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a bigrating as a beam splitter
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The design of a bigrating for use as a beam splitter is presented. It is based on a rigorous formulation
of plane-wave scattering by a bigrating that is composed of two individual gratings oriented in different
directions. Numerical results are carried out to optimize the design of a bigrating to perform 13 4 beam
splitting in two dimensions and to examine its fabrication and operation tolerances. It is found that a
bigrating can be designed to perform two functions: beam splitting and polarization purification.
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1. Introduction

We present here an investigation of the scattering of
a plane wave by a bigrating that is composed of two
single dielectric gratings separated by a uniform di-
electric layer. In the limiting case in which the uni-
form dielectric layer is absent, we have a structure
with cascaded gratings. The two gratings may have
different physical and structural parameters, and
their periodic variations may be oriented in different
directions. Specifically, the two gratings generally
cross each other at angle w, which is referred to as the
crossing angle. To avoid confusion in terminology,
we distinguish from the outset between the usages of
two commonly referenced phrases, doubly periodic
and two-dimensionally periodic. Namely, a struc-
ture is said to be doubly periodic if it is periodic in one
direction with two different periods, and a structure
is said to be two-dimensionally periodic if it is peri-
odic in two orthogonal directions. Therefore, re-
gardless of the periods of the two constituent
gratings, a bigrating as a whole is more than a two-
dimensional periodic structure; it is doubly periodic
in one direction and singly periodic in the orthogonal
direction. Our interest here is in exploiting such a
special feature for the design of an optical beam split-
ter.
For optical interconnections, there has been a con-

The authors are with Department of Communication Engineer-
ing, National Chiao Tung University, Hsinchu, Taiwan.
Received 4 October 1995; revised manuscript received 18 March

1996.
0003-6935y97y102011-08$10.00y0
© 1997 Optical Society of America
tinuing search in the literature for a better design for
optical beam splitters.1–4 For example, utilizing the
concept of integrated planar micro-optics, Walker et
al.3 reported the design of a 1 3 4 beam splitter that
uses nine gratings of the reflection type, andNoponen
and Turunen4 synthesized two-dimensional periodic
structures to achieve 1 3 N beam splitters of the
transmission type. On the other hand, a bigrating
consists of only two single gratings; it is easy to de-
sign and relatively simple to fabricate. More impor-
tant, it offers some unique characteristics suitable to
the design of 1 3 4 beam splitters.
Analyses of planar structures consisting of multi-

ple gratings have been presented by many authors.
To mention a few, single and cascaded anisotropic
dielectric gratings with the same period along the
boundary surfaces have been analyzed with the
three-dimensional ~3D! coupled-wave theory.5 Mul-
tilayered periodic structures were analyzed on the
basis of the generalized scattering matrix theory.6
A rigorous analysis was presented for guided waves
in doubly periodic structures.7 All these analyses
have been carried out in certain special conditions:
~1! When the grating rulings are parallel and have
the same period or ~2!, when the incidence is on the
principal plane, i.e., the direction of the incidence is
perpendicular to the grating rulings. On the other
hand, the overall diffraction phenomenon associated
with a bigrating may be analyzed simply in terms of
multiple reflections between the two constituent
gratings as will be explained. This approach inevi-
tably involves the scattering of plane waves by a
grating at the non-principal-plane incidence, which is
by itself an important canonical problem in the sense
that it is a 3D boundary-value problem requiring the
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coupling of TE- and TM-polarized waves for the
boundary conditions to be satisfied. A rigorous
treatment of such a canonical problem and the phys-
ical consequences associated with it have been re-
ported in the past.8–10 With the results of such a
canonical problem available, the case of bigratings
can be handled simply as an extension of the treat-
ment of doubly periodic structures, as in this paper.
To set the stage, in Section 2 we describe first the

physical model and all the relevant parameters for
the ensuing analysis. A mathematical procedure is
outlined in Section 3 for solving the plane-wave scat-
tering by a bigrating as a boundary-value problem.
It takes into account the hybrid nature of the electro-
magnetic fields associated with the type of structure.
The design procedure and numerical examples are
given in Section 4 with particular emphasis on the
Bragg-regime operation so each individual grating
splits the beam into two beams with almost equal
intensity. Finally, some concluding remarks are in
Section 5.

2. Statement of the Problem

A rigorous analysis is presented for the scattering of
a plane wave by a bigrating that consists of two par-
allel single gratings separated by a uniform dielectric
layer. In general, the two constituent gratings may
be different in physical as well as structural param-
eters, and also their periodic variations may be ori-
ented in different directions with an angle w between
them, as shown in Fig. 1. With the coordinate sys-
tems shown, the upper grating ~grating 1! is periodic
along the x direction and uniform along the y direc-

Fig. 1. Structure configuration of a bigrating.
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tion, whereas the lower grating ~grating 2! is periodic
along the u direction and uniform along the v direc-
tion. Specifically, grating 1 has dielectric constants
ε1~x!, with period a and thickness t1, and grating 2
has dielectric constants ε2~u! with period b and thick-
ness t2. Between the two gratings is a uniform layer
of the dielectric constant and thickness, εu and tu,
respectively. Finally, the upper half-space is re-
ferred to as the air region with the dielectric con-
stants designated as εa and that of the lower half-
space as the substrate region with the dielectric
constants designated as εs. Note that, although the
dielectric constant of the air is unity, symbol εa is
intentionally kept in the formulation for generality.
In this way, another value may be assigned to it to
account for a cover layer, such as a prism over the
bigrating. Such a bigrating as a whole is generally
doubly periodic in the x direction and singly periodic
in the y direction.
In general, each of the two gratings may have any

spatial variation of its dielectric constants; in this
paper we consider exclusively the canonical case of a
sinusoidally modulated medium with the dielectric
constant given by

εi~s! 5 εiF1 1 di cosS2p

Li
s 1 piDG for i 5 1 and 2, (1)

where s stands for x for grating 1 and u for grating 2,
and εi, di, Li, and pi are, respectively, the average
dielectric constant, the modulation index, the period,
and the phase of the ith grating. Such a modulated
dielectric medium corresponds to the case of a volume
holographic grating, and its wave-propagation char-
acteristics have been extensively analyzed in terms of
theMathieu functions, as reported in the literature.11
On the other hand, a periodic dielectric constant with
an arbitrary variation may be represented by a Fou-
rier series, and the model of a modulated medium
may be regarded as its first-order approximation.
A plane wave is incident obliquely from the air

region and is scattered by the bigrating structure
with the direction of the propagation indicated in Fig.
2. In the spherical coordinated system, the incident
plane wave is characterized by the propagation con-
stant ka, the polar angle uinc, and the azimuth angle
finc. On the other hand, in the rectangular xyz-
coordinate system, the propagation vector of the in-
cident plane wave generally has three components
that are related to incident angles uinc and finc by

kx 5 ka sin uinc cos finc, (2a)

ky 5 ka sin uinc sin finc, (2b)

kz 5 ka cos uinc. (2c)

Because we are interested mostly in the power flow
perpendicular to the grating layers, we refer to the z
direction as the longitudinal direction and the xy
plane as the transverse plane. Thus kz is called the
longitudinal propagation constant, and kx and ky are
the components’ transverse propagation vector.



As a result of the multiple reflections between the
two gratings, a host of space harmonics is generated.
Because grating 2 can be considered as having been
rotated about the z axis by angle w with respect to
grating 1, it can be considered as having periods
bycos w and bysin w in the x and y directions, respec-
tively. Therefore the bigrating structure is doubly
periodic in the x direction and singly periodic in the y
direction; for themth space harmonic of grating 1 and
the nth space harmonic of grating 2, referred to sim-
ply as the mnth harmonic, the components of the
transverse propagation vector are related to those of
the incident plane wave by

kxmn 5 kx 1 m
2p

a
1 n

2p

b
cos w, (3a)

kyn 5 ky 1 n
2p

b
sin w, (3b)

wherem and n are the harmonic indices of gratings 1
and 2, respectively, and can be any integer ranging
from negative infinity to positive infinity. Further-
more kx and ky are related to the direction of plane-
wave incidence, as given in Eq. ~1!. By coordinate
rotation, the components of the transverse propaga-
tion vector of the mnth space harmonic are given in
the uvz-coordinate system as

kumn 5 ku 1 m
2p

a
cos w 1 n

2p

b
, (4a)

kvm 5 kv 2 m
2p

a
sin w, (4b)

where ku and kv are the transverse components of the
incident propagation vector in the uvz-coordinate sys-
tem; they are related to those in the xyz-coordinate
system by the transformation formula:

SkukvD 5 S cos w
2sin w

sin w
cos wDSkxkyD . (5)

Fig. 2. Propagation vector in spherical and rectangular coordi-
nate systems.
Evidently from Eqs. ~3!–~5!, when the incident plane
wave and the bigrating structure are specified, the
transverse propagation vector of each space harmonic
can readily be determined in both coordinate sys-
tems. This means physically that for every space
harmonic in each subregion the direction of propaga-
tion can be easily obtained, but the amplitude must
be determined by a 3D boundary-value problem, to be
explained below.

3. Method of Analysis

The scattering of a plane wave by a dielectric grating
layer sandwiched between two uniform media has
been rigorously formulated in the most general con-
dition of non-principal-plane incidence. As for a spe-
cial class of doubly periodic structures,7 a special case
of the crossing angle, w 5 0, a bigrating structure can
be likewise analyzed in terms of multiple scattering
between the two constituent gratings. Specifically,
wemay simplymake use of the previous results of the
plane-wave scattering by a single grating at a non-
principal-plane incidence8 as a building block, so that
we may skip altogether the details of solving the
boundary-value problem requiring the Floquet rep-
resentations for the fields in the periodic regions and
the subsequent matching of the boundary conditions
on the surfaces of the gratings. Therefore only an
outline of the method is given here with a list of
expressions for the space harmonic amplitudes that
are relevant to the ensuing discussions.
In a uniform dielectric medium, each space har-

monic appears as a plane wave of which the tangen-
tial field componentsmay be generally represented as
a superposition of those of the TE- and TM-polarized
plane waves. For the mnth harmonic the
tangential-field components can be written as

z0 3 Etmn~r, z! 5 @amn9Vmn9~z! 1 amn0Vmn0~z!#

3 exp~2jkrmn z r!, (6a)

Htmn~r, z! 5 @amn9Imn9~z! 1 amn0Imn0~z!#

3 exp~2jkrmn z r!, (6b)

where the single and double primes denote the TE
and TM polarizations, respectively, krmn is the trans-
verse propagation vector, r is the transverse coordi-
nate vector, and amn9 and amn0 are unit vectors
defined as

amn9 5 krmnykrmn, (7a)

amn0 5 z0 3 amn9 5 z0 3 krmnykrmn. (7b)

In Eqs. ~6! and ~7! all the phase quantities are sup-
posed to be known, but not the amplitudes, Vmn~z!
and the Imn~z!, which represent vertical variations of
the electric and magnetic fields of the mnth har-
monic, respectively, and can be written generally as a
superposition of the forward and backward traveling
waves as

Vmn~z! 5 Vmn exp~ 2 jkzmnz! 1 Vmn exp~ jkzmnz!, (8a)
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Imn~z! 5 Ymn@Vmn exp~ 2 jkzmnz! 2 Vmn exp~ jkzmnz!#,

(8b)

whereVmn andVmn are the amplitudes of the forward
and backward traveling waves, respectively. Note
that the primes over the V and I terms are omitted
here for simplicity, and these expressions hold for
either the singly or the doubly primed quantities,
denoting the TE- or TM-polarized fields. Finally,
the longitudinal propagation constant kzmn and the
wave admittance Ymn of the mnth harmonic in a
uniform medium of the dielectric constant ε are de-
fined as

kxmn
2 1 kyn

2 1 kzmn
2 5 k0

2ε, (9a)

Ymn 5 5Ymn9 5
kzmn
vm0

for TE polarization,

Ymn0 5
vε0ε
kzmn

for TM polarization,

(9b)

where kxmn and kyn are given in Eq. ~3! and k0 is the
free-space propagation constant. With the electro-
magnetic fields of each space harmonic represented
above, the total electromagnetic fields in each uni-
form medium can then be written as a superposition
of all the space harmonics and they are required to
satisfy the boundary conditions at every surface of
the two gratings. In view of Eqs. ~6! and ~8! there
are four sets of unknowns to be determined for each
uniform region, including the forward and backward
traveling-wave amplitudes of both TE and TM polar-
izations. Making use of the previous results on
plane-wave scattering by a single grating at an
oblique incidence,8 we skip altogether the details of
the Floquet representations for the fields in the pe-
riodic regions and the matching of the boundary con-
ditions on the surfaces of the gratings and list only
the expressions for the space harmonic amplitudes
that are relevant to the ensuing discussions.
To account for the interaction of the two constitu-

ent gratings, the key step is to determine the fields in
the uniform layer in between. Consider first the
plane-wave scattering by grating 2. In Eqs. ~6! and
~8! the backward traveling-wave amplitudes are re-
lated to the forward ones by

Vmn9 5 (
p52`

`

Gmnp
~1,1!Vmp9 1 (

p52`

`

Gmnp
~1,2!Vmp0, (10a)

Vmn0 5 (
p52`

`

Gmnp
~2,1!Vmp9 1 (

p52`

`

Gmnp
~2,2!Vmp0, (10b)

where Gmnp
~i, j! is a reflection coefficient with the su-

perscripts specifying the coupling between the two
polarizations and the subscripts denoting the har-
monic indices. Explicitly, Gmnp

~1,1! is the reflection
coefficient from the pth TE harmonic to the nth TE
harmonic of grating 2, when themth TE harmonic of
grating 1 is incident, Gmnp

~1,2! is the reflection coeffi-
cient from the pth TM harmonic to the nth TE har-
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monic of grating 2, when the mth TM harmonic of
grating 1 is incident, and similarly for other G terms.
Here we have made use of the fact that these re-
flection coefficients can readily be determined when
grating 2 and its surroundings are specified. Sub-
stituting the two expressions in Eq. ~10! into Eq. ~6!,
we can then define the relationship between the elec-
tric and magnetic fields of all the space harmonics, in
the form of impedance or admittance matrices, at the
bottom surface of grating 1. Thus the problem of
plane-wave scattering by the bigrating is reduced to
a case of plane-wave scattering by a single grating
with a known termination at the output surface; this
enables us to determine the scattering characteristics
of grating 1 including the effect of grating 2. For an
incidence of a single unpolarized plane wave that
may consist of TE and TM plane waves of amplitudes
A009 and A000, respectively, the amplitudes of the
reflected TE and TM mnth harmonic are given by

Bmn9 5 Gmn
~1,1!A009 1 Gmn

~1,2!A000, (11a)

Bmn0 5 Gmn
~2,1!A009 1 Gmn

~2,2!A000, (11b)

where Gmn
~1,1! is the reflection coefficient from the TE

incident wave to the TE-reflectedmnth harmonic and
Gmn

~1,2! is the reflection coefficient from the TM inci-
dent wave to the TE-reflected mnth harmonic, and
similarly for other G terms.
With the reflection coefficients of the overall big-

rating structure given above for all the space har-
monics, the electromagnetic fields in the air region
are considered to be completely determined. In
turn, the fields in every other region can be deter-
mined consecutively through the requirements of the
continuity tangential field across the interface bound-
aries. In the substrate region there are only the
transmitted space harmonics propagating in the for-
ward direction; the amplitudes of TE and TM mnth
harmonics are given by

Cmn9 5 Tmn
~1,1!A009 1 Tmn

~1,2!A000, (12a)

Cmn0 5 Tmn
~2,1!A009 1 Tmn

~2,2!A000, (12b)

where Tmn
~1,1! is the transmission coefficient from the

TE incident wave to the TE-transmitted mnth har-
monic andTmn

~1,2! is the transmission coefficient from
the TM incident wave to the TE transmitted mnth
harmonic and similarly for other T terms.
Based on the approach described above, we have

developed a computer program to generate reliable
numerical data for the design of dielectric bigratings.
Some of the results are illustrated below.

4. Design Considerations and Numerical Examples

With the rigorous formulation outlined in Section 3,
the scattering characteristics of the bigratings can be
systematically investigated. We have carried out
considerable numerical data to establish the validity
and accuracy of the analysis method employed.
However, in this paper, we focus on the design of
bigratings for use as beam splitters only. Before em-



barking on the details of specific examples, it is useful
and instructive to determine some general character-
istics of a bigrating, based on well-established knowl-
edge of single gratings. This provides not only a line
of thought for design consideration but also a good
starting point for numerical analysis. For illustra-
tion purposes, the two gratings are set to have the
same average dielectric constant, ε#1 5 ε#2 5 1.1, and
the same modulation index, d1 5 d2 5 0.011, but
different periods: a 5 0.6 mm and b 5 1.0 mm.
Note that the average dielectric constants are delib-
erately set to be relatively small, so that most of the
electromagnetic energy may transmit through the
bigrating and be diffracted in different directions.
These parameters are used exclusively for all the
numerical examples below.

A. Design Considerations

Referring to Fig. 2, we consider here the incidence of
a light beam with its electric-field vector polarized in
the y direction and the propagation vector in the xz
plane, and the cross section of the light beam is as-
sumed to be so large that it can be regarded as a
uniform plane wave. Such an incident light beam
may be diffracted first by grating 1 into many beams,
and each of the transmitted beams is further dif-
fracted by grating 2. With respect to grating 1, we
have a case of principal-plane incidence; therefore the
transmitted light is diffracted only in the x direction
into various space harmonics, some propagating and
the other decaying along the z direction. Each of the
propagating harmonics appears as a light beam with
the incident polarization preserved. With respect to
grating 2, however, every diffracted beam transmit-
ted through grating 1 is an incident beam at a non-
principal-plane incidence because of the crossing
angle between the two gratings. Thus the subse-
quent scattering of each harmonic from grating 1 by
grating 2 generally results in the excitation of both
polarizations in the further diffracted beams. In
other words, polarization conversions may occur in
the scattering process, and the diffracted beams from
grating 2 generally contain both TE and TM compo-
nents.
The bigrating structure consists of two separate

single gratings, each of which may diffract an inci-
dent optical beam into two beams of almost equal
intensity in the Bragg condition. Therefore the two
gratings can diffract an incident beam into four
beams, if the Bragg conditions of both gratings are
satisfied simultaneously. In the case of two gratings
crossing at an angle, the beams may be diffracted in
both the x and the y directions, as indicated in Fig. 2.
Such a two-dimensional splitting provides 1 degree of
freedom more for the design of beam splitters for
various applications, such as optical interconnec-
tions. For this study we are particularly interested
in evaluating the fabrication and operation tolerance
of the bigrating as a 1 3 4 beam splitter to achieve a
desired intensity distribution among the four dif-
fracted beams.
The propagation vector of the incident wavemay be
related to the incident parameters; for the tangential
components we have in the uvz-coordinate system

ku 5 kx cos w 1 ky sin w 5 ka sin uinc cos~w 2 finc!,

(13a)
kv 5 2kx sin w 1 ky cos w 5 ka sin uinc sin~w 2 finc!,

(13b)

where kx and ky are determined as in Eqs. ~2!. Be-
cause the periodicity of grating 1 is in the x direction,
theMth-order Bragg condition is given by kxa 5 Mp,
from which we obtain, after invoking Eq. ~2a!,

sin uinc cos finc 5 Mly2a. (14a)

On the other hand, the periodicity of grating 2 is in
the u direction, the Nth-order Bragg condition is
given by kub 5 Np, from which we obtain, after in-
voking ~13a!,

sin uinc cos~w 2 finc! 5 Nly2b. (14b)

Dividing Eq. ~14a! by Eq. ~14b!, we obtain the neces-
sary condition

cos finc

cos~w 2 finc!
5
Mb
Na

(15)

for the two individual gratings forming the bigrating
to both be in the Bragg conditions simultaneously.
For example, when the bigrating is fixed and the
order of the Bragg interaction chosen, i.e., a, b, w,M,
and N are given, the incident angles of finc and uinc
are determined successively from Eq. ~15! and either
Eq. ~14a! or Eq. ~14b!.
Returning to Fig. 2, we have an incident wave of

the TE polarization with respect to the vertical z
direction. Here the azimuth angle of incidence is
finc 5 0. For the grating periods that were chosen,
a 5 0.6 mm, b 5 1.0 mm and at wavelength l 5 1.0
mm, we obtain, for both gratings 1 and 2 to be in the
first-order Bragg conditions, M 5 1 and N 5 1; the
crossing angle is obtained from Eq. ~15! to be w 5
53.13° and the incident angle from Eq. ~14a! to be uinc
5 56.443°. In these conditions, the incident beam is
diffracted by grating 1 into two beams propagating in
different directions, one corresponding to the funda-
mental harmonic and the other to the m 5 21 har-
monic. Each of these two beams is then diffracted by
grating 2 into two beams, corresponding to the fun-
damental and n 5 21 harmonics. Thus the incident
beam is split into four beams altogether after trans-
mission through the bigrating as a whole.
Note that with respect to the xyz-coordinate system

the diffraction of grating 2 causes a shift not only in
the x direction but also in the y direction. Thus the
diffraction of an incident optical beam by the bigrat-
ing designed above results in four-beam splitting in
two dimensions. Certainly, multiple reflections oc-
cur between the two gratings; they are omitted in the
discussion above for simplicity. Although the direc-
tion of propagation of the four beams can be easily
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determined as described above, we must determine
the distribution of intensity and polarization among
the four beams by solving the overall structure as a
boundary-value problem, taking into consideration
the multiple-scattering effect, as outlined in Section
3. Some numerical examples are given below.

B. Numerical Results

To achieve a desired intensity distribution among the
four beams, it is necessary to design the bigrating
structure by adjusting the overall structural param-
eters other than the periods of the two gratings. To
explore the basic concept, we consider here the case in
which a prism is put over the bigrating to reduce the
reflection taking place at the upper surface of grating
1. We may normalize all the dielectric constants of
the structure to that of the prism, so that the dielec-
tric constant of the prism region becomes unity, εa 5
1.0, as in the case of air. In the numerical analysis
to follow, the normalized dielectric constants of the
uniform layer and the substrate are chosen to be
equal to the average value of that of the gratings, i.e.,
εu 5 εs 5 1.1. This is done to reduce the reflections
from the two gratings, so that the multiple reflections
between the two gratings are negligible and almost
all the energy is transmitted through the bigrating.
Finally, the thickness of the uniform layer does not
play an important role as long as it is not too small;
for computation purposes we set tu 5 5 mm, so that
the two gratings show good separation and the effect
of the higher-order evanescent harmonics can be ig-
nored in the design considerations.
We have carefully examined the beam-splitting ef-

fect for a large range of grating thicknesses, and we
determined that the thicknesses of the two gratings
may be chosen at t1 5 6.6 mmand t2 5 10.5 mm for the
four diffracted beams to share almost equal intensi-
ties. Note that we have chosen here the smallest
thicknesses of the two gratings for the intended pur-
pose. We may also choose larger thicknesses such
as t1 5 19.8 mm and t2 5 37.5 mm to obtain similar
results. With one grating thickness fixed and the
other varied, Fig. 3 shows the intensity variations of
the four diffracted beams for the case of TE incidence.
From these results, we observe that a 10% change in
the grating thickness results in an;3% change in the
diffraction efficiency of every beam. This offers a fab-
rication tolerance that should be acceptable in prac-
tice.
Using the structure designed above, we look at the

fabrication and operation tolerance of the beam split-
ter. First, for the alignment of the two gratings, Fig.
4 shows the effect of the crossing angle on the diffrac-
tion efficiencies. We observe that for a variation in
the crossing angle within 60.5° around w 5 53.13°,
the intensities of the four beams remain practically
unchanged. The fabrication tolerance of 60.5°
should not pose any practical difficulty in optical ap-
plications. To determine the effect of frequency
drifting of the source, the diffraction efficiency versus
incident wavelength is shown in Fig. 5. We observe
that within 1% around the wavelength of 1 mm, the
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efficiencies remain more or less unchanged. There-
fore the frequency drifting of the source should not
pose a threat to the operation of a bigrating as a beam
splitter.
As mentioned above, a bigrating is inherently a 3D

boundary-value problem that cannot support pure
TE or TM electromagnetic fields. In other words, for
the incidence of either a TE- or a TM-polarized beam,
both TE and TM polarizations are generally excited
in the diffracted beams. However, the relative in-
tensities of the two polarizations in a beam may be
controlled by adjusting the thickness of the grating.
Based on such a concept, we have designed a bigrat-
ing to perform the one-to-four beam splitting in two
dimensions, with each of the beams having a single

Fig. 3. Effect of grating thickness on the diffraction efficiency.



polarization. Specifically, we have designed a big-
rating that diffracts an unpolarized incident beam
into two pure TE-polarized beams and two pure TM-
polarized beams, as depicted in Fig. 6. It is empha-
sized that in this case the distribution of the beam
intensities is somewhat uneven, as indicated numer-
ically therein. Nevertheless the bigrating performs
two functions simultaneously: beam splitting and
polarization purification.
Although not shown here, we have also performed

calculations for the case in which the two gratings
remain the same, but all the uniform regions are
filled with air instead. Our results show that the
performance of the bigrating as a beam splitter dete-
riorates slightly. Our interpretation is that such a

Fig. 4. Effect of crossing angle on the diffraction efficiency.

Fig. 5. Effect of the wavelength on the diffraction efficiency.
phenomenon is due to the multiple reflections that
take place between the gratings. Thus a reduction
in the reflection effect is essential to the enhancement
of the beam splitter’s performance.

5. Conclusion

Based on a rigorous treatment of plane-wave scatter-
ing by a single grating at a non-principal-plane inci-
dence, the diffraction of a light beam by a bigrating is
systematically formulated as a 3D boundary-value
problem, including the effect of polarization cou-
plings. Numerical data were carried out with par-
ticular emphasis on the design of a bigrating for use
as a 13 4 optical beam splitter. The fabrication and
operation tolerances of the bigrating are examined,
and it is found that a bigrating can indeed perform
the beam-splitting function. With an appropriate
design, it can also realize the polarization purification
of the diffracted light beams. Thus the class of big-
ratings seems to have the potential to provide the
free-space optical interconnections.

This research was sponsored by the National Sci-
ence Council under contract NSC81-0417-E009-506.
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