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While producing the desirable outputs (transport services), a bus transit
occasionally also produces accidents, which may lead to fatalities, serious
injuries, slight injuries and/or property losses. As such, without explicitly taking
into account the negative effects of accidents on the outputs when measuring
efficiency for bus transit, the interpretation of results could be misleading. To be
more rational, this article proposes a stochastic production frontier model that
incorporates the effects of accidents into the measurement. A case study with 10
Taipei bus transit carriers over 2001–2006 is carried out. The results show that the
ranking of technical efficiency with consideration of accidents has significantly
differed from that without accounting for accidents. The managerial implications
suggest that bus carriers can level up their productive efficiency not only by means
of decreasing the inputs and/or increasing the desirable outputs, but also by way
of ameliorating their safety records.

Keywords: accidents; bus transit efficiency; stochastic frontier analysis

1. Introduction

While producing the desirable outputs, namely transport services, a bus carrier in practice
may also accompany with undesirable outputs – traffic accidents, which could cause a
substantial loss of properties or lives. As the accidents are never freely disposable, without
explicitly taking into account the negative effects of accidents on the outputs when
measuring efficiency for bus transit, the interpretation of results could be misleading.
In case that an accident is involved, the driver must stop the bus immediately to look over
the likely damages, injuries, or fatalities and to wait for the police to complete the in situ
accident report. Whether or not the accident eventually causes any significant
compensation, the carrier is deemed to lose its production efficiency to some extent.

Previous literature dealing with undesirable outputs can be classified into two
categories: parametric and non-parametric approaches. In treating the undesirable
outputs, the undesirable output variable is normally incorporated into the production
model either as another detrimental input or as a weak disposable bad output. Most
relevant works were found in the agricultural and environmental fields. For instance,
Pittman (1983) was perhaps the pioneer who treated desirable outputs and undesirable
outputs (pollution) in measuring the efficiency of the paper manufacturing industry.
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Henceforward, some researchers have recognised that it is necessary to incorporate bad

outputs into the technical and economic efficiency measurements. Färe et al. (1989)

implemented the non-parametric efficiency analysis using the same dataset studied by

Pittman (1983). Reinhard et al. (2000) treated undesirable outputs as environmentally

detrimental inputs in a parametric stochastic frontier analysis (SFA) model to estimate

comprehensive environmental efficiency for the Dutch dairy sector. However, little has

been found in the transport field. Until recently, Weber and Weber (2004) started to

measure the productivity and efficiency in the US trucking and warehousing industry with

consideration of traffic fatalities. Yu and Fan (2006) employed the non-parametric method
to measure the performance of Taiwan bus transits with consideration of traffic accidents.

The authors explicitly assumed that accidents have negative effects on the bus transit

efficiency in such a way that accidents can reduce the passenger-kilometres. One may argue

that since accidents have been reflected in the reduction direction of transport services,

penalising accidents would probably double-count the effects of such undesirable outputs

on the overall efficiency measurement.
To rectify the deficiency of the early works that either ignored or double-counted the

effects of accidents, this article proposes a stochastic production frontier model that

incorporates the inefficiency effects of accidents into the bus transit efficiency

measurement. The case of Taipei transit over 2001–2006 will be examined to gain

deeper insight into how technical efficiency is affected by the accidents.
The remainder of this article is organised as follows: Section 2 briefly reviews some

important studies on the efficiency measurement for bus transit with a parametric
approach. Section 3 describes the proposed stochastic production frontier model that

incorporates the accidents into relative efficiency measurement. Section 4 presents the

Taipei bus transit case study and discusses the managerial implications. The concluding

remarks and possible avenues for future study are addressed in the last section.

2. Literature review

Stochastic frontier analysis method, first proposed by Aigner et al. (1977) and by Meeusen

and van den Broeck (1977), is perhaps the most commonly-used parametric approach to

measuring the relative efficiency of different agencies within an industry. Since the SFA

method accounts for noise and can easily conduct conventional tests of hypotheses, many

researchers have employed SFA to estimate the technical efficiency or inefficiency of bus

transits over the past decade. For instance, Sakano and Obeng (1995) examined the

inefficiency of local transit firms by estimating a stochastic production function and two

relative cost equations. From their results, technical and allocative inefficiencies are

evaluated and related to input levels, outputs, and subsidies. Sakano et al. (1997) adopted

SFA to investigate the causality between subsidies and inefficiency for US urban transit

systems. Choosing vehicle-miles as the output and labour, total gallons of fuel, fleet size as

the inputs, they concluded that subsidies have led to excess use of labour relative to capital

and excess use of fuel relative to capital and labour. Jørgensen et al. (1997) estimated a

stochastic cost frontier function for 170 Norwegian subsidised bus companies with two
alternative assumptions regarding the distribution of the inefficiency. They found that

inefficiency of the companies, which negotiated with the authorities over the subsidy

amounts was slightly higher than that of the companies which faced a subsidy policy based
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on cost norms. de Jong and Cheung (1999) specified a stochastic Cobb–Douglas
production frontier to estimate the technical efficiency of 19 urban and regional bus
transits over 1994–1995 in the Netherlands. Number of staff, number of total seats and

total energy cost were selected as inputs, and passenger-kilometre was chosen as output in
their measurement model. Their results indicated that regional firms are in general more
efficient than urban firms. Loizides and Giahalis (1995) utilised annual time series data
and specified a Cobb–Douglas production and cost functional forms to estimate the
technical efficiency for one regional bus company over 1970–1989 in Greece. They selected
number of staff, capital, and other services as three input factors, and passenger-kilometres

as the output, and found that average total factor productivity declined at 2% over the
study period.

More recently, Dalen and Gómez-Lobo (2003) adopted the stochastic cost frontier
model to investigate how different types of regulatory contracts affect Norwegian bus
companies’ performance. They found that the adoption of a more high-
powered scheme based on a yardstick type of regulation has significantly reduced the
operating costs. Barros (2005) also analysed the technical efficiency of the Portuguese bus

transport companies by estimating a Cobb–Douglas cost frontier model. The author
concluded that inputs and outputs play a major role on efficiency measurement and found
that efficiency scores are time varying. Note that almost all of the relevant works have
selected number of employees, number of vehicles, total amount of fuel consumed as
inputs and vehicle-kilometres or passenger-kilometres as outputs when measuring the bus
transit efficiency, but none have accounted for the effects of accidents on the relative

efficiency measurement.

3. Methodologies

3.1. Production frontier model

In the production economics context, the production technology can be represented by

using either production function or cost function. The major disadvantage for specifying
a cost function is that the factor prices must be known for the estimation purposes.
However, acquiring the input factor prices data is usually difficult due to confidential in
practice, particularly across the companies. Hence, this study represents the technology by
production function.

Consider a firm that produces a single output, y, by using N inputs x¼ (x1, x2, . . . , xN).
The production function, y¼ f(x), satisfies the following properties:

P1. Non-negativity: The value of f(x) is a non-negative, real number.
P2. No free lunch condition: The positive value of output cannot be produced without

utilisation of input.
P3. Monotonicity: An additional unit of input will not decrease output; that is, if x1 ^ x0,

then f(x1)^ f(x0). Monotonicity implies all marginal products are non-negative if the
production function is continuously differentiable.

P4. Concave in x: Concavity implies all marginal products are non-increasing if the
production function is continuously differentiable.

Traditionally, the economists estimated an average production function by using
econometrics techniques such as ordinary least squares (OLS). In the following case
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study, three input factors are selected (N¼ 3), thus we specify a log-linear Cobb–Douglas
production function as (M1).

ln yi ¼ �0 þ �1 ln x1i þ �2 ln x2i þ �3 ln x3i þ "i ðM1Þ

where �’s are unknown parameters to be estimated and "i represents the residual term,
which accounts for unexplained terms and all measured errors. The estimation of OLS
itself does not provide the measurement of efficiency; however, the residual of OLS can be
used to test for the presence of technical inefficiency in the data. Assume that "i can be
decomposed into two terms: ui and vi, i.e. "i ¼ vi � ui and that ui and vi are distributed
independently. If ui¼ 0, then the error term "i¼ vi is symmetric, suggesting that the dataset
does not support any technical inefficiency. If ui 4 0, then "i ¼ vi � ui is negatively skewed;
this is the evidence of presence of technical inefficiency in the data.

In his note on Farrell’s (1957) work, Winsten (1957) suggested that the efficient
production function in effect would be parallel to the average production function; thus, it
can be estimated by fitting a line to the averages and then shifting it parallel to itself. This
estimation technique is termed as corrected ordinary least squares (COLS). Specifically,
the production frontier model could be estimated with two steps. In the first step, one uses
OLS to obtain the estimates of the slope and intercept parameters as well as the residuals.
In the second step, the intercept is shifted up (i.e. corrected) to ensure that the estimated
frontier bounds the data from above. This can be easily done by subtracting the maximum
residual from all residuals so that one of the transformed residuals is zero and all others
are negative.

Figure 1 demonstrates the concept of COLS with one-input one-output production
technology. Assume that there are some observations, each produces output y with input
x. By using OLS technique one can estimate an average practice function and all residuals.
The average estimates are then shifted parallel to its maximum positive residual (point A)

y 

x

OLS

COLS

A 

Figure 1. The concept of COLS and OLS estimations.
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so that one of the transformed residuals is zero, and all others become negative.

The technical inefficiency for each DMU can thus be obtained by taking exponent on its

transformed residual.

3.2. Stochastic production frontier model

The major weakness of OLS production models is that they do not account for

inefficiency. Although one can adopt COLS to estimate technical efficiency as described

above, COLS is in effect deterministic, which attributes all deviations from the best

practice as inefficiency without considering the statistical noise. To rectify, Aigner et al.

(1977) proposed a composite error model to account for both technical efficiency,

TEi¼ exp (�ui), and statistical noise, exp (vi). The model can be defined as

yi ¼ fðxi; �Þ � expðviÞ � expð�uiÞ ¼ fðxi; �Þ � expðviÞ � TEi

or in log-form,

lnðyiÞ ¼ ln½fðxi; �Þ� þ vi � ui

Following (M1), we thus re-specify the stochastic Cobb–Douglas production frontier

model as (M2).

ln yi ¼ �0 þ �1 ln x1i þ �2 ln x2i þ �3 ln x3i þ vi � ui ðM2Þ

where yi and x1, x2, x3 have the same meanings as those in (M1), vi is a symmetric

random error term to account for the measurement noise and other factors out of

control. Aigner et al. (1977) assumed that vi follows a normal distribution with zero mean

and constant variance; ui is a non-negative independently and identically distributed

(i.i.d.) random variable used to account for technical inefficiency. The technical efficiency

thus becomes

TEi ¼ expð�uiÞ ¼
yi

fðxi; �Þ � expðviÞ
, i ¼ 1, 2, . . . ,N

To estimate ui, one has to impose a distribution form. Half normal distribution is the most

generally used in literature since ui is a non-negative random variable. Thus, we adopt a

half normal distribution for ui and assume that

(i) vi� i.i.d. N (0, �2v )
(ii) ui� i.i.d. Nþ(0, �2u)
(iii) both vi and ui are independently and identically distributed

Then, p.d.f. of vi and ui can be expressed as

fðvÞ ¼
1

�v
ffiffiffiffiffiffi
2�
p exp �

1

2

v

�v

� �2
" #

fðuÞ ¼
2

�u
ffiffiffiffiffiffi
2�
p exp �

1

2

u

�u

� �2
" #
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Because vi is independent of ui, the joint p.d.f. of ui and vi can be expressed as

fðu, vÞ ¼
2

2��u�v
exp �

u2

2�2u
�

v2

2�2v

� �

From "i ¼ vi � ui, one gets

fðu, "Þ ¼
2

2��u�v
exp �

u2

2�2u
�
ð"þ uÞ2

2�2v

� �

Integrating with respect to u, one obtains

fð"Þ ¼

Z 1
0

fðu, "Þdu ¼
2

�
ffiffiffiffiffiffi
2�
p exp 1��

"�

�

� �� �
� exp �

"2

2�2

� �

¼
2

�
�
"

�

� �
� �

"�

�

� �

where � ¼ ð�2u þ �
2
v Þ

1=2, � ¼ �u=�v, �ð�Þ and �ð�Þ are standard normal cumulative distribu-

tion and density functions, respectively. Because ui is a non-negative normal distribution,

f (") is asymmetrically distributed with its mean and variance. Once the p.d.f. is derived,

one can estimate the parameters and technical inefficiency of each firm by using the

maximum likelihood method. For more detail, see Kumbhakar and Lovell (2000).

3.3. Stochastic production frontier with inefficiency effect model

One still cannot investigate the determinants of inefficiency via the above stochastic

production frontier model (M2) because it did not include the factors influencing technical

inefficiency. To rectify, Battese and Coelli (1995) proposed the inefficiency effect model,

which allows the estimation of the parameters of the factors affecting the technical

inefficiency of each firm. More specifically, the model permits a simultaneous estimation

of both stochastic production model and inefficiency effect model. We thus formulate a

stochastic production frontier with inefficiency effect model (M3), which combines an

inefficiency effect model with the stochastic production frontier model (M2) as follows:

ln yi ¼ �0 þ �1 ln x1i þ �2 ln x2i þ �3 ln x3i þ vi � ui

ui ¼ �0 þ �1 � z1i þ �2 � z2i þ !i

( )
ðM3Þ

where yi and x1, x2, x3 have the same meanings as in (M1); ui is assumed to be a function of

z1i, and z2i, which are observable explanatory variables used to explain inefficiency (in this

case study, z1 and z2 stand for time trend and accident index, respectively); � is a vector of

unknown parameters to be estimated; !i is the random variable defined by the truncation

of the normal distribution with zero mean and variance (�2) such that the point of

truncation is �zi�. These assumptions are imposed to make sure that ui is a non-negative

truncated normal distribution. As such, the technical efficiency of production can be

obtained by the following equation.

TEi ¼ expð�uiÞ ¼ expð�zi�� !iÞ:

Same as (M2), (M3) can also be estimated by the maximum likelihood method.
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As we mentioned in Section 1, in case that an accident is involved, the driver must stop
the bus immediately. Therefore, one may reasonably hypothesise that accident should
function as an input factor that would cause reduction in outputs; as such, the accident
variable is supposed to be one of the inputs in the production function specification. We
have tried this hypothesis but the estimation results are unreasonable – the positive
coefficient (0.015) implies that higher accident index will lead to higher output, violating the
monotonicity assumption and indicating the problematic specification of production
function. In fact, in the neoclassical production economics, the input factors used to explain
the outputs are, in general, ‘resources to be consumed’ in the production process. It may not
be appropriate to interpret the shortage of outputs by choosing accident as an explanatory
variable. In this study, we attempt to investigate how the technical efficiency is affected by
the bad by-product – accident, we thus specify the model by incorporating accident index
into the inefficiency effect, rather than into the production function specification.

4. Case study

4.1. The data

Currently, 15 bus transit operators, all privately-owned, serve over six million people in the
Taipei metropolitan area. With 287 routes and 3796 buses, these 15 operators provided 256
million vehicle-kilometres, carrying 616 million passenger-trips, but unfortunately, also
involving 7 fatalities and 335 injuries in 2006. Following the previous literature, three
major input factors are considered: capital, labour and fuel. In this article, capital is
measured by the total number of vehicles operated by each firm; labour is measured by
total number of employees including drivers, maintenance and administrative personnel;
fuel is measured by total amount of fuel consumed. For the desirable outputs, we choose
vehicle-kilometre because it is the direct transport service produced and sold to passengers.
As for the undesirable outputs, we choose the number of fatalities, number of serious
injuries, number of slight injuries, and number of accidents without any fatality or injury
(a proxy of property loss) to represent four different types of accidents. These four types of
accidents are further converted to an aggregated accident index via a conversion of
different weights. Such an aggregated index can account for different degrees of accident
severity.

Our panel dataset, drawn from the Annually Statistical Report of Transportation in
Taipei City published by the Department of Transportation, Taipei City Government,
contains 60 DMUs – 10 bus firms over 6 years (2001–2006). As above-mentioned, there are
15 bus firms in Taipei. Unfortunately, due to incomplete and/or incorrect data, we are
restricted to using data from only 10 firms to represent the bus transit industry in Taipei.
These 10 firms in fact took a large share of the entire transit market – over 94% in terms of
vehicle-kilometres or revenues during the study period, which is sufficient large to
represent the entire bus transit market. These 10 bus companies have been adopting similar
diesel vehicles and operating in the same urbanised area, thus their operating environments
can be viewed as homogeneous. Following the previous literature, for simplicity, we
assume that the differences of production technologies adopted between these 10 bus firms
can be neglected.

Fatal, serious and slight casualties were evaluated by Evans and Morrison (1997) with
relative weights of 1, 0.1 and 0.005, respectively. However, the weightings adopted here are
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different because we intended to convert the weightings to more in line with the Taiwan

situations. Based upon the number of claims for different casualties regulated by the

Compulsory Automobile Liability Insurance Act in Taiwan and upon the amount of

actual claims for different causalities reported by Taiwan Insurance Institute, on average,

each fatality claim was 1500 thousand NT dollars, each serious injury claim 750 thousand

NT dollars, each slight injury claim 100 thousand NT dollars and each property loss claim

10 thousand NT dollars (1US dollar is approximately equivalent to 30 NT dollars in 2008).

Therefore, 1500, 750, 100 and 10 are respectively used to convert these four types of

causalities to the aggregated accident index value in our case study.
Table A1 in the Appendix summarises the descriptive statistics of three inputs, one

desirable output and accident index. The desirable output ranges from 8538 to 48,201 with

mean value 22,873 thousand vehicle-kilometres. The aggregated accident index value

ranges from 120 to 11,720 with mean 3367. The number of vehicles ranges from 140 to

1006 vehicles. Table A2 in the Appendix further presents the average inputs, output, and

accident index for the studied bus firms for the years 2001–2006.
Figure 2 displays the average accident index value and output for each firm over the

observed period. One can see that firm A is the operator with the highest average accident

index value (6100), whereas firm H has the least average accident index value (980). As for

the average output, firm A is the largest operator with an average value of 42,462 thousand

vehicle-kilometres, while firm I and J are the two smallest operators with average output

11,098 and 11,711 thousand vehicle-kilometres, respectively.
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Figure 2. Individual firm’s accident index value and output.
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As for the trend of average accident index values, Figure 3 shows that Taipei bus
transit, overall, had a better safety record in the first three years than that in the remaining
three years. The average accident index value was 2471 in 2001, decreased to its lowest of
1760 in 2003, and then sharply increased to 4328 in 2004 and to 5008 in 2006. Figure 3 also
shows the trend of the average output. It exhibited a steady state over the studied period,
ranging from 21,440 thousand vehicle-kilometres in 2001 and slightly increasing to 23,580
thousand vehicle-kilometres in 2006.

4.2. The results

In the following analysis, the econometric computer software SHAZAM, developed by
White (1993), is used to estimate the OLS production model (M1) and FRONTIER 4.1,
developed by Coelli (1996), is used to estimate SFA production model (M2) and SFA
production with inefficient effect model (M3). The technical efficiencies with accounting
for the accidents are compared with those without accounting for the accidents. The
detailed results of efficiencies and rankings are displayed in Table A3 in the Appendix.
Table 1 summarises the estimation results from three models. Table 2 further presents the
descriptive statistics of efficiency results. Based on the results and extended analysis, some
important findings are discussed below.

4.2.1. The estimated parameters and efficiencies of (M1)

We estimate (M1), which does not account for accidents, by OLS technique; the results are
indicated in the first two columns of Table 1. As expected, all parameters are significant at
5% significance level with positive sign, consistent with the monotonicity property of
production function. The R2 is 0.9266 and adjusted R2 is 0.9226, indicating that
representing the production technology of Taipei bus transit with Cobb–Douglas
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Figure 3. The trend of accident index value and output.
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production function is satisfactory. One may argue that specification of other functional
forms, such as translog or quadratic, would be more flexible; however, the principle of
parsimony says that one should choose as simple functional form as possible when
specifying. In practice, one can determine whether the model specification is satisfactory or
not by evaluating the residual analysis, hypothesis tests, goodness-of-fit, or predictive
power. Since our OLS estimation results have rather low standard deviation of residuals
(0.1313) with rather high goodness-of-fit (R2

¼ 0.9266), indicating that the Cobb–Douglas
specification is already satisfactory in this case study.

Once the parameters and residuals in (M1) are estimated by OLS, one can further
calculate the transformed residuals by COLS, as depicted in Figure 1. The efficiency score
for each DMU is then determined by taking exponent on each transformed residual. At
the aggregate level, Table 2 shows that the average efficiency for 10 bus firms over 6 years
is 0.743 with standard deviation 0.087. At the disaggregate level, Table A3 in the Appendix
further shows that I03 (firm I in 2003) is the most efficient DMU, followed by G01 and
G05, while A01 and A02 are the least efficient ones. On average, firm G is the most
efficient firm in our observations. As for the temporal trend, Figure 4 presents the average
efficiency on each year estimated from three models. Note that the average efficiencies of
Taipei bus transit have been improved from 0.719 in 2001 to 0.774 in 2003, dropped to
0.712 in 2004, and then increased to 0.752 and 0.760 in 2005 and 2006, respectively, based
on (M1).

Table 1. Estimation results of three models.

Parameters

(M1) (M2) (M3)

Coefficient t-Ratio Coefficient t-Ratio Coefficient t-Ratio

�0 10.006 16.550* 11.582 42.721* 9.874 47.735*
�1 0.359 3.599* 0.336 4.039* 0.246 4.810*
�2 0.145 2.712* 0.396 11.348* 0.657 17.969*
�3 0.383 4.457* 0.149 2.348* 0.044 1.883*
�0 – – – – �6.794 �2.198*
�1 – – – – �0.265 �1.172
�2 – – – – 0.672 2.365*
�2 0.017 0.049 6.102* 0.432 2.108*
� 0.771 108.990* 0.865 2200.793*

Note: *Indicates significant at 5% significance level.

Table 2. Statistics of technical efficiencies measured by three
models.

Statistics (M1) (M2) (M3)

Max 1.000 0.994 0.996
Min 0.530 0.694 0.734
Mean 0.743 0.869 0.914
SD 0.087 0.080 0.065

Note: SD=Standard deviation.
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4.2.2. The estimated parameters and efficiencies of (M2)

Once (M1) is estimated, the skewness of the residuals can be obtained from the third

sample moment of the OLS residuals. We obtain a negative skewness of the residuals
(�0.553), which provides strong evidence of technical inefficiency in the data, further

justifying the usage of SFA approach. The SFA production frontier model without
considering the inefficient effect of accidents (i.e. (M2)) is estimated by the maximum

likelihood method. The estimated parameters, �’s, are indicated in Table 1. It indicates

that all parameters are significant at 5% significance level. As we expected, all parameters
of inputs are positive, which indicates that an additional unit of input would not decrease

the output.
The technical efficiency for each firm measured from (M2) are detailed in Table A3 in

the Appendix and summarised in Table 2. Once again, firm G is the most efficient

company with average efficiency value 0.988, followed by firm F (0.966), while firm A is

the least efficient one with average efficiency 0.798 (see the Appendix). As for the trend of
the average efficiency measured from (M2) over the 6 years, it is similar to the trend based

on (M1) (Figure 4). Note that the average efficiencies of Taipei bus transit have been
improved from 0.841 in 2001 to 0.884 in 2003, dropped to 0.864 in 2004, and then

increased to 0.880 in 2006, based on (M2).

4.2.3. The estimated parameters and efficiencies of (M3)

We jointly estimate the parameters of production function and its associated inefficiency
effect model (M3) by the maximum likelihood method and the results are presented as
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Figure 4. The trend of average efficiencies measured by three models.
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follows (also see Table 1):

ln y ¼ 9:874þ 0:246 � ln
veh

10

� �
þ 0:657 � ln

fuel

1000

� �

þ 0:044 � ln
labour

10

� �
þ v� u

u ¼ �6:794� 0:265 � yearþ 0:672 � ln
accident index

10

� �
þ !

As shown in Table 1, the signs of the coefficients of the specified production function and
its associated inefficiency effect model are as what we expected. In production function
model, parameters of vehicle, fuel, and staff are all positive and significant at 5%
significance level, implying that an additional unit of input will not decrease the output. In
inefficiency effect model, �1 (year) is negative but not significant; �2 is positive and
significant, implying that the DMU with higher accident index will lead to higher technical
inefficiency, consistent with the underlying hypothesis.

To account for the effects of accidents on efficiency measurement, we estimate the
technical efficiency for each DMU from (M3). The results are detailed in Table A3 in the
Appendix and summarised in Table 2, with the trend displayed in Figure 4. Note that the
average efficiencies of Taipei bus transit have been improved from 0.881 in 2001 to 0.928
in 2006, based on (M3). Since the average accident index values have increased from 2471
in 2001 to 5008 in 2006, the improvement of overall efficiency must be mainly ascribed to
the reduction of employees and vehicles for the entire bus transit. As for the individual
firm’s efficiency, F is the most efficient firm with the efficiency value 0.980, followed by
firm I (0.962), while firm A is still the least efficient one with the efficiency value 0.808,
based on (M3).

4.3. Comparison and discussions

To examine whether the efficiencies measured by different models are significantly
different, the Mann–Whitney (M–W) test is conducted for each pair of models and the
results are reported in Table 3. Since all the calculated Z-values are greater than the critical
value (1.96) at the significance level of 0.05, we reject the null hypothesis that the
efficiencies measured by three models are invariant. Thus, estimating efficiency with

Table 3. Mann–Whitney test between paired models.

Comparison

Paired-models 1 and 2 Paired-models 2 and 3 Paired-models 1 and 3

(M1) (M2) (M2) (M3) (M1) (M3)

Mean rank 39.1 81.9 50.2 70.8 34.5 86.5
UA 3082 3359 2418
Zcalculated 6.73 3.24 8.18
Zcritical 1.96 1.96 1.96
Mean efficiency 0.743 0.896 0.896 0.914 0.743 0.914

Note: UA is given by UA ¼ nAnB þ nAðnA þ 1Þ=2� TA, where nA and nB are number of samples in
group A and B, respectively, and TA stands for sum of ranks for sample A.
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consideration of accident is justified. Since the efficiencies are ranked in an ascent order

(from lowest to highest) in the M–W test, a larger mean rank in Table 3 represents a higher

efficiency. Accordingly, we conclude that the average efficiencies measured by (M3) are
higher than those by (M2), which are higher than those by (M1).

Figure 4 displays the trend of average efficiencies measured by different models. It

shows that the efficiencies measured by (M1) are lower than those measured by (M2) and

(M3) mainly because that (M1) did not account for the random error thus attributed all
the deviations from the frontier (best practice producer) to inefficiency. Similarly, the

average efficiencies measured by (M3) are higher than those measured by (M2) simply

because that (M2) did not take the effects of accidents into account. As for the individual

firm’s average efficiency, Figure 5 also displays that the efficiencies measured by (M1) are
lower than those measured by (M2), which are lower than those measured by (M3), with

an exception of firm G. The reason is probably because the gap of accident index value and

output for firm G is relatively smaller than that for firm F (Figure 2), hence the efficiency

rankings by (M2) and (M3) swapped.
The main objective of this study is to investigate how the efficiency measure is affected

by accident, it is thus of interest to compare the results estimated from (M2) and (M3).

However, because (M2) and (M3) are different models with different production frontiers

constructed, it makes little sense to compare the efficiency measures directly. Nonetheless,

one can still compare their rankings based on the efficiency measures, as presented in
Table A3 in the Appendix. The results show that the ranking of technical efficiency with

consideration of accidents has significantly differed from that without accounting for

accidents. In general, the rankings of those firms with higher accident index have

deteriorated when accounting for accidents. Taking firm A as an example, its rankings
worsen from 29, 25 and 24 (based on (M2)), to 52, 50 and 45 (based on (M3)), in the years
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Figure 5. The individual firm’s average efficiencies measured by three models.
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of 2004–2006, respectively. The reason can be partly ascribed to firm A’s producing

transport services associated with a relatively high accident index of 6060, 11,720 and

11,350, respectively, which are much higher than the average of the whole industry (3367).

In contrast, the rankings of those firms with lower accident index have ameliorated when

taking accident into account. Firm I is a good example to support this finding. Its rankings

have raised from 54, 18, 1, 36, 28 and 33 (based on (M2)) to 51, 4, 1, 14, 6 and 18 (based on

(M3)) in the years of 2001–2006, since its accident indexes are 910, 790, 1870, 1890, 2360

and 2650, respectively, which are relatively lower than the average value. Accordingly, one

potential strategy for improving the technical efficiency of Taipei bus transit is to reduce

the accidents through drivers training and education, especially for those firms with higher

accident index than average.
Our empirical results indicate that, based on (M3), the output elasticity of stochastic

production function associated with fuel consumption (0.657) is much greater than that

associated with the other two inputs (fleet size¼ 0.246; number of employees¼ 0.044),

suggesting that energy consumption is the most sensitive factor affecting the transport

efficiency for Taipei bus transit. Accordingly, one strategy for improving the bus transit

efficiency is to provide more bus exclusive lanes with preemption signals so as to cut down

the bus delays at signalised intersections. Another managerial strategy is to train the

aberrant drivers to operate the buses in a smooth and correct manner (e.g. right gear

positions for various speeds) to save fuel. Of course, introducing fuel-economy vehicles is

also imperative in the era of high oil prices.

5. Conclusions

The issue of efficiency measurement for transport industries has been extensively studied

by transport economists; however, previous studies ignored the effects of accidents on the

efficiency measurement. Consequently, the results could be misleading or at least unfair.

To correct this problem, the present article has incorporated both desirable outputs

(transport services) and undesirable outputs (accidents) into the SFA modelling to

evaluate the relative efficiency of bus transit.
Our empirical results from 10 Taipei bus transit firms over 2001–2006 have revealed

strong evidence of the presence of technical inefficiency in the dataset, based on the OLS

residuals. Moreover, our results have also shown that the technical efficiencies and their

rankings with adjustment of accidents can significantly differ from those without

adjustment of accidents. The policy implication behind this is that bus carriers can

ameliorate their productive efficiency not only via the conventional measures (e.g.

decreasing the inputs or increasing the outputs), but also via improving the safety records.

The increasing trend of aggregated accident index during the latest three years (2004–2006)

suggests that the City Government should place heavier weights on the number of

accidents and on the degree of causalities while performing the periodical service quality

assessment. As such, the bus carriers will be willing to pay more attention to discipline the

drivers’ behaviour.
In this article, the aggregated accident index is converted by different weights,

according to the claims of fatalities, heavy injuries, light injuries and accidents without any

injury (a proxy of property losses). The appropriate weights to more accurately reflect the

degree of causalities deserves further exploration. In addition to accidents, the current bus
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transit production technology using diesel-powered vehicles will inevitably generate other

types of undesirable outputs – noise and air pollution, the so-called ‘externality’ in
economics, which do not affect the firms’ decision but do affect our environment. It is a

challenging issue to incorporate these externalities into the efficiency measurement

modelling to credit the less polluted bus operators who intend to introduce quieter and
cleaner vehicles, powered by natural gas, electricity, or hydrogen fuel cell. Furthermore,

customers’ complaints can also be associated with the bus transit services. A promising
avenue for future research is to factor the passengers’ complaints or other unsatisfactory

qualitative indexes into the efficiency measurement models.
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Appendix

Table A1. Descriptive statistics of inputs, output and accident index for Taipei bus transit.

Year Variable Maximum Minimum Mean SD

2001 (J¼ 10) y(vehicle-km) 41,840,199 8,538,143 21,400,655 10,616,588
x1(vehicle) 1006 140 352 251
x2(fuel) 23,630,293 4,017,669 10,739,484 5,961,803
x3(employee) 2118 230 685 545
z(accidents) 4630 120 2471 1678

2002 (J¼ 10) y(vehicle-km) 39,673,301 11,514,950 22,604,536 9,802,657
x1(vehicle) 982 157 371 238
x2(fuel) 22,356,598 4,895,003 11,048,371 5,569,822
x3(employee) 1766 206 685 444
z(accidents) 4840 340 2326 1616

2003 (J¼ 10) y(vehicle-km) 36,694,493 12,098,675 22,762,890 9,414,669
x1(vehicle) 834 157 363 196
x2(fuel) 19,908,938 5,258,931 10,972,340 5,087,169
x3(employee) 1514 159 643 397
z(accidents) 5150 500 1760 1278

2004 (J¼ 10) y(vehicle-km) 41,955,377 11,325,974 23,429,896 11,141,731
x1(vehicle) 680 171 355 156
x2(fuel) 22,336,369 5,129,174 11,037,572 5,840,182
x3(employee) 1331 357 748 383
z(accidents) 9090 1620 4328 2497

2005 (J¼ 10) y(vehicle-km) 46,407,281 10,991,303 23,419,375 12,122,706
x1(vehicle) 734 176 369 170
x2(fuel) 24,768,264 4,401,698 10,963,173 6,526,267
x3(employee) 1355 264 623 349
z(accidents) 11,720 870 4309 3433

2006 (J¼ 10) y(vehicle-km) 48,201,504 10,911,104 23,580,423 12,618,748
x1(vehicle) 784 177 374 182
x2(fuel) 25,378,696 4,453,523 11,062,169 6,689,590
x3(employee) 1368 250 608 360
z(accidents) 11350 850 5008 3397

(continued )
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Table A1. Continued.

Year Variable Maximum Minimum Mean SD

2001–2006 (J¼ 60) y(vehicle-km) 48,201,504 8,538,143 22,872,962 10,562,476
x1(vehicle) 1006 140 364 193
x2(fuel) 66,087,116 4,017,669 11,961,825 9,099,859
x3(employee) 2118 159 665 403
z(accidents) 11,720 120 3367 2668

Note: SD¼standarad deviation.

Table A2. The average inputs, output and accident index of 10 Taipei bus firms (2001–2006).

Firm x1(vehicle) x2(fuel) x3(employee) y(vehicle-km) z(accidents)

A 837 23,063,193 1575 4246 6100
B 374 12,134,665 738 2563 4533
C 335 9,576,002 565 2007 4595
D 227 6,721,472 430 1456 1685
E 248 5,624,031 324 1307 2372
F 509 14,780,725 856 3353 4983
G 389 16,236,276 784 3221 4433
H 357 11,618,544 684 2438 980
I 163 4,700,894 227 1110 1745
J 201 5,249,382 295 1171 2243

Table A3. The technical efficiency and ranking measured by three models.

(M1) (M2) (M3)

DMU Efficiency Ranking Efficiency Ranking Efficiency Ranking

A01 0.5300 60 0.694 60 0.736 59
B01 0.7151 35 0.853 35 0.885 43
C01 0.7720 23 0.953 10 0.994 2
D01 0.6724 50 0.790 51 0.840 54
E01 0.6979 41 0.815 43 0.899 39
F01 0.8064 13 0.942 17 0.965 20
G01 0.9030 2 0.959 8 0.906 36
H01 0.7596 26 0.858 34 0.873 47
I01 0.6637 52 0.771 54 0.862 51
J01 0.6687 51 0.777 52 0.851 53
A02 0.5479 59 0.696 59 0.734 60
B02 0.7487 28 0.880 27 0.901 38
C02 0.7582 27 0.934 19 0.986 7
D02 0.6809 48 0.810 45 0.873 48
E02 0.6935 43 0.801 48 0.880 44
F02 0.8042 14 0.952 11 0.980 9

(continued )
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Table A3. Continued.

(M1) (M2) (M3)

DMU Efficiency Ranking Efficiency Ranking Efficiency Ranking

G02 0.8730 5 0.958 9 0.919 30
H02 0.7313 34 0.866 32 0.910 34
I02 0.8709 6 0.940 18 0.987 4
J02 0.7074 37 0.814 44 0.886 42
A03 0.5796 58 0.729 58 0.768 58
B03 0.7843 17 0.917 20 0.939 24
C03 0.7898 16 0.886 26 0.890 41
D03 0.6983 40 0.831 40 0.904 37
E03 0.7385 32 0.839 39 0.921 29
F03 0.8247 9 0.973 5 0.989 3
G03 0.8631 7 0.982 4 0.959 21
H03 0.6884 45 0.825 41 0.873 49
I03 1.0000 1 0.994 1 0.996 1
J03 0.7692 24 0.867 31 0.937 25
A04 0.7368 33 0.869 29 0.861 52
B04 0.7983 15 0.945 15 0.979 11
C04 0.6222 57 0.749 55 0.812 55
D04 0.7050 38 0.839 38 0.916 32
E04 0.6538 55 0.794 50 0.908 35
F04 0.7477 29 0.943 16 0.987 5
G04 0.7840 18 0.969 6 0.979 10
H04 0.7838 19 0.913 21 0.934 27
I04 0.6593 53 0.851 36 0.976 14
J04 0.6319 56 0.771 53 0.875 46
A05 0.7758 22 0.897 25 0.873 50
B05 0.7629 25 0.911 23 0.955 22
C05 0.6569 54 0.740 57 0.790 56
D05 0.6986 39 0.841 37 0.929 28
E05 0.6890 44 0.821 42 0.937 26
F05 0.8094 11 0.949 13 0.976 13
G05 0.8938 3 0.993 2 0.979 12
H05 0.8080 12 0.948 14 0.973 17
I05 0.7465 30 0.879 28 0.986 6
J05 0.6825 47 0.806 47 0.915 33
A06 0.7813 20 0.901 24 0.877 45
B06 0.7769 21 0.912 22 0.943 23
C06 0.6972 42 0.747 56 0.785 57
D06 0.7150 36 0.867 30 0.967 19
E06 0.6842 46 0.794 49 0.891 40
F06 0.8344 8 0.966 7 0.982 8
G06 0.8794 4 0.988 3 0.973 16
H06 0.8125 10 0.952 12 0.975 15
I06 0.7441 31 0.863 33 0.967 18
J06 0.6791 49 0.808 46 0.918 31
Mean 0.743 – 0.869 – 0.914 –

Note: The first letter of the DMU represents the firm; the following two digits represent the year, for
example, C03 denotes firm C in 2003.
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