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D-Stability Bound Analysis for Discrete
Multiparameter Singularly

Perturbed Systems

Feng-Hsiag Hsiao, Shing-Tai Pan, and Ching-Cheng Teng

Abstract—The D-stability (i.e., the stability in the sense that all the
poles of a system are lying inside the diskD(�; r)) problem for discrete
multiparameter singularly perturbed systems is considered in this brief.
A two-stage method is first developed to analyze the stability relationship
between the discrete multiparameter singularly perturbed systems and
their corresponding reduced systems. An upper bound of the singular
perturbation parameters is then derived such that the D-stability of the
reduced systems implies that of the original systems, provided that the
singular perturbation parameters are small enough to be within this
bound. This fact enables us to investigate D-stability of the original
systems by establishing that of their corresponding reduced systems.

Index Terms—D-stability, singular perturbation parameters.

I. INTRODUCTION

The problem of pole assignment in linear system theory has been
discussed by many authors and solved in many ways. However,
locations of poles vary and they cannot be fixed due to parametric
uncertainties, e.g., identification errors, ageing of devices, variation
of operating points, etc.. Consequently, placing all poles in a desired
region rather than choosing an exact assignment may be more
satisfactory in practical applications. A well-known desired region
for the discrete systems is a diskD(�; r) centered at(�; 0) with
radiusr; in which j�j + r < 1: The assignment of all the poles of a
system in the specified diskD(�; r) shown in Fig. 1 is referred to
as the D-pole placement problem.

Singularly perturbed systems have been extensively studied in
recent years; see Kokotovicet al. [1] and the references therein.
The work on the discrete singularly perturbed systems with multiple
parameters, which dealt with the multitime scales in discrete dynamic
systems can be found in Mahmoud [2]. A key to the analysis of
singularly perturbed systems lies in the construction of reduced
systems. It is noted that the approximation of original systems
via the corresponding reduced systems is valid only when the
singular perturbation parameters of these systems are sufficiently
small. Therefore, it is imperative to find an upper bound of the
singular perturbation parameters such that the stability of the original
systems can be investigated by establishing that of their corresponding
reduced system, provided that the singular perturbation parameters are
small enough to be within this bound. The upper bound of the singular
perturbation parameter for the asymptotic stability analysis of discrete
single-parameter singularly perturbed systems was discussed by Li
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Fig. 1. A specified diskD(�; r):

and Li [3]. However, since there exist multiple parameters in most
singularly perturbed dynamic systems, the analysis of the upper bound
of the singular perturbation parameter as described in Li and Li [3] is
thus impractical for the real control systems. Although the continuous
multiparameter singularly perturbed systems have been investigated
by many authors, see Khalil and Kokotovic [4] and the references
therein, with recent developments in microprocessor technology,
however, it becomes even more important to focus the analysis and
design of the feedback control systems by using digital equipment.
This in turn will promote the study of discrete multiparameter
singularly perturbed systems. It is seen that the backward Euler
discretization of the continuous multiparameter singularly perturbed
systems can provide us with the discrete multiparameter singularly
perturbed system (see [5]). On the other hand, due to the presence
of parametric uncertainties in practical systems, it is imperative
to consider the D-stability problem of the discrete multiparameter
singularly perturbed systems. A literature search indicates that the D-
stability problem of finding an upper bound of singular perturbation
parameters for the discrete singularly perturbed systems with multiple
parameters remains unresolved.

Hence, in this brief, research on time-scale modeling is extended
to include the discrete multiparameter singularly perturbed systems.
An algorithm is proposed to find an upper bound of the singular
perturbation parameters for the D-stability analysis of the discrete
singularly perturbed systems with multiple parameters. If the singular
perturbation parameters are small enough to be within this bound,
the D-stability of the reduced systems can imply that of the original
systems.

II. D-STABILITY ANALYSIS

Consider the discrete system:

x(k + 1) = Ax(k) (1)

in which x(k) 2 Rn andA is a constant matrix with appropriate
dimensions.
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Definition 1: The system (1) is said to beD(�; r)-stable if all the
poles of the system (1) are within the specific diskD(�; r) centered
at (�; 0) with radiusr; in which j�j + r < 1 (see Fig. 1).

We now present aD(�; r)-stability criterion for the system (1) as
follows.

Lemma 1: [6] If the following inequality (2) holds, all the poles
of the system (1) are within the specified diskD(�; r):

jjA� �Ijj<r: (2)

III. PROBLEM FORMULATION

Consider the following discrete multiparameter singularly per-
turbed system which is referred as the R-model [7]:

x(k + 1) =A0x(k) +A01z1(k) + � � �+ A0NZN (k)

z1(k + 1) = "1A10x(k) + "1A11z1(k) + � � �+ "1A1NzN(k)

...
...

...
...

zN(k + 1) = "NAN0x(k) + "NAN1z1(k) + � � �+ "NANNzN(k)

(3)

in whichA0 is assumed to be nonsingular. System (3) can be obtained
from the slow sampling rate model as a result of discretization
or sampled-data control of the singularly perturbed continuous-time
systems [3]. The small positive scalars"1; � � � ; "N areN singular
perturbation parameters which often occur naturally due to the
presence of small parameters in the various physical systems, e.g.,
in power system model the singular perturbation parameters can
represent machine reactances or transients in voltage regulators, in
the industrial control systems they may represent time constants of
drives and actuators and in the nuclear reactor models they are due to
fast neutrons, etc. In many real systems, these singular perturbation
parameters are of the same order and do not allow the multitime scale
assumption [8]. Accordingly, the ratios of"1; � � � ; "N are assumed to
be bounded by some positive constantsmij ;Mij :

mij �
"i

"j
�Mij ; i; j = 1; � � � ; N (4)

that is, the possible values of" = ("1 � � � "N)T are restricted to a
coneH � RN : Such an assumption allows that the convergence
results are sought asjj"jj ! 0 in H to guarantee that they hold for
all sufficiently small" 2 H [2]. The system (3) can be rewritten
as follows:

x(k + 1) =A0sx(k) +A0fz(k); x(0) = x0;

z(k + 1) =�(")G�1(")ANsx(k) + �(")G�1(")ANf z(k);

z(0) = z0 (5)

where

z(k) = (zT1 (k) � � � z
T
N (k))T

A0s =A0; A0f = [A01 � � �A0N ]

ANs =

A10

...
AN0

; ANf =

A11 � � � A1N

...
...

...

AN1

... ANN

;

G(") � block diag
�(")

"1
I1 � � �

�(")

"N
IN and

�(") � jj"jj: (6)

In view of (4), the matrixG�1(") in (5) is bounded for all" 2
H;mi � ("i=�) �Mi; wheremi;Mi depend onmij ;Mij : Hence,
the system (5) becomes a single-parameter form except thatG and�
depend on" and the new singular perturbation parameter is� instead
of ":

Remark 1: For convenience, the symbolsG(") and �(") are
replaced withG and�; respectively, in the remainder of this brief.

The zero-order approximation of the system (5) can be written as
[9]:

xs(k + 1) =A0sxs(k); (7a)

zf(k + 1) =�[G�1
ANf �G

�1
ANsA

�1
0s A0f ]zf (k)

=�G
�1[ANf �ANsA

�1
0s A0f ]zf(k) (7b)

with the initial conditions

xs(0) = x0 + A
�1
0s A0fz0; zf(0) = z0 (8)

and the approximate solution of system (5) is

x(k; �) =xs(k)�A
�1
0s A0fzf(k) +O(�);

z(k; �) = zf(k) +O(�): (9)

Here, xs is the slow state andzf is the fast state; the systems
(7a) and (7b) are called the slow and fast subsystems of the original
system (5), respectively. In view of (9), we can see that the response
of the original system (5) is dominated by the dynamics of the slow
and fast states. Hence, if the slow and fast subsystems are both D-
stable, then so is the original system for sufficiently small singular
perturbation parameters. The corresponding theoretical consequence
is stated in the following theorem.

Lemma 2: If the slow and fast subsystems (7a) and (7b) are both
D(�; r)-stable, then the original system (5) is alsoD(�; r)-stable
for sufficiently small�:

Proof: Following the similar procedure as that in Lemma 1 of
[2], system (5) can be transformed into

x(k + 1)
z(k + 1)

=
A0s +O(�) 0

0 �G�1(ANf �ANsA
�1
0s A0f ) +O(�2)

�
x(k)
z(k)

: (10)

Comparing (7) and (10), it is obvious that if the slow and
fast subsystems (7a) and (7b) are bothD(�; r)-stable (i.e., all the
eigenvalues ofA0s and�G�1(ANf �ANsA

�1
0s A0f ) are within the

disk D(�; r)); then the original system (5) isD(�; r)-stable for
sufficiently small�:

Remark 2: The significance of the singular perturbation param-
eters lies in their effects on the deviation of the original system
from its corresponding model—the reduced system. Additionally, the
deviation can be improved as the singular perturbation parameters
decrease. In this study, the reduced system is a valid model only for
certain values of�; in which both the original system and the reduced
system areD(�; r)-stable. In the next section, an upper bound of�

is derived such that the validity of the reduced system can be assured
if the singular perturbation parameters are within this bound.

IV. FINDING AN UPPER BOUND ��

The main purpose of this brief, which will be presented in this
section, is to use an algorithm to find an upper bound�� of the
singular perturbation parameters for theD(�; r)-stability analysis.
Before proceeding to derive the main result, some useful lemmas are
given in the following.

Lemma 3: [10] Let a matrixE(z) 2 <m�n
1 with <m�n

1 denoting
the set ofm� n matrices whose elements are proper stable rational
functions, then

sup
z2


jjE(z)jj = sup
jzj�1

jjE(z)jj = sup
�2[0;2�]

jjE(ej�)jj
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where


 = fz = re
j�
; � 2 [0; 2�]; jrj � 1g:

SinceE(z) is analytic forz 2 
; this norm is well defined.
Lemma 4: [10] If E(z) 2 <n�n

1 and jjE(z)jj< 1;8jzj � 1; then
[I � E(z)]�1 2 <n�n

1 :

After reviewing the above lemmas, we are in the position to derive
the main result.

Theorem 1: Given the original discrete system (5) and the reduced
system (7), in which the slow subsystem (7a) is assumed to be
D(�; r)-stable (i.e., all the eigenvalues ofA0s are within the disk
D(�; r));D(�; r)-stability (with r > j�j) of the reduced system (7)
can imply that of the original system (5) for all� 2 (0; ��) where
�� are determined according to the following steps:

i) find the supreme value of�; called��1; such that

jj�(ANf �ANsA
�1
0s A0f )jj<r � j�j (11)

ii) compute (12) shown at the bottom of the page.
iii) choose

�
�
= min (�

�
1; �

�
2): (13)

Proof: i) Considering the matrix in (7b), we have

jj�G�1
(ANf �ANsA

�1
0s A0f )� �Ijj

� jjG�1jj jj�(ANf �ANsA
�1
0s A0f )jj+ j�j

� jj�(ANf � ANsA
�1
0s A0f )jj+ j�j:

( jjG�1jj � 1):

Thus, if ��1 is chosen such that

jj�(ANf � ANsA
�1
0s A0f jj<r � j�j; 8� 2 (0; �

�
1);

the following inequality is obtained

jj�G�1
(ANf �ANsA

�1
0s A0f )� �Ijj<r 8� 2 (0; �

�
1): (14)

Therefore, according to Lemma 1 and the assumption ofD(�; r)-
stability of the slow subsystem (7a), we conclude that the reduced
system (7) isD(�; r)-stable for all� 2 (0; ��1).

ii) Applying z-transform to the original system (5), yields

X(z) = (zI � A0s)
�1
A0fZ(z) + (zI �A0s)

�1
x0

Z(z) =	
�1

(z)z0 +	
�1

(z)�G
�1
ANs(zI � A0s)

�1
x0

(15)

where

	(z) � [zI � �G
�1
ANf � �G

�1
ANs(zI � A0s)

�1
A0f ]:

Since the slow subsystem (7a) is assumed to beD(�; r)-stable, all
poles of(zI �A0s)

�1 are inside the diskD(�; r): Therefore, to let
all the poles ofZ(z) be within the diskD(�; r) (and so are those of

X(z)); we only need to find the condition which guarantees that all
the poles of	�1(z) are within the diskD(�; r): Moreover, since

	
�1

(z)

= z
�1fI � �z

�1
G
�1

[ANf + ANs(zI � A0s)
�1
A0f ]g

�1

� z
�1

[I � �(z)]
�1 (16)

and the pole of the termz�1 in (16) is z = 0 which is inside the
disk D(�; r) ( r > j�j): Consequently, if all poles of the term
[I��(z)]�1 in (16) lie inside the diskD(�; r); then	�1(z) has all
poles lying inside the diskD(�; r): Let (z � �)=r be replaced by a
variable g (i.e.,z = rg + �); then the term[I � �(z)]�1 becomes
[I � �g(g)]

�1 where

�g(g) ��(rg + �)
�1
G
�1fANf + ANs[(rg + �)I

� A0s]
�1
A0fg:

It is obvious that�g(g) 2 <n�n
1 : Furthermore, taking norm on�g(g);

we have

jj�g(g)jj ��jjG�1jj jj(rg + �)
�1fANf +ANs[(rg + �)I

�A0s]
�1
A0fgjj

��jj(rg + �)
�1fANf + ANs[(rg + �)I

�A0s]
�1
A0fgjj (17)

( jjG�1jj � 1): It can be seen from (17) that if (see (18) at
the bottom of the page thenjj�g(g)jj< 1;8jgj � 1: Consequently,
according to Lemma 4, we have[I��g(g)]�1 2 <n�n

1 Subsequently,
based on Lemma 3, the condition (18) is quivalent to (19), shown at
the bottom of the page.

In other words, if�<��2; then [I � �g(g)]
�1 2 <n�n

1 and then
all poles of the term[I��(z)]�1 in (16) lie inside the diskD(�; r):

Therefore, the original system (5) isD(�; r)-stable.
iii) The smaller of the two values��1 and��2 is chosen such that

the�-bound can satisfy theD(�; r)-stability criteria.
Remark 3: In principle, any norm can be used in our results.

However, the choice of norm affects the conservatism of the bound
��: As there is no explicit information to indicate the conservatism
of the bound�� obtained by using various norms, the norm which is
easier to compute is thus first used. In some cases, however, resorting
to other norms to obtain a less conservative upper bound may be
desirable. In other words, the choice of norm depends not only on
the convenience of computation but also on the conservatism of the
bound ��:

V. EXAMPLE

In this section, an example of a multiparameter singularly perturbed
system is given to illustrate how to find an upper bound of the
singular perturbation parameters,��; such thatD(�; r)-stability

�
�
2 =

1

sup�2[0;2�] jj(re
j� + �)fANf +ANs[(rej� + �)I �A0s]�1A0fgjj

(12)

�<
1

supjgj�1 jj(rg + �)�1fANf + ANs[(rg + �)I � A0s]�1A0fgjj
(18)

�<
1

sup�2[0;2�] jj(re
j� + �)�1fANf + ANs[(rej� + �)I � A0s]�1A0fgjj

= �
�
2: (19)



350 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 4, APRIL 1997

of the original system can be inferred from the analysis of their
corresponding reduced systems.

Consider a discrete dynamic system with three singular perturba-
tion parameters described by the following equations:

x1(k + 1) =�0:1x1(k)� 0:02z1(k) + 0:06z2(k)

+ 0:05z3(k)

x2(k + 1) =0:2x1(k)� 0:03x2(k) + 0:001z1(k)

+ 0:004z2(k) + 0:003z3(k)

z1(k+ 1) =1:2"1x1(k) + "1x2(k) + 0:6"1z1(k)

+ 0:47"1z2(k) + 1:5"1z3(k)

z2(k+ 1) =0:5"2x1(k) + 0:7"2x2(k) + 0:45"2z1(k)

+ 0:71"2z2(k) + "2z3(k)

z3(k+ 1) =�0:4"3x1(k) + 0:2"3x2(k)� 1:1"3z1(k)

+ 0:8"3z2(k) + 0:25"3z3(k): (20)

According to (5), the system (20) can be rewritten as

x(k + 1) =A0sx(k) + A0fz(k)

z(k + 1) =�(")G
�1

(")ANsx(k) + �(")G
�1

(")

� ANfz(k) (21)

where

x(k) =
x1(k)

x2(k)
; z(k) =

z1(k)

z2(k)

z3(k)

" =("1 "2 "3)
T

G(") =diag
�(")

"1

�(")

"2

�(")

"3
; �(") = jj"jj

A0s =
�0:1 0

0:02 �0:03
;

A0f =
�0:02 0:06 0:05

0:001 0:004 0:003

ANs =

1:2 1

0:5 0:7

�0:4 0:2

;

ANf =

0:6 0:47 1:5

0:45 0:71 1

�1:1 0:8 0:25

: (22)

Suppose that the time-domain specifications of the system (20) are
given as follows:

a) overshoot� 15%; or equivalently, damping ratio

� � 0.5; (23a)

b) rise time� 8 s, or equivalently, natural frequency

!n � 0.3125; (23b)

c) settling time� 20 s, or equivalently, all poles less

than0:8 (the sampling intervalT = 1 s): (23c)

As these constraints (a)–(c) may be interpreted as pole locations inside
the specified disk D(0.3, 0.46) [11], it is preferable to find an upper
bound of�; called��; such that D(0.3, 0.46)-stability of the reduced
system can imply that of the original system (20) for all� 2 (0; ��):

It is obvious thatA0s is D(0.3, 0.46)-stable and nonsingular and
hence satisfies the assumption in Theorem 1. And then we can follow
the design algorithm proposed in Theorem 1 to find an upper bound
of the singular perturbation parameters.

i) Let

Ar � ANf � ANsA
�1

0s A0f =

0:26 1:7233 2:5333

0:28 1:3833 1:5333

�1:04 0:6667 0:1367

:

Based on (11), we have (by using Euclidean norm)

�jjArjj = ��
1=2
max

(A
T
r Ar)<r � j�j = 0:46� 0:3 = 0:16;

where

jjArjj = �
1=2
max

(A
T
r Ar) = 3:739:

This implies�< 0:0428: Therefore, we choose��
1
= 0:0428:

ii) According to (12), we have��
2
= 0:05945:

iii) Based on (13), we choose�� = min (��
1
; ��

2
) = 0:0428:

In order to verify this result, a set of singular perturbation param-
eters is chosen as follows:

"1 =0:02; "2 = 0:025; "3 = 0:027; i.e.

" =("1 "2 "3)
T
= (0:02 0:025 0:027)

T
:

From here, we can establish that� = jj"jj �= 0:0419< 0:0428 = ��

Using this set of singular perturbation parameters, the matrix in fast
subsystem (7b) is written as

Afs = �G
�1

Ar =

0:0052 0:0345 0:0507

0:007 0:0346 0:0388

�0:0281 0:018 0:0037

:

Since the eigenvalues of the matrixAfs are 0.0057�j0:0202;0:032;
that is, all the poles of the system (7b) lie inside the specific disk
D(0.3, 0.46), the reduced system (7) is thus D(0.3, 0.46)-stable.

Moreover, the original system (20) can be rewritten as

x1(k + 1)

x2(k + 1)

z1(k + 1)

z2(k + 1)

z3(k + 1)

= A �

x1(k)

x2(k)

z1(k)

z2(k)

z3(k)

in which

A =

�0:1 0 �0:02 0:06 0:05

0:02 �0:03 0:001 0:004 0:003

0:024 0:02 0:012 0:0094 0:03

0:0125 0:0175 0:0113 0:0177 0:025

�0:0108 0:0054 �0:0297 0:0216 0:0068

:

The eigenvalues of A are �0:0961;�0:0364;0:0056 �

j0:0201;0:0278; indicating that all the poles of system (20)
are within the disk D(0.3, 0.46). Hence, the original system
(20) is also D(0.3, 0.46)-stable and then meets the time-domain
specifications (23a)–(23c) as well. Furthermore, the first two
eigenvalues ofA are close to those ofA0s (matrix of the slow
subsystem) and the remaining three eigenvalues are also close
to those of Afs (matrix of the fast subsystem). Hence, D(0.3,
0.46)-stability of the slow and fast subsystems can imply that of the
original system (20). This justifies our result.

Remark 4: If 1-norm and1-norm are adopted, then�� are found
to be 0.0379 and 0.0354, respectively. Although adopting 1-norm
(1-norm) will make the computation quite easy by dispensing with
troublesome eigenvalue evaluation, a more conservative upper bound
is obtained and thus 1-norm(1-norm) is not considered in this
example.
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VI. CONCLUSION

In this brief, we consider a discrete multiparameter singularly
perturbed system which can be transformed into a form similar to
that of a discrete single-parameter singularly perturbed system. It
has been shown that the D-stability of the original system can be
investigated by establishing that of the reduced system, provided
that the singular perturbation parameters are sufficiently small. An
algorithm is then proposed for finding an upper bound of the norm of
the multiparameter vector" = ("1 � � � "N)

T : Within this bound, the
D-stability of the reduced system implies that of the original system.
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An Analog Scheme for Fixed Point
Computation—Part I: Theory

Vivek S. Borkar and K. Soumyanath

Abstract—An analog system for fixed point computation is described.
The system is derived from a continuous time analog of the classical over-
relaxed fixed point iteration. The dynamical system is proved to converge
for nonexpansive mappings under allp norms, p 2 (1;1]. This extends
previously established results to not necessarily differentiable maps which
are nonexpansive under the1-norm. The system will always converge
to a single fixed point in a connected set of fixed points. This allows the
system to function as a complementary paradigm to energy minimization
techniques for optimization in the analog domain. It is shown that the
proposed technique is applicable to a large class of dynamic programming
computations.

I. INTRODUCTION

Many problems in optimization theory and numerical analysis
can be posed as problems of finding a fixed point of a mapF

from a finite dimensional vector space into itself. Often these maps
are nonexpansive with respect to a suitable norm, i.e., the distance
between the images of two distinct points underF does not exceed
the distance between the points themselves. Such mappings are ubiq-
uitous and arise naturally in solving linear systems of equations, some
recursive schemes for nonlinear programming, dynamic programming
and certain formulations of network flow problems. The classical
approach to finding fixed points under nonexpansive maps is to set
up the recursion

xn+1 = F (xn) ; n � 0

wherex0 is arbitrary.
The over-relaxed version of the above, with a relaxation parameter


 2 (0; 1], is given by

xn+1 = (1� 
)(xn) + 
F (xn):

It can be shown that, under certain conditions [3], both the above
and its over relaxed version, converge to a fixed pointx� of F (x);

whenF is a nonexpansive map. The above over-relaxation can be
rewritten as

xn+1 � xn



= F (xn)� xn; 
 � 0

This suggests an analog or continuous time version:
:
x (t) = F (x(t))� x(t); t � 0: (1)

This is the coupled dynamical system we study in this brief. A
schematic of the computation element for a givenxi is shown in
Fig. 1. The setN(i) is the index set of the “neighbors” of component
xi, in the sense that computation ofFi requires knowledge ofxj
where j 2 N(i).
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