDACDec2 performs the

best. Table II shows the speeds of all the approaches in terms of
“times real-time” (real-time factor, 3) in the EER case. All
the programs were implemented with MATLAB, except that the
MAP training of GMMs and calculation of mixture likelihood
in FixSlidHAC_pR was implemented with C language via
MATLAB’s API. The programs were run on a machine with
a 3.2-GHz Intel Xeon CPU. From the table, we observe that
SeqDACDec1, SeqDACDec2, and DACDec3 are more efficient
than WinGrow. DACDec3 in particular runs much faster than
WinGrow. Moreover, FixSlidHAC_pR is much slower than the
other approaches.

Next, we conducted experiments on RT03 with the parame-
ters tuned with MATBN3hr. Fig. 16 shows the ROC curves for
all approaches. Again, we observe that the proposed approaches,
namely, SeqDACDec1, SeqDACDec2, and DACDec3, outper-
form the other approaches. Table III shows the real-time factor

3
�� � � �� , where � is the system run-time and � denotes the time
duration of the test data set.
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TABLE II
THE REAL-TIME FACTOR ���� � OF DIFFERENT SEGMENTATION APPROACHES EVALUATED ON MATBN3hr IN THE EER CASE AND THE

ASSOCIATED EERS, WHERE M AND F DENOTE THE MISS DETECTION RATE AND THE FALSE ALARM RATE, RESPECTIVELY

TABLE III
REAL-TIME FACTOR ���� � OF DIFFERENT SEGMENTATION APPROACHES EVALUATED ON RT03 IN THE EER CASE AND THE ASSOCIATED EERS

Fig. 16. ROC curves for RT03.

of all the approaches in the EER case. Comparing Table III to
Table II, it is clear that every approach achieves a higher speedup
over WinGrow on RT03 than on MATBN3hr. This is because
the homogeneous segments in RT03 are longer than those in
MATBN3hr on average, as shown in Fig. 12, and these ap-
proaches achieve higher speedup over WinGrow for an audio
stream comprised of longer homogeneous segments, as men-
tioned in Section IV (cf.(7), (11)–(13), and (16)).

VI. APPLICATION TO SPEAKER DIARIZATION

Speaker diarization, also known as the “who spoke when”
task, aims to group together speech segments produced by the
same speaker within an audio stream [8]. It has been studied
in various data domains, e.g., conversational telephone speech
[16], broadcast news data [7], [35], and meeting data [37].

Speaker diarization systems usually consist of two core
components, namely speaker segmentation, which chops the
audio stream into homogeneous segments, and speaker clus-
tering, which groups the homogeneous segments into speaker
clusters. Currently, leading speaker diarization systems usually
apply hierarchical agglomerative clustering (HAC) to perform
speaker clustering after segmentation [7], [30], [35]. Here, we

would like to evaluate the performance of the segmentation
approaches discussed above in terms of speaker diarization
error by integrating them with the multi-stage HAC in Fig. 13.
The diarization system that combines SeqDACDec1 and the
multi-stage HAC is denoted as SeqDACDec1_HAC. Similarly,
the diarization systems based on the segmentation methods
SeqDACDec2, DACDec3, WinGrow, DISTBIC_pR, and
FixSlid are denoted as SeqDACDec2_HAC, DACDec3_HAC,
WinGrow_HAC, DISTBIC_pR_HAC, and FixSlid_HAC, re-
spectively.

In the implementation, following the speech activity detec-
tion (SAD) method in [7], the GMMs for speech, noisy speech,
speech over music, pure music, and silence/noise were trained
beforehand, and the nonspeech regions in the audio segments
were pruned by using Viterbi decoding.

A. Experiments on Speaker Diarization

1) Data Set Description and Performance Evaluation: We
used RT03 described in Section V-B-I in the speaker diarization
experiments. The audio recordings from channels ABC, NBC,
and CNN were used as the development set (RT03_Dev); while
the recordings from PRI, VOA, and MNB were used as the eval-
uation set (RT03_Eval).

For the performance evaluation, we used the diarization eval-
uation tool (md-eval-v21.pl) released by NIST [38] to evaluate
the diarization error rate (DER), which takes into account three
kinds of error, namely missed speech (MiS), false alarm speech
(FaS), and speaker error (SpE). Readers can refer to [7] for a
detailed description of these error types.

2) Parameter Setting and System Description: We used
RT03_Dev to tune the parameters for each system, and then
evaluated the diarization performance on RT03_Eval. These
parameters include in the -based inter-cluster distance
measure in HAC-BIC, the stopping threshold in HAC-SID,

in BIC-based segmentation in SeqDACDec1_HAC, Se-
qDACDec2_HAC, DACDec3_HAC, DISTBIC_pR_HAC,
and WinGrow_HAC, and in FixSlid segmentation in
FixSlid_HAC. For each system, the remaining parameters in
the segmentation stage were the same as those yielding the
segmentation results in Fig. 15(c) (for MATBN3hr) and 16 (for
RT03).
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TABLE IV
DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS. VITERBI

RESEGMENTATION IS NOT APPLIED

TABLE V
DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS. VITERBI

RESEGMENTATION IS APPLIED AS A POSTPROCESSING STEP

3) Postprocessing by Viterbi Resegmentation: As reported
in [35], one can use Viterbi re-segmentation after speaker clus-
tering to improve the diarization accuracy; thus, we used this
technique as a post processing step and evaluated how it effects
on each diarization system. For the resegmentation, the speech
in each cluster was used to train a MAP-adapted GMM from a
gender- and channel-independent UBM first, which represents
one state in the applied ergodic HMM. Then, Viterbi decoding
was applied to perform the re-segmentation (diarization). The
GMM training and re-segmentation were done iteratively.

4) Experiment Results: Tables IV and V show the DERs
of the diarization systems without and with the Vitrebi reseg-
mentation based post processing step, respectively. From these
two tables, several observations can be drawn. First, a more
accurate speaker change detection algorithm leads to better
diarization accuracy. For example, DISTBIC_pR_HAC and
FixSlid_HAC obtain higher DERs than the other systems. As
shown in Fig. 16, their segmentation methods DISTBIC_pR
and FixSlid achieve higher segmentation errors. Second,
Vitrebi resegmentation consistently improves the diarization
accuracy of all the systems except SeqDACDec2_HAC. The
improvement is more significant on DISTBIC_pR_HAC and
FixSlid_HAC with higher DERs; however, their DERs are still
significantly higher than those of the other systems that are
based on more accurate speaker segmentation methods. Third,
considering the overall results, DACDec3_HAC outperforms
all the other systems.

VII. CONCLUSION

We have proposed three BIC-based speaker segmentation
approaches that employ divide-and-conquer strategies for
speaker change detection. In contrast to the well-known and
highly accurate window-growing-based approach (WinGrow),
which searches for change points in a bottom-up manner by
using a sequentially growing analysis window, the proposed
DACDec1 and DACDec2 approaches search for change points
in a top-down manner. The proposed DACDec3 approach is
a recursive variant of another popular approach, DISTBIC.

We compared our approaches to these well-known approaches
analytically by performing computational cost analysis. The
results of experiments conducted on broadcast news data
demonstrate that the proposed approaches are more efficient
and achieve higher segmentation accuracy than the existing
approaches discussed in this paper. In addition, we applied the
segmentation approaches to the speaker diarization task. The
experiment results show that a more accurate segmentation
approach leads to better diarization accuracy.

APPENDIX

Compute : is expressed as

(18)

. To solve this recursive equation, we can apply
the technique used for analyzing the time cost of the Quicksort
algorithm [39]. First, we multiply both sides of (18) by as
follows:

(19)

Replacing in (19) with , we obtain

(20)

Subtracting (20) from (19), we obtain

(21)

Rearranging the terms in (21) yields

(22)

Let , then (22) can be rewritten as

(23)

where . Recursively substituting the in (23), we
obtain

(24)

[39], we have

(25)
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Since , can be expressed as

(26)

Compute : is expressed as

(27)

where . Similar to the manipulation of (18), by setting
, we have and

(28)

, we have

(29)

Compute : is expressed as

(30)
where . Similar to the
manipulation of (18), by setting , we have

(31)

into (31), we obtain

(32)

, we have

(33)
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