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A series of new rod-shaped mesomorphic compounds, 6-ethoxy-2-
(4-alkanoyloxybenzylidenamino)benzothiazoles, consisting of a 2,6-disubstituted
benzothiazole core and a Schiff base central linkage, were synthesized and their
structures were ascertained via elemental analysis and spectroscopic techniques.
Their mesomorphic properties were studied using differential scanning calori-
metry (DSC), polarized optical microscopy (POM) and X-ray diffraction (XRD)
analysis. All compounds showed enantiotropic mesomorphism. Whilst the lower
members of the series, hexanoyloxy and octanoyloxy derivatives exhibited
nematic phase, the higher members (decanoyloxy, dodecanoyloxy, tetradecanoy-
loxy, hexadecanoyloxy and octadecanoyloxy derivatives) exhibited nematic and
smectic C phases.

Keywords: Schiff bases; 6-ethoxy-2-(4-alkanoyloxybenzylidenamino)benzo-
thiazoles; enantiotropic; smectic C; nematic

1. Introduction

Over the past few decades, liquid crystals comprising a Schiff base (or azomethine) linkage
have received overwhelming attention since the discovery of the room temperature-liquid
crystal, 4-methoxybenzylidene-40-butylaniline (MBBA) [1]. Selection of a mesogenic core,
terminal groups and a suitable length of the flexible chain are among the essential criteria
in designing new thermotropic liquid crystals [2]. Among the reported rod-like mesogens,
a para-substituted phenyl ring often serves as an important core unit, which ensures that
the molecules have structural linearity and large molecular polarizability, which
consequently enables them to exhibit liquid crystalline behavior [3].
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Recently, there has been a continuing interest in the study of heterocyclic-based liquid
crystal compounds due to their unique properties [4–6]. An earlier report has shown that
the introduction of heterocycles as the core has greatly influenced the mesomorphic
properties of the calamatic molecules owing to their unsaturation and/or their more
polarizable nature [7]. It has also been revealed that the inclusion of the heteroatom
considerably changes the polarity, polarizability and to a certain extent the geometry
of the molecule, thereby influencing the type of mesophase, the phase transition
temperatures, dielectric constants and other properties of the mesogens [8,9].

In order to further explore the mesomorphic properties of heterocyclic-based liquid
crystals comprising a 2,6-disubstituted benzothiazole unit, we report in this article the
synthesis and mesomorphic properties of a new homologous series of 6-ethoxy-2-
(4-alkanoyloxybenzylidenamino)benzothiazoles with a Schiff base linkage and a terminal
ethoxyl group at the sixth position of the benzothiazole core.

2. Experimental

4-Dimethylaminopyridine (DMAP) was obtained from Merck (Germany).
2-Amino-6-ethoxybenzothiazole, 2,4-dihydroxybenzaldehyde, fatty acids (Cn�1H2n�1

COOH where n¼ 6, 8, 10, 12, 14, 16, 18) and N,N0-dicyclohexylcarbodiimide (DCC) were
purchased from Acros Organics (USA). All solvents and reagents were purchased
commercially and used without any further purification.

Infrared (IR) spectra were recorded using a Perkin-Elmer System 2000 FT-IR
Spectrometer via KBr disc procedure. 1H-NMR (400MHz) and 13C-NMR (100MHz)
spectra were recorded in CDCl3 using a JEOL LA-400MHz-NMR spectrometer in the
Chemistry Department, Universiti Malaya. EI–MS (70 eV) were measured with a Mass
Spectrometer Finnigan MAT95XL-T at a source temperature of 200�C. The sample was
introduced using direct inlet probe. Microanalyses were carried out on Perkin-Elmer 2400
LS Series CHNS/O analyzer.

Phase-transition temperatures and enthalpy changes were measured using a
Differential Scanning Calorimeter Mettler Toledo DSC823e at a scanning rate of
10�Cmin�1. A polarizing optical microscope (Carl Zeiss) equipped with a Linkam heating
stage was used for temperature dependent studies of the liquid crystal textures. Phase
identification was made by comparing the observed textures with those reported in the
literature [10,11].

Synchrotron powder X-ray diffraction (XRD) measurements were performed at
beamline BL17A where the X-ray wavelength used was 1.32633 Å. XRD data were
collected using imaging plates (IP, of an area¼ 20� 40 cm2 and a pixel resolution of 100)
curved with a radius equivalent to the sample-to-image plate distance of 280mm, and the
diffraction signals were accumulated for 3min. The powder samples were packed into
a capillary tube and heated by a heat gun, where the temperature controller was
programmed by a PC with a PID feedback system. The scattering angle theta was
calibrated by a mixture of silver behenate and silicon.

2.1. Synthesis of Schiff base liquid crystals

The title compounds were synthesized according to a previously reported method [12–15].
The synthetic route is depicted in Figure 1. A solution of 2-amino-6-ethoxybenzothiazole
(0.97 g, 5mmol) and 4-hydroxybenzaldehyde (0.61 g, 5mmol) in absolute ethanol (40mL)
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was heated under reflux for 3 h in the presence of acetic acid (two drops). The Schiff base
formed, OH-EBABTH, was recrystallized from absolute ethanol.

Schiff base OH-EBABTH (0.90 g, 3mmol), appropriate fatty acid (3mmol) and
DMAP (0.18 g, 1.5mmol) were dissolved in a mixture of dichloromethane and DMF
(40mL) with the ratio of 7:1 and stirred in an ice bath. To this solution, DCC (0.62 g,
3mmol) dissolved in dichloromethane (5mL) was added drop wise upon stirring in the ice
bath for an hour. The resulting mixture was stirred at room temperature for another 3 h.
The reaction mixture was then filtered and the excess solvent was removed from the filtrate
by evaporation. The yellow solid obtained was recrystallized several times using ethanol.
The percentage yields and analytical data of the title compounds are tabulated in Table 1.
The IR, NMR (1H and 13C) and mass spectral data for the representative compound,
16EBABTH, are given below.

6-Ethoxy-2-(4-hexadecanoyloxybenzylidenamino)benzothiazole (16EBABTH). Yield 60%.
IR (KBr) vmax cm

�1 3047 (C–H aromatic), 2922, 2849 (C–H aliphatic), 1755 (C¼O ester),
1597 (C¼N thiazole), 1450 (C¼C aromatic). 1H-NMR (400MHz, CDCl3): �/ppm
0.9 (t, J¼ 6.6Hz, 3H, CH3–), 1.2–1.4 (m, 24H, CH3–(CH2)12–CH2–CH2–COO–),

N
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Figure 1. Synthetic scheme of 6-ethoxy-2-(4-lkanoyloxybenzylidenamino)benzothiazoles,
nEBABTH.
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1.5 (t, J¼ 6.9Hz, 3H, CH3–CH2–O–), 1.8 (quint, J¼ 7.2Hz, 2H, –CH2–CH2–COO–), 2.6
(t, J¼ 7.7Hz, 2H, –CH2–COO–), 4.1 (q, J¼ 7.2Hz, 2H, CH3–CH2–O–), 7.0 (d, J¼ 8.8Hz,
1H, Ar–H), 7.2 (d, J¼ 8.5Hz, 2H, Ar–H), 7.3 (s, 1H, Ar–H), 7.8 (d, J¼ 8.8Hz, 1H,
Ar–H), 8.0 (d, J¼ 8.5Hz, 2H, Ar–H), 9.0 (s, 1H, –N¼CH–). 13C-NMR (100MHz,
CDCl3): �/ppm 171.60 (COO), 168.95 (C¼N), 163.53, 157.02, 154.34, 145.90, 135.77,
132.30, 131.19, 123.66, 122.19, 116.04, 104.96 for aromatic carbons, 63.64 (–O–CH2–CH3),
34.33, 31.86, 29.63, 29.61, 29.58, 29.53, 29.38, 29.29, 29.18, 29.01, 24.77, 24.62
for methylene carbons [CH3–(CH2)14–COO–], 14.75 (–O–CH2–CH3), 14.05 [CH3–
(CH2)14–COO–]. EI–MS m/z (rel. int. %): 536(42) (M)þ, 298(100).

3. Results and discussion

Structure elucidation of the title compounds was carried out via elemental analysis and
spectroscopic techniques such as FT–IR, 1H and 13C-NMR and EI–MS. The percentages
of C, H and N from the elemental analysis conform to the calculated values for
compounds nEBABTH (where n¼ 6, 8, 10, 12, 14, 16, 18) and are tabulated in Table 1.

3.1. Phase transition behavior and liquid crystallinity of nEBABTH

The transition temperatures and associated enthalpy changes of nEBABTH obtained
from the DSC measurements are summarized in Table 2. All the compounds exhibited
enantiotropic properties whereby their endotherms were characterized by the crystal-
mesophase-isotropic transitions occurring above the melting temperatures recorded during
the heating and cooling runs. Such transitions were also supported by the enthalpy values
of the respective compounds. As a representative illustration, the DSC thermograms of
8EBABTH and 10EBABTH recorded during the heating and cooling cycles are shown
in Figure 2. Among all the compounds, only the endotherm of 14EBABTH appeared
before the crystal-mesophase transition at 73.9�C in the DSC thermogram. The texture
observed under POM further confirmed the presence of crystalline polymorphism before
melting [12].

Observation of all the compounds under crossed polarizers revealed the schlieren and
marble textures to be typical of a nematic mesophase (Figure 3a), as reported in the
literature [10,11]. As the length of the terminal chain increases, the smectic phase emerges.
Whilst 6EBABTH and 8EBABTH were purely nematogenic, the higher members,

Table 1. Percentage yield and physical data of nEBABTH.

Compound Yield (%)

% Found (% Required)

Formula C H N

6EBABTH 34 C22H24N2O3S 66.53 (66.64) 6.17 (6.10) 7.00 (7.07)
8EBABTH 43 C24H28N2O3S 67.79 (67.90) 6.74 (6.65) 6.53 (6.60)
10EBABTH 41 C26H32N2O3S 69.09 (69.00) 7.15 (7.13) 6.11 (6.19)
12EBABTH 56 C28H36N2O3S 70.08 (69.97) 7.47 (7.55) 5.77 (5.83)
14EBABTH 55 C30H40N2O3S 70.75 (70.83) 7.90 (7.93) 5.45 (5.51)
16EBABTH 63 C32H44N2O3S 71.69 (71.60) 8.19 (8.26) 5.19 (5.22)
18EBABTH 68 C34H48N2O3S 72.19 (72.30) 8.68 (8.57) 5.04 (4.96)
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nEBABTH (n¼ 10, 12, 14, 16 and 18) exhibited both nematic and tilted smectic C phases.
Figure 3 depicts the representative optical photomicrographs of 10EBABTH during
the cooling run. The smectic C phase was identified on the basis of its characteristic grey
schlieren texture (Figure 3c) and by the appearance of the familiar fingerprint texture
(Figure 3b) during the N-to-SmC transition [16].

A plot of the transition temperatures against the number of carbons in the alkanoyloxy
chain during the heating cycle is depicted in Figure 4. According to the plot, it can be

Figure 2. DSC thermograms of 8EBABTH and 10EBABTH.

Table 2. Phase transition and transition enthalpy changes of nEBABTH upon heating
and cooling.

Compound
Phase transition temperature, �C heating cooling

(associated enthalpy change, kJmol�1)

6EBABTH Cr 110.1 (36.0) N 142.0 (0.9) I
I 139.8 (1.1) N 67.9 (30.4) Cr

8EBABTH Cr 92.4 (30.4) N 134.1 (1.1) I
I 131.8 (1.0) N 52.9 (26.1) Cr

10EBABTH Cr 71.9 (33.6) SmC 79.6 (0.7) N 129.7 (1.1) I
I 127.9 (1.4) N 76.3 (0.8) SmC 50.6 (27.8) Cr

12EBABTH Cr 80.1 (36.9) SmC 93.8 (0.7) N 127.9 (1.2) I
I 126.0 (1.6) N 91.9 (1.1) SmC 44.8 (19.3) Cr

14EBABTH Cr1 73.9 (7.6) Cr2 80.5 (45.3) SmC 101.0 (0.9) N 122.8 (1.9) I
I 119.0 (2.2) N 95.6 (2.7) SmC 53.0 (38.2) Cr

16EBABTH Cr 87.0 (42.6) SmC 105.2 (0.8) N 120.4 (1.4) I
I 118.1 (2.0) N 102.5 (0.9) SmC 61.4 (32.7) Cr

18EBABTH Cr 91.4 (46.9) SmC 107.9 (0.6) N 117.2 (2.0) I
I 114.1 (2.7) N 103.5 (0.6) SmC 70.6 (37.8) Cr

Note: Cr1, Crystal 1; Cr2, Crystal 2; SmC, Smectic C; N, Nematic; I, Isotropic.
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deduced that the mesomorphic behaviors were greatly influenced by the length of the
terminal alkanoyloxy chain. High melting point in short chain members is normally
attributed to the high rigidity of the molecular core [3]. As can be seen in the graph, the
shortest chain member, C6, possessed the highest melting temperature (110.1�C) among
the homologues series. The melting point was found to be decreased as the chain length
increased to C10 (71.9

�C). This corresponded to the increasing flexibility of the longer alkyl
chain. It is also common that the melting temperatures showed an ascending trend
from medium chain members onwards after a falling trend from short to medium chain
members [15–18]. Increase of melting temperatures was also observed from C10 (71.9

�C) to
C18 (91.4�C) members. It was probably due to the increasing Van der Waals attractive
forces between the molecules. Nevertheless, clearing temperatures give a descending
trend as the chain length increased. The smooth falling trend in clearing temperature
can be ascribed to the dilution of mesogenic core [19]. Similar falling trend was also
reflected on the homologous series of N,N0-bis(3-methoxy-4-alkoxybenzylidene)-1,4-
phenyldiamine in which the homologue with the longest terminal chain possessed the
lowest thermal stability [19].

Looking across the graph, it can be noted that the mesomorphism was also affected by
the terminal chain length. The nematic phase range was found to be decreased as the chain

Figure 3. (a) Optical photomicrograph of 10EBABTH displaying nematic phase, (b) optical
photomicrograph showing classical ‘fingerprint’ texture of smectic C phase at the N-to-SmC
transition, (c) optical photomicrograph exhibiting SmC phase with grey schlieren texture in
homeotropic cell.
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length ascended from C6 (31.9�C) to C10 (50.1�C) member. However, the emergence
of SmC phase dramatically depressed the nematic phase range to only 9.3�C in C18

members. This may due to the attractions between the long alkanoyloxy chains leading to
their intertwining and facilitates the lamellar packing which is essential for the occurrence
of the smectic phase [13]. The suppression of nematic phase range was accompanied by the
uplifting of SmC phase range. For example, SmC phase range increased from C10 (7.7

�C)
to C18 (16.5�C) members. Increasing Van der Waals forces not only raised the melting
temperatures but also enhanced the smectic phase stability whereby the SmC phase
stability increased from 79.6�C (C10) to 107.9�C (C18).

3.2. X-ray diffraction studies

In order to obtain further information regarding the molecular arrangement in the
mesophase, temperature-dependent XRD measurements were performed on 12EBABTH
and the diffractogram is depicted in Figure 5, while the X-ray diffraction data are
summarized in Table 3.

As seen in Figure 5, the diffraction pattern at 90�C showed a sharp peak at a lower
region angle and a weak and broad peak at a wider angle. This kind of diffraction pattern
is typical of a layer structure observed for the SmC phase [20]. The sharp diffraction peak
at 2.59�C implies the formation of a layered structure. On the other hand, the broad
diffraction peak in the wide-angle region indicates liquid-like arrangement of the molecules
within the layer.

From the XRD analysis data, the d-layer spacing (29.51 Å) was much smaller
than the molecular length (33.167 Å) obtained by the MM2 molecular calculation, and
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Figure 4. Plot of transition temperatures versus the number of carbons (n) in the alkanoyloxy chain
of nEBABTH during heating cycle.
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the d/l ratio was 0.89, which confirms a titled SmC phase being observed for
12EBABTH [21].

4. Conclusions

In this article, we have reported the synthesis and mesomorphic properties of a
homologues series of 6-ethoxy-2-(4-alkanoyloxybenzylidenamino)benzothiazoles. The
enantiotropic nematic phase was observed throughout the entire series. The enantiotropic
SmC phase, however, only emerged starting from the decanoyloxy to the octadecanoyloxy
derivatives. The study also revealed that the mesophase range was greatly affected by the
length of the terminal chain.
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