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Abstract--The instability of a viscoelastic fluid layer heated from below in a modulated gravitational field 
is studied numerically. Fluids satisfying the Maxwellian model and the Boussinesq approximation are 
considered. A system of linear equations with periodic coefficients describing the behavior of disturbances, 
is obtained by linear stability theory. The disturbances are expanded by double series of mixed Fourier 
and Chebyshev form. An algorithm combining Galerkin and collocation methods is employed to trace the 
stability boundary between stable and unstable states. For the case of viscoelastic fluids acted on by a 
constant gravity, a transition Deborah number is found for each Prandtl number. Below and above this 
transition value stationary and oscillatory convections, respectively, will develop at the onset of instability. 
For the case of Newtonian fluids acted on by a modulated gravity, modulation has a destabilization effect 
at low frequencies and a slight stabilization effect at high frequencies, which increases with increasing the 
ampLitude of modulation. The critical Rayleigh number approaches the quasi-steady limit as the frequency 
tends to zero. For the case of a viscoelastic fluid acted on by a modulated gravity, modulation has the same 
effects at boLh very low and very high frequencies, as those of Newtonian fluids. While in the range of 
intermediate frequency, subharmonic disturbances are found to enhance the stabilization effect at small 
Deborah nu:nabers and the destabilization effect at large Deborah numbers. Copyright © 1996 Elsevier 

Science Ltd. 

INTRODUCTION 

Viscoelastic fluids are noted because of  their frequent 
appearance in manufacturing processes, such as crys- 
tal growth, injection molding, transport of  chemical 
substances and in the petroleum industry. Some inves- 
tigators treated viscoelastic fluids as Newtonian fluids 
and accordingly, ignored the elastic behavior of  fluids 
which may be important  under some circumstances. 
The stability of  viscoelastic fluids was noted but lim- 
ited in shear and extensional flows [1]. Among  ther- 
mally-induced instability of  viscoelastic fluids, Her- 
bert [2] considered the stability of  viscoelastic liquids 
in heated plane Couette flow and found that the pres- 
ence of  elasticity has a destabilizing effect on the flow. 
Green III  [3] found an oscillating convective motion 
was possible at the onset of  instability. Vest and 
Arpaci [4] found lhat  overstability will occur at the 
lowest possible adverse temperature gradient at which 
the rate of  change of  kinetic energy can balance, in a 
synchronous manner,  the periodically varying rates of  
energy dissipation by the shear stresses and energy 
release by the buoyancy force, assuming that station- 
ary convection has not  been initiated. Later, Ham- 
abata [5] further considered the effect of  internal heat 
generation on the overstability of  a viscoelastic liquid 
layer. 

The effect of  modulat ion on the dynamical system 
has long been of  interest because stabilization or 
destabilization may occur in the presence of  modu-  

lation which thus enhances the mass, momentum and 
heat transport [6]. The effects of  temperature modu- 
lation on the thermal instability were studied by:  
Venzian [7], Rosenblat  and Herbert  [8], Yih and Li 
[9] and Finucane and Kelly [10] and of  gravity modu- 
lation by Gresho and Sani [11]. Recently, Yang [12] 
further studied the effect of  modulat ion on radiation- 
induced instability of  a fluid layer and confirmed that 
destabilization and stabilization, respectively, occur 
at low and high modulat ion frequencies. Meanwhile, 
the quasi-steady limit is valid as the frequency tends 
to zero. 

In the present study the effect of  gravity modulat ion 
on the thermal instability of  viscoelastic fluids is inves- 
tigated. The limiting cases, viscoelastic fluids in a con- 
stant gravitational field and Newtonian fluids in a 
modulated gravitational field, are examined and com- 
pared with the available data. Finally the viscoelastic 
fluids in a modulated gravitational field are 
considered. 

FORMULATION 

We consider a viscoelastic fluid layer confined 
between two infinite plates of  distance L apart  that 
are oscillating vertically. If  the coordinate system, is 
attached to the lower plates, then a modulated gravi- 
tational field which consists of  a constant part plus a 
sinusoidally varying part  can be considered to be act- 
ing on the system. Let X~ and X2 be the Cartesian 
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A, B coefficient matrices 
G elastic modulus 
g gravity 
k wavenumber 
L thickness of a fluid layer 
M, N resolutions of double series in time and 

spatial coordinates 
P dimensional pressure 
p pressure 
Pr Prandtl number 
Ra Rayleigh number 
T dimensional temperature 
Tij dimensional stresses 
T, nth degree Chebyshev polynomial 
t time 
V~ dimensional velocities 
V i velocities 
W magnitude of the disturbance of 

velocity 
X~ dimensional coordinates 
x~ coordinates. 

NOMENCLATURE 

(9 

Greek symbols 
/3 thermal expansion coefficient 
A ( R a t -  Rao)/Rao 
F Deborah number 
e amplitude of gravity modulation 
( coordinate for Chebyshev polynomials 

magnitude of the disturbance of 
temperature 

0 temperature 
2 relaxation time 
x thermal diffusivity 
# dynamic viscosity 
v kinematic viscosity 
p density 
a growth rate of disturbances 
z dimensional time 
ztj stresses 

magnitude of the disturbance of 4~ 
• . trial functions for velocity 
(p C3V3/~I 

W, trial functions for temperature 
f~ dimensional frequency of gravity 

modulation 
~o frequency of gravity modulation. 

Superscripts 
- basic state 
' disturbances. 

Subscripts 
c critical value 
0 critical value of unmodulated case 
1 upper plate 
2 lower plate. 

coordinates parallel to the plates and )(3 perpendicular 
to the plates. Suppose the bottom plate is at tem- 
perature T2 which is higher than the temperature of 
the upper plate T~. 

For  an incompressible fluid satisfying the Bous- 
sinesq approximation, if the energy dissipation is neg- 
ligible, the equation governing the motion of the fluid 
can be written as follows : 

aXjaXj 

aV'=o (1) ax, 
av, av, 
~ -  + Vj = gfl(1 + e cos f~z)(T-  To)ei 
oz S~j 

1 ae  a~,, 
p O ~ + ~  (2) 

8 T  OT O=T 
(3) 

where To is a reference temperature, P the pressure 
relative to its hydrostatic value, T~j the deviatoric stress 
tensor,/3 the coefficient of thermal expansion, p the 
density at the reference temperature, x the thermal 
diffusivity, e and f~ the amplitude and angular fre- 
quency of gravity modulation, and ei = (0, 0, 1). 

There are many different models proposed for vis- 
coelastic fluids [13, 14]. The first attempt to obtain a 
viscoelastic constitutive equation, over a century ago, 
appears to have been that of  Maxwell. He proposed 
that fluids with both viscosity and elasticity could be 
described by : 

~ V  i ~Vj~ 
T,j+2~r T,j =/.t ~ff~j + ff~j (4) 

where 2 = #IG is called the relaxation t ime, / t  is the 
dynamic viscosity and G is the elastic modulus. When 
G ~  ~ or 2 = 0, it becomes a Newtonian fluid. 
Although the Maxwellian model is empirical and its 
range of validity is somewhat limited, because of sim- 
plicity, it is employed in this study to explore the effect 
of elastic modulus in the onset of convection. 

Introducing the following dimensionless variables 

X i = X i / L  t = r x / L  2 vi = V iL /x  

0 = T / ( T g - T I )  p = e # x / L  2 zq = T , j#x /L  2 

equations (1)-(4) become 

avj = 0 (5) 
0xj 



Stability of viscoelastic fluids 1403 

Pr\ Ot +VJ~xj) 

Op &~j 
= Ra(l+~cosogt)(O-Oo)e~- ~x~ + ~ (6) 

00 00 020 
~t + vj O~j axjOxj (7) 

0 Ov~ avj 

where Pr = v/x is the Prandtl number, 
Ra=gfl(T2--TOL3/v~c is the Rayleigh number, 
+o = f2LZ/x is the dimensionless angular frequency of 
modulation, F = 2K/L 2 the ratio of stress relaxation 
tome to the characteristic process time, is called the 
Deborah number. 

When the temperature difference is small, the fluid 
is in a stationary s'Iate. This basic state is described by 

o~=0, e , j = 0  Y = 0 : - x 3 ,  

p = Ra(1 +ecoso)t)(O2x3 -x]/2) +P2 

where P2 is the pressure on the bottom plate. 
Adding small disturbances on the basic state 

z~j p '  G and v~ 

then substituting into equations (5)-(8) and neglecting 
the nonlinear terms we can obtain the linear dis- 
turbance equations. Successively eliminating z~j, p ' ,  
vq and v~ then 1:he disturbance equations can be 
reduced to 

0 0 2 , 

F0(v~0').. 
= Ra{(V~ 0')(1 + ecos cot)+ r k - ~ - t ,  +~cosco0 

--(V+ z 0')co0 sin eJtl} +V 2 (V2v;) (9) 

00' 020 , 
- -  + v ;  (10)  

Ot OxjOxj 

where Vl z = 0210:r~ + 0210x 2, and the boundary con- 
ditions to 

Or; 
v3' - 0 x 3 - 0 ' = 0  atx3 = 0  and 1. (11) 

Equation (9) is a second-order time-derivative 
differential equation. To avoid the appearance of a 
nonlinear algebraic eigensystem we may let 
4)'= Ov'~/Ot, then the second-order equation (9) 
can be converted to two first-order equations. The 
disturbances in the form of normal modes can be 
expressed as 

v;] [W(x3,t)] 
~9'l=[l~(x3,t) lei(klXl+kzxz)+rrt (12) 

0'J kO(x3,t) J 

where: W, • and ® are, according to the Floquet 
theory [15, 16], periodic functions of time with the 
same period as the gravity modulation, k~ and k2 are 
the wavenumbers of the disturbance in the x~ and x2 
directions, respectively, and rr = rr r + irri is the growth 
rate of the disturbances. Let rr~ be the eigenvalue with 
the greatest real part. The basic state, with respect 
to the infinitesimal disturbances, is unstable if rrr~ is 
greater than zero or stable if ar~ is less than zero. Here, 
unstable means that a disturbance experiences net 
growth over each modulation cycle, or grows during 
part of the cycle, but ultimately decays ; while stable 
means that every disturbance decays at every instant. 
At  the neutral stable state Gl is equal to zero. If  tri~ 
is simultaneously equal to zero, the disturbance is 
synchronous with the periodic basic state. If 
ag~/~ = m/n is rationally dependent and irreducible, 
where m and n are two integers, harmonic motion of 
period 2n/o9 will develop for n = 1, or subharmonic 
motion of period 2nn/o9 will develop for n > 1. If 
a ,  and 09 are two incommensurate frequencies, i.e. 
rationally independent, a quasi-periodic motion will 
develop. 

Substituting the normal modes into the disturbance 
equations, we obtain 

OW 
- - - -  + 0  = a W  (13)  

0t 

Pr(DE-k2)2 W -  (I + F ~t)(D2 -k2)¢  

- Pr Ra k 21 (1 + ~ cos ¢o t -  Fe~o sin o t )O 

+F(1  +ecos  o)t) ~ -  

= a[F(D 2 - k 2 ) @ + P r R a F k 2 ( 1  +ecoso)t)O] (14) 

0(9 
Ot + W + ( D 2 - k 2 ) O  = aO (15) 

where D = d/dx3 and k 2 =  k~ +k~. The associated 
boundary conditions are 

W = D W = O = D O = O = O  a t x 3 = 0  and 1. 

(16) 

Equations (13)-(15) with the boundary conditions 
(16), are all homogeneous and thus constitute an 
eigenvalue problem. For  the existence of nontrivial 
solutions, the eigenvalues a are dependent on the 
parameters as 

a = f(Ra, Pr, F, e, to, k). (17) 

The neutral state at which the real part of the most 
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Fig. 1. The critical Rayleigh number vs Deborah number at 

different Prandtl numbers for the unmodulated case. 

unstable eigenvalue vanishes can be found by the 
method of  linear interpolation. The critical Rayleigh 
number, denoted by Rac, occurs at a neutral state 
which has a minimum Rayleigh number at the cor- 
responding critical wavenumber kc. 

NUMERICAL METHOD 

We will expand the unknowns in equations (13)- 
(15) into double series, i.e. Fourier  series with respect 
to time and Chebyshev polynomials with respect to 
space. Because the nth-degree Chebyshev polynomial 
of  the first kind is defined by 

T, ( z )  = cos(n cos - ' ~ )  

in the interval ~e [ - 1 ,  1], to fit the domain of  defi- 
nition of  Chebyshev polynomials, the domain of  the 
present problem is transformed from 0 ~< x3 ~< 1 to 
- 1  ~<~< 1 b y ~ = 2 x 3 - 1 .  

Now 

W= ~ ~amnt~kn eim~°t ( 1 8 )  
m =  o o n = 4  

( I ) =  ~ ,  ~ b m n  (I)n e i  .... (19) 
m =  or~ n = 4  

~)= ~ ~, Cmntrffn eim°jt (20) 
m =  --zo n =  2 

where amn , bmn and era, are unknown coefficients, and 
q~, and ~P, are the trial functions defined by 

f n2 n 2 1) 0 
~"  = n 2 -- 1 {n  z -- 1 

even n 

odd n 

(21) 

T , - T o  evenn  
~g, = (22) 

T,  -- Ti odd n 

which satisfy the boundary conditions (16). 
In view of  the structure of  equations (13)-(15), the 

even mode and odd mode disturbances are separable. 
Thus we expand the unknowns each time by either 
even or  odd trial functions which may reduce a large 
amount  of  computat ion time. By taking the lowest 
M x N terms of  the expansions and substituting them 
into equations (13)-(15), we may obtain three equa- 
tions of  functions of  t and x3. To eliminate t and x3, 
we multiply each of  the equations by e -ira'°', 
m = - M  . . . . .  0 . . . . .  M, and integrate over one 
period, then substitute the collocation points 

~ , = c o s [ n ~ / ( N + l ) ]  n =  1,2 . . . . .  N 

into the equations. An algebraic eigensystem is 
obtained : 

A X  = a B X  (23) 

where A and B are two 3 ( M x N ) x 3 ( M x N )  
coefficient matrices. X is a 3 (M x N) vector composed 
of  the unknown coefficients. The eigenvalues of  the 
generalized eigensystem, equation (23) can be solved 
directly by the Q Z  algorithm and the procedures are 
referred to in Yang, ref. [12]. 

RESULTS AND DISCUSSION 

We will present the results for some special cases 
and compare them with the available data, then we 
will examine the effect of  gravity modulat ion on the 
instability of  viscoelastic fluids. 

(i) Overs tabi l i ty  o f  viscoelastic f lu ids  

When the gravity modulat ion is not  considered, 
= 0, the viscoelastic fluid layer is subjected to a con- 

stant gravity and heated from below. Here we set 
M = 1 and include both even and odd mode dis- 
turbances to calculate the critical values by increasing 
N from one to six. For  P r = O . 1 ,  F =  1, and 
Pr  = 1000, F = 0.1 and 1, the results obtained with a 
wavenumber accuracy of  0.01 are listed in Table 1. It 
is seen that the results show a good convergence for 
N > 4 .  

Vest and Arpaci [4] found that, at the onset of  
instability, stationary convection occurs for smaller F 
and overstability for larger F. The comparison of  the 
critical Rayleigh number,  wavenumber and the cor- 
responding cr i for Pr  = 0.1-1000 at F = 0.1 and 1 
obtained by N = 6, with the results of  Vest and Arpaci 
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Table 1. Critical values obtained by different N 
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Pr =:0.1, F = 1 Pr = 1000, F = 0.1 Pr = 1000, F = 1 
N kc Ra¢ aic kc Rac ~ k¢ Rac ai¢ 

1 3.48 493.78 1.451 22.32 110.22 2245.57 12.74 1.343 421.87 
2 3.06 374.83 2.052 16.67 105.15 1674.04 10.76 1.210 356.40 
3 3.60 479.34 1.644 18.48 106.31 1848.77 11.46 1.246 378.72 
4 3.46 474.10 1.647 19.38 107.31 1943.31 11.60 1.269 384.45 
5 3.48 476.43 1.646 19.30 107.35 1935.68 11.58 1.269 383.81 
6 3.48 476.40 1.646 19.30 107.37 1935.74 11.56 1.269 383.21 

Table 2. Comparison of present results by N = 6 with ref. [4] 

Present results Ref. [4] 
F Pr k¢ Rac tric kc Ra¢ ai¢ 

0.1 0.1 3.116 1707.73 0 - -  - -  - -  
1 4.915 870.48 15.08 4.917 877.8 15.07 

10 7.256 226.68 76.22 7.309 230.0 76.68 
100 11.59 127.89 371.78 11.96 130.1 385.8 

1000 19.30 107.37 1935.74 20.46 108.0 2052.0 
1 0.1 3.484 476.39 1.647 3.484 478.9 1.647 

1 3.700 51.19 6.062 3.696 51.58 6.061 
10 4.719 7.418 20.78 4.724 7.496 20.77 

100 7.199 2.160 82.66 7.297 2.203 83.45 
1000 11.57 1.269 383.50 12.76 1.289 418.8 

[4] a re  s h o w n  in T a b l e  2. B o t h  resu l t s  a re  in g o o d  

a g r e e m e n t ,  w i th  a d i f ference  less t h a n  2 % .  

T h e  cr i t ical  R a y l e i g h  n u m b e r ,  w a v e n u m b e r  a n d  ale 

vs  D e b o r a h  n u m b e r  for  v a r i o u s  P r a n d t l  n u m b e r s  a re  

s h o w n  in  Figs .  1-3,  respect ively .  I n  Fig.  1 t he  cr i t ical  

R a y l e i g h  n u m b e r  Jis s een  to  be  1707.76, as t he  D e b o r a h  

n u m b e r  F is smal l .  S t a t i o n a r y  c o n v e c t i o n  wi th  

ko = 3.117 deve lops  b e c a u s e  trlc = 0, a t  t he  o n s e t  o f  

ins tabi l i ty .  F o r  e a c h  P r a n d t l  n u m b e r ,  t he re  c a n  be  

f o u n d  a t r a n s i t i o n  D e b o r a h  n u m b e r ,  as  t he  D e b o r a h  

n u m b e r  is g rea t e r  t h a n  th i s  va lue ,  Rac is sma l l e r  t h a n  

1707.76, w h i c h  m e a n s  t h a t  the  e las t ic i ty  m o d u l u s  h a s  

a de s t ab i l i z a t i on  effect o n  the  o n s e t  o f  ins tabi l i ty .  T h e  

m a r g i n a l  cu rve s  for  Pr = 1, F = 0.062 a n d  0.063 are  

16 
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Fig. 2. The critical wavenumber vs Deborah number  at 
different Prandt[ numbers  for the unmodulated case. 
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Fig. 4. The marginal curves of stationary and oscillatory modes for Pr = 1, e = 0, F = 0.062 and 0.063. 

shown in Fig. 4. The marginal curve for the stationary 
mode disturbance is the same for all values of F. 
For  F = 0.062 the stationary modes have a smaller 
Rayleigh number  than the oscillatory modes. While 
for F = 0.063 the oscillatory modes have a smaller 
Rayleigh number  than the stationary modes. The tran- 
sition Deborah number  is thus between 0.062 and 
0.063 for Pr = 1 and decreases with increasing Prandtl  
number,  which can be seen from Fig. 1. 

The critical wavenumber is equal to 3.117, when the 
Deborah number  is less than the transition value. As 
F increases over the transition value, the critical wave- 
number  changes suddenly from 3.117, corresponding 
to stationary modes, to a greater value corresponding 
to oscillatory modes. As F continues increasing, the 
critical wavenumber decreases monotonically, as 
shown in Fig. 2. 

The ai at the critical condition is equal to zero when 
F is smaller than the transition value for which a 
stationary convection develops at the onset of  insta- 
bility. As F is greater than the transition value, ~ri is no 
longer equal to zero, which means that overstability 
occurs and the convection shows periodic travelling 
waves at the onset of  instability. From Fig. 3, it is also 
seen that trl increases with increasing Pr. 

(ii) Effect o f  gravity modulation on Newtonian fluids 
When F = 0, a layer of Newtonian fluids in a modu- 

lated gravitational field is heated from below. From 
the definition of the Rayleigh number,  basically, the 
effect of modulat ion on the thermal instability is simi- 
lar to that of  a fluid layer in a constant  gravitational 
field, but  with a fixed temperature at the upper plate 
and a higher modulated temperature at the lower plate 
[10, 12]. The cases for Pr = 7 and ~ = 0 -  1 are shown 
in Fig. 5 where the ordinate is defined by the per- 
centage change of the critical Rayleigh number  corn- 

pared with the unmodulated case Rao = 1707.76, 
A = (Rac-Rao)/Rao. The modulat ion has a stabil- 
ization effect for a positive A and a destabilization 
effect for a negative A, on the onset of instability. At 
low frequencies, it is seen that modulat ion has an 
effect of destabilization. In the quasi-steady limit o9 
0, A is, within a certain accuracy, close to the theor- 
etical result - e / (1  + e), which is expressed by the hori- 
zontal lines below each curve. At high frequencies, 
modulat ion has a very slight effect of  stabilization 
which was also found in the temperature modulat ion 
problem [8] and radiation modulat ion problem [12]. 
The destabilization effect at low frequencies, as well 
as the stabilization effect for co = 3.5 and 0.8 < e < 1, 
were experimentally approved for air by Finucane and 
Kelly [10], for the temperature modulated case. 

Gresho and Sani [11] solved the same problem by 
one term expansion. They found that the instability 
occurs for synchronous modes at lower frequencies 
and for subharmonic modes at higher frequencies. 
Although stabilization was shown for the considered 
range of parameters in Fig. 4 of their paper, they 
proposed that destabilization may occur at large e/co 2 
and high frequency. A recalculation of a wider range 
of frequency is shown in Fig. 6 which shows a good 
qualitative agreement with the Fig. 4 of Gresho and 
Sani [11]. The lower curves represents the instability 
due to synchronous modes, for which the critical Ray- 
leigh number  increases with increasing frequency. 
While for a frequency higher than about  1720, the 
instability due to synchronous modes can no longer 
be found. Instead, the subharmonic modes occur and 
the critical Rayleigh number  decreases as frequency 
increases, as shown by the upper curve. Actually, from 
Fig. 5 we have seen that the destabilization occurs 
at low frequencies and is especially obvious for 
large e. 
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(iii) E f f ec t  o f  grav i ty  modula t ion  on viscoelastic f lu ids  
W h e n  F is greater  than  zero, the effect of  elasticity 

on  the instabil i ty of  viscoelastic fluids under  modu-  
lated gravity can  be seen. A n  accuracy test at  the 
critical condi t ion  for the modula ted  case Pr  = 1, 
F = 0.1, ~ = 1 and  o~ = 0.01, by varying the com- 
b ina t ions  of  M and  N, is shown in Table  3. Here only 
the even mode  dis turbances  are considered. It  is seen 
tha t  a t  a fixed M 1:he critical Rayleigh n u m b e r  con- 
verges rapidly, as N is increased f rom 1 to 2, which 
shows the exponent ia l  convergence of  the Chebyshev 
polynomials ,  whereas a m u c h  larger M for the expan-  
sion in time, by a complete  set of  Four ier  series, is 
needed. In the calculat ions of  modu la ted  cases, the 
results are ob ta ined  f rom two consecutive resolutions,  
for which the relative var ia t ion  is less t han  1% and 
the error  for  the case of  quasi-steady limit, 09--* 0, 

compared  with the theoretical  value A ~ - e / ( 1  + e) is 
within 2%. 

F r o m  the results in (i) we know tha t  there is a 
t rans i t ion  value of  F for each Pr  and  below and  above  
this t rans i t ion value the instabilit ies are respectively 
due to s ta t ionary  and  oscillatory mode  of  dis turb-  
ances. Here we consider  the fluids with  Pr  = 7 for 
which the t rans i t ion value o f F  is a b o u t  0.04. It is also 
known  f rom (ii) t ha t  the destabi l izat ion effect is mos t  
significant at  low frequencies and  approaches  the 
quasi-steady limit as ~o --* 0 and  the s tabi l izat ion effect 
is found at  high frequencies and  disappears  at  very 
h igh frequencies. W h e n  the elastic modulus  is present  
in the fluids the same behav ior  is still present  at  b o t h  
very low and  very high frequencies, bu t  the phenom-  
enon  in the range of  in termediate  frequency is more  
complicated.  As shown in Fig. 7, the destabi l izat ion 
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Table 3. Ra~ (upper) and a~ (lower) vs M and N by even 
modes for Pr = 1, F = 0.1, E = 1, ~o = 0.01 and kc = 4.92 

(kc = 4.74 for t)  

N 
M 1 2 3 4 

3 451.23 510.87 509.92 509.95 
15.991t 15.089 15.090 15.090 

5 412.81 467.37 446.50 466.52 
15.991t 15.089 15.090 15.090 

7 400.40 453.32 452.48 452.50 
15.991~ 15.089 15.030 15.090 

9 394.84 447.03 466.20 446.22 
15.990t 15.088 15.089 15.089 

11 391.89 443.69 442.86 442.89 
15.989t 15.087 15.088 15.088 

13 390.16 441.73 440.90 440.93 
15.988t 15.086 15.087 15.087 

15 389.08 440.51 439.69 439.72 
15.985t 15.083 15.084 15.084 

effect at  low frequencies and  the slight s tabi l izat ion 
effect a t  high frequencies, are seen for all values of  F. 
For  F = 0, 0.01 and  0.02 the elastic modulus  is small 
and  the s ta t ionary convect ion  occurs at  Ra = Rao as 
the gravity modula t ion  is absent .  The three curves 
app roach  the same values at  bo th  low and  high fre- 
quency limits. A t  co ~ O(102), s t ronger  stabil izat ion 
for F = 0.01 and  destabi l izat ion for F = 0.02 are 
found  because of  the different mode  of  disturbances.  
This can fur ther  be unders tood  f rom Fig. 8, which 
shows the critical Rayleigh n u m b e r  vs F at co = 200. 
The upper  hor izonta l  curve represents the instabil i ty 
due to the syncronous  modes  while the inclined curve 
due to the subharmonic  modes. Fo r  F = 0.01 the criti- 
cal Rayleigh n u m b e r  is due to syncronous  modes  and  
is higher  than  Rao. Thus  elasticity enhances  the sta- 
bil ization effect of  modula ted  flow. Fo r  F = 0.02 the 
subharmonic  modes  compete  to occur  at  the onset  of  
instabil i ty and  decrease the critical Rayleigh n u m b e r  

to a value lower than  Rao. Elasticity strongly de- 
stabilizes the modula ted  flow which would be stabil- 
ized if  the elasticity were absent.  

The margina l  curves for F = 0.01 and  co = 150 are 
shown in Fig. 9. It is seen tha t  the syncronous  dis- 
turbances  occur at  smaller wavenumbers  and  the sub- 
harmonic  dis turbances  at  larger wavenumbers .  The 
critical Rayleigh n u m b e r  is the m i n i m u m  and is due 
to the subharmonic  disturbance.  At  a larger value 
of  elastic modulus  F = 0.045 and  for co = 450, an 
addi t ional  local m i n i m u m  is found at a higher  wave- 
n u m b e r  by the subharmonic  dis turbance,  as shown in 
Fig. 10. 

CONCLUSION 

The instabil i ty of  viscoelastic fluids hea ted  f rom 
below in a modula ted  gravi ta t ional  gravity is studied. 
A numerical  me thod  based on  the l inear theory and  
Floquet  theory is developed to trace the stability 
boundary .  

Fo r  the case of  viscoelastic fluids acted on by a 
cons tan t  gravity, a t rans i t ion F is found  for each 
Prandt l  number .  Below this t ransi t ion value stat ion- 
ary convect ion occurs and  above it oscillatory con- 
vection occurs, at  the onset  of  instability. The critical 
Rayleigh n u m b e r  for F less than  the t rans i t ion value 
is equal  to 1707.76, while for  F greater  than  the t ran-  
sit ion value it is always smaller than  1707.76. There-  
fore, the elastic modulus  has  destabi l izat ion effect on  
the occurrence of  instability. 

For  the case of  Newton ian  fluids acted on by a 
modula ted  gravity, modu la t ion  has a destabil izat ion 
effect at  low frequencies and  a slight s tabil izat ion 
effect at  high frequencies, which increase with increas- 
ing ampl i tude  of  modula t ion .  The destabi l izat ion 
approaches  the quasi-steady limit as the frequency 
tends to zero. 

W h e n  the modula ted  gravity is acting in the vis- 
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0 . . . . . . . .  I . . . . . . .  
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Fig. 7. The critical Rayleigh number vs frequency at different Deborah numbers for Pr = 7 and e = 1. 
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Fig. 9. The marginal curves for syncronous and subharmonic modes with Pr = 7, ~ = 1, F = 0.01 and 

= 150. 



1410 W.-M. YANG 

1 5 0 0  

500 I I I 

Pr : 7 

= 1 

F = 0 . 0 4 5  

= 4 5 0  

Ra 1 0 0 0  

I I I 

15 2 0  

I I I I I  

10 

k 
Fig. 10. The marginal curves for syncronous and subharmonic modes with Pr = 7, e = l, F = 0.045 and 

o9 = 450. 

coelastic fluids, modu la t ion  has  the same effects at  
bo th  low and  high frequency ranges as those of  New- 
tonian  fluids. While at  the intermediate  frequency 
range, subharmonic  dis turbances  are found to 
enhance  the s tabi l izat ion effect for smaller F and  the 
destabil izat ion effect for larger F. 
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