Contents

Abstract (in Chinese)
Abstract (in English)
Acknowledgement
Table Captions
Figure Captions
Chapter 1 Introduction
1.1 Research Background of Copper Metallization for GaAs-based Devices1
1.2 Overview of the Thesis
1.3 References
Chapter 2 InGaP/GaAs Heterostructure Grown by LP-MOCVD
2.1 Introduction to LP-MOCVD System
2.1.1 LP-MOCVD System
a. Gas Handling System
b. Reactor Chamber
c. Heating System for Pyrolysis Temperature
d. Exhaust System and Safety Apparatus
2.2 MOCVD Epitaxy Theory of InGaP/GaAs Heterostructure
2.2.1 Starting Materials10
2.2.2 Precursor Properties11
2.2.3 Thermodynamics12
2.2.4 Kinetics
2.2.5 Hydrodynamics and Mass Transport12

2.2.6 Growth Rate Control Mechanism		
a. Kinetically Controlled Region14		
b. Mass-Transport-Limited Region14		
c. Thermodynamically Controlled Region14		
2.2.7 The Growth Parameters for the Growth of InGaP/GaAs material		
System14		
2.2.8 Disordered and Ordered In _{0.49} Ga _{0.51} P Structure15		
2.3 Experimental Procedures16		
2.4 Results and Discussion17		
2.4.1 Characterization of the InGaP/GaAs Heterointerfaces17		
2.4.2 Photoluminescence and Raman Study of Ordered and Disordered		
InGaP18		
2.5 Conclusions		
2.5 References		
Chapter 3 New Cu/Mo/Ge/Pd Ohmic Contacts on Highly-Doped		
n-GaAs for InGaP/GaAs Heterojunction Bipolar Transistors		
3.1 Introduction		
3.2 Experimental		
3.3 Discussion		
3.3.1 Thermal Stability of the Cr/Cu/Mo/Ge/Pd/n ⁺ -GaAs Contact42		
3.3.2 Device Electrical Characteristics		
3.4 Conclusions		
3.5 References		
Chapter 4 Mechanism of Microstructure Evolution for the		

Cu/Ta/GaAs Structure after Thermal Annealing

Chapter 5 Conclusions	83
4.5 References	72
4.4 Conclusions	71
4.3 Results and Discussion	63
4.2 Experimental Procedure	62
4.1 Introduction	60

Vita (in Chinese)

Publication List

Table Captions

Chapter 2

Table 2.1 Properties of the starting materials

Chapter 3

Table 3.1 The proposed epitaxial structure of the InGaP/GaAs HBT

Figure Captions

Chapter 2

- Figure 2.1. Schematic diagram of an MOCVD reactor and tube cross section.
- Figure 2.2. Pyrolysis curves of TEGa.
- Figure 2.3. TMIn decomposition ratio in three different carriers, H₂, D₂ and He.
- Figure 2.4. Pyrolysis curves of AsH₃.
- Figure 2.5. Pyrolysis curves of PH₃.
- Figure 2.6. The Cu-Pt type ordered structure of InGaP
- Figure 2.7. A (400) double crystal rocking curve for a 0.5μm thick InGaP layer grown on a (100) oriented substrate at 650°C.
- Figure 2.8. Room temperature photoluminescence spectrum of the InGaP layer on GaAs substrate grown at 650°C by LP-MOCVD (V/III=150).
- Figure 2.9. Cross-sectional SEM image of InGaP/GaAs QWs with the rough interfaces due to the formation of InGaAsP
- Figure 2.10 Cross-sectional SEM image of InGaP/GaAs QWs with the optimized switching sequence.
- Figure 2.11 PL spectra of (a) ordered and (b) disordered InGaP.
- Figure 2.12. Changes in the InGaP energy gap with growth temperature as measured by room temperature PL. The In mole fraction was kept constant.
- Figure2.13. Raman spectra for InGaP grown at 620 and 730°C.

Chapter 3

Figure 3.1.1. Emitter mesa etch.

- Figure 3.1.2. Base and collector mesa etch.
- Figure 3.1.3. Mesa isolation.
- Fig 3.1.4. Emitter and collector ohmic contact metal formation.
- Fig 3.1.5 Base ohmic contact metal formation.
- Fig 3.1.6 Silicon nitride passivation.
- Fig 3.1.7 Contact via etch.
- Fig 3.1.8 Interconnect line.
- Fig.3.2. Sheet resistances of Cr/Cu/Mo/Ge/Pd/n⁺-GaAs after annealing at 300, 350 and 400°C for 30 min.
- Fig.3.3. XRD results of Cr/Cu/Mo/Ge/Pd/n⁺-GaAs as-deposited and after annealing at various temperatures.
- Fig.3.4. AES depth profiles of Cr/Cu/Mo/Ge/Pd/n⁺-GaAs after annealing at 350°℃ for 10 min.
- Fig.3.5. Cross-sectional TEM micrograph of Cr/Cu/Mo/Ge/Pd/n⁺-GaAs after annealing at 350°C for 10 min.
- Fig.3.6. Comparison of common-emitter I-V characteristics of InGaP/GaAs HBTs with Au/Ni/Ge/Au and Cu/Mo/Ge/Pd ohmic contacts.
- Fig.3.7. Comparison of Gummel plots of InGaP/GaAs HBTs with Au/Ni/Ge/Au and Cu/Mo/Ge/Pd ohmic contacts.
- Fig.3.8. Common-emitter I-V curves of HBT with Cu/Mo/Ge/Pd ohmic contact before and after annealing at 250°C for 24 h.
- Fig.3.9. Current gain as function of stress time at constant I_B for 4 \times

20-µm-emitter-area Cu/Mo/Ge/Pd HBT.

Chapter 4

- Fig. 4.1. Sheet resistances of the as-deposited sample and the samples after annealing at various temperatures.
- Fig. 4.2. XRD patterns of the as-deposited sample and the samples after annealing at various temperatures.
- Fig. 4.3. Auger depth profiles of the as-deposited sample and the samples after annealing at various temperatures.
- Fig. 4.4. (a) Cross-sectional TEM image of the as-deposited Ta₂N/Cu/Ta/GaAs sample.
 (b) High-resolution TEM image obtained from the same sample after being thinned to smaller thickness. (c) Lattice image of Ta crystal. (d) FFT pattern of Ta.
- Fig.4.5. Cross-sectional TEM image of the Ta₂N/Cu/Ta/GaAs sample after annealing at 500 °C for 30 min.
- Fig. 4.6 (a) High-resolution TEM image obtained from the interface of the reaction area after annealing at 550 °C for 30 min. (b) High-resolution TEM image of the reaction area at Ta/GaAs interface. (c) Lattice image of TaAs₂. (d) FFT pattern of TaAs₂. (e) High-resolution TEM image of the reacted area at the Ta/Cu interface. (f) Lattice image of Cu₃Ga (g) FFT pattern of Cu₃Ga grain.
- Fig. 4.7. (a) Cross-sectional TEM image of the sample after annealing at 600 °C for 30 min. (b) Cross-sectional TEM image of the same sample at another area.
 (c) Enlarged TEM image of an area from (b). (d) Dark-field image of TaAs.
 (e) Dark-field image of Cu₃Ga. (f) Selected-area diffraction pattern of TaAs.

(g) Selected-area diffraction pattern of Cu₃Ga.

Fig. 4.8. (a)-(c) EDS spectra taken from sites A-C in Fig. 4.7(a), and (d) EDS

spectrum taken from site D in Fig. 4.7(b).

