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Distributed programs often follow some bounded global predicates, for example, the total number

of certain tokens is always the same or bounded in a range.

In order to detect bounded global

predicates, we can first derive the minimum and maximum global snapshots and then check if the
minimum and maximum are out of the range. Recently, Chase and Garg proposed an efficient
method to derive the minimum global snapshot by reducing this problem to a maximum network

flow problem. A restriction of this method is that all message values (e.g., the token number in

messages) must be zero and all process state values (e.g., the token number in processes) must be

non-negative. In this paper, we propose an elegant technique, called normalization. By using this

technique, we can remove the above restriction and also derive the minimum and maximum global
shapshots at the same time.
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1. INTRODUCTION

when programmers develop code.
and debugging are very time consuming in a software
in an unexpected way at an unexpected spot.

breakpoints in programs and then tracing the code step by

step. Sometimes, programmers also put some assertions intqi) Exhaustively search all possible combinations to

the code in order to detect the correctness of the code.

With the rapid development of networks and distributed
systems, programming on distributed environments is
becoming more common. However, the difficulty of
distributed programming is much higher than that of
sequential programming. Let us consider an example of
debugging a distributed program on two processors. If we
want to halt at a certain breakpoint of the program on one
processor, it is very hard to halt the program on the other
processor simultaneously. This makes distributed debugging
very difficult. Since distributed debugging is difficult,

because message-carrying tokens can only be detected at
the sending and receiving times. Therefore, if we need to

Error detection and debugging have been very important detect global predicates, we need to keep track of all process

Most previous expe-states and then judge from all the states whether the global |

riences and research reports showed that error detectiorpredicate holds.

Chase and Garg [4] proved that the problem of general

development cycle [1]. This is because a bug may happengiobal predicate detection is NP-complete. Most researchers g

In single-yse the following three kinds of approaches to solve global
processor systems, users usually debug programs by settingredicate detection problems.

(ii) Periodically check the satisfiability of global predicates

eN e /[:‘uo spumo [pJo;XO' Jufwosy/:dny wouy papeojumoq

detect general global predicates. This approach
may be impractical for many applications due to the
exponential worst-case time complexity [2].

[3, 5]. However, this approach works only for problems
with stable global predicates. Stable global predicates
are predicates with the following property: once the
global predicates turn true, they will remain true
forever. However, these methods cannot detect unstable ¢
global predicates because such a predicate may be true 2 2
for a short instant (between two checkpoints).
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error detection in a distributed program becomes more (iii) For specific problems, detect unstable global predicates

significant.

It is well understood that distributed programs are usually
designed to obey certain invariant conditions [2]. For
example, in a distributed program, there may be a number
of tokens distributed over processors (e.g., the token may
represent the number of resources and critical sections),
and the number of these tokens is bounded in a range
at any snapshot, no matter how tokens are moved over
different processors. The conditions are usually formulated
as predicates, called global predicates in [3].

In fact, it is non-trivial to detect the global predicates

in polynomial times. Garg and Waldecker [6] presented
a tractable algorithm to detect unstable predicates
that are formed by a conjunction of local predicates.
Recently, Groselj [7] proposed an interesting method
to derive the global state with minimum cost, called
the minimum global snapshot [7], by reducing the
problem to a maximum network flow (or minimum cut)
problem. However, Groselj only considered message
costs and assumed that all messages had cost one.
Later, Chase and Garg [4] also used the maximum
flow algorithm to derive the global state with minimum
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cost, but they only considered costs in processes (hotin

messages). Internal event
Although for arbitrary flow networks detecting the Send event
Receive event

maximum cut is an NP-hard problem [8], we show in this
paper that the flow networks used for predicate detection do Time
permit polynomial time detection of the maximum cut. We
first show a straightforward technique that can be applied
to systems, where messages do not carry tokens, such as
those considered by Chase and Garg. Our technique allows
both maximum and minimum cuts to be calculated, even
when the number of tokens in a state is allowed to be
negative. We then propose a technique, called normalization, FIGURE 1. An event graph.
which allows this technique to be applied to systems where
messages carry tokens.

The remainder of this paper is organized as follows. In
Section 2, we describe our model and the notation used in
this paper. Section 3 presents the normalization technique

Initial internal event
Final internal event

—= Interna arc or
message arc

o md OO

(i) evente immediately happens before event
(i) there exists another evegt with the relationsg — e

and derives the minimum and maximum global snapshots ande — €.
from this technique. Finally, we conclude our results in
Section 4. 2.2. Eventgraph

We can use an event graph to represent a run of a distributed
2. MODEL AND NOTATION program as follows. (i) A vertex denotes an event. (i) If

A distributed program is composed of processes commu-2n €vente immediately happens before evesyt, there
s a corresponding arc, denoted g, ej), from g’s

nicating via a network. These processes share no memorny ' ', N
and no global clock. Each pair of these processes needs t0'Teésponding vertex tej’s. An arc (&, g)) is called a
communicate via a channel of the network. The state of suchM€SSage arc if there is a corresponding in-transit message

a programiis distributed over these processes and channels 4f°™M €Vene toe;. Otherwise, anarcis called aninternal arc
each snapshot. because it corresponds to the internal event transition inside

a process. Clearly, each process has an internal path from
the vertex of its initial event to the vertex of its final event
without going through any message arcs. An event graph is
The states of processes and channels change only wheillustrated in Figure 1. For each internal aac= (e, j),
events [9] (atomic actions) are executed. There are threewe denote the token number of the corresponding process
kinds of events occurring on each procesBowith which by S, after executing the event correspondingeto For

we are concerned: each message as; we denote the number of tokens of the

message b.

2.1. Events

internal event: does a local computation;

send event sends a message from proc€s® another 23 Global states

via a channel;
e receive eventreceives a message from another process Consider a possible run of a distributed program. The system
via a channel. can proceed from one state to another by executing events.
Note that each process should start with an initial internal DEFINITION 2.1.A set Ec of events is said to be
event and end with a final internal event. consistent if evere € Ec and event’ — eimplye’ € Ec.
In order to define the chronological order of events, we A global state is a collection of states, one from each process
define that everss immediately happens before evet if and channel, right after executing a consistent set of events.

and only if one of the two following conditions holds. The set of all global states of an execution of a distributed

(i) Eventse ande; happen in the same process, the time Program forms a lattice. In the lattice, a node (global state)
IR ; i S has a link to another nod® if the system can proceed
of g (happening) is earlier than that ef, and no other . ystem can p
event happens between these two events in the samdrom S to $ by executing only one event. Figure 2a shows

process. the event graph of a distributed program and Figure 2b shows
(i) Eventg is the send event of a message and eegig the corresponding lattice. A possible run of a distributed
the receive event of the same message. program can be viewed as a path in the lattice from the initial

node (initial global state) to the final node (final global state).
Furthermore, we define that evesthappens before event  For example, the path depicted with bold lines in Figure 2b
ej, denoted bys — e;, if and only if one of the following represents a possible execution order of the events occurring
two conditions holds: in the program.
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FIGURE 2. (a) The event graph of a distributed program. (b) The ) (b)
lattice of (a).
source part
A global predicate is a predicate on global states. In this ° 4
paper, we are interested in detecting error states where the /-1/3‘
given global predicates hold, for example the total number of //2‘
certain tokens is not bounded in a given range. Such global 2
predicates are called bounded global predicates in this paper \i 8- s
and can be formulated as: (i) at some global state of the \ N3 cost
system,N < K (or N < K), or (ii) at some global state Foo--2L 7] =16
of the systemN > K (or N > K), whereN is the total sink part
number of tokens anH is a constant. ©

For example, assume that in a distributed system the token

number is supposed to be smaller then but in a global
stateS the token number is actually larger thin Then, all

the runs containing the global steéddhave errors. Although
this does not guarantee that all runs will have an error global
state, detection of such possible errors is very significant
since it proves that the system is not robust.

FIGURE 3. (a) Consistent cut4, (b) inconsistent cu€, and (c)
inconsistent cuCs.

Note that the cost of a consistent cut may represent the
number of tokens of the corresponding global state. Figure 3
24. Cuts illustrates cuts of an event graph. In this figure, only Cut
In a common graph, if we separate the vertices into two sets, iS consistent, since for c@, the message arc with cost 2 is
a cut is the set of all the arcs each of which is incident to from the sink part to the source part and @y the internal
these two disjoint vertex sets. In an event gréphve define  arc with cost 1 is from the sink part to the source part.
that a cut must partition the event graph into two disjoint ~ The minimum (maximum) consistent cut is the consistent
graphs such that one, called the source part and denoted bgut with the least (largest) cost among all consistent cuts.
Gs = (Vs, Es), contains all the initial internal events and The minimum (maximum) consistent cut cost is the cost
the other, called the sink part and denotedd®y= (\, Et), of the minimum (maximum) consistent cut. The minimum
contains all the final internal events. Thus, itis trivial to see (maximum) consistent cut is also called the minimum
that the cut has at least one arc in each internal path. The(maximum) global snapshot.

cost of a cut is defined as follows:

S.

Ya:a=(u,v),ueVs,veVy

For example, in Figure 3, the costs of ctg C, andCgz are

12, 14 and 16, respectively. The minimum (maximum) cutis
the cut with the least (largest) cost among all cuts. The least
(largest) cost is called the minimum (maximum) cut cost.

A cut of the event graph is consistent if and only if the
set of all events corresponding to vertices in the source part
are consistent. From this definition, the following lemma
apparently holds.

LEMMA 2.1.For an event graph, a cut is consistent if
and only if each arc o€ is from the source part to the sink
part.

2.5. Predicate detection

In our model, we assume that the event graph with costs on
arcs is given in advance. In practice, Garg and Waldecker
[6] suggested that in each event each process sends its
state information (such as the number of tokens currently
held) to a process, called the checker process, which runs
an algorithm to detect the global predicate. In order to
detect the bounded global predicates, we need to derive the
minimum and maximum global snapshots (or the minimum
and maximum consistent cuts) in a given event graph and
then check if its cost is less than or greater than the constant
K. In the next section, we will investigate the methods of
deriving the minimum and maximum global snapshots.
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3. MINIMUM AND MAXIMUM GLOBAL P1 P2 Source nodes _
SNAPSHOTS 5 1| cucos -- S capecily

In this section, we will derive the minimum and maximum 49/

global snapshots in a given event graph. In Subsection 3.1, 1 8

we will describe the basic method modified from Groselj's ~ ,/l/ o

paper [7] that can efficiently derive the minimum global | . 3| = conssient minimum

snapshot for all event graphs without negative-cost arcs. out cost " U capacity

In Subsection 3.2, we propose two operations, translation sink nodes

and reflection, by which we can derive both minimum and @ )

maximum shapshots for zero-message-cost event graphs.

Zero-m - vent graphs are event graphs wh . .
ero-message-cost event graphs are e ? t graphs OseFIGURE 4. (a) Before operation R1 and (b) after operation R1.

message arcs all have zero cost (whose internal arcs may

have negative costs). In Subsection 3.3, we propose an

operation, normalization, to derive both minimum and

maximum global snapshots for all event graphs. Note that the initial (final) internal nodes become the

. . o ) source and sink nodes.
3.1. Basic technique for the minimum consistent cut

Groselj [7] proposed a method to derive the minimum  Lemma 3.1 shows that after the reduction operation R1 the
consistent cut cost of an event graph (without negative-costmin-cut capacity of the reduced flow network is the same as
arcs) and which is based on flow network algorithms. In this the minimum consistent cut cost of the original event graph.
subsection, we describe a simple method which is modified Since the vertex set is unchanged in the reduction
from Groselj's. algorithm R1, we define that the c@t in the original graph

In fact, an event graph can also be viewed as a flow G is equivalent to the cu€y in the reduced networl if
network (defined in Definition 3.1) with multiple sources and only if the two vertex sets partitioned by &g in G
and sinks [10]. All the initial (final) internal events are the same as those partitioned by@ntin N.
correspond to the source (sink) nodes and the value on each

arc corresponds to the capacity of the arc, LEMMA 3.1.Given an event grapfs, use the reduction

operation R1 as described above to reduseto a flow
DeFINITION 3.1.A flow networkN = (V,E) is a networkN. Then, the minimum cut iN is also a minimum
directed graph in which each edda, v) € E has a non- consistent cut of5. Also, the min-cut capacity iN equals
negative capacitg(u, v) > 0. Some nodes are designated the minimum consistent cut cost®f
sources and some others are designated sinks. A cut is
set of arcs all incident to two disjoint vertex sets partitioned
from V, where one set with sources is called the source set
and the other with sinks is called the sink set. The capacity
of a cut is the total capacity of all arcs (on the cut) from the
source set to the sink set. A minimum cut of a flow network
is the cut with the least capacity. The least capacity is also
called the min-cut capacity.

%roof. For each cuCy in the reduced flow networl, its
equivalent cuCg in G is either consistent or inconsistent.
Assume that cu€g is consistent. According to Lemma 2.1,
each arc in cu€g must be from the source part to the sink
part. Thus, after the reduction operation R1, the equivalent
cut still has the same cost (or capacity) since the costs of
reversed arcs are not counted, as illustrated in Figure 4.

If Cg is inconsistent, there exists an dt; v) whereu is

The key to Groselj's technique is to reduce an event in the sink part and is in the source part from Lemma 2.1.
graph to another flow network while keeping the following On the equivalent cuEy in N, since the reversed afte, u)
property satisfied: (added from the reduction operation R1) is from the source
part to the sink part, the capacity of the asg, will be added
into the total capacity of the c@y, which will becomeso,
as illustrated in Figure 4.

From the above discussion, the min-cut capacitiitis
Since the minimum cut problem in a flow network is also the minimum consistent cut cost@ The minimum
equivalent to the maximum network flow problem as shown cutin N is also a minimum consistent cut Gt g
by Ford and Fulkerson [11], we can use some efficient
maximum network flow algorithm, such as that of [12], to
find the minimum cut cost.

In order to reduce an event graph to a flow network
with the above property, we use the following reduction
operation.

e the min-cut capacity of the reduced flow network equals
the minimum consistent cut cost of the original event
graph.

3.2. Zero-message-cost event graphs

Chase and Garg derived the minimum consistent cut for each

zero-message-cost event graph [4]. In this subsection, we

propose two operations, translation and reflection, in order

R1 For each arcvi, vj), add a reverse at@j, vi) with the to derive both minimum and maximum consistent cuts for
valueoo. each zero-message-cost event graph, respectively.
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FIGURE 7. Adding 100 to each arc cost.

FIGURE 5. (a) The original zero-message-cost event graph and
(b) the translated graptM = 13).

After making the reflection operation (as defined in

PL P> P3 P1 P> Pz Definition 3.3) on a zero-message-cost event graph, we can
derive the following property on the graph (as illustrated in
-2 3 13 _ 2 -3 -13 o Figure 6):
/ ) maX|_mum / ) m|n|y;1umt . . .
04} - comsent 0 af - o e Each consistent cut cog in the event graph will
50\‘ =25 ‘\,0\‘ =-25 become-C. Hence, the original maximum consistent
1 | P -11 al' -6 cut becomes the minimum consistent cut in the new
1 1L s event graph.
-5 | 4 -5 | 4 . . .
11 11 From above, after making the reflection operation on a
zero-message-cost event graph, we can apply the translation
@ (b) method to this graph in order to solve the maximum

consistent cut of the new event graph.
FIGURE 6. (a) The original zero-message-cost event graph and
(b) the reflected graph. 3.3. Normalization
Although the translation and the reflection operations
can deal with zero-message-cost event graphs, these two
operations cannot be applied to all event graphs directly.
For example, if the translation operation is also applied
_ | to message arcs in Figure 7, in order to make all costs
to its cost, whersVl = max(|Sy|) for all internal arc costs  on-negative, all consistent cuts may cut across different
Sa- numbers of message arcs and therefore their costs will

After making the translation operation (as defined in increase differently. .
Definition 3.2) on a zero-message-cost event graph, we [N this subsection, we propose an operation, called

can derive the following two properties on the graph (as hormalization, to reduce a general event graph to a zero-
illustrated in Figure 5). message-cost event graph. The key of the normalization

technique is to clear the costs of message arcs to zeros
e Since each consistent cut only cuts across one arc onby shifting the costs of message arcs to internal arcs
each internal path, each consistent cut cost in the eventwithout changing any consistent cut cost. The normalization
graph will increase by a constapM. Therefore, the  operation repeats the following primitive operation until
minimum consistent cut remains the same. each message arc c&}, is zero:
e Each arc in the event graph has a non-negative cost.

3.2.1. Translation and the minimum consistent cut
DEFINITION 3.2.For a given event graph, a translation
operation does the following: for each internal arc, ait

(i) Find a message agn = (§, €)) with §,, # 0.
As stated above, after making the translation operation (i) Add &, into the cost of each ar@, v) on the internal
on a zero-message-cost event graph, we can apply the basic path containing, whereg — v. _
method described in the previous subsection to this graph in (iii) Add —S,, into the cost of each axe, v) on the internal

order to solve the minimum consistent cut (due to the second  Path containing;, wheree; — v.
property). (iv) Clear the cost of arem to zero (that is, add-S,,, into

the cost of ar@m).

3.2.2. Reflection and the maximum consistent cut

DEFINITION 3.3.For a given event graph, a reflection
operation does the following: for each internal arc c&t
set the cost te-S.

Figure 8 illustrates arc costs before and after normaliza-
tion. It is easy to observe from the figure that any cut cost
does not change after normalization. Lemma 3.2 proves this

property.
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all cases. That is, for all consistent cuts, their cut costs are
still the same. O

According to Lemma 3.2, any general event graph can
be normalized to become a zero-message-cost event graph.
Then, after the normalization operation, we can derive the
minimum and maximum consistent cuts of all event graphs
by using the approach discussed in Subsection 3.2.

normalize
thearc
2 \yith cost 5

4. DISCUSSIONS

Traditionally, researchers [4, 7] can only derive the
minimum consistent cut cost with non-negative arc costs.
In this paper, we propose a new and elegant technique,
normalization, by which we can efficiently find the
source part S source part S source part S minimum and maximum consistent cut cost of an event
graph without limiting arc costs to non-negatives. Our
results can be extended to the detection of bounded global
predicates. This is useful for a control system (e.g., a
dynamic load balancing system) whose consistent costs
should be bounded in a range.

The algorithms for the minimum and maximum consistent
cut problems described in Subsection 3.2 basically consist of
the following operations.

FIGURE 8. Normalizing an arc (see the emboldened arrows).

sink part T sink part T sink part T
e The maximum network flow operation: we can use the
@ (b) © fastest maximum network flow algorithm, the preflow-
push algorithm [12] that runs if©(nmlog(n2/m)),
FIGURE 9. Normalizing an arc does not change cut costs. wherem is the number of edges amdis the number
of vertices. In our problem, each vertex (corresponding
to an event) in an event graph has at most three incident
LEMMA 3.2.LetG’ be normalized from event graghas arcs. Thereforem = ®(n) in an event graph and
described above. The cost of each consistent dBtexjuals the time complexity for the preflow-push algorithm is
the cost of the corresponding cut@f. O(n?logn).

The translation operation: since it only finds the
maximum arc cosM and then changes each arc cost,
the time complexity iO(n).

The reflection operation: since it only changes each arc
cost once, the time complexity 3(n).

The normalization operation: for each message arc
a = (u,v), we mark+$S, at eventu and mark—$

at even. Then for each internal path, update each arc
cost by scanning from its initial internal arc to its final

Proof. It suffices to prove that, for each primitive
normalization operation, no consistent cut cost is changed.
Consider a primitive operation normalizing a message arc .
am = (&, €j), whereg ande; are vertices on the internal
paths P and Pj, respectively. LetC be a consistent cut
which partitions the vertices into the source parnd the

sink partT; then there are three ways can cut across
internal pathd? andP;.

(i) Suppose thae € T andej € T (as shown in internal arc. Thus, the normalization operation can be
Figure 9a). In this case, the cut cost obviously finished inO(n).
fngr?;:ggged because all arc values in the cut areThus, the time complexity for detection of bounded global

. - 2 .
(i) Suppose thats € Sandej € T (as shown in predicates i©(n“logn) in total

Figure 9b). Assume thal cuts internal arca; anda,

in Py andPj, respectively. In this case, the cut must also ACKNOWLEDGEMENTS
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