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Distributed programs often follow some bounded global predicates, for example, the total number
of certain tokens is always the same or bounded in a range. In order to detect bounded global
predicates, we can first derive the minimum and maximum global snapshots and then check if the
minimum and maximum are out of the range. Recently, Chase and Garg proposed an efficient
method to derive the minimum global snapshot by reducing this problem to a maximum network
flow problem. A restriction of this method is that all message values (e.g., the token number in
messages) must be zero and all process state values (e.g., the token number in processes) must be
non-negative. In this paper, we propose an elegant technique, called normalization. By using this
technique, we can remove the above restriction and also derive the minimum and maximum global

snapshots at the same time.
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1. INTRODUCTION

Error detection and debugging have been very important
when programmers develop code. Most previous expe-
riences and research reports showed that error detection
and debugging are very time consuming in a software
development cycle [1]. This is because a bug may happen
in an unexpected way at an unexpected spot. In single-
processor systems, users usually debug programs by setting
breakpoints in programs and then tracing the code step by
step. Sometimes, programmers also put some assertions into
the code in order to detect the correctness of the code.

With the rapid development of networks and distributed
systems, programming on distributed environments is
becoming more common. However, the difficulty of
distributed programming is much higher than that of
sequential programming. Let us consider an example of
debugging a distributed program on two processors. If we
want to halt at a certain breakpoint of the program on one
processor, it is very hard to halt the program on the other
processor simultaneously. This makes distributed debugging
very difficult. Since distributed debugging is difficult,
error detection in a distributed program becomes more
significant.

It is well understood that distributed programs are usually
designed to obey certain invariant conditions [2]. For
example, in a distributed program, there may be a number
of tokens distributed over processors (e.g., the token may
represent the number of resources and critical sections),
and the number of these tokens is bounded in a range
at any snapshot, no matter how tokens are moved over
different processors. The conditions are usually formulated
as predicates, called global predicates in [3].

In fact, it is non-trivial to detect the global predicates

because message-carrying tokens can only be detected at
the sending and receiving times. Therefore, if we need to
detect global predicates, we need to keep track of all process
states and then judge from all the states whether the global
predicate holds.

Chase and Garg [4] proved that the problem of general
global predicate detection is NP-complete. Most researchers
use the following three kinds of approaches to solve global
predicate detection problems.

(i) Exhaustively search all possible combinations to
detect general global predicates. This approach
may be impractical for many applications due to the
exponential worst-case time complexity [2].

(ii) Periodically check the satisfiability of global predicates
[3, 5]. However, this approach works only for problems
with stable global predicates. Stable global predicates
are predicates with the following property: once the
global predicates turn true, they will remain true
forever. However, these methods cannot detect unstable
global predicates because such a predicate may be true
for a short instant (between two checkpoints).

(iii) For specific problems, detect unstable global predicates
in polynomial times. Garg and Waldecker [6] presented
a tractable algorithm to detect unstable predicates
that are formed by a conjunction of local predicates.
Recently, Groselj [7] proposed an interesting method
to derive the global state with minimum cost, called
the minimum global snapshot [7], by reducing the
problem to a maximum network flow (or minimum cut)
problem. However, Groselj only considered message
costs and assumed that all messages had cost one.
Later, Chase and Garg [4] also used the maximum
flow algorithm to derive the global state with minimum
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cost, but they only considered costs in processes (not in
messages).

Although for arbitrary flow networks detecting the
maximum cut is an NP-hard problem [8], we show in this
paper that the flow networks used for predicate detection do
permit polynomial time detection of the maximum cut. We
first show a straightforward technique that can be applied
to systems, where messages do not carry tokens, such as
those considered by Chase and Garg. Our technique allows
both maximum and minimum cuts to be calculated, even
when the number of tokens in a state is allowed to be
negative. We then propose a technique, called normalization,
which allows this technique to be applied to systems where
messages carry tokens.

The remainder of this paper is organized as follows. In
Section 2, we describe our model and the notation used in
this paper. Section 3 presents the normalization technique
and derives the minimum and maximum global snapshots
from this technique. Finally, we conclude our results in
Section 4.

2. MODEL AND NOTATION

A distributed program is composed of processes commu-
nicating via a network. These processes share no memory
and no global clock. Each pair of these processes needs to
communicate via a channel of the network. The state of such
a program is distributed over these processes and channels at
each snapshot.

2.1. Events

The states of processes and channels change only when
events [9] (atomic actions) are executed. There are three
kinds of events occurring on each processorP with which
we are concerned:

• internal event: does a local computation;
• send event: sends a message from processP to another

via a channel;
• receive event: receives a message from another process

via a channel.

Note that each process should start with an initial internal
event and end with a final internal event.

In order to define the chronological order of events, we
define that eventei immediately happens before evente j , if
and only if one of the two following conditions holds.

(i) Eventsei ande j happen in the same process, the time
of ei (happening) is earlier than that ofe j , and no other
event happens between these two events in the same
process.

(ii) Event ei is the send event of a message and evente j is
the receive event of the same message.

Furthermore, we define that eventei happens before event
e j , denoted byei → e j , if and only if one of the following
two conditions holds:

P1 P2 P3
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4 4

7

5

4

2

Internal event

Send event

Receive event

Initial internal event
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1
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Final internal event

Internal arc or
message arc

1

2

FIGURE 1. An event graph.

(i) eventei immediately happens before evente j ;
(ii) there exists another eventek with the relationsei → ek

andek → e j .

2.2. Event graph

We can use an event graph to represent a run of a distributed
program as follows. (i) A vertex denotes an event. (ii) If
an eventei immediately happens before evente j , there
is a corresponding arc, denoted by(ei , e j ), from ei ’s
corresponding vertex toe j ’s. An arc (ei , e j ) is called a
message arc if there is a corresponding in-transit message
from eventei to e j . Otherwise, an arc is called an internal arc
because it corresponds to the internal event transition inside
a process. Clearly, each process has an internal path from
the vertex of its initial event to the vertex of its final event
without going through any message arcs. An event graph is
illustrated in Figure 1. For each internal arca = (ei , e j ),
we denote the token number of the corresponding process
by Sa , after executing the event corresponding toei . For
each message arca, we denote the number of tokens of the
message bySa .

2.3. Global states

Consider a possible run of a distributed program. The system
can proceed from one state to another by executing events.

DEFINITION 2.1.A set EC of events is said to be
consistent if evente ∈ EC and evente′ → e imply e′ ∈ EC .
A global state is a collection of states, one from each process
and channel, right after executing a consistent set of events.

The set of all global states of an execution of a distributed
program forms a lattice. In the lattice, a node (global state)
S1 has a link to another nodeS2 if the system can proceed
from S1 to S2 by executing only one event. Figure 2a shows
the event graph of a distributed program and Figure 2b shows
the corresponding lattice. A possible run of a distributed
program can be viewed as a path in the lattice from the initial
node (initial global state) to the final node (final global state).
For example, the path depicted with bold lines in Figure 2b
represents a possible execution order of the events occurring
in the program.
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FIGURE 2. (a) The event graph of a distributed program. (b) The
lattice of (a).

A global predicate is a predicate on global states. In this
paper, we are interested in detecting error states where the
given global predicates hold, for example the total number of
certain tokens is not bounded in a given range. Such global
predicates are called bounded global predicates in this paper
and can be formulated as: (i) at some global state of the
system,N < K (or N ≤ K ), or (ii) at some global state
of the system,N > K (or N ≥ K ), whereN is the total
number of tokens andK is a constant.

For example, assume that in a distributed system the token
number is supposed to be smaller thenK , but in a global
stateS the token number is actually larger thanK . Then, all
the runs containing the global stateS have errors. Although
this does not guarantee that all runs will have an error global
state, detection of such possible errors is very significant
since it proves that the system is not robust.

2.4. Cuts

In a common graph, if we separate the vertices into two sets,
a cut is the set of all the arcs each of which is incident to
these two disjoint vertex sets. In an event graphG, we define
that a cut must partition the event graph into two disjoint
graphs such that one, called the source part and denoted by
Gs = (Vs , Es), contains all the initial internal events and
the other, called the sink part and denoted byGt = (Vt , Et ),
contains all the final internal events. Thus, it is trivial to see
that the cut has at least one arc in each internal path. The
cost of a cut is defined as follows:

∑

∀a:a=(u,v),u∈Vs,v∈Vt

Sa .

For example, in Figure 3, the costs of cutsC1, C2 andC3 are
12, 14 and 16, respectively. The minimum (maximum) cut is
the cut with the least (largest) cost among all cuts. The least
(largest) cost is called the minimum (maximum) cut cost.

A cut of the event graph is consistent if and only if the
set of all events corresponding to vertices in the source part
are consistent. From this definition, the following lemma
apparently holds.

LEMMA 2.1.For an event graph, a cutC is consistent if
and only if each arc onC is from the source part to the sink
part.
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FIGURE 3. (a) Consistent cutC1, (b) inconsistent cutC2 and (c)
inconsistent cutC3.

Note that the cost of a consistent cut may represent the
number of tokens of the corresponding global state. Figure 3
illustrates cuts of an event graph. In this figure, only cutC1
is consistent, since for cutC2 the message arc with cost 2 is
from the sink part to the source part and forC3 the internal
arc with cost 1 is from the sink part to the source part.

The minimum (maximum) consistent cut is the consistent
cut with the least (largest) cost among all consistent cuts.
The minimum (maximum) consistent cut cost is the cost
of the minimum (maximum) consistent cut. The minimum
(maximum) consistent cut is also called the minimum
(maximum) global snapshot.

2.5. Predicate detection

In our model, we assume that the event graph with costs on
arcs is given in advance. In practice, Garg and Waldecker
[6] suggested that in each event each process sends its
state information (such as the number of tokens currently
held) to a process, called the checker process, which runs
an algorithm to detect the global predicate. In order to
detect the bounded global predicates, we need to derive the
minimum and maximum global snapshots (or the minimum
and maximum consistent cuts) in a given event graph and
then check if its cost is less than or greater than the constant
K . In the next section, we will investigate the methods of
deriving the minimum and maximum global snapshots.
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3. MINIMUM AND MAXIMUM GLOBAL
SNAPSHOTS

In this section, we will derive the minimum and maximum
global snapshots in a given event graph. In Subsection 3.1,
we will describe the basic method modified from Groselj’s
paper [7] that can efficiently derive the minimum global
snapshot for all event graphs without negative-cost arcs.
In Subsection 3.2, we propose two operations, translation
and reflection, by which we can derive both minimum and
maximum snapshots for zero-message-cost event graphs.
Zero-message-cost event graphs are event graphs whose
message arcs all have zero cost (whose internal arcs may
have negative costs). In Subsection 3.3, we propose an
operation, normalization, to derive both minimum and
maximum global snapshots for all event graphs.

3.1. Basic technique for the minimum consistent cut

Groselj [7] proposed a method to derive the minimum
consistent cut cost of an event graph (without negative-cost
arcs) and which is based on flow network algorithms. In this
subsection, we describe a simple method which is modified
from Groselj’s.

In fact, an event graph can also be viewed as a flow
network (defined in Definition 3.1) with multiple sources
and sinks [10]. All the initial (final) internal events
correspond to the source (sink) nodes and the value on each
arc corresponds to the capacity of the arc.

DEFINITION 3.1.A flow network N = (V , E) is a
directed graph in which each edge(u, v) ∈ E has a non-
negative capacityc(u, v) ≥ 0. Some nodes are designated
sources and some others are designated sinks. A cut is a
set of arcs all incident to two disjoint vertex sets partitioned
from V , where one set with sources is called the source set
and the other with sinks is called the sink set. The capacity
of a cut is the total capacity of all arcs (on the cut) from the
source set to the sink set. A minimum cut of a flow network
is the cut with the least capacity. The least capacity is also
called the min-cut capacity.

The key to Groselj’s technique is to reduce an event
graph to another flow network while keeping the following
property satisfied:

• the min-cut capacity of the reduced flow network equals
the minimum consistent cut cost of the original event
graph.

Since the minimum cut problem in a flow network is
equivalent to the maximum network flow problem as shown
by Ford and Fulkerson [11], we can use some efficient
maximum network flow algorithm, such as that of [12], to
find the minimum cut cost.

In order to reduce an event graph to a flow network
with the above property, we use the following reduction
operation.

R1 For each arc(vi , v j ), add a reverse arc(v j , vi ) with the
value∞.

P1 P2

OO

OO

OO

OO

OO

OO
OO

OO

OO

(b)

9

1

5

1

5

1

1

5
= 3

cut capacity
= 

sink nodes

source nodes

cut capacity
minimumconsistent

cut cost
= 3

9

1

5

1

5

1

1

5

cut cost
= 2

minimum

minimum

(a)

FIGURE 4. (a) Before operation R1 and (b) after operation R1.

Note that the initial (final) internal nodes become the
source and sink nodes.

Lemma 3.1 shows that after the reduction operation R1 the
min-cut capacity of the reduced flow network is the same as
the minimum consistent cut cost of the original event graph.

Since the vertex set is unchanged in the reduction
algorithm R1, we define that the cutCG in the original graph
G is equivalent to the cutCN in the reduced networkN if
and only if the two vertex sets partitioned by cutCG in G
are the same as those partitioned by cutCN in N .

LEMMA 3.1.Given an event graphG, use the reduction
operation R1 as described above to reduceG to a flow
networkN. Then, the minimum cut inN is also a minimum
consistent cut ofG. Also, the min-cut capacity inN equals
the minimum consistent cut cost ofG.

Proof. For each cutCN in the reduced flow networkN , its
equivalent cutCG in G is either consistent or inconsistent.
Assume that cutCG is consistent. According to Lemma 2.1,
each arc in cutCG must be from the source part to the sink
part. Thus, after the reduction operation R1, the equivalent
cut still has the same cost (or capacity) since the costs of
reversed arcs are not counted, as illustrated in Figure 4.

If CG is inconsistent, there exists an arc(u, v) whereu is
in the sink part andv is in the source part from Lemma 2.1.
On the equivalent cutCN in N , since the reversed arc(v, u)

(added from the reduction operation R1) is from the source
part to the sink part, the capacity of the arc,∞, will be added
into the total capacity of the cutCN , which will become∞,
as illustrated in Figure 4.

From the above discussion, the min-cut capacity inN is
also the minimum consistent cut cost inG. The minimum
cut in N is also a minimum consistent cut ofG.

3.2. Zero-message-cost event graphs

Chase and Garg derived the minimum consistent cut for each
zero-message-cost event graph [4]. In this subsection, we
propose two operations, translation and reflection, in order
to derive both minimum and maximum consistent cuts for
each zero-message-cost event graph, respectively.
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FIGURE 5. (a) The original zero-message-cost event graph and
(b) the translated graph (M = 13).
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FIGURE 6. (a) The original zero-message-cost event graph and
(b) the reflected graph.

3.2.1. Translation and the minimum consistent cut
DEFINITION 3.2.For a given event graph, a translation

operation does the following: for each internal arc, addM
to its cost, whereM = max(|Sa|) for all internal arc costs
Sa.

After making the translation operation (as defined in
Definition 3.2) on a zero-message-cost event graph, we
can derive the following two properties on the graph (as
illustrated in Figure 5).

• Since each consistent cut only cuts across one arc on
each internal path, each consistent cut cost in the event
graph will increase by a constantpM. Therefore, the
minimum consistent cut remains the same.

• Each arc in the event graph has a non-negative cost.

As stated above, after making the translation operation
on a zero-message-cost event graph, we can apply the basic
method described in the previous subsection to this graph in
order to solve the minimum consistent cut (due to the second
property).

3.2.2. Reflection and the maximum consistent cut
DEFINITION 3.3.For a given event graph, a reflection

operation does the following: for each internal arc costSa,
set the cost to−Sa.

P1 P2 P3

each arc
add 100 to

P1 P2 P3

106 102 110

104

98 103 113

102

95

98

104
101

minimum
consistent
cut cost
= 308

6 2 10

4 2

-2 3 13
-5

-2

4
1

minimum
consistent
cut cost
= -5

FIGURE 7. Adding 100 to each arc cost.

After making the reflection operation (as defined in
Definition 3.3) on a zero-message-cost event graph, we can
derive the following property on the graph (as illustrated in
Figure 6):

• Each consistent cut costC in the event graph will
become−C. Hence, the original maximum consistent
cut becomes the minimum consistent cut in the new
event graph.

From above, after making the reflection operation on a
zero-message-cost event graph, we can apply the translation
method to this graph in order to solve the maximum
consistent cut of the new event graph.

3.3. Normalization

Although the translation and the reflection operations
can deal with zero-message-cost event graphs, these two
operations cannot be applied to all event graphs directly.
For example, if the translation operation is also applied
to message arcs in Figure 7, in order to make all costs
non-negative, all consistent cuts may cut across different
numbers of message arcs and therefore their costs will
increase differently.

In this subsection, we propose an operation, called
normalization, to reduce a general event graph to a zero-
message-cost event graph. The key of the normalization
technique is to clear the costs of message arcs to zeros
by shifting the costs of message arcs to internal arcs
without changing any consistent cut cost. The normalization
operation repeats the following primitive operation until
each message arc costSam is zero:

(i) Find a message arcam = (ei , e j ) with Sam 6= 0.
(ii) Add Sam into the cost of each arc(u, v) on the internal

path containingei , whereei → v.
(iii) Add −Sam into the cost of each arc(u, v) on the internal

path containinge j , wheree j → v.
(iv) Clear the cost of arcam to zero (that is, add−Sam into

the cost of arcam).

Figure 8 illustrates arc costs before and after normaliza-
tion. It is easy to observe from the figure that any cut cost
does not change after normalization. Lemma 3.2 proves this
property.
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FIGURE 8. Normalizing an arc (see the emboldened arrows).
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FIGURE 9. Normalizing an arc does not change cut costs.

LEMMA 3.2.LetG′ be normalized from event graphG as
described above. The cost of each consistent cut ofG equals
the cost of the corresponding cut ofG′.

Proof. It suffices to prove that, for each primitive
normalization operation, no consistent cut cost is changed.
Consider a primitive operation normalizing a message arc
am = (ei , e j ), whereei ande j are vertices on the internal
paths Pi and Pj , respectively. LetC be a consistent cut
which partitions the vertices into the source partS and the
sink part T ; then there are three waysC can cut across
internal pathsPi andPj .

(i) Suppose thatei ∈ T and e j ∈ T (as shown in
Figure 9a). In this case, the cut cost obviously
is unchanged because all arc values in the cut are
unchanged.

(ii) Suppose thatei ∈ S and e j ∈ T (as shown in
Figure 9b). Assume thatC cuts internal arcsai anda j

in Pi andPj , respectively. In this case, the cut must also
cut across the arcam . Then, the valueSai increases by
Sam , Sa j remains the same andSam decreases (to zero)
by Sam . Thus, the total cut cost is still the same.

(iii) Supposeei ∈ S ande j ∈ S (as shown in Figure 9c).
Assume thatC cuts internal arcsai anda j in Pi and
Pj , respectively. In this case, the valueSai increases by
Sam andSa j decreases bySam . Therefore, the total cut
cost is still the same.

As illustrated above, the total cut cost is still the same for

all cases. That is, for all consistent cuts, their cut costs are
still the same. �

According to Lemma 3.2, any general event graph can
be normalized to become a zero-message-cost event graph.
Then, after the normalization operation, we can derive the
minimum and maximum consistent cuts of all event graphs
by using the approach discussed in Subsection 3.2.

4. DISCUSSIONS

Traditionally, researchers [4, 7] can only derive the
minimum consistent cut cost with non-negative arc costs.
In this paper, we propose a new and elegant technique,
normalization, by which we can efficiently find the
minimum and maximum consistent cut cost of an event
graph without limiting arc costs to non-negatives. Our
results can be extended to the detection of bounded global
predicates. This is useful for a control system (e.g., a
dynamic load balancing system) whose consistent costs
should be bounded in a range.

The algorithms for the minimum and maximum consistent
cut problems described in Subsection 3.2 basically consist of
the following operations.

• The maximum network flow operation: we can use the
fastest maximum network flow algorithm, the preflow-
push algorithm [12] that runs inO(nm log(n2/m)),
wherem is the number of edges andn is the number
of vertices. In our problem, each vertex (corresponding
to an event) in an event graph has at most three incident
arcs. Therefore,m = 2(n) in an event graph and
the time complexity for the preflow-push algorithm is
O(n2 logn).

• The translation operation: since it only finds the
maximum arc costM and then changes each arc cost,
the time complexity isO(n).

• The reflection operation: since it only changes each arc
cost once, the time complexity isO(n).

• The normalization operation: for each message arc
a = (u, v), we mark+Sa at eventu and mark−Sa

at eventv. Then for each internal path, update each arc
cost by scanning from its initial internal arc to its final
internal arc. Thus, the normalization operation can be
finished inO(n).

Thus, the time complexity for detection of bounded global
predicates isO(n2 logn) in total.
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