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Abstract. We present a general quantum kinetic theory of spin transport based on the Kadanoff- Baym
equation (KBE), which we use to study dynamical spin processes in semiconductors right down to femtosec-
ond and nanometer scales. In our application of KBE we describe the evolution of the non-equilibrium 2×2
matrix Green function for carrier spin, averaged over the thermal bath. Spin relaxation effects are treated
within the Kadanoff-Baym Ansatz (KBA), while carrier interactions are treated within the random-phase
model of screening. We track the detailed oscillation of the spin- polarized carrier state within the coher-
ence time. Our general kinetic approach also allows description of the spin Hall effect when both impurity
scattering and the Fröhlich interaction are included in the KBE collision term. We find that the level of
spin current is very sensitive to the density of impurities, and that the Fröhlich interaction can generate a
considerable spin current. Significantly, the Fröhlich term leads to a unique type of oscillatory behaviour
in the spin current that is independent of impurity scattering effects.

PACS. 05.30.-d Quantum statistical mechanics – 05.60.Gg Quantum transport – 72.25.Dc Spin polarized
transport in semiconductors – 73.63.Hs Quantum wells

1 Introduction

Manipulation of the spin degree of freedom in semicon-
ductors has attracted considerable attention over the last
decade [1–4] due to potential applications such as in quan-
tum computation [1,2], magnetic random access mem-
ory [3] and spin transistors [4]. Recently, a very fast spin
relaxation in GaAs was reported [5]. The time as short
as 110 fs ± 10% for heavy holes was experimentally dis-
covered. Such a time scale is likely too short for indus-
trial applications, but is significant in quantum kinetic
theory since energy non-conserving events [6] and mem-
ory effects [7,8] are active in this time scale. In a previous
report [7], memory effects are shown to be appreciable
in the time evolution of non-equilibrium carriers, imply-
ing that the memory effect on carrier- carrier scattering
(CCS) resembles Rabi oscillation. That result [7] moti-
vates us to study whether the carrier also oscillates be-
tween distinct spin-polarized states due to the memory
effect prior to spin relaxation. In this work, starting with
the Pauli equation, a 2×2 spin-dependent non-equilibrium
Green-function matrix was utilized to construct the KBE,
which was then applied to spin-dependent non-equilibrium
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CCS in the presence of a D’yakonov Perel’ (DP) mag-
netic field [9]. The quantum kinetic oscillation between
distinct spin-polarized states due to the memory (non-
Markovian) CCS is demonstrated. Additionally, another
oscillation that is the spin precession caused by spin-orbit
coupling (SOC) term,Δij , at the frequency of �

−1 |ImΔ12|
is described.

The spin Hall effect (SHE) [10,11], namely, the ap-
pearance of spin transverse transport driven by a longi-
tudinal electric field, was predicted by D’yakonov Perel’
over 30 years ago. Recent experimental verification of the
SHE [12] has prompted considerable discussion [13–15].
Since reversely spin-polarized particles have distinct di-
rections of spin current (SC), such spin-particle separa-
tion without using magnetic fields, magnetic materials
or magnetic dopants makes spin-based device fabrica-
tion compatible with conventional semiconductor process
technology and is likely to be important in spintronic
applications [1–4]. Theoretical interests of the SHE in-
volve intrinsic (or extrinsic) scatterings [16,17] and bal-
listic (or diffusive) transport [18,19]. Another concern is
that, once spintronic devices are manufactured, the device
model based on Boltzmann theory [20,21] is no longer ap-
propriate as the device shrinks rapidly down to the scale in
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length with momentum uncertainty compared to carrier’s
momentum. Thus a quantum transport description [22,23]
for the SHE is needed. In contrast to Kubo formula [24,25]
and Keldysh formalism under quasiclassical approxima-
tion [26], we base on an ab initio method to construct
the spin-dependent KBE by using the non-equilibrium
Green functions, into which the retarded Green functions
by solving the spin-dependent Dyson equation are input.
This work derives the KBE for the SHE, which incor-
porates intrinsic, extrinsic effects, impurity and Fröhlich
interactions. Within the delta interaction approximation,
a concise formula for the first-order SC with respect to
an electric field can be obtained, indicating that only a
quantum well (QW), not bulk, can have a non-zero SC
due to the presence of both bulk (BIA) and surface in-
version asymmetries (SIA). Furthermore, our numerical
results show that the SC is very sensitive to the impurity
density and that Fröhlich interaction can generate a re-
markable SC. Significantly, Fröhlich interaction also leads
a unique oscillatory behaviour in the SC, probably one
kind of quantum kinetic oscillation, which does not occur
in the impurity-induced SC.

The remainder of this paper is organized as follows.
In Section 2, a general spin-dependent KBE is derived. In
Section 3, the general KBE is applied to spin relaxation.
Section 4 is devoted to derive and solve numerically a
spatially-independent KBE for the SHE. By solving a long
standing problem regarding spatially-entangled collision
integrals, a spatially-dependent KBE for spin accumula-
tion on lateral sides due to the SHE [27,28] is presented
in Section 5 Conclusions are finally drawn in Section 6.

2 Derivation of spin-dependent KBE

The Pauli Hamiltonian is considered first. The field oper-
ator ψ(r) is defined as

∑
k uk(r)ck, where the annihilation

operator ck is for Fermions and uk(r) is the single-particle
state with wave vector k. The field operator is anti-
commute. The Heisenberg equation of motion for ψ↑ and
ψ↓ [29–32] can then be written as ∂tψ↑ = −i�−1([ψ↑, H11]
+[ψ↓, H12]) and ∂tψ↓ = −i�−1 ([ψ↑, H21] + [ψ↓, H22]), re-
spectively, where the diagonal and off-diagonal elements of

Pauli Hamiltonian
(
H11 H12

H21 H22

)

are − �
2

2m∇2+U(r, t)+Δii

and Δij(i�=j) , respectively; [ , ] denotes the commutator;
U(r, t) is the potential energy; and Δ is the SOC term (see
Appendix A). To keep the article concise, a compact form
for either definitions or equations is used. This will greatly
reduce the length of mathematical expression. Original ex-
pressions for these compact forms are separately shown in
Appendix B for better understanding.

The contour Green function is defined as Gc(1, 1′) ≡
1
i� 〈TC [ψH(1)ψ+

H(1′)]〉, where 1(′) presents (r1(′) , t1(′)), 〈〉
stands for the thermal average operator, and contour
Tc[ ] follows the conventional path [33]. Via the equa-
tion of motion for ψ↑(↓) and Green-function definition, the

spin-dependent Dyson equation is written as

D(1)Gc(1, 1′) = δC(1 − 1′)I +
∫

C

d2Σc(1, 2)Gc(2, 1′),

(1a)

[D∗(1′)Gc(1, 1′)]T = δC(1 − 1′)I

+
∫

C

d2GcT

(1, 2)ΣcT

(2, 1′), (1b)

where δC(t1 − t1′) is a contour delta function [33].
D(∗)(1(′)) is a 2×2 matrix, of which the diagonal element
is (−)i�∂t

1(
′) − H

(∗)
jj (j = 1 or 2) and the off-diagonal

element is −H(∗)
jj′(j �=j′). Σc(1, 1′) [Gc(1, 1′)] is a 2×2 spin-

dependent contour self- energy [Green-function] matrix,
of which the diagonal element is Σc

ss(1, 1
′) [Gc

ss(1, 1
′)] and

the off-diagonal element is Σc
ss′(1, 1′)[Gc

ss′ (1, 1′)], where
s �= s′ in this context.

Via equations (1a), (1b) and the Langreth
theorem [34,35], two kinds of KBE are obtained.

[
D(1)G〈(1, 1′)

]

ss(′)
−

[
D∗(1′)G〈(1, 1′)

]

ss(′)

−
∑

s′′=↑,↓

([
Σss′′ , G

〈
s′′s(′)

]
+

[
Σ

〈
ss′′ , Gs′′s(′)

])
=

1
2

∑

s′′=↑,↓

({
Σ

〉
ss′′ , G

〈
s′′s(′)

}
−

{
G

〉
s′′s(′) , Σ

〈
ss′′

})
(2a)

[
D(1)G〈(1, 1′)

]

ss(′)
−

[
D∗(1′)G〈(1, 1′)

]

ss(′)
=

∑

s′′=↑,↓

(
Σr

ss′′G
〈
s′′s(′) +Σ

〈
ss′′G

a
s′′s(′)

−Gr
s′′s(′)Σ

〈
ss′′ −G

〈
s′′s(′)Σ

a
ss′′

)
, (2b)

where the retarded, advanced, lesser and greater Green
functions (self energies) follow the definition in refer-
ences [22,23]. Notably, Σ(1, 1′) = [Σr(1, 1′) +Σa(1, 1′)]/2
while G(1, 1′) = [Gr(1, 1′) + Ga(1, 1′)]/2, and ΣG
and GΣ are abbreviated forms of

∫
C
d2Σ(1, 2)G(2, 1′)

and
∫

C d2G(1, 2)Σ(2, 1′), respectively. Additionally, { , }
stands for the anti-commutator. Equations (2a) and (2b)
will be applied to spin relaxation and the SHE (including
the subsequent topic for spin accumulation), respectively.

3 KBE for spin relaxation

This section focuses on spin relaxation. Assume a one-
band (conduction band) model and spatial independence.
The equation for the spin-dependent carrier’s distribution
matrix fk(t) at the wave vector k on the band struc-
ture can be obtained using equation (2a) at an equal-time
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limit [22], where fk(t) equals −i�G〈
k(t, t′ = t).

i

�
[D(t)fk(t) − D∗(t)fk(t)]ss(′) =

1
2

∫ t

−∞
dt′

∑

s′′=↑,↓

[
Σ

〉
ss′′,k(t, t′)G〈

s′′s(′),k(t′, t)

+G〈
s′′s(′),k

(t, t′)Σ〉
ss′′,k(t′, t) −G

〉
s′′s(′),k

(t, t′)Σ〈
ss′′,k(t′, t)

−Σ〈
ss′′,k(t, t′)G〉

s′′s(′),k(t′, t)
]
. (3)

By applying the Langreth theorem [34,35], the two-time
lesser (greater) CCS self energy within the random phase
approximation can be expressed as

i�
∑

q

G
〈,〉
s1s2,k−q(t, t′)V̄ 〈,〉

s1s2,q(t, t′), whereV̄ 〈,〉
s1s2,q(t, t′)

is the mean-field screened potential at the exchanged wave
vector q and can be presented as

∫ t

−∞
dt1

∫ t′

−∞
dt1′ V̄ r

q (t, t1)L〈,〉
s1s2,q(t1, t1′)V̄ a

q (t1′ , t′)

according to the Dyson-like equation [22]. Note that the
notation of s1s2 can be spin-polarized or spin-flip, unlike
that of ss′. The polarization function L〈,〉

s1s2,q(t1, t1′) equals
−2i�

∑
k′ G

〈,〉
s1s2,k′+q(t1, t1′)G〉,〈

s1s2,k′(t1′ , t1). The retarded

(advanced) screened potential V̄ r(a)
q (t, t′) is assumed as

V̄qδ(t− t′), where V̄q is the screened Coulomb interaction.
Therefore, Σ〈,〉

s1s2,k(t, t′) can be written as

2�
2
∑

q,k′
V̄q(t)V̄q(t′)G〈,〉

s1s2,k−q(t, t′)G〈,〉
s1s2,k′+q(t, t′)

×G
〉,〈
s1s2,k′(t′, t).

Using the KBA [36]

G〈,〉
s1s2

(t, t′) = i�[Gr
s1s2

(t, t′)G〈,〉
s1s2

(t′, t′)

−G〈,〉
s1s2

(t, t)Ga
s1s2

(t, t′)]

and the plane-wave approximation, Gr,a
s1s2,k(t, t′) =

∓ i
�
θ(±t∓ t′) exp[(−iek ∓ γ)(t− t′)/�], where ek is kinetic

energy and γ is the damping constant; thus equation (3)
can be rewritten as [37]

∂tfss(′),k(t) − 1
�
fs′s(′),k(t)

{
Im Δ12, s

′ =↓
Im Δ21, s

′ =↑ =

1
�2

∑

q,k′
V̄q(t)

∫ t

−∞
dt′V̄q(t′) exp[−γ(t−t′)/�] cos[δ(t−t′)/�]

×
∑

s′′=↑,↓

{
fss′′,k−q(t′)fss′′,k′+q(t′)[1 − fss′′,k′(t′)]

× [1−fs′′s(′),k(t′)]−fs′′s(′),k(t′)fss′′,k′(t′)[1−fss′′,k−q(t′)]

× [1 − fss′′,k′+q(t′)]
}
, (4)

where δ, which is the non-conserving energy of CCS,
equals ek−q + ek′+q− ek′ − ek. fk−qfk′+q(1− fk′)(1− fk)
and fkfk′(1 − fk−q)(1 − fk′+q) are two kinds of Pauli
factor.

The physical picture of quantum kinetic oscillation can
be captured by drawing the memory integral in equa-
tion (4) that is parallel to an atomic system. For ex-
ample, take the last term on the right-hand side (RHS)
in equation (4), states k and k − q can be regarded
as two distinct levels of an atom, while the scattering
from k′ to k′ + q can be regarded as an applied field at
the strength of V (q) exp(−iωt). With the quantum dy-
namical derivation [38], a Rabi-oscillation-like equation
can be obtained as i�ḟk = fk−qVk,k−q and i�ḟk−q =
fkVk−q,k. Integrating ḟk−q to time and inputting it into
the other equation yields the memory integral of ḟk =
− ∫ t

0
dt′�−2|Vk,k−q|2fk. The derived result demonstrates

the equivalence between the memory integral and oscilla-
tion. Thus the behaviour of the memory integral in equa-
tion (4) is essentially equivalent to the carrier-carrier oscil-
lation; however, equation (4) is somewhat complex due to
Pauli factors and the summation over momentum space in
band structure. The oscillation results from the quantum
coherence between carriers. As time passes, the quantum
coherence collapses and the quantum process reduces to
a monotonic scattering process, which no longer oscillates
between the k and k− q states, as if an atom stops oscil-
lating when the quantum coherence between the photon
and atom collapses and eventually emits (or absorbs) a
photon. Similarly, equation (4) indicates an initially spin-
coherent carrier oscillates between distinct spin-polarized
states within the quantum coherence time due to the mem-
ory integral. As the quantum coherence collapses, the car-
rier stops oscillating and eventually completes spin relax-
ation process. This oscillation is generic and thus valid for
other interactions. The CCS, not Fröhlich interaction, was
considered in this section because the exchange energy of
CCS can be zero, which favors the oscillation between two
distinct spin-polarized states with the same energy.

In addition to the carrier-carrier oscillation, equa-
tion (4) shows another oscillation (spin precession) that
can be understood from the corresponding homogeneous
solution. By inputting ∂tfss′,k(t) in equation (4) into
∂t equation (4), the following equation is generated,
f̈ss − ImΔ12ImΔ21

�2 fss = CT , where CT is the collision
term. As Δ21 = Δ∗

12, ImΔ21 equals −ImΔ12. Accord-
ingly, the homogeneous solution of equation (4) indicates
the spin-polarized distribution function has an oscillating
frequency at �

−1 |ImΔ12|.

4 KBE for the spin Hall effect

This section describes how the KBE is applied to the SHE.
The driven potential energy, U(r1, t1) = −qcr1 ·E, is con-
sidered, where qc is the charge and E is an electric field. By
applying Wigner transformation to equation (2b), where
r = r1 − r1′ , τ = t1 − t1′ , R = (r1 + r1′)/2 and
T = (t1 + t1′)/2, the left-hand side (LHS) and RHS of
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equation (2b) in Fourier domain after transformation un-
der the scalar potential gauge (φ = −qcE · R) and vector
potential gauge (A = −qcTE) [22], respectively, can be
represented as

i

[

�∂T + qcE ·
(

∇k +
�k
m∗ ∂ω

)]

G̃
〈
ss(′)(k, ω, T )

− 2iG̃〈
s′s(′)(k, ω, T )

{ Im Δ12, s
′ =↓

Im Δ21, s
′ =↑

=
∫

dτdτ ′ exp(iωτ)
∑

s′′=↑,↓
P̂ss′′ (k1,2, τ1,2, T1,2)

× Q̂s′′s(′)(k1,2, τ1,2, T1,2), (5)

where m∗ is the effective mass. Additionally,

P̂ss′′(k1,2, τ1,2, T1,2)Q̂s′′s(k1,2, τ1,2, T1,2)

≡ [Σ̂r
ss′′ (k1, τ1, T1)Ĝ

〈
s′′s(k2, τ2, T2) + Σ̂

〈
ss′′(k1, τ1, T1)

× Ĝa
s′′s(k2, τ2, T2) − Ĝr

s′′s(k1, τ1, T1)Σ̂
〈
ss′′(k2, τ2, T2)

− Ĝ
〈
s′′s(k1, τ1, T1)Σ̂a

ss′′ (k2, τ2, T2)],

k1,2 ≡ k +
q

2�
E(τ ′ ± τ

2
), τ1,2 ≡ τ

2
∓ τ ′, τ ′ ≡ t2 − T

and T1,2 ≡ T ± τ2,1. Average-space (R) dependence is
omitted and considered in the next section. By solving
the Dyson equation, the retarded Green function can be
obtained.

G̃r
ss(k, ω) ≈ 1

�ω − ek − Re σr
ss − iIm σr

ss

− q2c�
2E2

4m∗ (�ω − ek − Re σr
ss − iIm σr

ss)
4 ,

(6a)

G̃r
ss′(k, ω) ≈ − q2c�

2E2

m∗ (�ω − ek − Re σr
s′s′ − iIm σr

s′s′)5

×
{

Re Δ21 , s
′ =↑

Re Δ12 , s
′ =↓, (6b)

where E is |E| and σr
ss denotes the equilibrium retarded

self energy. The detailed derivation is shown in Ap-
pendix C.

By applying Taylor expansion to the electric field in
equation (5) and approximating G̃〈(k, ω) as g̃〈(k, ω) +
EG̃〈(1)(k, ω) + E2G̃〈(2)(k, ω), the first-order KBE for the
SHE can then be obtained based on the perturbation
method.

qc
2�
ã2

ss∂ωnF ε̂ ·
(
ξ̃ss∇kγ̃ss − γ̃ss∇kξ̃ss

)
+ 2iG̃〈(1)

s′s (k, ω)

×
{ Im Δ12, s

′ =↓
Im Δ21, s

′ =↑ = i[γ̃ssG̃
〈(1)
ss (k, ω) − ãssΣ̃

〈(1)
ss (k, ω)],

(7a)

G̃
〈(1)
s′s′ (k, ω)

{
2Im Δ12, s

′ =↓
2Im Δ21, s

′ =↑ =

γ̃ssG̃
〈(1)
ss′ (k, ω) − ãs′s′Σ̃

〈(1)
ss′ (k, ω), (7b)

where nF is Fermi-Dirac distribution. Additionally, ε̂ ≡
E/E, ξ̃ss(k, ω) ≡ �ω − ek − σ̃ss(k, ω), σ̃ss(k, ω) ≡
[σ̃r

ss(k, ω) + σ̃a
ss(k, ω)]/2, ãss(k, ω) ≡ i[g̃r

ss(k, ω) −
g̃a

ss(k, ω)], and γ̃ss(k, ω) ≡ i[σ̃r
ss(k, ω) − σ̃a

ss(k, ω)]. Note
that (non-)equilibrium Green function or (non-) equilib-
rium self energy is written in a (capital) lower letter in
this paper. The second-order KBE for the SHE is shown
in Appendix D, where an algorithm for solving the KBE
up to the 2nd order solution is provided. In this report,
only the 1st order solution is demonstrated.

For an impurity interaction, the lowest-order self en-
ergy is given by NiΩ

∑
q[|V (q)|2 G̃〈,r

s1s2(k − q, ω)], where
Ni is the impurity density, Ω is sample volume and V (q)
is the Coulomb interaction. Thus σ̃r

ss(e−imp)(k, ω) can be

rearranged as
∑

q
NiΩ|V (q)|2

�ω−ek−q+i�τ−1
ss(e−imp)

, where τss(e−imp) is

the spin-electron impurity scattering time.
For an electron-phonon interaction, the lowest-order

lesser (retarded) self energy is given by

i�

2π

∑

q

∫

dω′ |Mq|2[G〈(〈)
s1s2

(k − q, ω − ω′)D〈(r)
s1s2

(q, ω′)

+G(r)
s1s2

(k − q, ω − ω′)D(〈)
s1s2

(q, ω′)

+G(r)
s1s2

(k − q, ω − ω′)D(r)
s1s2

(q, ω′)],

where |Mq|2 and Ds1s2(q, ω′) are the electron-phonon in-
teraction strength and phonon’s propagator, respectively.
Then, Σ̃〈

s1s2(e−ph)(k, ω) can be rearranged as

∑

q,±
|Mq|2

{[

Nph(q) +
1
2
± 1

2

]

G̃〈
s1s2

(k − q, ω ± ωq)
}

,

whereNph(q) is the phonon number, and σ̃r
ss(e−ph)(k, ω) is

rearranged as
∑

q,± |Mq|2 Nph(q)±1+nF (ek−q)

�(ω±ωq)−ek−q+i�τ−1
ss(e−ph)

, where

τss(e−ph) is the spin-electron phonon scattering time.
To simplify the calculation of self energy, the inter-

action strength in momentum space, |
�

Mq|2, is assumed

as
�

M
2

0δ(q) called a delta interaction approximation later,

where
∣
∣
∣

�

Mq

∣
∣
∣
2

for the electron-phonon and impurity inter-

actions is |Mq|2 and |V (q)|2, respectively. Under the ap-
proximation, equations (7a) and (7b) can be rewritten as

− qc
2�
ã2
↑↑∂ωnF

(
ξ̃↑↑∂ky γ̃↑↑ − γ̃↑↑∂ky ξ̃↑↑

)

+ 2Im Δ12(k)Im G̃
〈(1)
↓↑ (k) = γ̃↑↑Im G̃

〈(1)
↑↑ (k)

− A
�

M
2

0Nα

4π2
ã↑↑Im G̃

〈(1)
↑↑ (k), (8a)

2Im Δ21(k)Im G̃
〈(1)
↑↑ (k) =

γ̃↓↓Im G̃
〈(1)
↓↑ (k) − A

�

M
2

0Nα

4π2
ã↑↑Im G̃

〈(1)
↓↑ (k), (8b)
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Im G̃
〈(1)
↑↑ (k) =

− qc
2�

ã2
↑↑∂ωnF

(
ξ̃↑↑∂ky γ̃↑↑ − γ̃↑↑∂ky ξ̃↑↑

) [

γ̃↓↓ − A
�
M

2
0Nα

4π2 ã↑↑

]

[

γ̃↑↑ − A
�
M

2
0Nα

4π2 ã↑↑

] [

γ̃↓↓ − A
�
M

2
0Nα

4π2 ã↑↑

]

− 4Im Δ12(k)Im Δ21(k)

. (9)

x

y (current direction) 

(electric field direction) 
z

Lz

Lx

Ly

O

In plane R//

(lateral cross section) 
Fig. 1. Electrically-biased sample’s coordinate and geometry
for the SHE.

where the sample’s coordinate is defined in Figure 1,
and A denotes sample’s lateral area (LxLz) with respect
to the electric field. Notably, Nα is equal to NiΩ and
2Nph(0)+1 for impurity interactions and electron-phonon
interactions, respectively.

Equations (8a) and (8b) can easily derive Im G̃
〈(1)
↑↑ (k),

which is shown as

See equation (9) above.

Via equation (9), one can understand why and when
the SHE occurs. A conventional definition of the SC as
−∑

k
�kx

m∗ Im G̃
〈
↑↑(k)Ey is used, where the SC arises unless

the Fermi sphere of spin species shifts toward the direction
perpendicular to the applied field, i.e. Im G̃

〈(1)
↑↑ (k) is an

asymmetric function of kx. Since all equilibrium functions
and their derivatives with respect to ky in equation (9) are
kx symmetric, SOC term Δij(k) becomes the unique fac-
tor in generating the SC. From Appendix A, Im G̃

〈(1)
↑↑ (k)

remains kx symmetric when either BIA or SIA is included
in the SOC term except the fact that both BIA and SIA
are considered. Accordingly, equation (9) indicates that
the SC can only appear in a QW and vanishes in bulk.
The prediction is against the observation of the SHE in
bulk [39]. This is probably due to the delta interaction
approximation used in our calculation. If the interaction
strength has a slight broadening in momentum space, a
non-zero SC may appear in bulk. Otherwise, an earlier
theoretical report based on the Keldysh formalism [40]
shows a vanishing SC in bulk, which is the same as our
prediction. As for the QW, the SC has a nonzero value
even under the delta interaction approximation. The SHE
of two-dimensional (2D) electrons [41] and 2D holes [42]
in GaAs has been experimentally demonstrated.

In addition to the SOC requirement, the SC between
two spin species must be distinct either in direction or

magnitude, or their spin fluxes cannot be distinguished
experimentally. Thus the differential SC (DSC), which is
defined as Js

x,↑↑ − Js
x,↓↓, is useful. Whether the DSC ex-

ists depends on the electron-impurity (-phonon) scattering
rate. If the scattering rate varies with the spin species, the
DSC exists; otherwise, the DSC goes to zero. In the latter
case, although the DSC vanishes, the sum of the SC as
Js

x,↑↑ + Js
x,↓↓ survives, implying that a transverse electric

current likely exists. According to equation (9), the flux of
electrons is in the direction opposite that of holes and the
electrical current caused by the opposite charges will not
cancel each other. Therefore, the derived result reveals the
existence of Hall current without any external magnetic
field except for the DP field, which is self-induced due to
the BIA and SIA. In contrast, using the Keldysh formalism
in the quasiclassical approximation [26], the Hall current
due to the SOC can occur only when the ferromagnetic
contact is present.

The work now calculates the SC in a 10 nm-wide
GaAs/Al0.3Ga0.7 As QW at sheet densities (n2D) of
1010 cm−2 and 1011 cm−2 at room temperature, and com-
pares the SC of the impurity and Fröhlich interactions.
The extrinsic (

�

M0 �= 0) and intrinsic (
�

M0 = 0) SCs are
evaluated for each case. The extrinsic SC stands for the
calculation with both non-equilibrium and equilibrium self
energies present (diffusive regime), whereas the intrinsic
SC stands for the calculation with equilibrium self energy
only (ballistic regime). For impurity interactions, com-
plete ionization (i.e., n2D = NiL) and Brooks- Herring
approximation for calculating the electron-impurity scat-
tering time are assumed, where

τss(e−imp) =

24.5πε2
GaAs

√
m∗e1.5

k

q4cZNi

{
ln [1+8m∗ek/(�2q2s )]−[1+(�2q2s/(8m∗ek))]−1

}

with qs being 2m∗q2cnF (k = 0)/
(
εGaAs�

2
)
, εGaAs being

the GaAs dielectric constant, Z = 14 for silicon impu-
rity, and L being the width of QW. For Fröhlich inter-
action (polar optical phonon abbreviated as POP), two
symmetric interface phonon modes and the lowest con-
fined phonon mode based on the dielectric continuum
model [43–45] are considered. The average electron-POP
scattering time τss(e−ph) of 165 fs was used. The SC shown
in following figures is multiplied by an electron’s charge.

Figures 2a and 2b show the extrinsic and intrinsic SCs
caused by impurity, respectively. The extrinsic and intrin-
sic SCs are in the reverse direction and the intrinsic SC
is significantly higher than the extrinsic SC. At a carrier
density of 1011 (1010) cm−2, the intrinsic SC is even ten-
(several) thousand times higher than the extrinsic SC. In
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Fig. 2. The first-order impurity-induced spin charge current
density for (a) the extrinsic SHE and (b) the intrinsic SHE in
a 10 nm-wide GaAs/Al0.3Ga0.7As QW at room temperature
within the complete ionization and Brooks-Herring approxi-
mations.

clean limit the spin Hall conductance is due to the intrin-
sic SC. Once the impurity exists, the intrinsic SC replaced
with the extrinsic SC therefore results in a significant re-
duction of the SC by defect scattering as described in the
Inoue’s report [24]. Furthermore, the SC, especially the
intrinsic SC, is extremely sensitive to the carrier density.
While the extrinsic SC at a carrier density of 1011 cm−2 is
6000 times higher than the extrinsic SC at 1010 cm−2, the
intrinsic SC at a carrier density of 1011 cm−2 is several
10 000 times higher than the intrinsic SC at a density of
1010 cm−2. The considerable density dependence results
from Im σ̃r

ss(e−imp), which is proportional to Niτ
−1
ss(e−imp)

when �ω − ek � �τ−1
ss(e−imp). Due to τ−1

ss(e−imp) ∝ Ni,
Im σ̃r

ss(e−imp) has the N2
i dependence. γ̃ss and ãss re-

lates to Im σ̃r
ss. γ̃ss = −2Im σ̃r

ss, and ãss ∝ Im σ̃r
ss when

�ω− ek−Re σr
ss � Im σr

ss. Thus γ̃ss and ãss also has the
N2

i dependence. By canceling Ni factors between the nu-
merator and denominator in equation (9), Im G̃

〈(1)
↑↑ (k) for

the intrinsic and extrinsic cases can be shown to depend
on ã2

↑↑∂ωnF ∝ N5
i and ã2

↑↑ ∝ N4
i , respectively. (Note that

n2D = Ni.) Thus the max. ratio of the SC between 1010

and 1011 cm−2 can reach to several 10 000 times.
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Fig. 3. The first-order POP-induced spin charge current den-
sity for (a) the extrinsic SHE and (b) the intrinsic SHE in
a 10 nm-wide GaAs/Al0.3Ga0.7As QW at room temperature
based on the dielectric continuum model, where the two sym-
metric interface phonon mode and the lowest confined phonon
mode are included.

Figures 3a and 3b show the extrinsic and intrinsic SCs
caused by the POP, respectively. Like the impurity case,
the direction of the extrinsic SC is opposite that of the
intrinsic SC, and the intrinsic SC is higher than the ex-
trinsic SC; however, the ratio between the intrinsic SC and
extrinsic SC is not so considerable. At a carrier density of
1011 (1010) cm−2, the intrinsic SC is approximately 130
(2) times higher than the extrinsic SC. The density de-
pendence of SC is strong, but also not as strong as that of
impurity interaction. While the extrinsic SC at a carrier
density of 1011 cm−2 is roughly 40 times higher than the
extrinsic SC at 1010 cm−2, the intrinsic SC at a carrier
density of 1011 cm−2 is almost 2500 times higher than
the intrinsic SC at 1010 cm−2. This is because τss(e−ph)

does not have the n2D dependence. Thus Im σ̃r
ss(e−ph)

as well as γ̃ss and ãss is only proportional to n2D. Fur-
thermore, unlike the impurity case, Nα is independent
on the n2D. Therefore, by canceling n2D factors in equa-
tion (9), Im G̃

〈(1)
↑↑ (k) for both intrinsic and extrinsic cases

shows the dependence of ã2
↑↑∂ωnF ∝ n3

2D. As a result, the
maximum ratio of the SC between 1010 and 1011 cm−2 is
about 1000 times.
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Fig. 4. Spin charge current density caused by Fröhlich interaction as a function of scaling factor at sheet carrier densities of
(a) 109 (b) 3 × 109 (c) 5 × 109 (d) 7 × 109 cm−2.

Generally, the SC caused by the POP is much higher
than the SC caused by impurity. For example, the ratio of
the extrinsic POP-induced SC to the extrinsic impurity-
induced SC is close to 25 000(160) at a carrier density
of 1010 (1011) cm−2. The exception is that the intrin-
sic POP-induced SC becomes one-fourth of the intrinsic
impurity-induced SC when the density is at 1011 cm−2.
Excluding the case, the POP- induced SC is always dom-
inant; however, the importance of Fröhlich interaction on
the SHE has not been described. If the spin effect on the
electron-POP scattering rate τ−1

ss(e−ph) is also strong, a
considerable POP-induced DSC exists, further increasing
the importance of Fröhlich interaction on the application
of devices based on the SHE.

Additionally, Fröhlich interaction leads to a unique os-
cillatory behaviour in the SC that does not appear with
the impurity-induced SC. By introducing the scaling fac-

tor β, i.e.,
�

M
′2
0 ≡ β

�

M
2

0 (0, intrinsic SC; 1, extrinsic SC),
Figures 4a–4d show the POP-induced SC as a function
of the scaling factor at carrier densities of 109, 3 × 109,
5×109 and 7×109 cm−2, respectively, where oscillation as
a function of the scaling factor is shown. The scaling factor
can result from Coulomb screening effect. As the carrier
density increases, the oscillation weakens and eventually
disappears. Notably, the oscillatory behaviour is depen-
dent on the scaling factor. While the oscillatory amplitude
shows a modulation as a quantum beat, oscillatory fre-
quency gets lower as the scaling factor increases. Interest-
ingly, the phonon number (Nα) has the same mathemati-
cal role in equation (9) as the scaling factor. Therefore, the
oscillatory behaviour can also appear in the SC-voltage

curve because of the temperature dependence of phonon
excitation number, which is associated with an applied
voltage.

5 KBE for spin accumulation

This section is to derive the spatially dependent KBE for
spin accumulation, where the in-plane (R‖) dependence
is considered. With the Neumann boundary condition,
the lesser Green function G̃〈(k, ω,R‖) can be expressed
as 1√

LxLz

∑
K‖ G̃

〈(k, ω,K‖) exp[iK‖ · (R‖−L‖/2)], where

K‖ = π
(

nx

Lx
, nz

Lz

)
with nx,z being an integer and L‖ be-

ing (Lx, Lz). With the Fourier expansion, the LHS of
equation (2b), i.e., the driving term (DT) of spatially-
dependent KBE, after Wigner transformation and Fourier
transform under the scalar gauge can be written as

DTss(′) =
1√
LxLz

∑

K‖

exp[iK‖ · (R‖ − L‖/2)]

×
{[

i�∂T − �
2

m∗k ·K‖+iqcE ·
(

∇k +
�k
m∗ ∂ω

)]

× G̃
〈
ss(′)(k, ω,K‖, T )− 2iG̃〈

s′s(′)(k, ω,K‖, T )

×
{

Im Δ12, s
′ =↓

Im Δ21, s
′ =↑

}

. (10)

The RHS of equation (2b), i.e. the collision term (CT),
becomes difficult to transform to the (k, ω) domain when
the average space R dependence involves due to the spa-
tial entanglement in

∫
dr2dt2{Σ[r1 − r2,

1
2 (r1 + r2), t1, t2]
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G[r2 − r1′ , 1
2 (r2 + r1′), t2, t1′ ]}. However, the Fourier ex-

pansion for the average space R is efficient to elimi-
nate the entanglement. Hence, the CT can be successfully
transformed to the (k, ω) domain.

CTss(′)(k, ω,R‖, T )=
1

LxLz

∑

K‖

∑

K′
‖

exp[iK‖ ·(R‖−L‖/2)]

×
∫

dτdτ ′ exp(iωτ)
∑

s′′=↑,↓
P̂ss′′

(
k′

1,2, τ1,2,K‖1,2, T1,2

)

× Q̂s′′s(′)
(
k′

1,2, τ1,2,K‖1,2, T1,2

)
, (11)

where k′
1,2 = k1,2 ± 1

2K‖2,1. K‖1,2 = 1
2 (K‖ ± K′

‖). The
detailed derivation is shown in Appendix E.

Hence, the first and the second order R‖-dependent
KBEs can be determined and shown as, respectively,

qcε̂ ·
(

∇k +
�k
m∗ ∂ω

)

g̃〈ssδss(′) +
i�2

m∗k · K‖G̃
〈(1)
ss(′)(k, ω,K‖)

− 2G̃〈(1)
s′s(′)(k, ω,K‖)

{
Im Δ12, s

′ =↓
Im Δ21, s

′ =↑ − qc
2�

ε̂ · δss(′)√
LxLz

×
∑

K′
‖

[
∂ωP̃eq

ss∇kQ̃eq
ss −∇kP̃eq

ss∂ωQ̃eq
ss

]
=

−i√
LxLz

×
∑

K′
‖

∑

s′′=↑,↓

[
P̃ss′′ (k′

1,2, ω,K‖1,2)

× Q̃s′′s(′)(k′
1,2, ω,K‖1,2)

]

1
, (12a)

qcε̂ ·
(

∇k +
�k
m∗ ∂ω

)

G̃
〈(1)
ss(′)(k, ω,K‖)

+
i�2

m∗k · K‖G̃
〈(2)
ss(′)(k, ω,K‖)

− 2G̃〈(2)
s′s(′)(k, ω,K‖)

{
Im Δ12, s

′ =↓
Im Δ21, s

′ =↑−
iq2c
8�2

δss(′) ε̂·√
LxLz

×
∑

K′
‖

[
∂2

ωP̃eq
ss∂

2
kQ̃

eq
ss − ∂2

kP̃
eq
ss∂

2
ωQ̃eq

ss

]
=

−i√
LxLz

∑

K′
‖

∑

s′′=↑,↓

[
P̃ss′′ (k′

1,2, ω,K‖1,2)

×Q̃s′′s(′)(k′
1,2, ω,K‖1,2)

]

2
, (12b)

where the subscript (1,2) in the middle bracket denotes
the order expansion with respect to the electric field. The
retarded Green function (retarded self energy) shown in
equations (C.8a) and (C.8b) can be input into the CT on
the RHS of R‖-dependent KBEs.

The R‖-dependent KBE is important to the study of
the SHE because detection of spin flux density is still
a major restriction for current measurements; however,
spin accumulation can be verified experimentally using
Kerr spectroscopy [12]. Since the KBE is a very gen-
eral approach, the issue of spin accumulation in a ballis-
tic regime [18,19] or a nanometer scale where Boltzmann

theory no longer fits can be governed by the KBE. In
addition to spin applications, the analytic KBE is es-
pecially important for spatial quantum kinetic effects,
which have been still less understood because the ana-
lytic spin-independent, spatially-dependent KBE has not
been derived before this work. Based on equations (12a)
and (12b), spatial quantum kinetic effects such as momen-
tum non-conservation and spatial coherence [46,47] can be
studied and compared with temporal quantum kinetic ef-
fects involving the energy non-conservation [6] and mem-
ory effect [7,8].

6 Conclusion

This work presents a general quantum kinetic theory of
spin dynamics, in which the KBE is applied to spin re-
laxation and the SHE. First, the equation governing the
time evolution of spin relaxation via the DP magnetic field
among non-equilibrium CCS was constructed. Quantum
kinetic oscillation between distinct spin-polarized states
within the quantum coherence time, as well as SOC-
induced oscillation, was identified. Second, the quantum
transport equation of the SHE in the presence of impu-
rity and Fröhlich interactions was formulated. The equa-
tion can interpret why the SHE exists and when the SC
is no longer zero. Furthermore, the numerical results in-
dicate that the SC is very sensitive to impurity density,
while Fröhlich interaction can result in a considerable SC
and lead to a unique oscillation in the SC. Finally, the
R‖-dependent KBE for spin accumulation was derived,
and is especially useful for exploring spatial quantum ki-
netic effects.

The author Lee would like to thank Prof. S.A. Lyon’s enlight-
enment for the work. The work was financially supported by
the project of National Science Council under grant number
NSC 95-2112-M-007-013.

Appendix A: SOC terms in DP
mechanism [48]

The DP Hamiltonian is given by H ′
DP = �σ ·Ω(k), where

σ is the Pauli matrix,

ΩBIA(k) =
γ

�

⎛

⎝
kx(k2

y − k2
z)

ky(k2
z − k2

x)
kz(k2

x − k2
y)

⎞

⎠

and

ΩSIA(k‖) =
α

�

⎛

⎝
ky

−kx

0

⎞

⎠

are the effective magnetic field for the bulk inversion asym-
metry (BIA) and the surface inversion asymmetry (SIA),
respectively. In GaAs, the BIA coefficient γ equals 27 eÅ3

independent of carrier density and the Rashba coefficient
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α decreases linearly from −10−4 eV Åat the sheet density
of 1011 cm−2 to −5× 10−3 eV Åat n2D of 8× 1011 cm−2.

The SOC term in bulk can therefore be represented as
Δ11 = Δ22 = 0 and Δ12 = Δ∗

21 = γkx(k2
y−k2

z)−iγky(k2
z−

k2
x). In a QW,

Ω =
γ

�

⎛

⎝
kx(k2

x − 〈k2
z〉)

ky(〈k2
z〉 − k2

x)
0

⎞

⎠ + ΩSIA(k‖),

where

〈k2
z〉 =

1
4

(
16.5πm∗ n2De

2

�2ε∞

)2/3

and ε is the high-frequency dielectric constant. The SOC
diagonal elements in a QW remain zero while the off-
diagonal can be represented as Δ12 = Δ∗

21 = γkx(k2
y −

〈k2
z〉) − iγky(〈k2

z〉 − k2
x) + αky + iαkx.

Appendix B: Recovery of compact definitions
and equations

For clarity, the definitions in Section 2 are presented in an
original form.

H ≡
(
H11 H12

H21 H22

)

=

⎛

⎝
− �

2

2m∇2+U(r, t)+Δ11 Δ12

Δ21 − �
2

2m∇2+U(r, t)+Δ22

⎞

⎠ ,

D(1) ≡
⎛

⎝
D11(1) D12(1)

D21(1) D22(1)

⎞

⎠

=

⎛

⎝
i�∂t1 −H11(1) −H12(1)

−H21(1) i�∂t1 −H22(1)

⎞

⎠ ,

D∗(1′) ≡
⎛

⎝
D∗

11(1
′) D∗

12(1
′)

D∗
21(1

′) D∗
22(1

′)

⎞

⎠

=

⎛

⎝
−i�∂t1′ −H∗

11(1
′) −H∗

12(1
′)

−H∗
21(1

′) −i�∂t1′ −H∗
22(1

′)

⎞

⎠ ,

G(1, 1′) ≡
⎛

⎝
G↑↑(1, 1′) G↑↓(1, 1′)

G↓↑(1, 1′) G↓↓(1, 1′)

⎞

⎠ ,

Σ(1, 1′) ≡
⎛

⎝
Σ↑↑(1, 1′) Σ↑↓(1, 1′)

Σ↓↑(1, 1′) Σ↓↓(1, 1′)

⎞

⎠ . (B.1)

where 1 and 1′ present (r1, t1) and (r1′ , t1′), respectively.

The original form of Dyson equation shown in equa-
tions (1a) and (1b) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11(1)G↑↑(1, 1′) +D12(1)G↓↑(1, 1′) = δC(1 − 1′)

+
∫

C

d2 [Σ↑↑(1, 2)G↑↑(2, 1′) +Σ↑↓(1, 2)G↓↑(2, 1′)],

(B.2a)
D∗

11(1
′)G↑↑(1, 1′) +D∗

12(1
′)G↓↑(1, 1′) = δC(1 − 1′)

+
∫

C

d2 [G↑↑(1, 2)Σ↑↑(2, 1′) +G↓↑(1, 2)Σ↑↓(2, 1′)] ,

(B.2a)’

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11(1)G↑↓(1, 1′) +D12(1)G↓↓(1, 1′) =
∫

C

d2 [Σ↑↑(1, 2)G↑↓(2, 1′) +Σ↑↓(1, 2)G↓↓(2, 1′)] ,

(B.2b)
D∗

11(1
′)G↑↓(1, 1′) +D∗

12(1
′)G↓↓(1, 1′) =

∫

C

d2 [G↑↓(1, 2)Σ↑↑(2, 1′) +G↓↓(1, 2)Σ↑↓(2, 1′)] ,

(B.2b)’

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D21(1)G↑↑(1, 1′) +D22(1)G↓↑(1, 1′) =
∫

C

d2 [Σ↓↑(1, 2)G↑↑(2, 1′) +Σ↓↓(1, 2)G↓↑(2, 1′)] ,

(B.2c)
D∗

21(1
′)G↑↑(1, 1′) +D∗

22(1
′)G↓↑(1, 1′) =

∫

C

d2 [G↑↑(1, 2)Σ↓↑(2, 1′) +G↓↑(1, 2)Σ↓↓(2, 1′)] ,

(B.2c)’

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D21(1)G↑↓(1, 1′) +D22(1)G↓↓(1, 1′) = δC(1 − 1′)

+
∫

C

d2 [Σ↓↑(1, 2)G↑↓(2, 1′) +Σ↓↓(1, 2)G↓↓(2, 1′)] ,

(B.2d)
D∗

21(1
′)G↑↓(1, 1′) +D∗

22(1
′)G↓↓(1, 1′) = δC(1 − 1′)

+
∫

C

d2 [G↑↓(1, 2)Σ↓↑(2, 1′) +G↓↓(1, 2)Σ↓↓(2, 1′)] ,

(B.2d)’

Given the Langreth theorem [34,35], if Z(t1, t1′) =
∫

C
dτ

X(t1, τ)Y (τ, t1′), then

Z〈(t1, t1′)=
∫

C

dτ [Xr(t1, τ)Y 〈(τ, t1′) +X〈(t1, τ)Y a(τ, t1′)].

(B.3)
Applying (B.3) to (B.2), two kinds of KBE shown in equa-
tions (2a) and (2b) can then be obtained. To clarify the
spin notation, the original form of the two kinds of KBE
is shown. For the first kind of KBE in equation (2a), the
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detailed expression is given by

[D11(1)−D∗
11(1

′)]G〈
↑↑(1, 1

′)+ [D12(1)−D∗
12(1

′)]G〈
↓↑(1, 1

′)

− [Σ↑↑, G
〈
↑↑] − [Σ〈

↑↑, G↑↑] − [Σ↑↓, G
〈
↓↑] − [Σ〈

↑↓, G↓↑] =
1
2
{Σ〉

↑↑, G
〈
↑↑}−

1
2
{G〉

↑↑, Σ
〈
↑↑}+

1
2
{Σ〉

↑↓, G
〈
↓↑}−

1
2
{G〉

↓↑, Σ
〈
↑↓},

(B.4a)

[D11(1)−D∗
11(1

′)]G〈
↑↓(1, 1

′)+ [D12(1)−D∗
12(1

′)]G〈
↓↓(1, 1

′)

− [Σ↑↑, G
〈
↑↓] − [Σ〈

↑↑, G↑↓] − [Σ↑↓, G
〈
↓↓] − [Σ〈

↑↓, G↓↓] =
1
2
{Σ〉

↑↑, G
〈
↑↓}−

1
2
{G〉

↑↓, Σ
〈
↑↑}+

1
2
{Σ〉

↑↓, G
〈
↓↓}−

1
2
{G〉

↓↓, Σ
〈
↑↓},

(B.4b)

[D21(1)−D∗
21(1

′)]G〈
↑↑(1, 1

′)+ [D22(1)−D∗
22(1

′)]G〈
↓↑(1, 1

′)

− [Σ↓↑, G
〈
↑↑] − [Σ〈

↓↑, G↑↑] − [Σ↓↓, G
〈
↓↑] − [Σ〈

↓↓, G↓↑] =
1
2
{Σ〉

↓↑, G
〈
↑↑}−

1
2
{G〉

↑↑, Σ
〈
↓↑}+

1
2
{Σ〉

↓↓, G
〈
↓↑}−

1
2
{G〉

↓↑, Σ
〈
↓↓},

(B.4c)

[D21(1)−D∗
21(1

′)]G〈
↑↓(1, 1

′)+ [D22(1)−D∗
22(1

′)]G〈
↓↓(1, 1

′)

− [Σ↓↑, G
〈
↑↓] − [Σ〈

↓↑, G↑↓] − [Σ↓↓, G
〈
↓↓] − [Σ〈

↓↓, G↓↓] =
1
2
{Σ〉

↓↑, G
〈
↑↓}−

1
2
{G〉

↑↓, Σ
〈
↓↑}+

1
2
{Σ〉

↓↓, G
〈
↓↓}−

1
2
{G〉

↓↓, Σ
〈
↓↓},

(B.4d)

where reminding that ΣG and GΣ are abbreviated forms
of

∫
C d2Σ(1, 2)G(2, 1′) and

∫
C d2G(1, 2)Σ(2, 1′), respec-

tively. Additionally, [ , ] and { , } stand for the commuta-
tor and anti-commutator, respectively.

For the second kind of KBE in equation (2b), the de-
tailed expression is given by

D11(1)G〈
↑↑(1, 1

′) −D∗
11(1

′)G〈
↑↑(1, 1

′) +D12(1)G〈
↓↑(1, 1

′)

−D∗
12(1

′)G〈
↓↑(1, 1

′) = Σr
↑↑G

〈
↑↑ +Σ

〈
↑↑G

a
↑↑ −Gr

↑↑Σ
〈
↑↑

−G
〈
↑↑Σ

a
↑↑ +Σr

↑↓G
〈
↓↑ +Σ

〈
↑↓G

a
↓↑ −Gr

↓↑Σ
〈
↑↓ −G

〈
↓↑Σ

a
↑↓,

(B.5a)

D11(1)G〈
↑↓(1, 1

′) −D∗
11(1

′)G〈
↑↓(1, 1

′) +D12(1)G〈
↓↓(1, 1

′)

−D∗
12(1

′)G〈
↓↓(1, 1

′) = Σr
↑↑G

〈
↑↓ +Σ

〈
↑↑G

a
↑↓ −Gr

↑↓Σ
〈
↑↑

−G
〈
↑↓Σ

a
↑↑ +Σr

↑↓G
〈
↓↓ +Σ

〈
↑↓G

a
↓↓ −Gr

↓↓Σ
〈
↑↓ −G

〈
↓↓Σ

a
↑↓,

(B.5b)

D21(1)G〈
↑↑(1, 1

′) −D∗
21(1

′)G〈
↑↑(1, 1

′) +D22(1)G〈
↓↑(1, 1

′)

−D∗
22(1

′)G〈
↓↑(1, 1

′) = Σr
↓↑G

〈
↑↑ +Σ

〈
↓↑G

a
↑↑ −Gr

↑↑Σ
〈
↓↑

−G
〈
↑↑Σ

a
↓↑ +Σr

↓↓G
〈
↓↑ +Σ

〈
↓↓G

a
↓↑ −Gr

↓↑Σ
〈
↓↓ −G

〈
↓↑Σ

a
↓↓,

(B.5c)

D21(1)G〈
↑↓(1, 1

′) −D∗
21(1

′)G〈
↑↓(1, 1

′) +D22(1)G〈
↓↓(1, 1

′)

−D∗
22(1

′)G〈
↓↓(1, 1

′) = Σr
↓↑G

〈
↑↓ +Σ

〈
↓↑G

a
↑↓ −Gr

↑↓Σ
〈
↓↑

−G
〈
↑↓Σ

a
↓↑ +Σr

↓↓G
〈
↓↓ +Σ

〈
↓↓G

a
↓↓ −Gr

↓↓Σ
〈
↓↓ −G

〈
↓↓Σ

a
↓↓.

(B.5d)

Appendix C: Seeking retarded Green function
for the spin Hall effect

According to Langreth theorem, Zr(t1, t1′) =
∫

C
dτ

Xr(t1, τ)Y r(τ, t1′). With the relation, (B2a)+ (B2a)’ and
(B2c) + (B2c)’ can be presented as, respectively

[D11(1)+D∗
11(1

′)]Gr
↑↑(1, 1

′)+[D12(1)+D∗
12(1

′)]Gr
↓↑(1, 1

′) =

2δ(1 − 1′) +Σr
↑↑G

r
↑↑ +Gr

↑↑Σ
r
↑↑ +Σr

↑↓G
r
↓↑ +Gr

↓↑Σ
r
↑↓,

(C.1a)

[D21(1)+D∗
21(1

′)]Gr
↑↑(1, 1

′)+[D22(1)+D∗
22(1

′)]Gr
↓↑(1, 1

′) =

Σr
↓↑G

r
↑↑ +Gr

↑↑Σ
r
↓↑ +Σr

↓↓G
r
↓↑ +Gr

↓↑Σ
r
↓↓, (C.1b)

which is another form of spin-dependent Dyson equation
and where Gr

↑↑(1, 1
′) and Gr

↓↑(1, 1
′) can be found out to

input into the KBE for the SHE shown in equation (5).
(C.1a) and (C.1b) after applying the Wigner transfor-

mation and Fourier transform under the scalar gauge, i.e.∫
dτdr exp[i(ω− qcE ·R/�)τ − ik · r]G(r, τ,R, T ), become

(

�ω − ek +
q2cE

2

8m∗ ∂
2
ω

)

G̃r
↑↑(k, ω) − Re Δ12G̃

r
↓↑(k, ω) = 1,

(C.2a)

−Re Δ21G̃
r
↑↑(k, ω) +

(

�ω − ek +
q2cE

2

8m∗ ∂
2
ω

)

G̃r
↓↑(k, ω) = 0,

(C.2b)

where the retarded Green function is assumed to be in-
dependent of R (spatially homogeneous) and T (station-
ary); the collision term of (C.1) and (C.2) is set to be zero
first and considered later. The retarded Green function
can be obtained in the τ domain. Applying the transform
Ĝr(k, τ) ≡ ∫ ∞

−∞ dω exp(−iωτ)G̃r(k, ω), note that this is
under neither the scalar nor the vector potential gauge,
(C.2a) and (C.2b) become

(

i�∂τ − ek − q2cE
2

8m∗ τ
2

)

Ĝr
↑↑(k, τ)

− Re Δ12Ĝ
r
↓↑(k, τ) = δ(τ), (C.3a)

−ReΔ21Ĝ
r
↑↑(k, τ)+

(

i�∂τ − ek − q2cE
2

8m∗ τ
2

)

Ĝr
↓↑(k, τ) = 0,

(C.3b)
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where the two retarded Green functions can be found out
by using an iterative method. Set Ĝr

↓↑(k, τ) = 0 in (C.3a),
then

Ĝr
↑↑(k, τ) = − i

�
θ(τ) exp

[

−i
(
ek
�
τ +

q2cE
2

24m∗�
τ3

)]

,

where θ(τ) is a step function. Hence, G̃r
↑↑(k, ω) ≈ 1

�ω−ek
−

q2
c �

2E2

4m∗(�ω−ek)4
, where the first order Taylor expansion for the

exponential function was made. Considering the equilib-
rium self energy σr

ss as the collision term in (C.1a) then
yields

G̃r
↑↑(k, ω) ≈ 1

�ω − ek − Re σr
↑↑ − iIm σr

↑↑

− q2c �
2E2

4m∗
(

�ω − ek − Re σr
↑↑ − iIm σr

↑↑
)4 .

(C.4a)

Inputting Ĝr
↑↑(k, τ) into (C.3b) can find out Ĝr

↓↑(k, τ)

equal to −ReΔ21
�2 τθ(τ) exp

[
−i

(
ek
�
τ + q2

cE2

24m∗�
τ3

)]
, Chang-

ing it to the frequency domain then yields

G̃r
↓↑(k, ω) ≈ − q2c�

2Re Δ21E
2

m∗
(

�ω − ek − Re σr
↑↑ − iIm σr

↑↑
)5 ,

(C.4b)
where the equilibrium spin-flip term is set zero.

Starting from (B2b) + (B2b)’ and (B2d) + (B2d)’,
G̃r

↑↓(k, ω) and G̃r
↓↓(k, ω) can be found out with using the

same iterative method.

G̃r
↓↓(k, ω) ≈ 1

�ω − ek − Re σr
↓↓ − iIm σr

↓↓

− q2c�
2E2

4m∗
(
�ω − ek − Re σr

↓↓ − iIm σr
↓↓

)4 ,

(C.4a)’

G̃r
↑↓(k, ω) ≈ − q2c �

2E2Re Δ12

m∗
(

�ω − ek − Re σr
↓↓ − iIm σr

↓↓
)5 .

(C.4b)’

When considering the spatially inhomogeneous case,
(C.2a) and (C.2b) becomes

(

�ω − ek +
q2cE

2

8m∗ ∂
2
ω

)

G̃r
↑↑(k, ω,R‖) +

�
2

8m∗

× ∂2
R‖G̃

r
↑↑(k, ω,R‖) − Re Δ12G̃

r
↓↑(k, ω,R‖) = 1 (C.5a)

− Re Δ21G̃
r
↑↑(k, ω,R‖) +

(

�ω − ek +
q2cE

2

8m∗ ∂
2
ω

)

× G̃r
↓↑(k, ω,R‖) +

�
2

8m∗∂
2
R‖G̃

r
↓↑(k, ω,R‖) = 0 (C.5b)

With the Neumann boundary condition, the Green func-
tion can be written as

G̃r(k, ω,R‖) =
1√
LxLz

∑

K‖

G̃r(k, ω,K‖)

× exp[iKx(x − Lx/2)] exp[iKz(z − Lz/2)], (C.6)

where Kx(z) = nx(z)π/Lx(z) and nx(z) is an integer. The
coordinate refers to Figure 1.

Taking (C.6) into (C.5a) and (C.5b), and changing
them to the τ domain yields

(

i�∂τ − ek − 1
4
eK‖ − q2cE

2τ2

8m∗

)

Ĝr
↑↑(k, τ,K‖)

− Re Δ12Ĝ
r
↓↑(k, τ,K‖) = −ηδ(τ), (C.7a)

−Re Δ21Ĝ
r
↑↑(k, τ,K‖)+

(

i�∂τ − ek − 1
4
eK‖ −

q2cE
2τ2

8m∗

)

× Ĝr
↓↑(k, τ,K‖) = 0, (C.7b)

where η = [1 − cos(nxπ)][1 − cos(nzπ)]/(
√
LxLzKxKz).

(C.7a) and (C.7b) can then be solved with using the
same iterative method as that in the spatially homoge-
neous case. Starting from (B2b) + (B2b)’ and (B2d) +
(B2d)’, G̃r

↑↓(k, ω,K‖) and G̃r
↓↓(k, ω,K‖) can also be found

out. As a result, the K‖-dependent retarded Green func-
tion can be expressed as

G̃r
ss(k, ω,K‖) ≈ −η

�ω − ek − eK‖/2 − Re σr
ss − iIm σr

ss

+
ηq2c �

2E2

4m∗(�ω − ek − eK‖/2 − Re σr
ss − iIm σr

ss)4
, (C.8a)

G̃r
ss′(k, ω,K‖) ≈

ηq2c �
2E2

m∗(�ω − ek − eK‖/2 − Re σr
s′s′ − iIm σr

s′s′)5

×
{

Re Δ21, s
′ =↑

Re Δ12, s
′ =↓ . (C.8b)

Appendix D: The 2nd KBE for the SHE
with an algorithm for seeking solutions

Applying Taylor expansion to the electric field in equa-
tion (5) and approximating G̃〈(k, ω) as g̃〈(k, ω) +
EG̃〈(1)(k, ω) + E2G̃〈(2)(k, ω), the second order KBE
for SHE based on the perturbation method can be
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expressed as

qcε̂ ·
(

∇k +
�k
m∗ ∂ω

)

G̃〈(1)
ss (k, ω) − i

( qc
2�

)2

× ε̂·
(
∂2
kg̃

〈
ss∂

2
ωσ̃ss+∂2

ωg̃
〈
ss∂

2
kσ̃ss +∂2

ωσ̃
〈
ss∂

2
kg̃ss+∂2

kσ̃
〈
ss∂

2
ω g̃ss

)

− G̃
〈(2)
s′s (k, ω) ·

{
2Im Δ12, s

′ =↓
2Im Δ21, s

′ =↑ = −[γ̃ssG̃
〈(2)
ss (k, ω)

− ãssΣ̃
〈(2)
ss (k, ω)] − g̃〈ssΓ̃

(2)
ss(e−ph), (D.1a)

qcε̂ ·
(

∇k +
�k
m∗ ∂ω

)

G̃
〈(1)
ss′ (k, ω) − 2G̃〈(2)

s′s′ (k, ω)

×
{

Im Δ12, s
′ =↓

Im Δ21, s
′ =↑ = −

[
γ̃ssG̃

〈(2)
ss′ (k, ω) − σ̃〈

ssÃ
(2)
ss′(k, ω)

+g̃〈s′s′ Γ̃
(2)
ss′ (k, ω) − ãs′s′Σ̃

〈(2)
ss′ (k, ω)

]
, (D.1b)

where g̃ss(k, ω) ≡ 1
2 [g̃r

ss(k, ω) + g̃a
ss(k, ω)]. The sub-

script in g̃
〈
ssΓ̃

(2)
ss(e−ph) denotes that the term only exists

in the case of an e-ph interaction due to the Langreth
theorem [34,35]. Ã(2)

ss(′)(k, ω) ≡ i[G̃r(2)

ss(′)k, ω)− G̃
a(2)

ss(′)(k, ω)]

and Γ̃
(2)

ss(′)(k, ω) ≡ i[Σ̃r(2)

ss(′)(k, ω) − Σ̃
a(2)

ss(′)(k, ω)] can be de-
rived using retarded Green functions in equation (6b).

The KBE for the SHE can be solved by using an it-
erative algorithm shown below, where the sufficiently ac-
curate first-order solutions are iteratively found and then
input into the second-order equation to find solutions it-
eratively until accuracy is acceptable.

Appendix E: Derivation for collision term
in spatially-dependent KBE

For clarity, we use a simplified notation first. The col-
lision term C(r1, r1′ , t1, t1′) =

∫
dr2dt2A(r1, r2, t1, t2)×

B(r2, r1′ , t2, t1′) after the Wigner transformation becomes

C(r, τ,R, T )=
∫

dr2dt2A

(

r1−r2, t1−t2, r1+r2

2
,
t1+t2

2

)

×B

(

r2 − r1′ , t2 − t1′ ,
r2 + r1′

2
,
t2 + t1′

2

)

, (E.1)

where reminding that r = r1 − r1′ , τ = t1 − t1′ , R =
(r1 + r1′)/2 and T = (t1 + t1′)/2.

With the spatial inverse Fourier transform under the
vector potential gauge, i.e.,

f(r, τ,R, T ) =
∫

dk
(2π)3

exp
[

i

(

k − qcET
�

)

· r
]

× F̂ (k, τ,R, T ),

Initial solutions within delta 
interaction approximation 

Find )1(
ssG~ <  from (7b) 

for e-imp or e-ph interaction

Find )1(
ss'G~ <  from (7a) 

for e-imp or e-ph interaction

If 2nd order 
solution accuracy  

enough ? 

Find )2(
ss'G~ <  from (D1a) 

for e-imp or e-ph interaction 

Find )2(
ssG~ <  from (D1b) 

for e-imp or e-ph interaction 

If 1st order 
solution accuracy  

enough ? 

Finished

Yes 

Yes 

No

No

(E.1) becomes

C(r, τ,R, T ) =
∫

dr2dt2

∫
dk1

(2π)3
dk1′

(2π)3

× exp
{

i

[

k1 − qcE
2�

(t1 + t2)
]

(r1 − r2)
}

× exp
{

i

[

k1′ − qcE
2�

(t2 + t1′)
]

(r2 − r1′)
}

×A

(

k1,
r1 + r2

2
,
t1 + t2

2

)

×B

(

k1′ ,
r2 + r1′

2
,
t2 + t1′

2

)

, (E.2)

where the difference time in A and B functions is not
marked for simplicity.
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Substituting the Fourier expansion, i.e.,

F (k, τ,R‖, T ) =
1√
LxLz

×
∑

K‖

F̂ (k, τ,K‖, T ) exp[iK‖ · (R‖ − L‖/2)],

into (E.2) yields

C(r, τ,R‖, T ) =
1

LxLz

∑

K‖1

∑

K‖2

exp
[

iK‖1 ·
(

R‖ −
L‖
2

)]

× exp
[

iK‖2 ·
(

R‖ − r
2
− L‖

2

)]∫

dt2

∫
dk1

(2π)3

× exp
{

i

[

k1 − qcE
2�

(t1 + t2)
]

· r
}

A
(
k1,K‖1

)

×B

[

k1 − qcEτ
2�

− 1
2
(K‖1 + K‖2),K‖2

]

, (E.3)

where the average time in A andB functions is not marked
for simplicity.

(E.3) after the Fourier transform under the vector
gauge, i.e.,

F (k, ω,R, T ) =
∫

dτdr exp [iωτ − i

(

k− qcET
�

)

· r
]

f(r, τ,R, T ),

becomes

C(k, ω,R‖, T ) =
1

LxLz

∑

K‖

∑

K′
‖

exp[iK‖ · (R‖ − L‖/2)]

×
∫

dτdτ ′ exp(iωτ)A
(
k′

1, τ1,K‖1, T1

)
B

(
k′

2, τ2,K‖2, T2

)
,

(E.4)

where k′
1,2 = k1,2 ± 1

2K‖2,1, k1,2 = k + q
2�

E(τ ′ ± τ
2 ),

K‖1,2 = 1
2

(
K‖ ± K′

‖
)
, τ ′ = t2 − T , T1,2 ≡ T ± τ2,1, and

τ1,2 ≡ τ
2 ∓ τ ′.

Considering the spin-dependent KBE, the collision
term can be written as

CTss(′)(k, ω,R‖, T )=
1

LxLz

∑

K‖

∑

K′
‖

exp[iK‖ · (R‖−L‖/2)]

×
∫

dτdτ ′ exp(iωτ)
∑

s′′=↑,↓
P̂ss′′

(
k′

1,2, τ1,2,K‖1,2, T1,2

)

× Q̂s′′s(′)
(
k′

1,2, τ1,2,K‖1,2, T1,2

)
, (E.5)

where

P̂ss′′ (k1,2, τ1,2,K‖1,2, T1,2)Q̂s′′s(k1,2, τ1,2,K‖1,2, T1,2) ≡
[Σ̂r

ss′′(k1, τ1,K‖1, T1)Ĝ
〈
s′′s(k2, τ2,K‖2, T2)

+ Σ̂
〈
ss′′(k1, τ1,K‖1, T1)Ĝa

s′′s(k2, τ2,K‖2, T2)

− Ĝr
s′′s(k1, τ1,K‖1, T1)Σ̂

〈
ss′′(k2, τ2,K‖2, T2)

− Ĝ
〈
s′′s(k1, τ1,K‖1, T1)Σ̂a

ss′′ (k2, τ2,K‖2, T2)].
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