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This paper aims at integrating detection and identification of human faces in a more practical and real-time face recognition
system. The proposed face detection system is based on the cascade Adaboost method to improve the precision and robustness
toward unstable surrounding lightings. Our Adaboost method innovates to adjust the environmental lighting conditions by
histogram lighting normalization and to accurately locate the face regions by a region-based-clustering process as well. We
also address on the problem of multi-scale faces in this paper by using 12 different scales of searching windows and 5 different
orientations for each client in pursuit of the multi-view independent face identification. There are majorly two methodological
parts in our face identification system, including PCA (principal component analysis) facial feature extraction and adaptive
probabilistic model (APM). The structure of our implemented APM with a weighted combination of simple probabilistic functions
constructs the likelihood functions by the probabilistic constraint in the similarity measures. In addition, our proposed method
can online add a new client and update the information of registered clients due to the constructed APM. The experimental results
eventually show the superior performance of our proposed system for both offline and real-time online testing.

1. Introduction

Biometrics has been an emerging technology for identifying
people by their physical and behavioral characteristics [1, 2],
and its applications have attracted more and more atten-
tions of researchers recently. Some physical characteristics
of an individual could be used in biometric identifica-
tion/verification system, such as fingerprint, palm print, face,
and ear. Similarly, the behavioral characteristics included
signature, speech, gesture, and gait. Among all biometric
identification fields, face recognition has always been consid-
ered much more popular and significant. Face detection and
recognition were also used in video surveillance and human
computer interface. Furthermore, face recognition with the
passive and nonintrusive benefits would be more appropriate
for personal identifications.

A typical face recognition system was composed of two
parts, face detection and face identification. It would be quite

challenging for face detection to localize the faces in an image
because the detected results might highly depend on the
surrounding conditions such as environments, movements,
lighting, orientations, and even the expressions of faces.
These variant factors may lead to the changes of colors,
luminance, shadows, and contours of images. For this reason,
it is impractical to detect faces by using a single feature.
Papageorgiou et al. [3] proposed a 2-D Haar feature to
detect objects by using SVM (Support Vector Machine) in
the training multiple Haar features. Li et al. [4] proposed a
“Floatboost” algorithm to delete the worse face features to
improve the detection rate and speed. Liehhart and Maydt
[5] proposed the extensive set of Haar-like features for the
rapid object detection, which gave the versatile uses of Haar
features and improved the precisions of object detection.
Then Viola and Jones [6] proposed three important methods
to detect objects efficiently. First, they applied integral images
to reducing the computational loadings of features. Second,



2 EURASIP Journal on Advances in Signal Processing

Camera
Mutiscale

searching window
Lighting

normalization
Face detector

based on Adaboost
Face regions

candidate
Region based

clustering

Facial feature
extraction

(eigenfaces)

Face identifier
based on APM

Client/impostor

Client
database

Decision

Face database

Face region

UpdatingTraining

Training

Figure 1: Architecture of the proposed face recognition system.

a simple and efficient classifier based on the Adaboost
learning algorithm [7] was used to select a small number of
features from a very large range of potential features. Third,
they presented a cascaded-combined-classifier method to
speed up the processing time.

Face identification was to identify faces in the registered
database. While many approaches of face identification
have aimed at identifying faces under slight changes of
lighting, facial expressions, and poses, reliable techniques for
identification under drastic variations have proven elusive.
The major issue in the view-independent face identification
was how to identify a registered face from different view-
ing directions. There were different kinds of methods for
handling posed variations in face identification, including
the invariant-feature method, 3D model-based method, and
multiview method. The invariant-feature method attempted
to extract features of faces from novel views, and uses these
features to identify the faces [8–10]. One major disadvantage
of this method was the unfeasibility of finding the sufficient
invariant features for identification. The 3D model-based
method focuses on constructing a prototypical view from
a 3D model. As what [11] has mentioned, the 3D model-
based method can work well for faces with small angles
of rotations. However, this kind of methods might fail
for faces with larger rotations due to the invisibility of
some important features [12]. The multiview method could
be more significant since the sufficient number of faces
in different views would be taken into consideration to
deal with the pose problems [13]. Beymer [14] modeled
faces from 15 views, and sampled different poses from the
viewing sphere. The way of face identification consisted of
two main stages, the geometrical alignment and correlation
for matching. There have been also other works presented
and proven to be robust to changes of viewpoints. One of
them was the well-known single-view eigenspace approach,
and its concept was based on the principal component
analysis (PCA) [15–20]. Many related works were proposed
to improve either the performance of face detection or face
identification. However, a complete face recognition system
including face detector and identifier was rarely proposed
in the recent researches. Moreover, most of presented works
were lack of flexibility to add new clients and to update

the clients’ information automatically. For more real-time
applications, we in this paper tended to propose a practical
system by integrating both face detection and identification
systematically. Our proposed system used the cascaded
Adaboost learning algorithm in face detection, and achieved
the multiclient identification mechanism by using adaptive
probabilistic model (APM). This paper would be organized
in the following sections. First, our presented face detection
system included histogram lighting normalization, feature
selection, the cascaded Adaboost classifier, and the region-
based clustering algorithm. After that, the identification
process including similarity measurement and the parameter
adjustment by APM would be introduced. Finally, the
experimental results and conclusions would be given to be
summarized.

2. Face Recognition System

The architecture of face recognition system in our work was
shown in Figure 1. The system consists of face detection
system localizing the face regions in a captured image, and
face identifier identifying “who” may belong to the extracted
face. We presented a novel idea, the searching windows with
various sizes, which would be used to find different face
candidates in multiscales. The face candidates in different
scales truly reflect various distances of clients from cameras.
We totally define 12 searching windows in various sizes
from the smallest block size of 24 × 24 to the biggest
one by a multiplier of 1.25. While a camera acquires an
image, the camera would produce the images in different
illuminating intensities depending on the light surrounding
clients. Therefore, it would be necessary for an accurate
recognition process to normalize the changes of light with
respect to the surrounding environments.

2.1. Lighting Normalization. The lighting normalization is
based on a histogram fitting method. The primary task of
histogram fitting is to transform the candidate histogram
H(l) to the target one G(l) for l = 0, . . . ,L − 1 where L
represents the number of discrete gray levels. Our target
histogram G(l) was chosen as the histogram of image closest
to the mean of the face database. Both of the original H(l)
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Figure 2: The candidate and target histograms, and their corresponding distributions.
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and target histogram G(l) would be mapped to the uniform
distributions MH→U(l) and MG→U(l)
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(1)

whereMH→U(l) andMG→U(l) are monotonically increasing.
The histograms H(l) can be mapped to G(l) by MH→G(l) in
the following equation:

MH→G(l) =MU→G(MH→U(l)). (2)

MU→G(l) denotes the inverse mapping ofMG→U(l). For each
pixel in the original image, if the value of some pixel is hi,
we will firstly map hi to its corresponding value MH→U(l) as
shown in Figure 2. After that, MH→U(l) will be mapped to
MH→G(l) by using the iterative scheme, which can be also
illustrated in Figure 3. To demonstrate the practical changes

after the lighting normalization, we showed the chosen target
image G(l) and the images before and after normalization
in Figures 4(a), 4(b), and 4(c), respectively. The images
with over-dark or over-light intensities would be normalized
to the target one. Therefore, the histograms after lighting
normalization would be similar to the histograms of targets.

2.2. Feature Selection. The intensity based features employed
in this paper were based on Haar features. We selected four
types of rectangle features as illustrated in Figure 5, including
the vertical edge, horizontal edge, vertical line, and diagonal
edge proposed by Papageorgiou [3]. In fact, it is feasible
to use the composition of different brightness rectangles
to represent the light and dark regions in the image. The
features are defined in the following equation:

valvesubtracted = f
(
x, y,w,h, Type

)
, (3)

where (x, y) indicate the origin of the relative coordinate of
rectangle features in the searching window. The significance
of w and h denote the relative weight and height of rectangle
features, respectively. Type presents the type of rectangle
features, and valvesubtracted is the sum of the pixels in the white
rectangle subtracted from those in the black ones.

A single rectangle feature which best separates the face
and nonface samples can be considered as a weak classifier
h(x, f , p, θ) as shown in the following equation:

h
(
x, f , p, θ

) =
⎧⎨
⎩

1, if p f (x) < pθ,

0, otherwise.
(4)

The weak classifier h(x, f , p, θ) used to determine if the
x-block image is a face or a nonface depends on the feature
f (x, y,w, and h type), the threshold θ, and the polarity p
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Figure 4: Lighting normalization. (a) Target image, (b) Input images, (c) Lighting normalized images.
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Figure 5: Four types of rectangle features.

indicating the signs of inequality. For each weak classifier, an
optimal threshold is chosen to minimize the possibilities of
misclassifications. The selected threshold for each rectangle
feature is acquired through the training process by our
database which consists of 4000 face images and 59000
nonface images. Figures 6(a) and 6(b) present some face
and nonface examples in our database. In this procedure, we
could collect the distributions of f (x, y,w, and h type) for
each image in the database, and then a threshold with higher
distinguishability in clustering would be chosen. Although
each rectangle feature can be obtained easily, computing the
complete set of all features is extremely costing. Take the

smallest searching window of 24×24 block size, for example,
the entire number of rectangle features will be 160,000.

The Adaboost method combines a collection of weak
classifiers to form a stronger classifier. Since the stronger
classifier is rather time consuming, the structure of cascaded
classifiers by Viola and Jones [6] will be preferred to
improving the detection performance and reducing the
computational time. As a result, our cascaded Adaboost
classification based on the stronger classifier will classify each
extracted face image step by step. In each step, only the
image-block classified as a face may be essential to go to the
next step. The number of steps must be sufficient to achieve
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Figure 6: Database of face detection system. (a) Face images, (b) Non-face images.

an excellent detection rate and the minimized computational
loading. For example, a detection rate of 0.9 can be achieved
by 10-step classifier for the detection rate of 0.99 in each
step (0.9 ≈ 0.9910). The procedure of our implemented
Adaboost process can be simply described as the following
equations. If m and l are the number of nonface and face
samples, respectively, and j is the sum of nonface and face
samples, the initial weightwi, j for the ith-stage can be defined
as wi, j = 1/2m, (1/2l) for yj = 0, 1. The normalized weighted
error with respect to the weak classifier can be expressed in
the following equation:

εi = min
f ,p,θ

∑
j

wi, j

∣∣∣h(xj , f , p, θ
)
− yj

∣∣∣. (5)

The updating weights for each iteration are defined in (6)
where ej equals to 0 if the object is classified correctly and
vice versa:

wi, j = wi, jβ
1−ej
i . (6)

Also, the final classifier for the ith-stage is defined in the
following equation:

C
(
xj
)
=

⎧⎪⎨
⎪⎩

1, αih
(
xj , f , p, θ

)
≥ 1

2
αi,

0, otherwise,
(7)

where αi = log(1/βi) and βi = εi/(1− εi)

2.3. Region Based Clustering. The face detector usually finds
more than one face candidate even though only one single
face appears in an image, which is illustrated in Figure 8,
and a region-based clustering method is used to solve this
kind of problems. The proposed region-based clustering

method consists of two levels of clustering, local and global
scale clustering. The local scale clustering is used to cluster
the blocks in the same scale and design a simple filter to
determine the number of blocks within clusters. While the
number of blocks in some cluster is more than one, that
cluster will be reserved as the possible candidate of faces,
otherwise it will be discarded. The local scale clustering
judges if the blocks meet the decision rule in (8). In (8), the
overlap rate (x, y) is the percentage overlapped between two
detected regions, x and y, and distance (x, y) is the distance
of centers in these two regions. The equality,cluster (x, y) = 1
means the block x and y are in the same cluster and the
regions are completely overlapped

cluster
(
x, y

) =
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if overlap rate
(
x, y

) ≥ THoverlap rate

and distance
(
x, y

) ≤ THdistance,

0, otherwise.
(8)

Figure 9 shows several cases of the clustering process. In
Figure 9(a), the two blocks are processed as the same cluster,
and in Figure 9(b) the two blocks are processed as different
clusters because the distance of the centers does not satisfy
distance (x, y) ≤ THdistance. For the special case as shown
in Figure 9(c), they are all considered as face candidates but
most of them are false accept blocks. Therefore in this paper
for practical applications, we only choose one block that
satisfies overlap rate(x, y) ≥ THoverlap rate rather than select
multiple blocks. At the end, the global scale clustering will
use the blocks obtained from local scale clustering, and label
the face regions by the average size of all available blocks.
Some results in the entire region based clustering process
for both local-scale and global-scale levels will be shown in
Figure 10. From the right image in Figure 8, in fact, only
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Figure 11: The pattern information for the specific dimensions of image subspace (a) the sum of eigenvalues and (b) the detection rate with
respect to the number of eigenvectors.

Figure 12: Five different head orientations of a client.

one block will be precisely clustered as a face region after
applying our local and global clustering processes even
though more than five face candidates are obtained for an
image with only five faces.

3. Face Identification

We have two major parts of face identification in this
work, facial feature extraction and adaptive probabilistic
model (APM). The facial feature extractor is constructed by
principle component analysis (PCA) [17] which effectively
reduces the number of dimensions by maximizing the
projections of scatters of all samples. To begin with, we have
a training set of N images and each image consists of n
elements. In our case, N equals to 4000 which indicates the
total number of images in the database. Each image has n
elements with the size equaling to 24 × 24 or a 576-element
vector.

The process of obtaining a single space consists of finding
the covariance matrix C of the training set and computing
the eigenvectors vk for k = 1, 2, . . . ,n. The eigenvectors vk
corresponding to the largest eigenvalues λk span the base of

searching subspaces. Each original image can be projected
into the subspace as in the following equation:

ηk = vTk ·Φs k = 1, 2, . . . ,m, (9)

where m(m < n) is the chosen dimensionality of the
image subspace, and Φs = Γ s −Ψ represents the relation
of Γs, a set of projected training images, and Ψ,the average
image of the training set. If m is closer to n, the results
of face identification will be more precise. But the face
identification takes more computational time to project the
original images into the corresponding subspaces. Hence,
we have to choose the appropriate dimensionality of image
subspaces. Figure 11 shows one instance of how we deter-
mine the number of image subspaces. Figure 11(a) indicates
that the pattern information about representative facial
features will gain when the number of principle components
increases. But the detection rate in Figure 11(b) will be
saturated to a limit value or even reduced when the number
of principle components is larger than the specific value
(50 in this case). The reason is simple that the pattern
information may include both the significant information
and noise, which makes more eigenvectors extracted more
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noises involved. Therefore, how to determine the optimal
number of eigenvectors will be much more significant, and
this idea contributes to one of the major points in this
paper. We can easily observe that the performance of the
detection rate descends by the effect of noises. From the
observations in simulations, we can determine the number of
eigenvectors in our face identification system by the pattern
information and detection rate in about 81% and 93%,
respectively.

3.1. Similarity Measure. The APM method is proposed to
achieve the faster and functional goals for face identification.
It can online register new clients and update the clients’
information. This capability can enhance the practicability
and heighten the identification rate of the proposed system
for more other applications. The primary concept of APM
architecture is based on the view-independent face identifi-
cation. The view-independent model of face identification
is more robust than the single-view one because the head
orientations of a person may be changeable in the real
conditions. In our proposed system, the view-independent
model of face identification system is built with five different
head orientations for each client as shown in Figure 12.
The APM method follows the probabilistic constraint in
the similarity measures to design a model of likelihood
functions, since the judgment rules of classifications depend
on the degree of likelihoods. We denote a testing sample x,
and the similarity between x and each registered client can
be computed by the likelihood function of each client. The
testing sample x will be classified as the client by the largest
similarity. The likelihood function APMc(x) for class c is
a mixture of probabilistic functions which is shown in the
following equation:

APMc(x) =
5∑
j=1

wc, j,t pc, j(x), (10)

where pc, j(x) for j = 1, 2, . . . , 5 is defined as the probabilistic
function in (11) and wc, j,t is the weighting value which can
be expressed in the following equation:

pc, j(x) =
(

1

(2π)d/2

)(
1

σc, j,td

)

× exp
(
−1

2

(
x − μc, j,t

)T
[Σ]−1

(
x − μc, j,t

))
,

(11)

5∑
j=1

wc, j,1 = 1. (12)

With the assumptions in (13), the probabilistic function (11)
can be simplified to (14). And our initial weight wc, j,1 is set
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Figure 13: The detection rate with respect to different j of the
covariance matrix.

to be 0.2 for each j-head orientation:

|Σ| = σ2d
c, j,t −→ |Σ|1/2 = σdc, j,t,

[Σ] = σ2
c, j,t · I −→ [Σ]−1 = σ−2

c, j,t · I ,
(13)

pc, j(x)=
(

1

(2π)d/2

)(
1

σc, j,td

)
exp

⎛
⎜⎝−
(
x−μc, j,t

)T(
x−μc, j,t

)
2σc, j,t2

⎞
⎟⎠.

(14)

The other parameters in (10)–(14) such as t, d, μc, j,t, σc, j,t
represent the time for updating each client’s information,
the dimension of input vectors, the mean vector, and the
covariance matrix, respectively.

3.2. Parameter Tuning and Adaptive Updating. The covari-
ance matrix σc, j,t may affect the performance of APM, so we
are inspired to optimize the covariance matrix σc, j,t. We have
the face database which contains the images of 10 persons in
our simulations, and initialize the covariance matrix σc, j,0 by
the variance of training data. We can then obtain the updated
covariance matrix σc, j,1 by the following equation:

σc, j,1 = 1
j
× σc, j,0. (15)

The detection rate with respect to different j of the covariance
matrix σc, j,1 is shown in Figure 13. The detection rate will
be obviously improved for 4 < j < 43. We can thus choose
the parameter j to be 5 and obtain an optimized covariance
matrix σc, j,1 in parameter tuning of APM throughout this
paper.

The adaptive updating process focuses on the parameter
updating of APM. The design of adaptive updating for APM
can improve the detection rate of face identification. As the
number of updating iterations increases, APM will become
more robust and can be simulated to identify the heads in
different orientations of our testing clients more accurately.
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Figure 14: Detection rate, for (a) the parameter α and (b) the parameter ρ.

(a) (b)

Figure 15: Face detection results for (a) a single face and (b) multifaces in an image.

While a client is identified correctly, the functional APM will
be updated immediately by using the following equation:

wc, j,t = (1− α)wc, j,t−1 + α
(
Mc, j,t

)
,

Mc, j,t =
⎧⎨
⎩

1, if mapped,

0, otherwise,

μc, j,t =
(
1− ρ)μc, j,t−1 + ρx

σ2
c, j,t =

(
1− ρ)σ2

c, j,t−1 + ρ
(
x − μc, j,t

)T(
x − μc, j,t

)
,

(16)

where α and ρ are the learning rates for the weights, mean
and covariance matrix. The parameter μc, j,t and σc, j,t for
unmatched distributions remains the same. The magnitude
of learning rates may have influences on the efficiency of
APM updating, and a large learning rate will make the
likelihood functions of APM over-fitted while the small
learning rate results in the worse detection rate. We use
the ORL database which contains 40 persons to select the
parameter α and ρ. Also, we have ten images for each person;
five of them are used in the training data, two of them are
for the testing data, and the others are for the updating data.
Figures 14(a) and 14(b) show the detection rates regarding
to the parameter α andρ, respectively. To obtain the best

detection rates in the experimental results, we can choose
0.05 for the parameterα and 0.2 for the parameter ρ.

4. Experimental Results

The experimental results could be divided into two sections,
face detection and face identification. We also compared our
face detection results with OpenCV (Open Source Com-
puter Vision Library Community). For experiment in face
identification, both of face detection and face identification
had to work together. Our proposed system could work
well for both offline and online testing. Our online testing
mechanism could automatically capture images frame by
frame from a fixed camera in order to achieve the real-time
purposes, and update parameters of APM or add new clients.

4.1. Face Detection. Figures 15(a) and 15(b) presented the
results of face detection for an image with a single face or
multiple faces. In the case of multipersons with different
sizes of faces, the proposed face detector system could
precisely locate the regions of faces. In order to estimate
the performance of the face detector in a more quantized
manner, we would show the performance of our system by
estimating the detection rates, error rates, and the numbers
of false accept images. The testing set consisted of 100
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Figure 16: The performance of face detectors in different thresholds for (a) the detection rates, (b) The error rates, (c) The numbers of false
accept images.

Figure 17: Face detection results of the proposed system and OpenCV.

pictures with 434 labeled frontal faces, which were collected
randomly from BaoDataBase, Carnegie Mellon Test Images,
and the collected pictures of our own. Table 1 displayed
the comparison results of face detectors between with and
without lighting normalization. Figures 16(a)–16(c) showed
the detection rates, error rates, and the numbers of false
accept images in different thresholds. We tested 7 different
thresholds for our face detector, and calculated the accuracy,
error, and the numbers of false accept images correspond-
ingly. In our results, the performance of face detectors with
lighting normalization would be better than that without
lighting normalization. We also compared our face detection
system with OpenCV for the same testing set. The testing
results of OpenCV were the detection rate 81.36%, error rate
26%, and the number of false-accept images 5. Although the

number of false-accept images by OpenCV’s was smaller than
that by our method in some special case, the detection rate by
our method would be better than that by OpenCV’s for the
threshold value smaller than 0.56. Figure 17 demonstrated
the results of face detection where the images in the top
and bottom row images indicated the detected results of our
proposed face detector system and OpenCV’s, respectively.
It could be observed that our face detector could localize
most of face regions precisely except the images shown in
the second row. Most of the erroneous results occurred
because the face images in the used database were most from
Westerns but not from Asians.

4.2. Face Identification. Table 2 illustrated the comparisons
of the proposed face identification method PCA+APM and
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Table 1: The comparisons of face detectors between with and without lighting normalization.

Threshold
Detected rate (%) Error rate (%) Numbers of false accept images

without with without with without with

0.5600 72.02 78.60 40 13 13 20

0.5550 73.12 82.80 30 7 21 31

0.5525 74.53 85.11 26 6 23 34

0.5500 74.55 85.57 26 5 29 39

0.5450 76.92 86.70 20 4 38 43

0.5400 80.24 87.29 13 4 51 58

0.5350 82.86 88.29 8 2 54 66

Table 2: The comparison of characteristics for the proposed method and others.

Comparison parameters Eigenfaces [17] PCA+CN [19] SOM+CN [20] PCA+APM

Method
Feature Eigenfaces Eigenfaces Self-organizing map Eigenfaces

Classification K-nearest neighbor Neural Network Neural Network Adaptive Probabilistic Model

Characteristic

Training time Quick Slow Slow Quick

Update ability No No No Yes

Add client Yes No No Yes

Practicability Better Worse Worse Better

other methods. The compared methods included Eigenfaces,
PCA+CN (Principal Component Analysis and Convolu-
tional Neural Network), and SOM+CN (Self Organizing
Map and Convolutional Neural Network). Our arguments
in comparisons were based on the training computational
time, the updating ability, and the ability to add the client’s
database in practicability. Because our system was developed
under the considerations of efficiency and performances in
real-time environments, the practicability would be the most
important one of all the factors. Our system could register
new clients and update the client’s information online in the
real-time cases to achieve practicability.

4.2.1. Offline Testing . Table 3 presented the comparisons of
detection rates, in which the testing set used ORL database
including 40 persons with ten images of each. We selected
3-images, 4-images, and 5-images of each person to be
the training data, and the remained for testing. Table 3
showed that the more images of each person used in the
training process led to the higher detection rates. The lighting
normalization also had a great impact on the detection rate.
The detection rate without using lighting normalization was
slightly below SOM+CN and the methods with lighting
normalization, and the detection rate would be higher by
about 0.3%–3%. In order to test the tolerable degrees of our
system, we designed an experiment to measure the accuracy
for different numbers of clients in particular. Figure 18
indicated the performance of face identifier with different
numbers of clients. The detection rate would achieve 100%
for the number of clients lower than 10, and decrease when
the number of clients exceeded 10. The detection rate would
be reduced to 86% until the number of clients achieved 63. It
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Figure 18: The performance of face identifier with respect to the
number of clients.

could be acceptable if the detection rate of face identifier was
still higher than 80%. In such cases, our system would still be
in a tolerable range, and our proposed approach could accept
more than 63 clients. For measuring the performances of
the adaptive updating process, we used in the ORL database
five images of each person for the training data, three for
testing, and two for updating. We used the cross validation to
estimate the performances of adaptive updating. The upper-
and lower- lines in Figure 19 illustrated the detection rates
after and before the adaptive updating process, respectively.
From those experimental data, the performance of face
identifier with the adaptive updating process has been
obviously improved.
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Table 3: The comparison of detection rates of the proposed method and others.

Eigenfaces PCA+CN SOM+CN
PCA+APM

without With

Training images for each person
3 81.8 86.8 88.2 86.8 89.3

4 84.6 87.9 92.9 92.5 92.9

5 89.5 92.5 96.2 95.0 98.0
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Figure 19: The performance of adaptive updating.

Table 4: The summarized threshold for distinguishing the clients
and impostors.

Threshold FRR FAR

0 4.5 89.9

0.000125 18.5 18.5

0.001 32.8 5.1

0.002 40.5 1.3

0.003 48.9 0

0.004 50.7 0

We had the total of 26 persons to find the threshold for
telling clients from imposters in the proposed system. For
13 out of all clients, five images for each would be used in
the training data and the remained were taken for the testing
data. We additionally selected five images from the remained
13 impostors to be the testing images. Figure 20 presented
the results of selected thresholds for telling the clients from
impostors and the tested results would be summarized in
Table 4 for some threshold values. The values of thresholds
indicated the similarity measures of APM. In Figure 20, FRR/
FAR represented the false reject/accept rate. We made use of
the intersection of FAR and FRR to determine the similarity
threshold. Based on the experimental result, the value of
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Figure 20: The threshold distinguishing the clients and impostors.

threshold for telling the clients from impostors could be set
to be 0.000125.

4.2.2. Online Testing. The experimental results in the online
testing were obtained by using the system with the Intel
P4 2.60 GHz CPU and 1 GB RAM. The development tool
was Borland C++ Builder 6.0 on Window XP OS. The
input images were captured from cameras in the 320 × 240
resolution. Figure 21 showed some examples of clients in our
database. The process to identify a new coming face as a
client or an impostor started with capturing an image and
extracting the face detector to localize the face regions. The
face identifier module then would recognize the faces as the
registered clients or impostors. Some results were shown in
Figure 22. The registering process for new clients required
the images with five different head orientations including the
upward, downward, leftward, rightward, and frontal faces.
Figure 23 showed the processes in the database when the
client was updated. The total run time during the whole
process which begins with capturing an image, continues
with extraction of face detectors and localizing face regions,
and terminates at face recognition and client identification
is estimated to be 0.4–0.5 miniseconds. Moreover, each sub-
process such like image acquirement, extraction of face
detectors, and client identification accounts for between a
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Figure 21: Examples of clients in the database.

1. Linda
1. Whei

2. WheiImpostor
ImpostorImpostor

Impostor

Figure 22: The testing results generated from the proposed face identifier.

(a)

(b)

(c)

Figure 23: (a) A new client with different head orientations, (b) An overview of the updating database, (c) Face identifier before and after
registering a new client.
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(a) (b)

Figure 24: Examples of detection failures in (a) false detection, and (b) missed face regions.

(a) (b)

Figure 25: The example of false acceptance for (a) an impostor and (b) a client.

fourth to a half of the total runtime in a complete process
of multiclient detection and identification.

5. Discussions and Conclusions

The integration of face detection and face identification for
real-time face recognition application has been proposed in
this paper. The design of this system focuses on robustness
and practicability. We demonstrate our proposed approach
to accurately detect the face regions in an image. Besides,
the system provides an identification mechanism to identify
whom the extracted face of clients belongs to in the database,
and a judgment way to regard the detected client as an
impostor or a new client. In the face detection, the lighting
normalization can actually improve the detection rate and
a region-based clustering method is able to deal with the
problems of multiple candidates around our target face.
However, some nonface images with face-like shapes as
shown in Figure 24(a), or partially occluded faces in an image
as shown in Figure 24(b) may result in the detection errors.
For some special case as shown in Figure 25 where the two
clients are too similar to be distinguished from, the false
acceptance may occur inevitably. For face identification, an
adaptive probabilistic model (APM) is introduced to model
the characteristics of clients. According to the design of
APM, the system can register a new client and update the

information of clients online. By the process of adaptive
updating, the weights for different poses and the matched
probabilistic functions are adjusted to satisfy the latest
information of registered clients. The experimental finally
results show that the proposed APM-based technique indeed
has a good performance for both the face detection and
identification in most cases. And we will consider more
exceptional cases which may not be processed by our
proposed system in the near future.
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