
CMOS voltage reference based on threshold voltage and thermal
voltage

Tien-Yu Lo Æ Chung-Chih Hung Æ Mohammed Ismail

Received: 19 April 2007 / Revised: 26 October 2007 / Accepted: 22 May 2009 / Published online: 11 June 2009

� Springer Science+Business Media, LLC 2009

Abstract A fully CMOS based voltage reference circuit is

presented in this paper. The voltage reference circuit uses

the difference between gate-to-source voltages of two

MOSFETs operating in the weak-inversion region to gen-

erate the voltage with positive temperature coefficient. The

reference voltage can be obtained by combining this voltage

difference and the extracted threshold voltage of a saturated

MOSFET which has a negative temperature coefficient.

This circuit, implemented in a standard 0.35-lm CMOS

process, provides a nominal reference voltage of 1.361 V at

2-V supply voltage. Experimental results show that the

temperature coefficient is 36.7 ppm/�C in the range from -

20 to 100�C. It occupies 0.039 mm2 of active area and

dissipates 82 lW at room temperature. With a 0.5-lF load

capacitor, the measured noise density at 100 Hz and

100 kHz is 3.6 and 25 nV=
ffiffiffiffiffiffi

Hz
p

; respectively.

Keywords Voltage reference � Threshold voltage �
Weak-inversion

1 Introduction

The high-precision voltage reference circuit is one of most

important components in mixed-mode applications. A stable

reference circuit provides a reliable reference voltage, and low

supply voltage makes the integration with low voltage digital

circuits possible. Such reference circuits should exhibit little

dependence on supply voltage, process parameters, and tem-

perature. Many previous researches used BJT devices to

implement reference circuits [1–4]. However, the BJT devices

implemented in standard CMOS process occupy large chip

area. Moreover, some of the reported solutions using non-

standard CMOS processes require higher cost owing to extra

process steps [5–9]. Thus, a novel voltage reference circuit

that occupies small area in standard CMOS process would

become very attractive. This paper discusses a voltage refer-

ence circuit by using MOSFETs. One part of the proposed

circuit works in the weak-inversion region to provide the

positive temperature coefficient current. The other part of the

circuit, which works in the strong inversion region, is used to

provide the negative temperature coefficient by extracting the

threshold voltage. Thus, the positive and negative temperature

coefficients would be summed to achieve a temperature

independent reference parameter. The concept of the pro-

posed voltage reference circuit will be illustrated and dis-

cussed in Sect. 2. Experimental results are presented in Sect. 3.

Finally, Sect. 4 concludes the paper.

2 Proposed voltage reference circuit

2.1 Vth versus temperature for MOS transistors

in the saturation region

The concept of our circuit starts from the fact that the

threshold voltage varies with temperature. According to the
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literatures [10–12], the magnitude of the threshold voltage

Vth increases proportionally to the decrease of temperature.

Therefore, we can model the relationship of the threshold

voltage versus temperature as

VthðTÞj j ¼ Vth T0ð Þj j � bvth T � T0ð Þ ð1Þ

where T0 is the reference temperature and bvth is a positive

constant, i.e., the absolute temperature coefficient of the

threshold voltage.

Figure 1(a) shows the negative temperature coefficient

circuit, which extracts the threshold voltage of the MOS-

FET working in the saturation region. In the circuit, the

transistor sizes of PMOS M1, M6, and M7 are the same.

The transistor sizes of PMOS M4 and M5 are also the

same, and their aspect ratio is set four times larger than that

of M1, M6, and M7. The transistor sizes of NMOS tran-

sistors M2 and M3 are also equal to each other. M1, M2,

and R1 are used as the bias circuit to mirror the same drain

current to M3, M4, M5, M6 and M7. The bulk and source

terminals of transistors M4 and M6 are connected together

to eliminate the body effect. From the square-law behavior

of saturated MOSFETs,

VSG;M4 ¼ VSG;M5 ð2Þ

In addition, when we neglect channel length modulation in

a first approximation, we have:

VSG;M6 ¼ 2VSG;M4 � jVth;pj ð3Þ

where |Vth,p| is the threshold voltage of the PMOS

transistor. Thus, we can obtain the output voltage Voutp as

Voutp ¼ VDD � VSG;M5 � VSG;M4 þ VSG;M6 ð4Þ

when we substitute (2) and (3) in (4), we obtain

Voutp ¼ VDD � Vth;p

�

�

�

� ð5Þ
Then, a unity gain buffer cascaded to the output node

(source of M6) is used to provide the current with negative

temperature coefficient. Thus, the output current of the

circuit can be expressed as

ID8 ¼
Vth;p

�

�

�

�

R2

ð6Þ

In practice, due to the temperature coefficient of R2, the

variation of ID8 deviates from the ideal equation. The

temperature coefficient caused by resistors would be min-

imized and discussed in Sect. 2 D. Besides, channel length

modulation would be an important issue and it would make

ID8 a function of supply voltage, thus degrading PSRR

performance of the circuit. Therefore, the device length of

6 lm was used for transistors M1 to M7. The simulated

threshold voltage Vth,p as a function of temperature is

shown in Fig. 2: the temperature coefficient of -1.87 mV/�C

is obtained over the range from -20 to 100�C. We can find

that the threshold voltage would have the same slope with

respect to temperature as shown in (1) from slowest to

fastest corner conditions. However, the variation of the

threshold voltage from slowest to fastest corner condition

Fig. 1 Proposed voltage

reference circuit

Fig. 2 Simulated PMOS threshold voltage versus temperature at

different corner condition
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is about 0.2 V, which indicates a 16% variation for typical

corner condition at room temperature. This variation would

affect the output reference voltage, and the solution to the

variation is addressed in Sect. 2.4.

2.2 PTAT current generation circuit

In order to generate a current with positive temperature

coefficient, the circuit shown in Fig. 1(b) has been

designed. The circuit works in the weak-inversion region.

The drain current in the weak-inversion region can be

expressed by [13]

ID ¼ ID0

W

L

� �

exp
VGS

nVt

� �

where Vt ¼ kT
q

ð7Þ

where the term n is the subthreshold slope factor and ID0 is

a process-dependent parameter [13]. Very large aspect

ratios of MQ1 and MQ2 are chosen to guarantee weak-

inversion operation by ensuring

WQ1

LQ1

[
lpCoxW10

L10ID0

e
�Vth;n

nVt VDD � Vth;p

�

�

�

�

� �2 ð8Þ

where lp is the mobility of charge carriers of PMOS

transistors, Cox is the gate oxide capacitance per unit area,

and W10/L10 is the aspect ratio of M10. An operational

amplifier with PMOS input stage is used owing to the low

input common mode voltage of the PTAT current

generation circuit under weak-inversion operation. The

feedback loop formed in the circuit will force the gate

voltage of MQ1 to be equal to the sum of the gate voltage

of MQ2 and the voltage across resistor R3. Therefore, the

PTAT current can be obtained as

ID9 ¼ ID10 ¼
nVt ln kð Þ

R3

ð9Þ

where k is the ratio between the aspect ratios of MQ1 and

MQ2.

2.3 Startup circuit

The proposed voltage reference circuit requires a startup

circuit. The start up circuit shown in Fig. 1(c) provides the

initial current until the voltage reference circuit reaches a

suitable operating condition [14]. When the supply voltage

is turned on, VS voltage is equal to ground and thus turns

MS1 on. The current provided by MS1 flows through MQ1

to start the operation of the voltage reference circuit and

turn MS4 on, and then the current is mirrored by MS2 to

MS3. The mirrored current will flow through R4 to provide

voltage larger than VDD-|Vth,p| to turn MS1 off. We should

note that a weak startup current in the operational amplifier

would introduce significant systematic offset, and this

condition will affect correct operation of the voltage ref-

erence circuit. In order to solve this problem, we need to

control the operational amplifier with the same reference

current used in the voltage reference circuit. Thus, this

tracking mechanism of currents in the input stage of

operational amplifier and the PTAT current can eliminate

the systematic effect at all of the operation phase. Since the

startup circuit still works under nominal operation and

consumes extra power, so a larger resistance value of RS

will be used. We should set the value of RS as

RS [
VDD � jVth;pj

C � D� IMQ1

ð10Þ

where C is the current mirror ratio between the aspect

ratios of MQ1 and MS4 and D is the current mirror ratio

between the aspect ratios of MS2 to MS3. In addition, RS

was built by N-WELL, which has the property of large

sheet resistance so as to reduce silicon area.

2.4 Circuit implementation

The complete schematic of the proposed voltage reference

circuit is shown in Fig. 1, and the schematic of the OPAMPs

is shown in Fig. 3. Currents proportional to positive and

negative temperature coefficients are combined with current

mirrors to obtain a temperature-insensitive voltage. From

the circuit, the voltage reference is given by

Vref ¼
Vth;p

�

�

�

�

R2

þ B
nVt ln kð Þ

R3

� �� �

Rout ð11Þ

where B is the current mirror ratio between the aspect ratios

of M9 to M11. The reference voltage can be arbitrarily set

to the desired value by choosing the value of Rout. The

resistors R2, R3, Rout were fabricated by the same material,

the N? poly resistor, and thus the temperature coefficient

caused by R2 and R3 could be minimized by dividing the

temperature coefficient of Rout. Long channel devices are

used for current mirrors to minimize channel length

modulation. The temperature dependence of the voltage

reference can be obtained by differentiating (11) with

respect to temperature. Therefore, the proposed voltage

reference circuit works at zero temperature coefficient

operation under a first order approximation. The variation

of threshold voltage under different corner conditions

should be compensated. Since the output voltage is

produced by combining the currents with positive and

negative temperature coefficients, a simple trimming

circuit composed by current mirror arrays can be used to

solve this problem. Therefore, the number of the current

mirrors can be designed by taking the 0.2 V voltage shift

into consideration. The minimum supply voltage of the
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circuit would be limited by the threshold voltage extraction

circuit, which is based on the saturated MOS operation.

The largest threshold voltage would be obtained under the

lowest temperature, and the minimum supply voltage could

be expressed as

VDD;min ¼ 2Vth;p þ 3VDS;Sat ð12Þ
Thus, the supply voltage of the proposed voltage refer-

ence circuit can be down to 1.5 V with the considered

0.35-lm CMOS technology. Moreover, a low-threshold-

voltage process can be used to achieve a lower power

supply voltage.

3 Experimental results

The proposed voltage reference circuit has been imple-

mented in TSMC 0.35-lm CMOS technology. The tran-

sistor aspect ratios and resistor values are reported in

Table 1. The chip micrograph, which occupies an active

area of 0.039 mm2, is shown in Fig. 4. Careful layout is

required to provide well matched circuits. Figure 5 shows

Fig. 3 The schematic of the

OPAMPs

Table 1 Voltage reference component values

Component Value

MQ1 5/0.35

MQ2 250/0.35

MS1 1/1

MS2 1/0.35

MS3 50/0.35

MS4 5/0.35

M1 12/6

M2 12/6

M3 12/6

M4 48/6

M5 48/6

M6 12/6

M7 12/6

M8 25/4

M9 20/4

M10 20/4

M11 200/4

R1 350k

R2 150k

R3 114k

Rs 133k

Rout 75k

Fig. 4 Die microphotograph
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the measured output voltage of the proposed voltage ref-

erence circuit as a function of temperature at 2 V supply

voltage. In the figure, the measured mean value of the

reference voltage is 1.361 V and the measured temperature

coefficient is 36.7 ppm/�C in the range from -20 to 100�C.

The current consumption of the circuit is 41 lA. The

measured noise spectrum when connecting a 0.5-lF load

capacitor is shown in Fig. 6. The measured noise density at

100 Hz and 100 kHz is 3.6 lV/HHz and 25 nV/HHz,

respectively. The noise produced in the voltage reference

circuit is composed by two OPAMPs, the threshold voltage

circuit, and the thermal voltage circuit. The complicated

circuit introduces a good temperature effect, but suffers the

problem of higher noise. As loading a capacitor at the

output node, the output noise features a low-pass fashion.

Then, the noise corner frequency would be dependent on

the output impedance and the loading capacitance. The

noise can be reduced by larger loading capacitance with the

drawback of longer startup time. The measured perfor-

mances of the voltage reference circuit, which are com-

posed only by MOSFETs and resistors, are summarized in

Table 2.

4 Conclusions

A voltage reference circuit based on CMOS technology has

been presented. The threshold voltage of saturated MOS-

FET devices, which exhibits a negative temperature coef-

ficient, can be obtained from the threshold voltage

extraction circuit. On the other hand, the voltage difference

between two gate-to-source voltages of MOSFET devices,

which exhibits a positive temperature coefficient in weak-

inversion, can be obtained from the PTAT current gener-

ation circuit. Currents having opposite temperature coeffi-

cients are provided and combined to obtain a voltage

reference independent of temperature variation. This is

done at the minimum cost of area and power consumption.

The proposed voltage reference circuit can be easily

Fig. 5 Measured reference voltage versus temperature

Fig. 6 Measured output noise spectral density of the proposed

voltage reference circuit with 0.5 lF loading capacitance

Table 2 Performance summary of the fabricated prototype

Parameter [11] [12] [15] [16] [17] [18] This work

Technology (lm CMOS) 0.6 1.2 0.5 2 1.5 0.18 0.35

Supply voltage 1.4 V 1.2 V 2.8 V 5 V 3.3 V 0.85 2 V

Supply current (lA) 9.6 3.6 8 36 89 2.8 41

Reference voltage (V) 0.30931 0.2953 2.5 1.081 0.984 0.221 1.361

Temperature coefficient (ppm/�C) 36.9 119 360 92 57 271 36.7

PSRR -47 dB

@ 100 Hz

-40 dB

@ 5 kHz

– -34.5 dB

@ 1 kHz

-43.2 dB

@ 1 kHz

– -43.5 dB

@ 10 kHz

Active area (mm2) 0.055 0.23 0.25 – 0.609 0.024 0.039

Analog Integr Circ Sig Process (2010) 62:9–15 13

123



designed in CMOS technology and is suitable for many

applications. The voltage reference circuit was fabricated

in TSMC 0.35-lm CMOS technology. Experimental

results report an output voltage of 1.361 V at 2 V supply

voltage. A temperature coefficient of 36.7 ppm/�C is

achieved over the range of -20–100�C, with a power

consumption of 82 lW at room temperature.
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