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A small amplitude oscillatory shear flows with the classic characteristic of a phase shift when

using non-equilibrium molecular dynamics simulations for n-hexadecane fluids. In a suitable

range of strain amplitude, the fluid possesses significant linear viscoelastic behavior. Non-linear

viscoelastic behavior of strain thinning, which means the dynamic modulus monotonously

decreased with increasing strain amplitudes, was found at extreme strain amplitudes. Under

isobaric conditions, different temperatures strongly affected the range of linear viscoelasticity and

the slope of strain thinning. The fluid’s phase states, containing solid-, liquid-, and gel-like states,

can be distinguished through a criterion of the viscoelastic spectrum. As a result, a particular

condition for the viscoelastic behavior of n-hexadecane molecules approaching that of the Rouse

chain was obtained. Besides, more importantly, evidence of thermorheologically simple materials

was presented in which the relaxation modulus obeys the time–temperature superposition

principle. Therefore, using shift factors from the time–temperature superposition principle, the

estimated Arrhenius flow activation energy was in good agreement with related experimental

values. Furthermore, one relaxation modulus master curve well exhibited both transition and

terminal zones. Especially regarding non-equilibrium thermodynamic states, variations in the

density, with respect to frequencies, were revealed.

I. Introduction

Linear viscoelasticity is of critical importance in understanding

experiments and theories of rheological science. As a rule, such

behavior is discussed in the aspect of small amplitude oscilla-

tory shear flows, especially for a wide variety of biomolecular

and polymeric materials/fluids.1–7 It is required to observe a

classical feature of oscillatory shear—a phase shift occurring

between shear strain and shear stress periodic waves. The fact

that the dynamic modulus is not a function of strain ampli-

tude while the Lissajous loop is a elliptic shape5,8 is called

linear viscoelasticity of fluids. Relaxation modulus curves at

different temperatures obey the time–temperature superposition

principle,9–11 which is known as thermorheological simplicity.3,12–14

Recent advances in non-equilibrium molecular dynamics

(NEMD) methodology15–17 have made it possible to engage

in academia and industry via microscopic understanding of

observed macroscopic phenomena for rheological properties.

Simple fluids, including argon,18,19 n-alkane,20–27 and water,28,29

are generally deemed Newtonian fluids for traditional experi-

mental procedures. Unexpectedly, in NEMD simulations

performed on a molecular scale, those fluids also exhibit the so-

called non-Newtonian flow, such similarities as shear thinning

and normal stress behaviors.21,27,29,30 Most NEMD studies

have been limited to investigating steady state shear21,27,30,31

and elongation32–34 flow fields. Apart from a few noteworthy

reports, oscillatory shear flow research on both linear visco-

elastic and thermorheological simplistic features has not yet

been presented to any great degree. Hence, the majority of

studies have focused on only a few aspects of both features.35–40

The dynamic modulus, including storage and loss moduli,

G0 and G0 0, is essential in viscoelastic knowledge of various

materials in dynamic mechanisms; both moduli with respect to

frequencyo,G0(o) andG0 0(o), are called the dynamic/viscoelastic

spectrum. According to rheological treatises,2,5,7 primary

factors for induced variations of viscoelastic properties are,

of course, temperature-dependent, pressure-dependent, and

molecular structure-dependent.

It is important to recognize the phase state of fluids on the

microscale. Through the dynamic spectrum in a wide range of

frequencies,5,6 several NEMD studies35–37,41 have determined

solid-, liquid-, and gel-like states of fluids under oscillatory

shear. A glass transition temperature,11 Tg, is a key parameter

in polymeric physical science. Yoshimoto et al.36 obtained the

value of Tg for free-standing polymer thin films from plots of G0

andG0 0 against temperature, performed by NEMD simulations.

From comparisons with theoretical predictions, Cifre et al.35

and Vladkov and Barrat38 showed that oscillated finite extensible

non-linear elastic (FENE) chains closely resembled the Rouse

model chains. In addition, Cifre et al.35 and Guo and Jhon37

adopted NEMD simulations to verify the well-known Cox–Merz

rule in the experimental field of polymeric rheology.2,7
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Often quite complex and macromolecular chains need to be

specifically modelled using coarse-grained molecular dynamic

(CGMD) simulations. Through dissipative particle dynamics

(DPD) simulations, Raos et al.42 determined the filled rubber

viscoelasticity of polymer network, containing stiff and

roughly spherical colloidal particles at a 20% volume fraction.

Tao et al.40 developed a multiparticle collision (MPC)

dynamics model to investigate the rheological properties of

viscoelastic fluids via the mesoscopic hydrodynamics method.

Borzsák and Cummings43 adopted the extended simple point

charge (SPC/E) model to examine the viscoelastic behavior of

water molecules under oscillation. Chen et al.44 employed

Brownian dynamics (BD) simulations to monitor ‘‘one DNA

molecule’’ undergoing oscillatory pressure-driven flow in micro-

fluid channels.

When reviewing the aforementioned NEMD literature,

most have been limited with respect to ‘‘constant-volume’’

NEMD systems.27 However, the applications of NEMD

simulations may not be convenient experimentally because

the related experimental data are usually measured under

‘‘isobaric conditions’’. Regrettably, only a few attempts have

been made to probe ‘‘constant-pressure’’ NEMD simulations.

The reason is the numerical instability: the instantaneous

pressure drifts suddenly to generate large instantaneous

volume fluctuations. Nevertheless, in order to resolve this

issue, Wang and Fichthorn45 proposed a modified pressure

equation to obtain an effectively stable numerical solution of

the volume. Thus far, constant-pressure NEMD simulations

for oscillatory shear flows have not been fairly performed.

Therefore, we implement a useful simulation framework that

should be applicable to NEMD methodology.

In this study, our fluid of interest, n-hexadecane, is one of

the more commonly used fluids in surface force apparatus46,47

(SFA) for lubrication and tribological experiments. The

n-hexadecane molecule related to the polymer chain is quite

short, and should be properly considered as the Newtonian

fluid in macroscopic perspective. At a molecular level,

most NEMD studies20,21,27,48 have corroborated that liquid

n-hexadecane obviously exhibits certain non-Newtonian

manifestations.

Recently, we reported27,49,50 a whole series of NEMD

papers in detail, regarding non-thermodynamic and rheological

behaviors of n-hexadecane fluids under steady-state shear

flow, which include shear dilatancy, shear thinning, and

normal stress effect. The original motivation of the present

study is, therefore, geared to ‘‘oscillatory shear’’ extended

from steady-state shear based on previous studies.27,49,50 The

major objective is to show linear viscoelasticity and thermo-

rheological simplicity. Also, a phase shift of oscillatory sheared

fluids is presented while a non-linear viscoelastic behavior of

strain thinning,51 which indicates the modulus decreased upon

increasing strain amplitudes, is revealed.

Consequently, this present article presents three significant

results below: (i) a criterion for determining phase states of

n-hexadecane materials at various temperatures can be suggested

by considering the viscoelastic spectrum, with G0 > G0 0

signifying a solid-like state, G0 o G0 0 a liquid-like state,

and G0 = G0 0 a gel-like state. Moreover, we obtained

certain conditions under which the behavior of n-hexadecane

molecules was close to that of the Rouse chain.1,3,6 (ii) The

relaxation modulus G(t) curves at different temperatures were

reduced to one master curve at the reference temperature via

shift factors of the time–temperature superposition.1,9–11 The

master curve was analyzed as compared to related viscoelastic

experimental results. Furthermore, the Arrhenius flow acti-

vation energy can be estimated using the data of shift factor

plotted against temperature. (iii) With non-equilibrium thermo-

dynamic states of the oscillatory sheared fluid, we further

observed how the density varied with respect to the frequency.

The rest of the article is organized as follows. In section II, we

briefly describe the oscillatory shear flow fields, the molecular

potential models, simulation techniques, and viscoelastic

properties. In section III, we offer a least-squares algorithm

for determining the optimal values of the storage and loss

moduli and present results for the focuses mentioned above.

In section IV, we summarize the main conclusions and provide

suggestions for future studies.

II. Simulation details

A detailed potential model and the simulation principle used

have been reported previously.27 Here, we give only a brief

description for the sake of completeness. The oscillation shear

flow system is introduced and viscoelastic properties are

expressed, as follows.

A System prototype

The geometry and dimensions of the oscillatory shear flow

system are illustrated in Fig. 1, and are also the same as

those used for the steady state shear system in the previous

studies.27,49,50 The simulation box is rectangular and three-

dimensional, containing 144 n-hexadecane molecules. The flow

(x-axis) and gradient (y-axis) directional sizes (Lx and Ly,

respectively) of the system are 3.0 and 4.5 nm, respectively.

The periodic boundary condition is adopted in the z direction

with its size (Lz) of 4.5 nm. Notably, in such an oscillatory

shear system, the top-plate moves while the low-plate remains

stationary. To perform the oscillatory shear flow, a time-

dependent shear strain imposed on NEMD systems is given

as a sinusoid form,2

g(t) = g0 sin ot, (1)

where g0 is the strain amplitude, o is the frequency, and t is a

time variable; the shear rate is _g(t) = g0 o cos ot.

B Molecular potential

A coarse-grain model neglects detailed atomic information but

maintains the essence of internal molecular structures. The

methylene (CH2) groups are treated as united atoms (UA)

with the use of spherical interaction sites in which hydrogen

atoms are not explicitly modelled as distinct atoms. Inter-

action sites connected together can form molecular chains.

This coarse-grain model has been adopted widely in relation to

molecular dynamics (MD) simulations, such as those of

n-alkanes52 and polyethylene (PE) chains.53 In the present

study, we used the set of realistic potential models reported

by Chynoweth and Michopoulos21,54 (CM). This model is

superior to the transferable potential for phase equilibria

4052 | Phys. Chem. Chem. Phys., 2010, 12, 4051–4065 This journal is �c the Owner Societies 2010
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(TraPPE) model, which we previously used to examine

n-hexadecane, when predicting rheological properties.27 Such

a model has been applied in the shear flow27,55–57 and con-

traction flow58 portions of MD simulations. In descriptions of

the molecular chains below, the CM model is dominated by

van der Waals (vdW) and covalent bonding interactions:

(i) van der Waals interaction. The vdW interaction occurs

between CH2 groups of different chains and also between CH2

groups in the same chain that are separated by more than three

CH2 groups. The vdW interaction can be described by the 12-6

Lennard-Jones (LJ) potential,21

ULJ ¼ 4eLJ
sLJ
rij

� �12

� sLJ
rij

� �6
" #

; ð2Þ

where rij is the distance between two CH2 groups, and eLJ and
sLJ are the energy and length parameters of the LJ potential,

respectively, for the pair of groups i and j. To reduce com-

putational time to determine the vdW force, the shifted

LJ potential15 is usually truncated at a cutoff distance rc
(rc = 2.5 sLJ E 10.113 Å) so that ULJ(rc) = 0.

(ii) Covalent bonding interaction. The bond stretching

potential59 Us connects two CH2 groups by harmonic potential

with an equilibrium bond length l0 of 1.53 Å,54

Us =
1
2
kl(li � l0)

2, (3)

where kl is the bond stretching energy constant and li is the

bond length between two adjacent CH2 groups.

The bond bending potential59 Ub is described by the Taylor

series’ cubic term expansion of the bending angle deviation

with an equilibrium bond angle y0 of 109.471,
54

Ub ¼
1

2
ky½ðyi � y0Þ2 � k0yðyi � y0Þ3�; ð4Þ

where ky is the bond bending energy constant, k0y is the bond

bending angle constant, and yi is a bond angle among three

adjacent CH2 groups.

The torsion potential Ut is expressed by a fifth-order cosine

polynomial of a dihedral angle,60

Ut = c0 + c1cos fi + c2cos
2 fi + c3cos

3 fi

+ c4cos
4 fi + c5cos

5 fi, (5)

where {cn} is the value of the set of torsion energy coefficients

and fi is the dihedral angle formed by the four consecutive

CH2 groups. All parameters for the potential models are listed

in Table 1.

C Simulation principle

The original NEMD algorithm15,17,61 was developed by com-

bining SLLOD17,61,62 equations of motion with the Lees–

Edwards sliding brick periodic boundary condition.63 The

algorithm contains two thermodynamic systems: the isochoric–

isothermal system (NVT-NEMD) and the isobaric–isothermal

system (NPT-NEMD). Here, we performed the so-called

oscillatory shear NEMD simulations under isothermal con-

ditions involving both constant-volume and constant-pressure

systems. For overall simulations, we chose the atomic version,27,64,65

including SLLOD equations, temperature, and stress tensor.

The SLLOD equations are ordinary differential equations

and are implemented using the numerical method—the

Leapfrog–Verlet scheme66—which offers a fast-converging

iterative algorithm for the Gaussian thermostat multiplier.20

In addition, the stability and convergence of numerical methods

strongly depend on the magnitude of time step, dt. The

Courant–Friedrichs–Lewy condition,67 which is a necessary

condition for convergence while solving differential equations

Fig. 1 Schematic representation of the oscillatory shear flow system

between a moving upper plate and a stationary lower plate with a time-

dependent shear strain of a sinusoid form, g(t) = g0 sin ot: (a) Lx =

3.0 nm in the flow direction (x-axis); (b) Ly = 4.5 nm in the gradient

direction (y-axis); (c) Lz = 4.5 nm in the periodic boundary condition

direction (z-axis).

Table 1 Potential parameters of the Lennard-Jones and covalent
bonding interactions

Parameter Valuea Unit

Lennard-Jones sLJ 4.045 Å
eLJ 0.420 kJ mol�1

Bond stretching kl 2650.98 kJ mol�1 Å�2

l0 1.53 Å
Bond bending ky 0.1004 kJ mol�1 deg�2

k0y 0.0096 Deg�1

y0 109.47 Deg
Torsion c0 9.278 kJ mol�1

c1 12.155 kJ mol�1

c2 �13.119 kJ mol�1

c3 �3.060 kJ mol�1

c4 26.239 kJ mol�1

c5 �31.493 kJ mol�1

a Lennard-Jones potential parameters (s and e) were taken from

ref. 21; equilibrium bond length and bond angle (l0 and y0) were taken
from ref. 54; bond stretching and bond bending force constants (kl, ky
and k0y) were taken from ref. 59; torsion potential parameters were

taken from ref. 60.

This journal is �c the Owner Societies 2010 Phys. Chem. Chem. Phys., 2010, 12, 4051–4065 | 4053
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numerically, means that dt is inversely proportional to a

characteristic velocity U.

In oscillatory shear flows, U is directly proportional to the

strain amplitude g0 and the frequency o, so that dt p g�10 and

dt p o�1 are true. Referring to the NEMD study of Berker

et al.,20 the criterion for setting dt is addressed as follows:

(i) under a constant frequency of 6.28 � 1011 rad s�1, if g0 r 0.1,

then dt = 1.0 fs, whereas if g0 > 0.1, then dt p g�10 ; and

(ii) under a constant strain amplitude of 0.05, if o r 6.28 �
1011 rad s�1, then dt= 1.0 fs, whereas if o> 6.28�1011 rad s�1,

then dt p o�1. To obtain time averages of the statistical

properties, we collected original data every 50 time steps

during the run processes. Each NEMD simulation of oscillatory

shear was run with 200 cycles of shear strain.

As for the rest of simulation technologies, we used the

ad hoc velocity rescaling method to stabilize the instantaneous

temperature to the desired temperature.15 In the constant

pressure NEMD system, to provide an effectively stable

numerical solution of the volume, we adopted a simple

modified pressure equation of Wang and Fichthorn’s.45

Detailed information regarding the aforementioned equations

and algorithms are available elsewhere.27

D Viscoelastic property

For an atomic system, an xy component of the stress tensor tyx
is given by the Irving–Kirkwood equation,15,68

tyx ¼ �
1

V

XN
i¼1

pixpiy

mi
þ
XN
i¼1

XN
j4i

rijxfijy

 !
; ð6Þ

where pi is the momentum of the ith atom; pix and piy are

components of pi; mi is the mass of the ith atom; rij denotes the

distance vector from atom j to atom i; fij denotes the force

imposed on atom i due to atom j; N equals the total number of

atoms; V is the system volume; and the superscript xy denotes

the x- and y-axes as the flow and gradient directions of the

flow system, respectively.

In an oscillatory shear flow, the phase shift exists between

the tyx and g waves:

tyx = t0 sin(ot + d), (7)

where t0 is the stress amplitude and d is the phase angle.

The material functions, i.e., the elastic or storage shear

modulus G0 and the viscous or loss shear modulus G0 0, are

usually represented as follows:

tyx/g0 = Gd sin (ot+ d) = G0(o)sin ot+ G0 0(o)cos ot, (8)

tan d = G0 0/G0, (9)

where Gd is the amplitude ratio (t0/g0) and tan d is the loss

tangent.

G0 and G0 0, which depend on Gd and d, are also known as

dynamic modulus: G0 = Gd cos d is related to the elastic energy

stored in fluids and G0 0 = Gd sin d is related to the energy

dissipated by the viscous flow. Regarding rheological states of

fluids, notice that d = 0 and d = p/2 signify the behavior of a

Hookean solid (linear, purely elastic) and Newtonian fluid

(linear, purely viscous), respectively; thus, 0 o d o p/2
indicates viscoelastic materials.5 To obtain G0 and G0 0, in the

next section, we simply describe how to determine the optimal

value of Gd and d by using the least-squares algorithm.69

III. Results and discussion

To prove both linear viscoelasticity and thermorheologically simple

characteristics of the fluid, n-hexadecane under oscillatory shear,

we have organized significant discussions into four sections, as

follows. In section IIIA, the phase shift is substantially presented

and the method for determining both optimal storage and loss

moduli is proposed with concreteness. In section IIIB, we validate

that the fluid possessed a linear viscoelastic behavior through two

representations of viscoelastic properties. In section IIIC, the

temperature-induced variation in both viscoelastic behaviors

and phase states of the fluid makes for detailed discussions. In

section IIID, we establish the thermorheological simplicity of the

fluid in that its relaxation modulus curves at different tempera-

tures obeys the time–temperature superposition principle1,9–11 and

then yield a master curve at a reference temperature. In addition,

the Arrhenius flow activation energy can be estimated by shift

factors of the principle.

A Oscillatory shear

Referring to related treatises of polymeric viscoelasticity,1,2,5

oscillatory shear flow is observed when a time-dependent shear

strain g(t) imposes on fluids with sinusoidal function. As a

result, the response of the fluid’s shear stress tyx(t) is also

considered a sinusoidal wave with respect to time. Very

importantly, it is necessary to find the optimal value of Gd

and d to determine storage and loss moduli.

1. Phase shift. A phase shift, which means the difference

between the shear stress and shear strain waves with respect to

time, is a fundamental manifestation of oscillatory shear flow.

As a beginning, the data from the shear stress were used in the

performance of oscillatory shear NVT-NEMD simulations

for n-hexadecane fluids at a state point of 477.6 K and

0.896 g cm�3. To confirm the initial exact findings quickly,

we chose a higher frequency (o = 6.28 � 1012 rad s�1) and a

smaller strain amplitude (g0 = 0.05). This run, with dt= 0.1 fs,

was performed during 200 periods of shear strain, i.e., 200 ps.

Fig. 2 presents the averaged data of shear strain and shear

stress waves with respect to a period of sinusoidal function, yp
(0 r yp r 2p). It is clear that the so-called phase shift is

observed with a phase angle of ca. 54.91 (or 0.958 rad), as

corroborated above. Therefore, this NEMD simulation system

is deemed to be a fairly oscillatory shear flow.

2. Dynamic modulus. For the data regarding the shear

stress with respect to time, tyx(t), using the least-squares

method69 we determined the optimal values of G0 and G0 0.

This computational process comprised the following five steps:

(i) The phase angle d between 0 and p/2 was divided into 100

intervals; the fraction dm was given by

dm ¼
p

2� 100
m; m ¼ 0; 1; 2 . . . ; 100: ð10Þ

(ii) Referring to eqn (7), we defined a new variable Xs at dm:

Xs = sin (ots + dm), s = 1, 2, 3,. . ., Ns, (11)

4054 | Phys. Chem. Chem. Phys., 2010, 12, 4051–4065 This journal is �c the Owner Societies 2010
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then,

tyx,s = t0Xs, (12)

where tyx,s is the shear stress of the ith statistical sample and

Ns is the total number of statistical samples. Thus, eqn (12) is a

linear equation. From the known set {ts,tyx,s}
s=Ns
s=1 , we obtained

the set {Xs,tyx,s}
s=Ns
s=1 ; additionally, using the least-squares

method, the set {Xs,tyx,s}
s=Ns
s=1 at d = dm can be used to find a

appropriate value of t0(dm). Due to Gd = t0/g0, the value of

Gd(dm) was also determined. Thus, we obtained the set

{dm,Gd(dm)}
m=100
m=1 .

(iii) Using the method from the previous step employed to

obtain the set {Xs}
s=Ns
s=1 , at d = dm, a particular shear stress

tLSyx,s was evaluated by the least-squares method,

tLSyx,s (dm) = t0(dm)Xs. (13)

(iv) At d = dm, a standard deviation �e was defined:

�eðdmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs

s¼1
ðtLSyx;sðdmÞ � tyx;sÞ

2

Ns

vuuut
: ð14Þ

Consequently, we obtained the set {dm,�e(dm)}
m=100
m=1 .

(v) In steps (ii) and (iv) above, we obtained the sets

{dm,Gd(dm)}
m=100
m=1 and {dm,�e(dm)}

m=100
m=1 , respectively. Gd(dm)

was plotted against dm and �e(dm) against dm, as indicated in

Fig. 3. Thus, aminimum value of �e was found at �emin= 53.26MPa;

also, dm(�emin) = 0.958 rad and Gd(�emin) = 1704.18 MPa.

Eventually, dm(�emin) and Gd(�emin) were substituted into G0=

Gd cos d and G0 0 = Gd sin d to obtain values 980.16 and

1394.10 MPa respectively. Thus, tan d= G0 0/G0 equalled 1.422

and then the calculated value of d = 54.891 was also in well

agreement with the observed value in Fig. 2. Therefore,

we performed this simple program above to determine the

optimal values of G0 and G0 0 for the next section.

B Linear viscoelasticity

As a rule, the linear viscoelastic behavior of fluids occurs in the

so-called small strain amplitude oscillatory shear (SAOS)

flows. There is, however, a troublesome problem—how small

a range of strain amplitude can be considered an SAOS flow

field? This issue is resolved below. The first—and major—goal

for the present study was to prove that the fluid was a linear

viscoelastic fluid. Two significant findings can demonstrate

linear viscoelastic characteristics: (i) the Lissajous loop in a

suitable range of strain amplitude presents an elliptic loop; and

(ii) the storage and loss moduli do not depend on the strain

amplitude.

1. Shear stress against shear rate. Plots of shear stress

against shear rate (tyx � _g) show a variety of elliptic shape,

which is known as the Lissajous loop.5,8,70–72 The loop for the

pure elastic fluid is a perfect elliptic loop, whereas that for a

pure viscous fluid is reduced to a straight line.8,10 Thus, the

loop for a viscoelastic fluid should be a somewhat narrow

elliptical loop, with its long and short axes not aligned parallel

to the shear stress and shear rate ones. Notably, Jeyaseelan

and Giacomin, who completely reviewed the viscoelastic

experiments and theories, suggested that the Lissajous loop

is a distorted elliptical for non-linear viscoelastic materials.72

Here, the oscillatory NVT-NEMD simulations, with g0 =

0.05 and o = 6.28 � 1011 rad s�1, were held constant at

477.6 K and 0.896 g cm�3 for n-hexadecane molecules. In the

viscoelastic experiment, Hyun et al.,70 discussed the effect of

the strain amplitude on a tyx � _g loop. As shown in Fig. 4,

variations in the tyx � _g loop were observed over a wide range

of strain amplitudes, 0.001r g0 r 0.6; wherein the square and

circle symbols are obtained by using NEMD simulation and

least-squares method, respectively. The auxiliary for the circle

was performed to check whether the simulated loop could be

confirmed as a standard elliptical loop.

In Fig. 4(a), the points in the tyx � _g plot at g0 = 0.6

obviously indicate a somewhat distorted elliptical loop.

Fig. 2 Phase shift diagram of the shear stress tyx (left axis) and shear

strain g (right axis) plotted against period of time yp for n-hexadecane
under constant conditions (T= 477.6 K; r=0.896 g cm�3; g0 = 0.05;

o = 6.28 � 1012 rad s�1). Note that phase angle d = 0.958

rad E 54.91.

Fig. 3 Standard deviation �e (left axis) and amplitude ratio Gd (right

axis) plotted against phase angle d, obtained using the least-squares

method for n-hexadecane under constant conditions (T = 477.6 K;

r = 0.896 g cm�3; g0 = 0.05; o = 6.28�1012 rad s�1). Note that

�emin = 53.26 MPa, dm(�emin) = 0.958 rad, and Gd(�emin) = 1704.18 MPa.
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As shown in Fig. 4(a)–(c), the degree of distortion of the elliptical

loop decreases as the value of g0 is decreased from 0.6 to 0.2,

until g0 = 0.1 [Fig. 4(d)], where the tyx � _g plot is almost a

standard ellipse. Over a range of strain amplitude, 0.01 r
g0 r 0.1, the tyx � _g plots in Fig. 4(d)–(f) remain constant as

elliptical loops. When g0 = 0.005 is a very low value, Fig. 4(g)

displays that the points in the tyx � _g plot do not form a

loop—rather, they disperse slightly. Even when g0 = 0.001

[Fig. 4(h)], the points do not clearly form a loop; this behavior

was caused by the strong thermal fluctuation of molecules at such

low values of strain amplitude.

Therefore, we tentatively conclude that the fluid possesses

linear viscoelastic characteristics in a suitable range of strain

amplitudes 0.01 r g0 r 0.1, but non-linear viscoelastic

characteristics for g0 > 0.1. In particular, for g0 o 0.01, the

points in the tyx � _g plot did exhibit random distributions, and

did not remain constant as an elliptical loop.

2. Dynamic modulus against strain amplitude. Related

rheological research1,2,5,6 describes that linear viscoelasticity

shows an imposed strain amplitude independence of the

storage and loss moduli. Fig. 5 presents plots of G0 and G0 0

against g0 over a wide range of strain amplitudes (0.001 r
g0 r 0.6). By using two auxiliary parallel dash lines, it is clear

that the values of G0 and G0 0 remain almost constant in the

range 0.01 r g0 r 0.1, i.e., G0 and G0 0 are not related to g0. In
other words, we prove that the linear viscoelastic feature of the

fluid occurred in a limited suitable g0 range: from 0.1 to 0.01.

In general, non-linear viscoelastic behavior is classified into

three types: strain thinning, strain hardening and weak strain

overshoot.51 Returning to Fig. 5, for high strain amplitudes

(about g0 > 0.1), the value of G0 decreased dramatically upon

increasing g0; the corresponding decrease in G0 0 was slight.

Such a result reveals an example of strain thinning. In

contrast, for low strain amplitudes (about g0 o 0.01), the

values of G0 and G0 0 both decreased with the decreasing g0; this
is due to strong thermal fluctuation of the molecules.

In rheological experiments,4 one suggested that polymeric

fluids at g0 o 0.5 can exhibit linear viscoelastic behavior. In

the present study, the range of linear viscoelasticity for

n-hexadecane fluids, 0.01 r g0 r 0.1, is very reasonable.

Therefore, in the next section, we examine the effect of

temperature on both the range of strain amplitude for linear

viscoelasticity and the slope of strain thinning for non-linear

viscoelasticity.

Incidentally, linear viscoelastic behavior exploits the linear

response theory,17,73 which means that the relaxation of a system

following infinitesimal external perturbations is identical to the

relaxation from spontaneous fluctuations at equilibrium.

Hence, this is why g0 must be less than 0.1, to ensure that the

chain conformations are always very near equilibrium. Because

thermodynamic fluctuation (or a lower signal-to-noise ratio) at

a low value of g0 (o0.001) results strongly in large statistical

uncertainty,22 the fluid does not possess the linear viscoelastic

behavior.

C Temperature dependence

In the previous section, we identified the oscillatory shear

flow to be a constant-volume NEMD system, although the

experiments were generally performed under isobaric condi-

tions. In a previous study,27 we proved the agreement between

NPT-NEMD and NVT-NEMD simulations for ‘‘steady state

shear flows.’’ Hence, at present, we also investigated whether

such an agreement could also be established for ‘‘oscillatory

shear flows.’’

Under the constant oscillatory shear conditions (T = 400 K;

o = 6.28 � 1011 rad s�1; g0 = 0.05), we presented evidence

for agreement between the NPT-NEMD and NVT-NEMD

simulations under an oscillatory shear. The geometry and

dimension of both simulation systems were the same as those

used in Fig. 1. In theNPT-NEMD simulations, we used a wide

pressure range (1.5–1000 MPa) to obtain converged densities;

in the NVT-NEMD simulation, we used a wide density range

(0.70–0.95 g cm�3) to obtain converged pressures.

As the density–pressure (r–P) curves clearly illustrate in

Fig. 6, the density increased upon increasing the pressure; this

trend is consistent with general physics. Significantly, both the

NPT-NEMD and NVT-NEMD curves were almost super-

imposed. Coincidentally, the r–P data can be formulated

using the equation, r ¼ 0:681þ 0:00876
ffiffiffiffi
P
p

, where the unit

of r and P is g cm�3 and MPa, respectively.

These results for oscillatory shear flows underline the equi-

valence between the NPT-NEMD and NVT-NEMD simula-

tions under like conditions. In the following section, we treat

the oscillatory shear problems in constant pressure systems—

namely, the effect of temperature on viscoelastic behaviors.

1. Viscoelastic behavior. We performed oscillatory shear

NPT-NEMD simulations under constant conditions (250 MPa;

o = 6.28 � 1011 rad s�1) over a wide range of strain

amplitudes (0.0025–0.5) for n-hexadecane molecules. Fig. 7

presents plots of G0 and G0 0 against g0 at temperatures of 300,

400, and 500 K. As per Fig. 5, two auxiliary parallel lines in

Fig. 7 also determine the g0 range of linear viscoelasticity:

roughly, 0.0075 r g0 r 0.75 at 300 K, 0.01 r g0 r 0.1 at

400 K, and 0.025 r g0 r 0.2 at 500 K. At the same time, the

difference between the largest and smallest values of the range

can be obtained: 0.675 at 300 K, 0.09 at 400 K, and 0.175

at 500 K. Accordingly, the LVE range lengthened as the

temperature rose. In addition, we observed that the gap

between the G0 and G0 0 curves also increased with temperature.

As a result, the range at high temperatures is long while the

gap is wide. Regarding the non-linear viscoelastic behavior,

the slope of the strain thinning decreased as the temperature

increased. In particular, for the highest temperature of 500 K

[Fig. 7(c)], the strain thinning effect was not obvious.

As analyzed above, we chose enough of the small strain

amplitude (g0 = 0.05) so that the fluid at different tempera-

tures remained in a constant linear viscoelastic state. Cautiously,

we again proved that the t � _g plots at 300, 400, and 500 K

were elliptical loops under constant conditions (P= 250MPa;

g0 = 0.05; o = 6.28 � 1011 rad s�1). Fig. 8 presents the fact

that the elliptical loop gradually narrowed as the temperature

increased. Up to the highest temperature (500 K), the elliptical

loop remained very thin and approximated a line, as shown in

Fig. 8(c). Such loops are also in agreement with descriptions of

related linear viscoelastic investigations.5,8,70–72
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Fig. 4 Lissajous plots of the shear stress tyx plotted against the shear rate _g at various strain amplitudes of (a) 0.6, (b) 0.4, (c) 0.2, (d) 0.1, (e) 0.05,

(f) 0.01, (g) 0.005, and (h) 0.001, for n-hexadecane under constant conditions (T = 477.6 K; r = 0.896 g cm�3; o = 6.28�1011 rad s�1). Fitting

points are obtained by using the least-squares method.
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Moreover, the rheological states are described by phase

angles d of zero for a pure elastic fluid, p/2 for a pure viscous

fluid, and a range between zero and p/2 for a viscoelastic fluid.

Fig. 9 presents the variation in d with respect to temperature.

An intersection appeared near 375 K. Beyond the intersection,

d may approach p/2, which means that the fluid at high

temperatures (>375 K) is close to a pure viscous state;

whereas before the intersection, the fluid exists in a viscoelastic

state. The vicinity of this intersection point indicates that the

transition phase of the fluid varied between viscoelastic to

near-viscous behaviors.

2. Viscoelastic spectrum. The effect of temperature

strongly influences phase states of materials/fluids. Traditional

dynamic experiments5,6 usually adopt viscoelastic spectra,

G0(o) and G0 0(o), to distinguish phase states of materials:

G0>G0 0 signifies a solid-like state; G0 o G0 0, a liquid-like state;

and G0= G0 0, a gel-like state. Especially for the gel state, Tung

and Dyne3,5,74 proposed that the crossover of the G0 and G0 0

curves occurred at the gel temperature (also called the gel

point). In the present study, we examined the n-hexadecane

fluid over a wide temperature range, from 250 to 500 K.

The range indicated the fluid’s phase state varied from solid

to liquid due to the melting point75 and boiling point21 of

n-hexadecane being 289–291 and 558 K, respectively.

Fig. 5 Storage and loss moduli, G0 and G0 0, plotted against strain

amplitude g0 for n-hexadecane under constant conditions (T=477.6 K;

r = 0.896 g cm�3; o = 6.28 � 1011 rad s�1). The dashed line is the

auxiliary for estimating the range of linear viscoelasticity.

Fig. 6 Plots of the pressure P plotted against the density r, obtained
from both oscillatory shear NVT-NEMD and oscillatory shear

NPT-NEMD simulations for n-hexadecane under constant conditions

(T = 400 K; g0 = 0.05; o = 6.28�1011 rad s�1).

Fig. 7 Storage and loss moduli, G0 and G0 0, plotted against strain

amplitude g0 at various temperatures of (a) 300, (b) 400, and (c) 300 K,

for n-hexadecane under constant conditions (P=250MPa;o=6.28�
1011 rad s�1). The dashed line is the auxiliary for estimating the range of

linear viscoelasticity.
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Fig. 10 shows plots of G0(o) and G0 0(o) at various tempera-

tures (250, 300, 350, 400, 450, and 500 K) over a wide

frequency range (6.28 � 1010 r o r 6.28�1012 rad s�1). At

the lowest temperature (250 K), we conjectured that the

material should exist in a solid state. Thus, Fig. 10(a) clearly

shows G0 > G0 0, which means that the fluid was in a solid-like

state. Only at the highest frequency (6.28 � 1012 rad s�1) did

G0 E G0 0, indicating that the fluid was in a gel-like state.

Fig. 10(b) shows that both the G0 and G0 0 curves were

almost superimposable at 300 K; namely, the fluid exhibited

a gel-like state.

When the temperature rose to 350 K [Fig. 10(c)], a transi-

tion point was found near o = 6.28 � 1011 rad s�1; before the

transition point, G0 o G0 0 referencing a liquid-like state; in

contrast, the fluid was in a gel-like state after the transition

point. Processed to 400 K [Fig. 10(d)], G0> G0 0 over the whole

frequency range, signifying that the fluid was in a liquid-like

state. As expected, G0 > G0 0 at the highest temperatures

(450 and 500 K), undoubtedly indicating the liquid-like state

of the fluid [Fig. 10(d) and (e)]. In passing, our previous

study50 proved that, by inspecting the overall shape of the

intermolecular radial distribution function15,76,77 (RDF)

curves at various temperatures (300–500 K), the n-hexadecane

fluid can be readily corroborated to exist in the liquid state.

More significantly, the variations in the values of G0 and G0 0,

with respect to frequency at 350 K in Fig. 10(c), are rather

similar to those of the Rouse model chains: at high frequencies,

G0= G0 0p o0.5; at low frequencies, G0 p o2.0 and G0 0p o1.0.

When we fit the data in Fig. 10(c), we obtain the following two

specific situations: (i) beyond the transition points, G0 p o0.52

and G0 0 p o0.47, which is close to the predictions of the Rouse

model; and (ii) before the transition points, G0 p o0.73 and

G0 0 p o0.5—results that clearly diverge from the Rouse model

because of the realistic molecular potential used.

However, by using the FENE model, Cifre et al.35 obtained

data that proved NEMD results were in good agreement

with the theoretical predictions of the Rouse model. Related

experimental observations of the gel point,5,6 with G0 o G0 0,

have suggested that G0 p oa for a > 0.5. Therefore, our

prediction (G0 p o0.73) appears to be quite acceptable. Con-

sequently, we could suggest that, at a particular temperature

of about 350 K, the n-hexadecane fluid possesses viscoelastic

behavior while its molecular chain at high frequencies is close

to the Rouse chain.

Furthermore, Fig. 10 was arranged to produce both

Fig. 11 and 12. As a whole, we observed that the values of

Fig. 8 Lissajous plots of the shear stress tyx plotted against the shear

rate _g at various temperatures of (a) 300, (b) 400, and (c) 300 K, for

n-hexadecane under constant conditions (P = 250 MPa; g0 = 0.05;

o = 6.28 � 1011 rad s�1). Fitting points are obtained by using the

least-squares method.

Fig. 9 Phase angle d plotted against temperature T for n-hexadecane

under constant conditions (P = 250 MPa; g0 = 0.05; o = 6.28 �
1011 rad s�1). Note that the two lines are linear fits of the data with an

intersection shown near 375 K.
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G0 and G0 0 both increased with increasing o, but decreased

upon increasing the temperature. Such a result was in

qualitative agreement with the findings from related experi-

ments by Yang et al.,78 who adopted atomic force micro-

scopy (AMF) and differential scanning calorimetry (DSC)

to investigate the linear viscoelasticity measurements and

detected the microphase separation transition for polyurethane

(PU) elastomer.

Surprisingly, at higher frequencies (o> 6.28 � 1011 rad s�1),

all of the G0 0(o) curves closely matched each other, demon-

strating the temperature independence of G0 0. We observed

similar characteristics in previous studies.27,49,50 For example,

we found that at high shear rates (_g > 1 � 1011.5 s�1) the

material functions, including Z, c1, �c2, and �c2/c1, did not

depend on temperature; wherein Z is the viscosity, and c1 and

c2 are the first and second normal stress coefficients,

Fig. 10 Storage and loss moduli, G0 and G0 0, plotted against frequency o at various temperatures of (a) 250, (b) 300, (c) 350, (d) 400, (e) 450, and

(f) 500 K, for n-hexadecane under constant conditions (P = 250 MPa; g0 = 0.05).
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respectively. Additionally, the NEMD study of Guo et al.79

also indicated that the viscosity at extreme shear rates

remained virtually unchanged with respect to temperature.

Using the power-law model, G0 p oa and G0 0 p ob, we fit

both the G0(o) and G0 0(o) curves at or 6.28 � 1011 rad s�1 to

obtain the variations in the exponents a and b with respect to

temperature. The values of a and b signify the rates of change

of G0 and G0 0 with respect to o, respectively. Fig. 13 presents

plots of a and b against T. Unexpectedly, we observe an

intersection point near 375 K.

Referring to Fig. 9, the d � T plot also features an intersection

at ca. 375K. Thereby, the variations of a and bwere similar to that

of d. In other words, we tentatively suggest that a and b should be

related to d. As a result, the relationship between the exponent and

the temperature could be also used to determine the so-called

rheological states of the fluid: beyond the intersection the fluid is

close to a pure viscous state; before it the fluid is viscoelastic.

D Thermorheological simplicity

Variations of the relaxation modulus with respect to time

at different temperatures can obey the time–temperature

superposition principle1,9–11 to obtain one master curve at

the reference temperature. Such fluids and materials are

considered to exhibit thermorheological simplicity.3,12–14

Therefore, the second—and significant—goal in the present

study was to prove that the fluid possessed the characteristics

of thermorheological simplicity.1,9–11 Also, the Arrhenius flow

activation energy was estimated.

1. Relaxation modulus master curve. For the time–

temperature superposition principle,1,9–11 the two shift factors

are horizontal and vertical, aT and bT, respectively. The

descriptor aT is the shifting time or frequency variable; it is

related to the relaxation time tR of molecules:

aT ¼
tRðTÞ
tRðT0Þ

; ð15Þ

where T0 is the reference temperature. The descriptor bT is the

shifting modulus or compliance variable. It is related to the

temperature and density:

bT ¼
r0T0

rT
; ð16Þ

where r0 is the reference density.

Therefore, at T0, the relaxation modulus G(T0) and time

t(T0) variables can be given as,1,11

G(T0) = bTG(T), (17)

t(T0) = t(T)/aT, (18)

whereas for polymeric fluids, the value of bT is assumed to be

unity because variations in density with respect to temperature

are not obvious.11

Note, however, that the length of the n-hexadecane molecule

is shorter relative to that of a polymer. Hence, we must

consider the effects of temperature and density on the value

of bT for n-hexadecane. Fig. 14 presents the r(o) curves at

various temperatures (300–500 K). The density decreased

upon increasing the temperature, but it remained almost

Fig. 11 Dependence of the frequency o on the storage modulus G0

at various temperatures for n-hexadecane under constant conditions

(P = 250 MPa; g0 = 0.05).

Fig. 12 Dependence of the frequency o on the loss modulus G0 0

at various temperatures for n-hexadecane under constant conditions

(P = 250 MPa; g0 = 0.05).

Fig. 13 Exponents of the power-law model (G0 p oa and G0 0 p ob)

plotted against the temperature T for n-hexadecane under constant

conditions (P = 250 MPa; g0 = 0.05) over the frequency range 6.28 �
1011 o o o 6.28 � 1012 rad s�1. Note that the two lines are linear fits

of the data with an intersection appeared near 375 K.
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unchanged upon increasing the frequency—i.e., we have

evidence for the frequency independence of the density.

In steady state shear flow systems at low shear rates (_go 1 �
1011 s�1),27,49,50 the densities of n-hexadecane fluids in non-

equilibrium states approximate those in equilibrium states.

Conversely, at extreme shear rates (_g > 1 � 1011 s�1), the

density decreases upon increasing the shear rate. This specific

behavior is called shear dilatancy. We have explained the reason

for its occurrence in a previous publication.50 Therefore, the

difference between the steady state and oscillatory shear flows is

large, in terms of the variation in density, at non-equilibrium

states.

Returning to Fig. 14, the solid lines and symbols indicate

the convergent and equilibrium densities, respectively. The

following convergent densities were obtained through least-

squares fitting of the r(o) curves: 0.852 g cm�3 (300 K),

0.836 g cm�3 (350 K), 0.820 g cm�3 (400 K), 0.805 g cm�3

(450 K), and 0.790 g cm�3 (500 K); the following equili-

brium densities were determined as per our previous study:27

0.836 g cm�3 (300 K), 0.818 g cm�3 (350 K), 0.801 g cm�3

(400 K), 0.785 g cm�3 (450 K), and 0.770 g cm�3 (500 K).

Accordingly, we found that the convergent densities in non-

equilibrium states under oscillatory shear were slightly larger

than the equilibrium states densities. When the frequency

approaches zero, the convergent densities should be close to

those of the equilibrium states. Previously, we also obtained

such a result in the steady state shear flow system.27 In

particular, Rah and Eu80 discussed the effect of shear

flow on a non-equilibrium liquid–vapor interface, while their

results revealed that the liquid phase side density is also

slightly increased, relative to the equilibrium density.

All linear viscoelastic properties can be related to the

relaxation modulus.1,2,5,9 According to Ferry’s treatises1 on

polymer viscoelasticity, the relaxation modulus with respect to

time, G(t), simply approaches the storage modulus spectrum,

namely,

G(t) E G0(1/o), (19)

where the time variable t is the inverse of the frequency o
(i.e., t = 1/o).
Through the time–temperature superposition principle1,9–11

and the approximation expression above, the storage modulus

spectrum, recorded at different temperatures in Fig. 11, can be

reduced to the master curve of the relaxation modulus, with

respect to time at the reference temperature (T0 = 400 K) in

Fig. 15. Notably, Table 2 lists the shift factors of aT with

respect to temperature.

As a result, Fig. 15 presents a turning point at ca. 6.0 ps, and

both a transition zone and a terminal zone. Before the turning

point, the fluid existing in the transition zone was viscoelastic;

beyond the turning point, the fluid in the terminal zone

was viscous. Experimentally, referring to Ferry’s polymer

viscoelastic treatises,1 the master curve for short polymer

chains (amorphous polymers of low molecular weight) also

exhibited both transition and terminal zones. Thereby, our

master curve for n-hexadecane can be deemed qualitatively

acceptable.

The complete relaxation modulus curve of polymeric mate-

rials features four zones: glassy plateau, transition, rubber

plateau, and terminal zones.5,11 Our G(t) master curve revealed

terminal and transition zones, but no glassy plateau and/or

rubber plateau zones. At 400 K, our n-hexadecane fluid was in

a liquid-like state; therefore, no glassy plateau occurred. A

rubber plateau would be expected in the G(t) curve if entangle-

ment of the molecular chains occurred. Foteinopoulou et al.81

demonstrated that once the chain length of polyethylene

reaches ca. 200 UA, it begins to generate a degree of entangle-

ment. Because n-hexadecane molecules would not exhibit such

Fig. 14 Dependence of the frequency o on the density r at

various temperatures for n-hexadecane under constant conditions

(P = 250 MPa; g0 = 0.05). The solid lines are curves fitted to the

r–o data using the least-squares method. Filled symbols indicate the

equilibrium state points.

Fig. 15 Master curve of the relaxation modulus G(t) as a function of

the shifted time (1/aTo) at a reference temperature of 400 K for

n-hexadecane under constant conditions (P = 250 MPa; g0 = 0.05).

Table 2 Shift factor aT for various temperatures T in the master curve
of the plot of the relaxation stress modulus G(t) for n-hexadecane at a
reference temperature of 400 K

T/K aT

300 4.500
350 1.850
400 1.000
450 0.525
500 0.335
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obvious entanglement, it is clearly understandable that the

G(t) curve for n-hexadecane fluids did not feature a rubber

plateau zone.

In particular, some researchers of polymer physics adopted

coarse-grain molecular simulation technologies to perform the

four-zone G(t) master curve for polymeric fluids. Through

the particular slip-link model and the efficient Green–Kubo

technique adopted in equilibrium molecular dynamics (EMD)

simulations, Likhtman et al.82 presented the three-zone master

curve for the entangled polymers, involving transition, rubber

plateau, and terminal zones. Furthermore, Lin83,84 and Das84

employed Monte Carlo (MC) simulations for entanglement-

free Fraenkel chains to also reveal the complete four-zone

master curve, which agreed with rheological experimental

data.1,2,5,9

2. Arrhenius flow activation energy. In a previous study

regarding steady state shear flows of NEMD simulations,27

we determined the Arrhenius flow activation energy, Ea =

10.99 kJ mol�1, for n-hexadecane at 250 MPa, obtained via a

plot of the zero-shear rate viscosity versus temperature. In

the EMD results reported by Lee and Chang,85 who discussed

the viscosity and diffusion of various n-alkane molecules, the

values of Ea for n-dodecane (C12H26) and n-icosane (C20H42)

molecules were predicted to be 9.74 and 13.75 kJ mol�1,

respectively. Thus, through extrapolation, we would expect

that the value for n-hexadecane (C16H26) molecules would be

ca. 11.73 kJ mol�1. In earlier experimental measurements,

Dorrance et al.86 used the fluorescence depolarization equip-

ment to obtain the value of Ea by the values of the polarization

plotted against temperature, namely, Ea = 16.00 kJ mol�1 for

liquid n-hexadecane.

In the present study, we used the oscillatory shear data

of aT versus T (Table 2) to estimate the flow activation energy.

Such a method is often adopted in polymer rheological

experiments.87 In general, the temperature-dependent shift

factor (aT) is determined by the Arrhenius equation,87,88 as

follows:

aT ¼ aR exp
Ea

RT

� �
; ð20Þ

where aR is the reference shift factor, Ea is the flow activation

energy, T is the absolute temperature, and R is the gas

constant (8.314 J mol�1 K).

As indicated in Fig. 16, the flow activation energy can be

found by plotting the relationship between log aT and 1000/T;

wherein the slope of this line was 0.844. By using the Arrhenius

equation, the flow activation energy, Ea = slope � ln 10 �
1000R, can be estimated to obtain a value of 16.16 kJ mol�1.

Unlike the previous value (10.99 kJ mol�1) obtained by the

steady shear flow,27 therefore, this present value (16.16 kJ mol�1)

obtained by the oscillatory shear flow is very close to the

prior experimental data (16.00 kJ mol�1),86 although certain

conditions may be somewhat different.

IV. Conclusion

The ultimate goal of this article, which underlies modern

NEMD methodology, is to present three clear rheological

pictures for the oscillatory sheared n-hexadecane fluid,

namely, phase shift, linear viscoelasticity, and thermo-

rheological simplicity. Overall, the fluid exhibits linear visco-

elasticity in a suitable range of strain amplitudes, 0.01r g0 r 0.1;

whereas at high strain amplitudes, g0 > 0.1, the fluid exhibited

a non-linear viscoelastic behavior of strain thinning. As the

temperature rose, the range of linear viscoelasticity increased

and the slope of strain thinning decreased.

The relaxation modulus curves, recorded at different tempera-

tures (300–500 K), obeyed the time–temperature superposition

principle to obtain one master curve at the reference tempera-

ture of 400 K, which featured both transition and terminal

zones. In addition, the Arrhenius flow activation energy,

16.16 kJ mol�1, was determined through the principle’s shift

factors. Those results are quite acceptable in comparison to

related rheological experiments.

The viscoelastic spectrum, G0(o) and G0 0(o), increased upon

increasing the frequency o, but decreased upon increasing the

temperature. Furthermore, we can distinguish phase states of

the fluid at various temperatures. At the lowest temperature of

250 K, G0 > G0 0 indicated that the fluid probably existed in a

pure solid-like state. At 300 K, which is close to the melting

temperature of n-hexadecane, G0 E G0 0 signified a gel-like

state. At 350 K, the liquid- and gel-like states coexisted over

the whole range of frequencies. At such a temperature,

the fluid’s molecular chains at high frequencies possessed

dynamics similar to Rouse chain dynamics. This is significant

due to our finding the appropriate condition of the Rouse

chain. When the fluid existed at high temperatures (>400 K),

G0 o G0 0 signifying a pure liquid-like state. Eventually, for

non-equilibrium thermodynamic states of the fluid under

oscillatory shear, upon increasing the frequency, the variation

in the density reached an almost constant value; also, the

density was slightly greater than the equilibrium density.

In the near future, we will prove whether the so-called

Cox–Merz rule applied on a micro-scale is valid, which is a

well-known empirical relation in the rheological/viscoelastic

research field. This rule suggests that the magnitude of the

Fig. 16 Semi-logarithmic Arrhenius plot of the shift factor aT as a

function of the temperature T for n-hexadecane under isobaric con-

ditions (P = 250 MPa). Note that the line is a fit to the data with the

slope of 0.844.
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complex viscosity is equal to the steady shear viscosity at

corresponding values of frequency and shear rate. A species of

complex molecular structures (e.g., H, star, branched,

and dendrimer shapes), simple bio-molecules, and even soft

matters all strongly affect dramatic variations of viscoelastic

properties which makes possible a very interesting topic that

will be tackled via coarse-grain MD simulations.
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