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Abstract- This paper reports a novel application of receding
finite horizon constrained optimization techniques to design an
audio-band full digital amplifier. The digital amplifier using
power MOSFET requires a modulator to modulate the
reference signal into binary sequences. The modulator can be
viewed as an over-sampled quantizer with noise-shaping
requirement. One of the main issues in designing the modulator
is to maintain stability while maximizing the range of the
reference input signal. The quantization scheme resulting from
the optimization is derived in detail to arrive at the stability
condition under zero initial conditions. It shows the stability
condition becomes more stringent when the relative degree of
the shaping filter is high. Simulations results are given to
illustrate the effectiveness of the design methodology.

I. INTRODUCTION

Class D amplifier, a more efficient way for audio power
amplification than Class A/B amp, have drawn a lot of
attention in recent years [7]. To drive the power stage to
produce high fidelity sound, it is necessary to convert the
audio PCM data into the driving signal (the binary sequence).
The binary sequence is usually referred as the quantized 1-bit
signal and has a higher sampling rate (called over-sampling)
than the original source signal. The binary sequence can be
generated using the digital PWM technique. To reduce the
total harmonic distortion and enhance the signal/noise ratio,
research efforts were reported by using sigma-delta
modulation [13-14][18], DSP techniques [2] [5], feedback
control [6], and interpolation methods [4] [ 1].

Recently, feedback quantization using the technique of
receding horizon linear quadratic control with finite input
constraint was reported [16-17]. It was also applied to design
analog-to-digital conversion [15]. The technique offers a
systematic way of designing the quantizer (or modulator)
with various performance measures. However, to apply the
method for generating the modulation sequence for a class-D
amplifier, it is necessary to maximize the input range while
keeping the system to be stable. This paper reports a detail
analysis of the stability of the nonlinear feedback under zero
initial condition. The analysis can be applied to the cases of
horizon one and two in the optimization scheme. Further,
since the computing resource for real-time application is
usually limited, operations such as nearest neighborhood
quantization are carefully designed to fit into the platform.
Simulation results show that the method is quite effective in
generating the control sequences.

II. BASIC CONCEPT

Fig. 1 shows a typical power stage (H-bridge) in a class-D
amplifier. The control signal u controls the current direction
of the load. Suppose that u is updated every T, second and

the value of u also contains the net duration of the current.
The simplest case is u = 1 or -1 which means either positive
or negative current direction is allowed within T,. If a higher
clock rate is available, say T, /nH where nH is an integer,
there could be 2nH +1 cases of the duration of the current.
For example, 5 cases for nH =2 are shown in Fig. 2. It is
easy to see that the value of u can be represented by a 2.5-bit
variable. The explanation allows us to apply the constrained
optimization control [15] to design a multi-bit quantizer
using over-sampling technique. This section presents a
concise introduction of the work in [15].

A. Problem Statement
Suppose u is characterized as it belongs to a finite set of

scalars u:
U = s1s... Snu

where nu denotes the cardinality of u. For example, in a

typical full-bridge topology, u might be {1, -1} to represent
the current in both directions. For a digital audio input signal
r, the purpose is to obtain the signal u that can represent the
signal r in the chosen bandwidth. Under over-sampling, we
can only take into account the distortion in input band (here
for audio signal is 0-22.05kHz) instead of overall frequency
band. Therefore, the distortion can be weighted via a stable,
linear, time-invariant filter WI which can be written as

W(z) = D +C(z - A)-' B (1)
The modulator then quantizes the signal r in a way that the

amplitude of the corresponding filtered quantization noise is
minimized.

It is then straightforward to define the system filtered noise
power Vas cost function [15]:

V--( |W(ej-)(R(ej-)-U(e-w))l dw(22z~~~~~~~~~~~

where W(e -) denotes the frequency response of the filter
W, while R(e]1w) and U(e}w) are the discrete Fourier
transforms of the signal r and u, respectively.
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Fig. 1 The full bridge topology and associated coding of the control signal
relative to the current direction
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Fig.2 The switching waveform of a 2.5 bit control signal

The constraint output u is chosen to minimize the cost
function V. If the value of V is minimized, the minimization
will be more emphasized in the frequency band where W has
larger magnitude, thus resulting in a U better approximating
R in that band. In audio applications it makes sense to choose
W as a low pass filter with cutoff frequency higher than
22.05kHz.
The expression in (2) can be translated into time domain

by using Parseval' s Theorem [ 1 5]:

V = E ))2 (3)
1=0

where e(l) are samples of filtered distortion as,
A

e=W(r -u) (4)
The state-space equation ofthe filter W is:
x(m + 1) = Ax(m) + B(r(m) - u(m)) (5)

e(m) = Cx(m) + D(r(m) - u(m))
where xe Rn is the state vector of dimension n, i.e. the

order of the filter W. Equation (3) is further simplified for
practical use with finite decision number:

A k+N- (6)
VN= (e(m))2

m=k
That means the cost function VN only takes into account N

number of constrained values u, which can be grouped into
the vector

ui(k)-[u(k) u(k+1) u(k+N -1)] (7)

B. Solution andMoving Horizon
The optimal constrained solution corresponds to finding

ui(k)e UN, such that VN is minimized. The following is the
definition of the vector quantizer.
Definition 1 (Nearest Neighbor Vector Quantizer) [16]
Given a countable (not necessarily finite) set of non-equal

vectors B = {bl , .}c Rn , the nearest neighbor quantizer is
defined as a mapping qB RnB - B which assigns to each
vector ce RnB the closest element of B( as measured by the
Euclidean norm), i.e., qB (C) = b E B if and only if c satisfies:

||c -b<|c -bj, VbEB (8)
The optimal solution to the cost function VN can be derived

as stated in [15].
Theorem 1. Suppose UN = vl,v2,V }, where ml = (nu )N

then the sequence ii (k) of (7) which optimizes (6) under (5)
is given by:

ii (k) = T-lqo, (Wr(k) + Fx(k)) (9)
where:

D O... 0 Ck)

K1D r CYc4k+l)

'P l *-- hl D _CAN-1_ ' r(k)h_ D_ +N 1)

and h,=CA'-'B,i= 1,2, ,N -1

The nonlinearity qN (.) is the nearest neighbor quantizer

described in Definitionl. The image of this mapping is the
set:
U=N c R{N with vi =v,, vi E UN

Although, in principle, one might think of choosing N as
large as the length of the complete audio data stream, the
implementation complexity increases with the horizon length
N. Therefore, the work in [15] proposed to fix the horizon N
to a small value and use a moving horizon form. That means
at time t=k, only the first element of the optimizing sequence
is used as the output of converter, i.e.

u(k)=u*(k)=[1 0 ... o]T-lq,, (Tr(k)+Fx(k)) (10)
Also, u*(k)updates the states according to (5), and the new
states are used to minimize the cost VN , yielding u(k + 1). The
horizon moves (slides) forward as time increases.
To illustrate the effect of noise shaping, we write the z-

transform of the optimized output u*(k) by (5), i.e.
U* =R-W-'E (11)
whereR and E are the z-transforms of r ande, respectively.

Clearly, the output contains two parts of signal; the first term
on the right hand side of (11) is the input signal, and the
second term is the quantization error, which is the residual
error E filtered by the inverse of the system filter, W- .
Consequently, W-1 is responsible for spectrally shaping the
noise.

III. BOUNDING THE ERROR SIGNAL AND SYSTEM STATES

To determine the design parameters, it is necessary to
analyze the stability of (5) under the control law of (10). A
general setting of stability was investigated in [15]. However,
the results cannot be applied to the present case. In particular,
it is usually required to maximize the allowable range of the
input signal r. The technique presented in [13] and [14] for
2Z-A modulator is adopted to access the stability. Notice
that the major difference between 2-A modulator and the
optimal quantizer is the quantization scheme for the latter
case is more complicated (see (10)). This requires further
analysis into the quantization scheme to derive the stability
boundary. This paper considers the case of horizon length
one and two (i.e. N=1, 2 of (6)) and further assume that the
system satisfies 0 < CB < D, i.e. the relative degree is zero.
In the following, we divide the problem into two parts. First,
we assume that the error signal e(k) is bounded and develop a
condition to bound the system states. In the second part, we
explain how to bound e(k) when initial values of the system
are all zero by limited input amplitude.

A. The condition to boundthe system states
The constrained signal u(k) can be expressed as (12). By

substituting (12) into the first equation of (5), we can write
the system as (13).

u(k) = r(k) - D-le(k)+D-'Cr(k) (12)
x(k + 1) = (A - BD-'C)x(k)+ BD-le(k) (13)

If e(k) is bounded, the states are bounded if the system (13) is
stable. It means that the eigenvalues of the matrix
(A -BD-'C) must lie inside the unit circle. If the shaping
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filter W(z) is designed without pole zero cancellation, the
eigenvalues of (A - BD-'C) are exactly the zeros of W(z).

B. Bounding error signalfor horizon length one
For N=1, the optimized sequence are
u (k) = qu, (Cx(k) + Dr(k)),

where q (.) is a scalar quantizer. If the quantizer has the

resolution of b-bit, there are K' levels in the constrained set
and can be expressed as,
U' ={D,D -AD,D - 2AD *.,-D + AD,D} (14)

where A=2 (2b -1), K' =2b if be Z, and A=2 2b,
K' = 2b1+ if b = b, + 0.5 and b,E Z .
Therefore, the quantizer divides a line into K' segments
considering the nearest distance between the quantizer input
to the elements of constrained set. Fig.3 plots a general
partitions of the scalar quantizer where di is the input of it.
We denote as the j-th element of Ul and the output of

quantizer in region D, is u'. The error signal e(k) can be
written as,

e(k) Cx(k) + D(r(k) - u(k)) (15)
{Cx(k) + Dr(k)}- qu7 (Cx(k) + Dr(k))

A

According to (15), the bound of e(k) is limited to DxA 12
under the condition:

|Cx(k) + Dr(k)| = |d, (k)| < D(1+ /\2) (16)
To satisfy the inequality of (16), we consider the condition

of zero initial states. If the initial values of the system are all
zero, then the error signal is bounded initially. As a result,
we can limit the amplitude of input to prevent the violation
of(16) [14]:

|r| < 1+A/2-|PJ(z)| /A\2 (17)
where P,(z)= C(zI-A+BD-'C)-'BD- . And from (13), it
can be shown that,
Z{Cx}= PI (z)E(z) (18)
where z{y} denotes the z-transform of y.

C Bounding error signalfor horizon length two
For horizon length two, the optimized sequence are:

u (k) = [1 o]'-lq.2 (Fx(k) + WP(k))

where Tp D = F C], and q.2 () is a vector

quantizer. If the quantizer has the resolution of b-bit, there
are (K')2conditions in the constrained set u2. Therefore, the
vector quantizer partitions the x-y plane into (K')2 portions
basing on the nearest neighbor vector quantizer. If we
consider the first element of constrained set U2 only,
(K')2 partitions can be grouped into K' regions and the
outputui* is one of the levels in (19).

u[1- o]u2I{D,D -AD,D-2AD . D+AD, D} (19)
where A =2 (2b-1) ifbeZ, and A=22b1 if b= b+0.5
and b,e Z.

dX (k)

Fig.3 scalar quantizer

A general quantizer with resolution of b-bit for horizon
length two is shown in Fig.4. The dots are constrained set
U2 which partitions the plane into K' regions. Obviously,
the partition lines are saw-toothed that are different from the
straight lines in horizon length one. It is caused by taking
signal d2 into account. Therefore, the k-th output of
quantizer is influenced not only by u(k) but alsou(k + 1). A
simulation example in next section shows that this kind of
quantizer can further minimize the error signal and have
better performance in SNR.
If we denote u,j2 as the i-th element of j-th column ofC2,

where U2 is shown in (20), the coordinates of the pointA1
can be expressed as the (K' (i -1) + j)-th column ofC12.

i 2 T U1 u2 U(2l +1) U1 2 (2 1+1) D-1
L I I U1 2 (2 +) (2 1

e(k) = Cx(k)+ D(r(k) - u(k))

={Cx(k) + Dr(k)}- [1 o]T-lq, (Fx(k) + TP(k))

(20)

(21)

The quantizer output is the first element of constrained set
to which the quantizer input belongs. From this general
horizon length two quantizer, we can calculate the error
bound when its output is ui', 2 < i < K' - For example,
ifi = 2, the amplitude of error (see (21)) is dominated by the
line (a) and (b) in Fig.2 if d2, > YO'

y0>0e R,and -Yo
P2 +P22 Pii +P12 X (22)

where point (xb 'Yb) is the intersection of line (c) and (d) in

Fig.4.
Now suppose y0 < d, <yl , then the error bound for

quantizer output level equal to u'l is,
|errk2 < max(el, e2 ) '

where el = |ul -xl| , e2 =u2 -x2

and
X1

CB _F22+r,1+3 12 + V,3
D2 ~~~~~2

X2 = --(-Y - 21 + P22 ) +Pii + P12

D22

j (~ )is the i-th element of j-th column of V(P) defined
below.

TWlUIU2 ..* K1 HD-1 P= E 1 2 K' D-1 (23)
ul ul .. ul UK1 UK1 WK'

Note that xl (X2) is the left (right) boundary of di limited

by Id2, < YI in region D2 , i.e. they are calculated by the

equation of line (a) (line (b)) and the maximum error must
occur at one of these points. As a result, the maximum error

for output W,1, 2 < i < K' -1 can be calculated by,
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lerrmax = max(err2, err3 *P,errK1 ), where

err, = max(eil, ei2) and

eil = kl - x|,l e2 = |ii I x and

(24) we suppose the maximum error in (24) is dominated by the
line,

-CBS
Xe2 -YI

P2(e-1) + P2e Pi(e-1) + Ple
2 ) 2

(27)

(y V2 +V2(j+l]) v11 +V 1i11)

xi2 = C-BD (-YL- P2(j-1) + P21 ) + Pl(j-1) + Pli

Also, xil (Xi2) is the left (right) boundary of di limited by

d2, <YI in region Di * If we further limit the maximum

amplitude of dl(see (25)), the error signal is totally bounded
no matter what the quantizer output level is.

A

~dj < u1 + e_ =dj (25)

where e max(|err| merr1,errKl) , err is depicted in (24),
and,

err1 =U1 x11 errKl =UK' -XK1j
xiI

CB
FY-v21+ v22 I1+ V12

D L 2 2

DCB P2(K1-1) + P2K1]) + P1(K1-I) + PIK

To ensure that the inequality constraints of d,and d2((25)
and d2 <yl) are always satisfied when initial conditions of

the system are all zero, we have to limit the maximum input
amplitude (see (26)). Because the error is bounded initially,
the error will be bounded all the time if input satisfies (26)
[14].

|r| < min(rl, r2) (26)
,where r, = PI Imax - JIP1 (z)ll_ lel_)D > °

r2 = (y1 - ||P2(z)ll |e_ )x(CB + D)'l > 0

PI (z) C(zI - A + BD-'C)-l BD-
P2(z) CA(zI - A + BD'-C)'- BD-

And from (13), it can be shown that,

Z{Cx}= P1 (z)E(z) , Z{CAx}= P2 (z)E(z)-

Note that the error is proportional to y1. Therefore, the
increase in y1 will result in decrease of r, but also increase

ofr2.

Fig.4 General quantizer for horizon length two
As a result, there exists an optimal value of y, that achieves
maximum value of rl . To find out the optimal value ofy1,

where eeZ,2<e<K'-l

The error then can be expressed as (Xe - uel), and from (25)

and (26), we get,

r1 = (pl +(1 -P(z)lO)(Xe2- u))D

r2 = (Y1 -IP2 (Z)|| (Xe2 -))x (CB + D)

(28)

(29)

By substituting (27) into (28) and (29) and settingr, = r2,

the optimal value of y, is obtained as,

Y1 Ynum yde' and

y= D--l, + (D-l(1- Pj||1)+ (CB +D)-P |P2||

x CB ~P2(e-l) +P2e + Pi(e-1) + Ple _ j

(30)

Yd (CB+D)j P2 1D D(1 2

Although the general partitions in Fig.4 is calculated for the
system satisfying0< CB < D, we can always derive the error

bound for different relative degree and any order of the
system in the same procedure proposed here.

IV. A DESIGN EXAMPLE
An example for audio-band full digital amplifier is
recommended here. The reference signal bandwidth is 48
KHz and the oversampling ratio is 64. Shaping filter is
designed with cutoff frequency 65 KHz and the resolution of
quantizer is 2.5-bit. Converting the 2.5-bit result into the
switching control signal is introduced in Fig.2. In the
following, we first design the loop filter which has stable
zeros. Second, a 2.5-bit quantizer with step size one and two
are shown along with the block diagrams for quantizer
implementation.

A. Weighting Filter Design
We use a third order lowpass filter with relative degree

zero as our system:

1.24-1.95z-1 +0.8z2 (31)

k(Z) 2z31

Therefore, the noise transfer function is fixed and its
frequency response in magnitude is shown in Fig.5. Also, the
state space matrix of the system is obtained:

A =L0 21 B = -0 C = [O 1], D=1.24 (32)

Since the zeros are (0.786±0.176j), the system states are

stable if the error signal is bounded.

B. Quantizer Design
With the use of 2.5-bit resolution quantizer, the output

constrained set is U={-1 -0.5 0 0.5 1}. Because the
oversampling ratio is 64, the system operates at a clock rate
of 3.072 MHz. To produce the switching signal as in Fig.2,
the actual clock rate is 6.144 MHz. The zero level output in
2.5-bit switching signal can be regarded as the zero voltage
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difference between loudspeakers. We shall discuss it as
follows,
1) For Horizon one (N=1), P = D = 1.24, the constrained set
is mapped to the same space, hence,
U = fU = {1.24,0.62,0,- 0.62, -1.24} . Fig.6 shows the
relation of quantizer input d1 (k) = Cx(k) + Dr(k) and output
u* (k) which can be written as,

u (k) =
I
(qu {d1(k) + 0.31}+ qu{d1 (k) - 0.31}

4
+ qu {dl (k) + 0.93}+ qu {dl (k) -0.93})

(33)

The diagram of implementing the scalar quantization is
presented in Fig.7. Note that the operation of q, (.) is defined
as:

u(a) I ifa>0
( -1 else

From (17), the input level is limited to:
r < 1+ 2-2 - 1.36 x 2-2 = 0.9

2) For horizon two (N=2), T FD 01 1.24 0 ],and
LCB Dj Lo.53 1.24j

U= -1 -0.5 0 0.5 1}, the input of the quantizer is a vector.
There are 25 conditions in the constrained set U2 . The
vector quantizer q 2 partitions its input space R 2 into

twenty-five regions according to the nearest neighborhood
rule. Since we are only interested in the first element
ofii(k), only five regions are of significance. These are

shown in Fig.8. The optimized output is then given by

F, ifd(k) [dl(k) d2(k)]e D1
1/2, ifd(k) =[d,(k) d2(k)] D2 (34)

u (k) = O, ifd(k) = [dl(k) d2(k)]ED3
-1/2, ifd(k) = [dl(k) d2(k)]E D4
-1, ifd(k) = [dl(k) d2(k)]E D5

Frequency Response of the third order Noise Transfer Function

0

-5

Fig.7 block diagram of scalar quantizer

Z 1. _U. u U. I. z

d1 (k)

Fig.8 Partition induced by the quantizer

From (30), optimized bound of d2 is 3.07 and error is
dominated by the equation,

X -CB ( 2(e1l) + J2e + 2(e-l) Ple where e = 1

Its bound is 1.26 if Id max < 2.51 (see (24) and (25)). The

maximum input range is 0.65 for horizon length two.
Geometrical arguments allow us to describe the partition of
Fig.8 by means of the following relation,

1 4 5 4

u* (k) = L qu Lk f,X +I gij,,4i=1 j=l j=l

,where fj = qu {d (k) (d2 (k) - Ym, )

Ym (2(K(j)+i) 2 (

Xm }

100

-1

-200
101 102 10 3 104

Frequency(Hz)
105 106

Fig.5 Frequency Response of the noise transfer function in design

ut=-1 ut=-1/2 ut=O u&=1/2 u-,1
-D -D/2 O D/2 D

d1+3D/4=0

di +D/4-
dl-D/4z
0

d, (k)

0
dl 3D/4=0

Fig.6 scalar quantizer

Xm= (u~2 +u-2 ½/Xmi = I(K1(j-I)+i) + U(K' (j-l)+i+l))

and g1= qu {d (k) -(CB D) (d2(k) -Ym ) Xm }

YM,, (U2(K1(j-I)+i+) ) 2(Klj+i) 2

Xm =(ulKl (j-l)+i+l) + Ul(Klj+j) )i2

As a consequence, the vector quantizer q.2 (.) can be

realized with thirteen standard scalar quantizers qu (.), which
operate on scalar signals.

C Simulation Results
A 1kHz sine wave with normalized amplitude 0.65

sampled at 48kHz is applied to the system as an input.
Fig. 10 - Fig. 11 plots the output spectrum obtained by taking
DFT (Discrete Fourier Transform) of the binary sequence
produced with horizon two and horizon one. Simulation time
is lOOms and the resulting SNDR is 89.5dB - 87.6dB.
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Fig. 10 Spectrum of output u (horizon 2)

Fig. 1I Spectrum of output u (horizon 1)

V. CONCLUSION
A novel application of finite horizon constrained

optimization techniques to design an audio-band full digital
amplifier is presented in this paper. Stability analysis to
arrive at the bound of the input reference signal is given by a
detailed derivation of the optimal quantizer. The paper only
reports the case of moving horizon of length 1 and 2. The
general case of an arbitrary horizon length will be developed
in the future work.
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