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A nonlinear boundary value problem (BVP) from the modelling of the transport phenomena in
the cathode catalyst layer of a one-dimensional half-cell single-phase model for proton exchange
membrane (PEM) fuel cells, derived from the 3Dmodel of Zhou and Liu (2000, 2001), is studied. It
is a BVP for a system of three coupled ordinary differential equations of second order. Schauder’s
fixed point theorem is applied to show the existence of a solution in the Sobolev space H1.

1. Introduction

The modelling of fuel cells has been an attractive topic in the field of electrochemical
theory. In the last decade, models for proton exchange membrane (PEM) fuel cells have
been formulated by many scientists (see, e.g., [1]). Among these models, some complicated
systems of partial differential equations (PDEs) were constructed from principles of fluid
mechanics, electrostatics, and heat transfers; however, most of them were solved by
numerical simulations only. We are interested in the mathematical analysis of the system
of differential equations and the discussion is restricted on the transport phenomenon of
a single-phase model given by [2]. The more complicated two-phase models, like those
mentioned in [1, 3], are not in the scope of this paper.

In [4], by reducing space variables to one dimension andmaking several assumptions,
a system of PDEs in [5] was simplified to a boundary value problem (BVP) for a linear
system of decoupled ordinary differential equations (ODEs), and an exact solution was
constructed. In [6], a 1D half-cell model reduced from [5] is considered; that model is a BVP
for a nonlinear system of three ODEs of second order which are no longer decoupled and it
seems to be hard to find an exact solution. By Schaefer’s fixed point theorem, the study in [6]
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is able to show the existence of a solution in the space of continuously twice differentiable
functions. In this paper, motivated by [4, 6], we will derive a 1D half-cell model from the
3D model of [2]; it is still a BVP for a nonlinear system of three ODEs of second order;
however, the nonlinearity is different from that of [6] and an alternative strategy will be
applied; namely, a weak formulation of the BVP will be considered. In this weak formulation,
the function space is replaced by the Sobolev space H1 and an iteration process associated
with Schauder’s fixed point theorem will be adopted. The result of this paper indicates
a direction of attacking the complicated system of PDEs for the modelling of PEM fuel
cells.

Now, we briefly describe the contents of this paper. In Section 2, the governed
equations and boundary conditions in the cathode catalyst layer for the 1D half-cell model of
PEM fuel cells are derived. In Section 3, the weak form of a linear generalized Neumann
problem is described. Existence and uniqueness of the generalized Neumann problem is
guaranteed by the Lax-Milgram theorem and it will be shown that the solution for the linear
problem has an a priori bound. In Section 4, Schauder’s fixed point theorem is applied to
prove the existence of an H1 solution for the nonlinear system of ODEs.

2. The Model

In this section, we will reduce a 3D model of Zhou and Liu [2, 7] to a 1D half-cell model. This
3D model was a modification of the 2D model given by Gurau et al. [5], so the derivation of
the 1D model is quite the same with what we did in [6], we describe the derivation here for
the reader’s convenience.

Recall (e.g., see [8]) the species equations are

0 = ερDeff
k ∇2Yk +

⎧
⎨

⎩

0, channel and diffusion layers,

ερSk, catalyst layer,
(2.1)

where Yk is the concentration of kth component gas mixture, and Deff
k

is the effective
diffusivity of the kth component in the gas mixture, which is given by

Deff
k =

⎧
⎨

⎩

Dk, channel,

Dkε
1.5, porous media.

(2.2)

At the cathode, the mass generation source terms Sk for oxygen, water, and protons are
jc/(2Fc),−jc/(2Fc), and jc/(Fc), respectively. At the anode, the source terms for hydrogen
molecules and protons are −ja/(2Fc) and ja/Fc, where ja and jc are the transfer current
density at anode and cathode, which represent the reaction rates. Note that the value of jc
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is negative and ja is positive. The relationships between ja, jc and the species concentration
(YH2 and YO2) are given by the Butler-Volmer equations

ja =
(
airef0

)

a

(
YH2

Y ref
H2

)1/2[

exp
(
αaF

RT
ηa

)

− exp
(

− (1 − αa)F
RT

ηa

)]

,

jc =
(
airef0

)

c

(
YO2

Y ref
O2

)[

exp
(
αcF

RT
ηc

)

− exp
(

− (1 − αc)F
RT

ηc

)]

,

(2.3)

where a is the active catalyst surface area per unit volume of the catalyst layer, iref0 is the
exchange current density under the reference conditions, T is the absolute temperature,
R is the universal gas constant, αa and αc are symmetric factors, and ηa and ηc are the
corresponding overpotentials.

The energy equation is

0 = keff∇2T +

⎧
⎨

⎩

0, channels and diffusion layers,

Q, catalyst layer and membrane,
(2.4)

with

keff =

⎧
⎪⎪⎨

⎪⎪⎩

kg, channels,

−2ks + 1
ε/
(
2ks + kg

)
+ (1 − ε)/3ks

, porous media,
(2.5)

where kg is the thermal conductivity of the gas while ks is the thermal conductivity of the
solid matrix of the porous media. The heat generation rates Q in different regions are given
by

Q =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ja · ηa + i2

σcl
, anode catalyst layer,

i2

σm
, membrane

jc · ηc + i2

σcl
, cathode catalyst layer.

(2.6)

Note that this is a main difference between the 3D model of [2] and the 2D model of [5].
The phase potential satisfies

∇ · (σ∇φ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

jc, cathode catalyst layer,

0, membrane,

ja, anode catalyst layer,

(2.7)



4 Mathematical Problems in Engineering

where φ is the phase potential, and σ is the ionic/electric conductivity which depends on T :

σ(T) =
ηc

kefflcl
(0.005139λ − 0.00326) exp

[

1268
(

1
303

− 1
T

)]

. (2.8)

The current density is given by

i = −σ∇φ. (2.9)

Next, we assume that T,Φ, Yk depend on one space variable and restrict to the cathode
side of the catalyst layer, following [4], only one species (the oxygen) (i.e., k = 1, and let
Y1 = Y .) For simplicity, the derivative with respect to x is denoted by ′ = d/dx.

From (2.4), the equation for energy becomes

T ′′ − k(T)Y + λf(T)
(
Φ′)2 = 0, x ∈ (a, b), (2.10)

where Φ is the catalyst layer phase potential, T is the energy, and Y is the oxygen mass
fraction; f(T) ∈ C1

b
(R) is a regularization of 1/λ · (σ(T)/keff) away from T = 0 so that

f ≥ δ1 > 0 is required, and k(T) ∈ C1
b
(R) is a regularization of

− ηc
keff

(
airef0

)

c

(
1

Y ref
O2

)[

exp
(
αcF

RT
ηc

)

− exp
(

− (1 − αc)F
RT

ηc

)]

. (2.11)

By (2.7), in the cathode catalyst layer, we have the following equation for the phase
potential

(
f(T)Φ′)′ + g(T)Y = 0, x ∈ (a, b), (2.12)

where g(T) ∈ C1
b(R) is a regularization of

− ηcjc
kefflclY

= − ηc
kefflcl

(
airef0

)

c

(
1

Y ref
O2

)[

exp
(
αcF

RT
ηc

)

− exp
(

− (1 − αc)F
RT

ηc

)]

. (2.13)

And for the oxygen mass fraction, via (2.2), we obtain the equation in the cathode catalyst
layer:

Y ′′ − h(T)Y = 0, x ∈ (a, b), (2.14)

where h(T) ∈ C1
b(R) is a regularization of

− jc

2FcDeff
k Y

=
−1
Deff

k

· 1
2Fc

·
(
airef0

)

c

(
1

Y ref
O2

)[

exp
(
αcF

RT
ηc

)

− exp
(

− (1 − αc)F
RT

ηc

)]

. (2.15)
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We can assume that h ≥ δ2 > 0. The boundary conditions for this 1D model are

μ1T(a) − μ2T
′(a) = 1, T ′(b) = 0,

Φ(b) + βf(T(b)) ·Φ′(b) = 0, Φ′(a) = 0,

α1Y (a) − α2Y
′(a) = 1, Y ′(b) = 0,

(2.16)

where μ1, μ2, α1,α2, β > 0. It is convenient to let l = b − a in the following discussions.
Note that the derivation of these boundary conditions can be found in [6]; therefore

we do not repeat here.
Now, we formulate a weak form of the boundary value problem (2.10)∼(2.16).
Let Ω = (a, b) and consider (T,Φ, Y ) ∈ (H1(Ω))3; thus it is a weak solution of (2.10)∼

(2.16) if the following equations hold:

−
(
μ1T(a) − 1

μ2

)

· ϕ(a) −
∫b

a

T ′ · ϕ′dx =
∫b

a

k(T)Yϕdx − λ

∫b

a

f(T)
(
Φ′)2ϕdx, ∀ϕ ∈ H1(Ω),

−1
β
Φ(b) · ϕ(b) −

∫b

a

f(T)
(
Φ′) · ϕ′dx +

∫b

a

g(T)Yϕdx = 0, ∀ϕ ∈ H1(Ω),

−
(
α1Y (a) − 1

α2

)

· ϕ(a) −
∫b

a

Y ′ · ϕ′dx =
∫b

a

h(T)Yϕdx, ∀ϕ ∈ H1(Ω).

(2.17)

For (2.17), we have the following existence theorem.

Theorem 2.1. There exists at least one solution (T,Φ, Y ) of (2.17) in (H1(Ω))3.

3. Linear Results

Before we prove Theorem 2.1, some linear results should be proved and we still use the
notation (T,Φ, Y ) for the solution of the following (weak) linear generalized Neumann
problem:

−
(
α1Y (a) − 1

α2

)

· ϕ(a) −
∫b

a

Y ′ · ϕ′dx =
∫b

a

h(T∗)Yϕdx, ∀ϕ ∈ H1(Ω), (3.1)

−1
β
Φ(b) · ϕ(b) −

∫b

a

f(T∗)
(
Φ′) · ϕ′dx +

∫b

a

g(T∗)Y∗ϕdx = 0, ∀ϕ ∈ H1(Ω), (3.2)

−
(
μ1T(a) − 1

μ2

)

· ϕ(a) −
∫b

a

T ′ · ϕ′dx =
∫b

a

k(T∗)Y∗ϕdx − λ

∫b

a

f(T∗)
(
Φ′

∗
)2
ϕdx, ∀ϕ ∈ H1(Ω),

(3.3)

where T∗, Y∗,Φ∗ ∈ H1(Ω). Since the equations for (T,Φ, Y ) are decoupled, they can be treated
separately.
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The existence and uniqueness of the solution for the linear generalized Neumann
problem (3.1)∼(3.3) is guaranteed by the following Lax-Milgram Theorem (see [9]).

Theorem 3.1 (A theorem on linear monotone operators). Let A : X → X∗ be a linear
continuous operator on the real Hilbert space X. Suppose that A is strongly monotone, that is, there
is a c > 0 such that

〈Au, u〉 ≥ c‖u‖2 ∀u ∈ X, (3.4)

then for each given b̃ ∈ X∗, the operator equation

Au = b̃, u ∈ X, (3.5)

has a unique solution.

Next, we show that the solution for the linear problem has an a priori boundwhich can
be shown to be independent of (T∗,Φ∗, Y∗) so that a domain for the iteration process exists.

Theorem 3.2. Suppose that (Y,Φ, T) is a weak solution for (3.1)∼(3.3), then one has

‖Y‖H1(Ω) ≤ N1, (3.6)

‖Φ‖H1(Ω) ≤ N2‖Y∗‖∞, (3.7)

‖T‖H1(Ω) ≤ N3
∥
∥Φ′

∗
∥
∥2
2 +N4‖Y∗‖∞ +N5, (3.8)

whereN1,N2,N3,N4,N5 are positive constants, and they depend on ‖f‖∞, ‖g‖∞, ‖h‖∞.

Proof. (1◦) Equation (3.6) holds. Since

−
(
α1Y (a) − 1

α2

)

· ϕ(a) −
∫b

a

Y ′ · ϕ′dx =
∫b

a

h(T∗)Yϕdx, ∀ϕ ∈ H1(Ω), (3.9)

let ϕ = Y ∈ H1(Ω); therefore we have

−α1

α2
Y 2(a) +

1
α2

Y (a) =
∫b

a

∣
∣Y ′∣∣2dx +

∫b

a

h(T∗)Y 2dx ≥ min(δ2, 1)‖Y‖2H1 . (3.10)

By (3.10), we can get that

‖Y‖2H1 ≤ 1
min(δ2, 1)

(

−α1

α2
Y 2(a) +

1
α2

Y (a)
)

≤ 1
min(δ2, 1)

· 1
4α1α2

. (3.11)

Set N1 = ((1/min(δ2, 1)) · (1/4α1α2))
1/2, then (3.6) is proved.



Mathematical Problems in Engineering 7

(2◦) Equation (3.7) holds. From (3.2),

−1
β
Φ(b) · ϕ(b) −

∫b

a

f(T∗)
(
Φ′) · ϕ′dx +

∫b

a

g(T∗)Y∗ϕdx = 0, ∀ϕ ∈ H1(Ω). (3.12)

Thus let ϕ = Φ ∈ H1(Ω) so that

−1
β
Φ2(b) −

∫b

a

f(T∗)
(
Φ′)2dx +

∫b

a

g(T∗)Y∗Φdx = 0. (3.13)

It follows that

∫b

a

f(T∗)
(
Φ′)2dx = −1

β
Φ2(b) +

∫b

a

g(T∗)Y∗Φdx ≤ ∥∥g∥∥∞‖Y∗‖∞‖Φ‖2 · l1/2. (3.14)

Since 0 < δ1 ≤ f , we have

δ1

∫b

a

(
Φ′)2dx ≤ ∥∥g∥∥∞‖Y∗‖∞‖Φ‖2 · l1/2. (3.15)

To prove (3.7) we need a lemma (see [10]).

Lemma 3.3. Let X denote a real Banach space, and let u ∈ W1,p([0, τ];X) for some 1 ≤ p ≤ ∞.
Then

(i) u ∈ C([0, τ];X) (after possibly being redefined on a set of measure zero), and

(ii) u(t) = u(s) +
∫ t
s u

′(x)dx for all 0 ≤ s ≤ t ≤ τ.

By Lemma 3.3, we get

‖Φ‖2H1
=
∫b

a

|Φ(x)|2dx +
∫b

a

∣
∣Φ′(x)

∣
∣2dx ≤

∫b

a

[∫b

x

∣
∣Φ′(t)

∣
∣dt + |Φ(b)|

]2

dx +
∫b

a

∣
∣Φ′(x)

∣
∣2dx.

(3.16)

By (3.15), for (3.16), we arrive at

‖Φ‖2H1
≤ 2

∫b

a

[∫b

x

∣
∣Φ′(t)

∣
∣dt

]2

dx + 2
∫b

a

|Φ(b)|2dx +
1
δ1

∥
∥g
∥
∥
∞‖Y∗‖∞‖Φ‖2 · l1/2

≤
(∫b

a

∣
∣Φ′(t)

∣
∣dt

)2

· 2l + 2(Φ(b))2l +
1
δ1

∥
∥g
∥
∥
∞‖Y∗‖∞‖Φ‖2 · l1/2.

(3.17)
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On the other hand, for (3.2), we take ϕ = 1 ∈ H1(Ω), so we know that

Φ(b) = β

∫b

a

g(T∗)Y∗dx. (3.18)

Substituting (3.18) into (3.17), we arrive at

‖Φ‖2H1
≤ 2

∫b

a

∣
∣Φ′(t)

∣
∣2dt · l2 + 2β2

(∫b

a

g(T∗)Y∗dx

)2

· l + 1
δ1

l1/2
∥
∥g
∥
∥
∞‖Y∗‖∞‖Φ‖2

≤ 2
δ1

l5/2
∥
∥g
∥
∥
∞‖Y∗‖∞‖Φ‖H1 +

1
δ1

l1/2
∥
∥g
∥
∥
∞‖Y∗‖∞‖Φ‖H1 + 2β2l2

∥
∥g
∥
∥2
∞‖Y∗‖2∞.

(3.19)

Set x = ‖Φ‖H1 , B̃ = (2/δ1)l5/2‖g‖∞‖Y∗‖∞ + (1/δ1)l1/2‖g‖∞‖Y∗‖∞, C̃ = 2β2l2‖g‖2∞‖Y∗‖2∞ so that
we have

x2 − B̃x − C̃ ≤ 0. (3.20)

Hence, we get that

x ≤ B̃ +
√
B̃2 + 4C̃
2

=
1
2

⎛

⎝
2
δ1

l5/2 +
1
δ1

l1/2 +

√
(

2
δ1

l5/2 +
1
δ1

l1/2
)2

+ 8β2l2

⎞

⎠
∥
∥g
∥
∥
∞‖Y∗‖∞.

(3.21)

Take N2 = (1/2)((2/δ1)l5/2 + (1/δ1)l1/2 +
√

((2/δ1)l5/2 + (1/δ1)l1/2)
2 + 8β2l2)‖g‖∞, and from

(3.21), we get (3.7).
(3◦) Equation (3.8) holds. For (3.3), take ϕ = T ∈ H1(Ω); thus we have

−μ1

μ2
T2(a) +

1
μ2

T(a) −
∫b

a

(
T ′)2dx =

∫b

a

k(T∗)Y∗Tdx − λ

∫b

a

f(T∗)
(
Φ′

∗
)2
Tdx. (3.22)

Now we introduce the following lemma (see [9]).

Lemma 3.4. Let G be a bounded region in R
N withN ≥ 1, and u ∈ H1(G), set

‖u‖H1 =
(∫

G

(
u2 + ΣN

j=1

(
Dju

)2
)
dx

)1/2

,

‖u‖∗H1 =
(∫

G

ΣN
i=1(Diu)2dx +

∫

∂G

u2dσ

)1/2

,

(3.23)

then the two norms in (3.23) are equivalent on H1(G).
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Hence we consider theH1(G) norm with the type

‖u‖∗H1 =
(∫

G

ΣN
i=1(Diu)2dx +

∫

∂G

u2dσ

)1/2

, (3.24)

and estimate by

∫b

a

(
T ′)2dx + ε′T2(b) + ε′T2(a)

(
ε′ is a small positive number to be determined

)

= −μ1

μ2
T2(a) +

1
μ2

T(a) + λ

∫b

a

f(T∗)
(
Φ′

∗
)2
Tdx −

∫b

a

k(T∗)Y∗Tdx + ε′T2(b) + ε′T2(a)

≤ −μ1

μ2
T2(a) +

1
μ2

T(a) + λ

∫b

a

f(T∗)
(
Φ′

∗
)2
Tdx +

(

ε

∫b

a

T2(x)dx + Cε

∫b

a

|k|2|Y∗|2dx
)

+ ε′T2(b) + ε′T2(a)

≤ −μ1

μ2
T2(a) +

1
μ2

T(a) + λ

⎛

⎝
ε

2
‖T‖2∞ +

1
2ε

(∫b

a

f(T∗)
(
Φ′

∗
)2
dx

)2
⎞

⎠ + ε‖T‖2H1

+ Cε‖k‖2∞‖Y∗‖2∞ · l + ε′T2(b) + ε′T2(a).

(3.25)

By Lemma 3.3, we have that

|T(x)| ≤
∫x

a

∣
∣T ′(t)

∣
∣dt + |T(a)|, ∀x ∈ [a, b]. (3.26)

Substituting (3.26) into the bound (3.25), we arrive at

∫b

a

(
T ′)2dx + ε′T2(b) + ε′T2(a)

≤ −μ1

μ2
T2(a) +

1
μ2

T(a) + λ

⎛

⎝
ε

2
‖T‖2∞ +

1
2ε

(∫b

a

f(T∗)
(
Φ′

∗
)2
dx

)2
⎞

⎠ + ε‖T‖2H1

+ Cε‖k‖2∞‖Y∗‖2∞ · l + ε′

⎛

⎝2

(∫b

a

∣
∣T ′∣∣dt

)2

+ 2|T(a)|2
⎞

⎠ + ε′T2(a)
(
ε � ε′

)

≤ −μ1

μ2
T2(a) +

1
μ2

T(a) +
λε

2
c21‖T‖2H1 +

λ

2ε

(∫b

a

f(T∗)
(
Φ′

∗
)2
dx

)2

+ ε‖T‖2H1

+ Cε‖k‖2∞‖Y∗‖2∞ · l + 2ε′
∫b

a

(
T ′(t)

)2
dt · l + 2ε′T2(a) + ε′T2(a).

(3.27)
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By (3.27), we have that

(
1 − 2ε′l

)
∫b

a

(
T ′(t)

)2
dt + ε′T2(b) + ε′T2(a)

≤
(

−μ1

μ2
+ 3ε′

)

T2(a) +
1
μ2

T(a) +
λε

2
c21‖T‖2H1 +

λ

2ε

(∫b

a

f(T∗)
(
Φ′

∗
)2
dx

)2

+ ε‖T‖2H1 + Cε‖k‖2∞‖Y∗‖2∞ · l,

(3.28)

where c1 is the constant that appeared in the Sobolev inequality (see [11] and note thatΩ ⊂ R)

‖u‖∞ ≤ c1‖u‖H1(Ω) (3.29)

for all u ∈ H1(Ω).
Hence,

ε′‖T‖2H1 ≤ C1

(

ε′
∫b

a

(
T ′(t)

)2
dt + ε′T2(b) + ε′T2(a)

)

≤ C1

(
(
1 − 2ε′l

)
∫b

a

(
T ′(t)

)2
dt + ε′T2(b) + ε′T2(a)

)

≤ C1

⎡

⎣

(

−μ1

μ2
+ 3ε′

)

T2(a) +
1
μ2

T(a) +
λε

2
c21‖T‖2H1

+
λ

2ε

(∫b

a

f(T∗)
(
Φ′

∗
)2
dx

)2

+ ε‖T‖2H1 + Cεl‖k‖2∞‖Y∗‖2∞

⎤

⎦,

(3.30)

where C1 > 0, and ε′ is chosen to satisfy ε′ < min{(1/1 + 2l), (μ1/3μ2)}.
From (3.30), we arrive at

(

ε′ − λε

2
c21C1 − εC1

)

‖T‖2H1

≤ C1

(

−μ1

μ2
+ 3ε′

)

T2(a) +
1
μ2

C1T(a) +
λ

2ε
C1

(∫b

a

f(T∗)
(
Φ′

∗
)2
dx

)2

+ CεC1‖k‖2∞‖Y∗‖2∞ · l.

(3.31)

Now we choose ε > 0 such that ε′ − (λε/2)c21C1 − εC1 > 0. Note that, in (3.3), if we
choose test function ϕ = 1 ∈ H1(Ω), then

−
(
μ1T(a) − 1

μ2

)

=
∫b

a

k(T∗)Y∗dx − λ

∫b

a

f(T∗)
(
Φ′

∗
)2
dx. (3.32)
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Hence, we obtain that T(a) is bounded by a number depending on ‖Y∗‖∞, l, ‖Φ∗‖H1(Ω), ‖k‖∞
and ‖f‖∞, and is independent of T∗. So

‖T‖2H1 ≤ C1
(
ε′ − (λε/2)c21C1 − εC1

)

[
λ

2ε
∥
∥f
∥
∥2
∞
∥
∥Φ′

∗
∥
∥4
2 + Cε‖k‖2∞‖Y∗‖2∞ · l − 1

−4μ1μ2 + 12ε′μ2
2

]

,

(3.33)

where −(1/μ2
2)/4(−μ1/μ2+3ε′) is the maximum of (−μ1/μ2+3ε′)T2(a)+(1/μ2)T(a). By (3.33),

we have that

‖T‖H1 ≤ C2

⎡

⎣

√

λ

2ε
∥
∥f
∥
∥
∞
∥
∥Φ′

∗
∥
∥2
2 +
√
Cεl‖k‖∞‖Y∗‖∞ +

(
1

4μ1μ2 − 12ε′μ2
2

)1/2
⎤

⎦, (3.34)

where C2 = (C1/(ε′ − (λε/2)c21C1 − εC1))
1/2.

Let

N3 = C2

√

λ

2ε
∥
∥f
∥
∥
∞, N4 = C2

√
Cεl‖k‖∞, N5 = C2

(
1

4μ1μ2 − 12ε′μ2
2

)1/2

, (3.35)

so (3.8) is proved.

4. Proof of Theorem 2.1

Now, we show the proof of Theorem 2.1.

Step 1. Under the assumptions made in Section 3, for each (Tn,Φn, Yn) ∈ (H1(Ω))3, n ∈ N ∪
{0}, we first consider the linear generalized Neumann problem,

−
(
μ1Tn+1(a) − 1

μ2

)

· ϕ(a) −
∫b

a

T ′
n+1 · ϕ′dx =

∫b

a

k(Tn)Ynϕdx − λ

∫b

a

f(Tn)
(
Φ′

n

)2
ϕdx,

−1
β
Φn+1(b) · ϕ(b) −

∫b

a

f(Tn)
(
Φ′

n+1

) · ϕ′dx +
∫b

a

g(Tn)Ynϕdx = 0,

−
(
α1Yn+1(a) − 1

α2

)

· ϕ(a) −
∫b

a

Y ′
n+1 · ϕ′dx =

∫b

a

h(Tn)Yn+1ϕdx,

(4.1)

for all ϕ ∈ H1(Ω).
Denote by Rv ≡ (Yn+1,Φn+1, Tn+1) = (RYn, RΦn, RTn) the unique solution of problem

(4.1), where v = (Yn,Φn, Tn) ∈ (H1(Ω))3.
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From Theorem 3.2, we know that

‖Yn+1‖H1(Ω) ≤ N1 ≡ M1,

‖Φn+1‖H1(Ω) ≤ N2‖Yn‖∞ ≤ N2c1‖Yn‖H1(Ω) ≤ N2c1M1 ≡ M2,

‖Tn+1‖H1(Ω) ≤ N3
∥
∥Φ′

n

∥
∥2
2 +N4‖Yn‖∞ +N5

≤ N3‖Φn‖2H1 +N4c1‖Yn‖H1(Ω) +N5

≤ N3M
2
2 +N4c1M1 +N5 ≡ M3.

(4.2)

Now we consider the convex set

S =
{

(v1,v2, v3) ∈
(
H1(Ω)

)3
: ‖v1‖H1 ≤ M1, ‖v2‖H1(Ω) ≤ M2, ‖v3‖H1(Ω) ≤ M3

}

. (4.3)

By the estimate (4.2), we know that R maps S into S.

Step 2. We show that R is continuous on S, that is,

lim
j→∞

(∥
∥
∥RT̃j − RT̃

∥
∥
∥
H1

+
∥
∥
∥RΦ̃j − RΦ̃

∥
∥
∥
H1

+
∥
∥
∥RỸj − RỸ

∥
∥
∥
H1

)
= 0 (4.4)

if (T̃j , Φ̃j , Ỹj) → (T̃ , Φ̃, Ỹ ) in S, as j → ∞.
Consider the equations

−
(

α1RỸj(a) − 1
α2

)

ϕ(a) −
∫b

a

(
RỸj

)′
ϕ′dx −

∫b

a

h
(
T̃j
)(

RỸj

)
ϕdx = 0,

−
(

α1RỸ (a) − 1
α2

)

ϕ(a) −
∫b

a

(
RỸ
)′
ϕ′dx −

∫b

a

h
(
T̃
)(

RỸ
)
ϕdx = 0,

(4.5)

for all ϕ ∈ H1(Ω). The difference (4.5) gives

−α1

α2

(
RỸj − RỸ

)
(a) · ϕ(a) +

∫b

a

(
RỸ − RỸj

)′
ϕ′dx +

∫b

a

(
h
(
T̃
)(

RỸ
)
− h
(
T̃j
)(

RỸj

))
ϕdx = 0.

(4.6)

By (4.6), we have

− α1

α2

(
RỸj − RỸ

)
(a) · ϕ(a) +

∫b

a

(
RỸ − RỸj

)′
ϕ′dx

+
∫b

a

[
h
(
T̃j
)(

RỸ − RỸj

)
+ RỸ

(
h
(
T̃
)
− h
(
T̃j
))]

ϕdx = 0.

(4.7)
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Set Dj = RỸ − RỸj , and let ϕ = Dj in (4.7), then

∫b

a

(
D′

j

)2
dx + δ2

∫b

a

D2
j dx ≤

∥
∥
∥RỸ

∥
∥
∥
∞
∥
∥h′∥∥

∞
∥
∥Dj

∥
∥
∞

∥
∥
∥T̃ − T̃j

∥
∥
∥
2
l1/2. (4.8)

Since 0 < δ2 ≤ h, we know that

min(δ2,1)
∥
∥Dj

∥
∥2
H1 ≤ c1

∥
∥
∥RỸ

∥
∥
∥
∞
∥
∥h′∥∥

∞
∥
∥Dj

∥
∥
H1

∥
∥
∥T̃ − T̃j

∥
∥
∥
H1

l1/2. (4.9)

Since limj→∞‖T̃j − T̃‖
H1 = 0, hence we have

lim
j→∞

∥
∥
∥RỸj − RỸ

∥
∥
∥
H1

= 0. (4.10)

The proof of

lim
j→∞

∥
∥
∥RΦ̃j − RΦ̃

∥
∥
∥
H1

= 0, lim
j→∞

∥
∥
∥RT̃j − RT̃

∥
∥
∥
H1

= 0 (4.11)

is similar and is omitted. Hence, R is continuous on S.

Before the next step, we first state a regularity theorem, (see [12]). Consider the
operator

Lu = Di

(
aij(x)Dju + bi(x)u

)
+ ci(x)Diu + d(x)u, (4.12)

whose coefficients aij , bi, ci, d (i, j = 1, . . . , n) are continuous on a domain Ω ⊂ R
n.

Theorem 4.1. Let u ∈ H1(Ω) be a weak solution of the equation Lu = p in Ω where L is strictly
elliptic on Ω, the coefficients aij , bi (i, j = 1, . . . ., n) are uniformly Lipschitz continuous on Ω, the
coefficients ci (i = 1, . . . , n), d are essentially bounded on Ω, and the function p is in L2(Ω). Also,
assume that ∂Ω is of class C2 and that there exists a function ϕ ∈ H2(Ω) for which u − ϕ ∈ H1

0(Ω).
Then one has also u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C
(
‖u‖L2(Ω) +

∥
∥p
∥
∥
L2(Ω) +

∥
∥ϕ
∥
∥
H2(Ω)

)
for C = C

(
n, λ̃,K, ∂Ω

)
, (4.13)

where K = max{‖aij , bi‖∞, ‖ci, d‖∞}.

Remark 4.2. Theorem 4.1 continues to hold for sufficiently smooth ∂Ω with ϕ ∈ H2(Ω) if we
assume only that the principal coefficients aij are in C0(Ω).

Step 3. R(S) is precompact.
By Theorem 4.1, one has the following:

‖Yn+1‖H2(Ω) ≤ C

(

‖Yn+1‖L2(Ω) +
∥
∥
∥Y

ϕ

n+1

∥
∥
∥
H2(Ω)

)

, (4.14)
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where Yϕ

n+1 ∈ H2(Ω) is a function for which Yn+1 − Y
ϕ

n+1 ∈ H1
0(Ω),

‖Φn+1‖H2(Ω) ≤ C

(

‖Φn+1‖L2(Ω) +
∥
∥g(Tn)Yn

∥
∥
L2(Ω) +

∥
∥
∥Φ

ϕ

n+1

∥
∥
∥
H2(Ω)

)

, (4.15)

where Φϕ

n+1 ∈ H2(Ω) is a function for which Φn+1 −Φϕ

n+1 ∈ H1
0(Ω),

‖Tn+1‖H2(Ω) ≤ C

(

‖Tn+1‖L2(Ω) +
∥
∥
∥k(Tn)Yn + λf(Tn)

(
Φ′

n

)2
∥
∥
∥
L2(Ω)

+
∥
∥
∥T

ϕ

n+1

∥
∥
∥
H2(Ω)

)

, (4.16)

where Tϕ

n+1 ∈ H2(Ω) is a function for which Tn+1 − T
ϕ

n+1 ∈ H1
0(Ω).

For (4.14)∼(4.16), set

Y
ϕ

n+1(x) =
Yn+1(b) − Yn+1(a)

b − a
(x − a) + Yn+1(a),

Φϕ

n+1(x) =
Φn+1(b) −Φn+1(a)

b − a
(x − a) + Φn+1(a),

T
ϕ

n+1(x) =
Tn+1(b) − Tn+1(a)

b − a
(x − a) + Tn+1(a),

(4.17)

for all x ∈ [a, b].
By (4.17), we obtain that

∣
∣
∣Y

ϕ

n+1(x)
∣
∣
∣ =

∣
∣
∣
∣
Yn+1(b) − Yn+1(a)

b − a
(x − a) + Yn+1(a)

∣
∣
∣
∣

≤
∫b

a

∣
∣Y ′

n+1

∣
∣dx + |Yn+1(a)| ≤

(
l1/2 + c1

)
M1,

(4.18)

for all x ∈ [a, b].
From (4.14), (4.18) and by a simple calculation, we obtain

‖Yn+1‖H2(Ω) ≤ C

(

‖Yn+1‖L2(Ω) +
∥
∥
∥Y

ϕ

n+1

∥
∥
∥
H2(Ω)

)

≤ C

⎛

⎝M1 +M1

√

l1/2 + c21l +
4c21
l

⎞

⎠

≡ γ1.

(4.19)
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Using the same formula, we also obtain that

‖Φn+1‖H2(Ω) ≤ C

(

‖Φn+1‖L2(Ω) +
∥
∥g(Tn)Yn

∥
∥
L2(Ω) +

∥
∥
∥Φ

ϕ

n+1

∥
∥
∥
H2(Ω)

)

≤ C

⎛

⎝M2 +
∥
∥g
∥
∥
∞M1 +M2

√

l1/2 + c21l +
4c21
l

⎞

⎠

≡ γ2,

‖Tn+1‖H2(Ω) ≤ C

(

‖Tn+1‖L2(Ω) +
∥
∥
∥k(Tn)Yn + λf(Tn)

(
Φ′

n

)2
∥
∥
∥
L2(Ω)

+
∥
∥
∥T

ϕ

n+1

∥
∥
∥
H2(Ω)

)

≤ C

⎛

⎝M3 + ‖k‖∞M1 + λ
∥
∥f
∥
∥
∞
(
c41γ

4
2 l
)1/2

+M3

√

(
l1/2 + c1

)2
l +

4c21
l

⎞

⎠

≡ γ3.

(4.20)

Thus, we have

‖RYn‖H2(Ω) ≤ γ1, ‖RΦn‖H2(Ω) ≤ γ2, ‖RTn‖H2(Ω) ≤ γ3, ∀n ∈ N. (4.21)

So, R maps S into a bounded set in (H2(Ω))3, since H2(Ω) is compactly imbedded in
H1(Ω) (see, e.g., [9]); hence, R(S) is precompact in (H1(Ω))3.

Hence by Schauder’s fixed point theorem, R has a fixed point and there exists a
(T,Φ, Y ) ∈ (H1(Ω))3 satisfyng (2.17). Thus, we complete the proof of Theorem 2.1.
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