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Processes, growth mechanisms and properties of various

metal-encapsulated carbon nanostructured materials by ECR-CVD

Student: Chao-Hsun Lin Advisors: Prof. Cheng-Tzu Kuo

Department of Materials Science and Engineering
National Chiao Tung University

Abstract

To examine effects of processing parameters, such as catalyst application
methods, pretreatment atmospheres and nanostructure deposition methods, on
the nanostructure formation, processes to synthesize metal-encapsulated carbon
nanostructured materials by both ECR-CVD and MPCVD methods were
designed, using CH,4, C;H,, H,, N,, NH; and CO, as source gases or pretreatment

atmospheres, and using Fe » Co » CoSiy, » N1 » Cu as catalysts. The catalysts were

deposited on Si wafer by spin coating the catalyst precursor solutions and/or
sputtering the metal targets. The pre-coated catalysts or their precursors were
followed by H- or (H+N)-plasma pretreatment to obtain various catalyst
nanoparticles distribution. The pretreated specimens were then deposited with
various carbon nanostructures in ECR-CVD or MPCVD system. The
nanostructures and their properties after each processing step were characterized
by scanning electron microscopy (SEM), transmission electron microscopy
(TEM), Raman spectroscopy, secondary ion mass spectroscopy (SIMS) and field
emission [-V measurements. The following conclusions can be drawn from these
studies.

On studying growth mechanisms of various nanostructures, the results
show the typical nanostructures by ECR-CVD with CH, as source gas include
the vertically aligned carbon nanotubes (VACNTs), bamboo-like CNTs
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(BLCNTs), rattan-like CNTs (RLCNTs) and seaweed-like nano-sheets (SLNSs).
The essential condition to form VACNTs is enough higher substrate bias ( >
-100 V). In contrast, a lower substrate bias (< 50 V) will give rise to SLNSs
formation. However, the RLCNTs will appeal by prolonging the VACNTs
deposition time over 10 min. It is noted that the presence of nitrogen and/or a
lower deposition pressure, such as in ECR-CVD system, are the favor conditions
forming BLCNTs. The replacement of hydrogen with nitrogen in the reaction
chamber is essentially to increase the bombardment effect of plasma to prolong
the catalyst-plasma surface from being poisoned by the carbon film. In case of
plasma pretreatment process or in the initial stage of nanostructure formation,
introduction of nitrogen is also basically to increase the bombardment effect to
promote the agglomeration effect due to a higher temperature, which gives rise
to bigger catalyst particle sizes and so bigger nanostructure diameters. The
possible growth mechanisms to form these nanostructures may be able to be
explained from the following points: (1) the catalysts with higher C solubility,
such as transition metals or alloys, can promote tube-like nanostructure
formation; (2) formation of the graphene layers of the nanostructures is mainly
through carbon bulk diffusion route in the catalysts; (3) the sizes of the catalyst
nanoparticles after initial nanostructure deposition stage basically determine the
final diameters of the nanostructures; (4) the difference in carbon bulk diffusion
rates around the center and the circumferential regions of the catalysts may
determine the types of nanostructures; a progressive increase in rate difference
can give rise a change in nanostructures from filament-like, bamboo-like to
hollow-like. In other words, if the catalyst surface on the plasma side is partially
poisoned by carbon films during deposition may be more favor to form
hollow-like nanostructures; and (5) the growth orientation of the nanostructures
is determined by the flow direction of carbon species near the catalyst surface.
Regarding influence of catalyst application methods on the nanostructure

growth, it is essentially depending on the differences in film thickness and,



uniformity of the coated films, independent of application methods. However,
the catalyst spin coating method has the advantages of large area, lower cost and
mass production, but the drawbacks of poor uniformity, environmental pollution
and difficultly to control the thickness of the film.

To examine effect of catalyst materials, the Co and Ni catalyst-assisted
nanostructures are typically VACNTs or RLCNTs by ECR-CVD. In contrast, the
nanostructures are mainly carbon films or SLNSs for the Fe catalyst, and are
SLNSs for Si substrate without catalyst or with Cu catalyst. It seems that the
types of nanostructures are basically resulting from the competition between the
carbon deposition and plasma etching rates. The deposition rate of the
Fe-assisted nanostructures may be relatively faster than for Co and Ni catalysts
due to its lower eutectic temperature. As to Cu catalyst, the solubility of carbon
in Cu is very limited, which causes carbon from the plasma to deposit directly
on the catalyst surface to form SLNSs.

To study field emission properties for various catalyst-assisted
nanostructures by ECR-CVD with CH, as source gas, the results show that the
field emission properties in terms of current density at 10 V/um and the
turn-on-voltage at 10 nA/cm”are Co (> 32, 3.0), Ni (19.8, 1.1), Fe (7.1, 4.6), no
catalyst (2.5, 4.6) (mA/cm’, V/ um) for the Co- and Ni-assisted VACNTs or
RLCNTs , and the Fe-assisted and no-catalyst- assisted SLNSs, respectively.
The corresponding Is/Ip values are 0.57, 0.55 , 0.59 and 0.45, respectively. It
seems to indicate that I5/Ip values are not the main factor to determine the field
emission properties. Effects of geometrical features of various nanostructures on
field emission properties are compared: the corresponding tube diameter, length
and tube number density for the Co- and Ni-assisted VACNTSs are (30~80 nm,
1.8~2.5um, 29~32 Gtubes/in®), (30~60 nm, 2.1~2.7um, 36~39 Gtubes/in®),
respectively. It appeals that the field emission properties are favor for the
nanostructures with higher aspect ratio and proper tube number density (also

called the decreasing of screening effect).
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To examine effect of U-shaped covering plate to cover a part of the
specimen on nanostructure formation, the results show that the plate did not
change the type, but change the orientation of the nanostructures. The possible
mechanism for this effect proposed in this work is explained from the flow
pattern variation by a change in electric field around the covering plate, though

some investigators explained by a guiding flow of covering plate.
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