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On Unequal Error Protection of Convolutional Codes
From an Algebraic Perspective
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Abstract—In this paper, convolutional codes are studied for un-
equal error protection (UEP) from an algebraic theoretical view-
point. We first show that for every convolutional code there exists
at least one optimal generator matrix with respect to UEP. The
UEP optimality of convolutional encoders is then combined with
several algebraic properties, e.g., systematic, basic, canonical, and
minimal, to establish the fundamentals of convolutional codes for
UEP. In addition, a generic lower bound on the length of a UEP
convolutional code is proposed. Good UEP codes with their lengths
equal to the derived lower bound are obtained by computer search.

Index Terms—Basic/canonical/systematic generator matrices,
convolutional codes, unequal error protection.

I. INTRODUCTION

I N many practical applications, e.g., broadcast channels,
packet-switching networks, and visual/speech communica-

tion systems, it is desirable to design an error-correcting code
which can provide unequal error protection (UEP) to make the
best use of the channel bandwidth. Previous papers about UEP
codes were mainly focused on block codes [1]–[19]. Among
those studies, the notion of the separation vector was introduced
in [4] to measure the UEP capability of block codes and it was
shown that given any linear block code there exists an optimal
generator matrix with respect to UEP which has the greatest
separation vector among all generator matrices. Bounds on the
length of linear UEP block codes were extensively studied in
[7], [11]. Several optimal linear UEP block codes were given in
[7]. Besides, nonlinear UEP block codes of better performance
than any linear UEP block codes were investigated in [17]–[19].

Recently, research efforts about UEP have been extended to
convolutional codes. Most of the studies are concentrated on de-
veloping new UEP schemes, which include using punctured and
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path-pruned convolutional codes for UEP [20]–[24] and com-
bining low-rate or short-length convolutional codes by special
algebraic structures [25]–[28]. Only a few are about the UEP ca-
pability of convolutional codes [29]–[38]. Although several au-
thors have pointed out that the separation vector, originally de-
fined for block codes, also serves as an effective UEP measure-
ment for convolutional codes, unfortunately, most of the avail-
able results for UEP block codes can not be directly applied to
convolutional codes. Therefore, many important algebraic prop-
erties of UEP convolutional codes, such as the existence of op-
timal generator matrices and the relation between UEP and en-
coding/decoding complexity, have not been well addressed.

In this paper, a full investigation of the UEP capability of
convolutional codes is made from an algebraic theoretical
viewpoint. First, the UEP capability of convolutional encoders
is combined with several algebraic properties, e.g., systematic,
basic, canonical, and minimal, to establish the fundamentals
of convolutional codes for UEP. For every convolutional code,
we prove that there exists at least one optimal generator matrix
which has the greatest separation vector and hence the best
UEP capability among all generator matrices. Every optimal
generator matrix can always be transformed into a basic ma-
trix, which avoids the undesired catastrophic propagation of
decoding errors, without sacrificing its UEP optimality. (Even
though this property was proposed in [31], here we give a more
well-rounded and detailed exploration.) By a counterexample,
however, we show that there may not exist an optimal generator
matrix which is also canonical or minimal to minimize both of
the encoding and decoding complexity. To optimize the UEP
capability while minimize the complexity requirement, several
procedures are given for obtaining an optimal generator matrix
with the smallest external degree or for searching a canonical
generator matrix with the greatest separation vector. Neces-
sary and sufficient conditions for the above desired generator
matrices are derived as well. In addition, UEP is combined
with systematic generator matrices which are minimal and
can provide easy inversion of the encoder operation. Finally,
we propose a lower bound on the length of a convolutional
code with the given memory distribution and separation vector,
based on which optimal (or near optimal) UEP convolutional
codes are provided by computer search.

The rest of the paper is organized as follows. Section II gives
a brief review of the algebraic theory of convolutional codes.
The UEP capability of convolutional encoders is discussed in
Section III, where the transformation to make the optimal gen-
erator matrices noncatastrophic is also given. The tradeoff be-
tween the UEP capability and complexity of convolutional en-
coders is investigated in Section IV. Section V presents the
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bound on the length of UEP convolutional codes, where tables
of good UEP codes are given. Finally, this work is concluded in
Section VI.

II. REVIEW OF THE ALGEBRAIC THEORY OF

CONVOLUTIONAL CODES

We begin with a review of the terms and definitions used in
the algebraic theory of convolutional codes [39]. Let be a
finite field and be a field consisting of all one-sided
formal Laurent series of the form with the indeter-
minate , where , , and can be any finite integer.
The set of all polynomials over is denoted by . Every
rational function , where and

, has a unique Laurent series expansion and is called
a rational Laurent series. The rational subfield of
consists of all rational Laurent series and is denoted by .
For a Laurent series , the weight is defined
as the number of its nonzero coefficients. The weight of a
vector of Laurent series ,
where (the -tuple vector space over ),
is defined to be the sum of the weights of its components:

If is a subset of , define
as the minimum weight of

nonzero elements in .
An convolutional code over can be defined

as a -dimensional subspace of . A generator ma-
trix for is a matrix over whose
rows form a basis for . Every
codeword is encoded by , where

. If all the
entries of are in , then is called a polynomial
generator matrix (PGM). Following the definitions in [39], we
define the internal and external degrees of a PGM by

maximum degree of minors

sum of the row degrees of

1 Given a convolutional encoder, the corresponding degree is
defined as the number of delay elements in the encoder. The
external degree of a PGM corresponds to the degree of its di-
rect-form or controller canonical form encoder. Denote the min-
imum degree of all possible encoders of a given generator matrix
by the McMillan degree; this quantity is commensurate to the
minimum complexity of building the encoder and conducting
the Viterbi decoding algorithm for a given generator matrix.
With respect to the internal, external, and McMillan degrees,
some special generator matrices are introduced.

Definition 1: A polynomial matrix is called
basic if it has the minimum possible internal degree among all
polynomial matrices of the form , where is a
nonsingular matrix over .

Definition 2: A PGM is called reduced if its external degree
can not be reduced by a sequence of elementary row operations.

Definition 3: A PGM for a given convolutional code is
called canonical if it has the smallest possible external degree

1A � � � minor of���� is the determinant of a � � � submatrix of����.

among all PGMs for . This minimal external degree is called
the degree of , denoted by .

Definition 4: A generator matrix for a given convolutional
code is called minimal if its McMillan degree is equal to

.

A PGM is canonical if and only if it is basic and reduced [39].
Given a convolutional code, the row degrees, called the Forney
indices, are the same for all canonical PGMs [39]. The degree
of a code can be shown equal to the minimum McMillan de-
gree among all generator matrices [40], which implies that every
canonical generator matrix is also minimal. As a result of [41],
[42], basic and minimal generator matrices always have poly-
nomial right inverses, for which polynomial codewords imply
polynomial inputs; both classes of generator matrices are hence
noncatastrophic. There is another class of systematic generator
matrices defined as those of the form , under proper
permutation of columns, where is the identity matrix
and is a matrix over , which are min-
imal [39] and possess the advantage of easy inversion of the en-
coder operation. For further properties of basic, reduced, canon-
ical, minimal, and systematic generator matrices, please refer to
[31], [39]–[44].

III. CONVOLUTIONAL ENCODERS FOR UEP

Convolutional codes are conventionally used for equal error
protection; in such applications, the free distance defined as the
minimum weight of nonzero codewords is unarguably an effec-
tive parameter for performance evaluation [39]. However, ordi-
nary convolutional codes with may possess the
UEP capability. For example, consider a binary convolutional
code with generator matrix

(1)

Denote by (the Laurent series of) the information bit
sequence fed to the th input of the encoder for .
Suppose this code is used for transmission over additive white
Gaussian noise (AWGN) channels with binary phase-shift
keying (BPSK) modulation. The bit error rate (BER) curves
of and by Viterbi decoding are plotted in Fig. 1,
where is observed to experience a better protection than

with a signal-to-noise ratio (SNR) gain around 3 dB
at BER . This code can hence be used for UEP as long
as the data of distinct BER requirements are properly fed into
the encoder. Similar to the free distance, the UEP capability
of a convolutional encoder can be described by the separation
vector, originally proposed for block codes in [4], or called the
free-input distance in [37], defined here.

Definition 5: For an convolutional code
over , the separation vector

with respect to a
generator matrix for is defined by

where denotes the vector
of the Laurent series of the input sequences.
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Fig. 1. BER curves of a convolutional code with generator matrix in (1) on
AWGN channels with BPSK modulation.

By this definition, the minimum of ’s is hence
the free distance of the convolutional code. A large value of

implies a small BER for the information sequence
fed into the th input of the encoder at high SNRs

[32], [33]. For the code with generator matrix in (1), we have
by Definition 5; the two distinct values in

thus implies the two-level UEP provided by .
Given a set of vectors , where

, , denote by

the subspace consisting of all linear combinations of elements in
. Without ambiguity, sometimes set brackets are omitted for

simplicity, e.g., , ,
. Also if a matrix is written inside the span operator

, then the corresponding set is the set of rows of the matrix,
e.g., means the subspace spanned by the rows of .
By Definition 5, it follows that

(2)

Define and let
be the matrix consisting of the fewest number of rows of

such that . Lemma 1 gives some further
properties of the separation vector.

Lemma 1: Consider a generator matrix of a convolu-
tional code with rows .

a) If the separation vector is arranged in the non-
decreasing order, i.e., ,

, we have

(3)

.

b) and ,

Proof:
a) By (2) and the fact that

for some

we have

If is nondecreasingly ordered, it follows that
for

every with for some and
. The

proof is thus completed.
b) If , then implies

by (2). For the reverse direction, suppose
. It is clear that ;

otherwise, a contradiction that is
obtained. Thus, we have .

A. Optimal Generator Matrix

For two vectors of real numbers and
, define if and only if ,

. The two vectors and are said to be comparable
if either or . In the following, we define an optimal
generator matrix which has the greatest separation vector among
all generator matrices of a given code.

Definition 6: Given a convolutional code , a generator ma-
trix is called optimal (with respect to UEP) if for any
other generator matrix of , there exists a permutation
of vector components such that .

To achieve the optimal UEP performance, it is desirable to use
an optimal generator matrix for encoding. However, given a con-
volutional code, we observe that there may exist generator ma-
trices with incomparable separation vectors. For example, con-
sider a binary convolutional code with generator matrices

and

which result in two incomparable separation vectors
and . A ques-

tion naturally arises that whether there always exists an optimal
generator matrix for every convolutional code. Moreover, if the
answer is positive, how to find an optimal one? Suppose for
the moment there exists at least one optimal generator matrix.
We first derive a necessary and sufficient condition for optimal
generator matrices in Theorem 1 and then obtain Corollary 1
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for the available separation vectors of all generator matrices of
a given code.

Theorem 1: For a convolutional code , define
. A generator matrix is optimal if

and only if such that

(4)

where means that all rows of are con-
tained in .

Proof: Without loss of generality, each generator matrix
considered in the following is assumed to have a nondecreas-
ingly ordered separation vector. Let satisfy (4) but
suppose is not an optimal generator matrix. Then, a
generator matrix (with rows )
exists such that . Let be the min-
imal interger in such that

. Set and let
such that . By Lemma 1, it implies that

and ,
. Thus, a contradiction that

and

has been reached, and hence is optimal.
For the reverse direction, suppose is an optimal

generator matrix for and consider an integer .
Denote by the dimension of vector space .
Let be a basis of , where

. Choose from
such that the following matrix forms a generator matrix of :

where denotes transposition. Clearly, is the matrix
with rows . By Lemma 1, it follows
that , , because .
Since , we have and hence

, , by Lemma 1, which implies

We, thus, have since .

Corollary 1: Let be an optimal generator matrix of an
convolutional code . For any arbitrary generator matrix
of , we have

Proof: Suppose there exists an
for some . It means that such that

which contradicts the necessary and sufficient condition of an
optimal generator matrix in Theorem 1, thereby completing the
proof.

To show the existence of optimal generator matrices of a
given convolutional code, we further define a class of mono-
tonically weight-retaining matrices below.

Definition 7: For an convolutional code , a generator
matrix with rows ’s, , is said to be
monotonically weight-retaining if and only if

and

Consider a codeword encoded by a mono-
tonically weight-retaining matrix , i.e.,

,
where . If

for some , then
, and, hence

Define a generator matrix to be weight-retaining if it can be
obtained from a monotonically weight-retaining matrix by per-
mutation of rows. Theorem 2 gives some further properties of
weight-retaining matrices.

Theorem 2: Let be a generator matrix of an con-
volutional code with rows . Then
the following statements are equivalent.

a) is a weight-retaining matrix for .
b) Given any other generator matrix with rows

for ,

c) , .
Proof:
a) b): Suppose that satisfies Statement a).
Without loss of generality, assume that is mono-
tonically weight-retaining. Suppose there exists a
generator matrix for with nondecreasingly
ordered
such that . Let

be the smallest integer in such that
. Set . Since

and , it fol-
lows that and

, which implies
. A contradiction is thus reached, and

we should have .
b) c): Suppose is a generator matrix for

such that Statement c) does not hold for .
Then, there exists an integer
such that . Let

such that .
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It can then be shown that and
forms

a generator matrix for . Therefore, we have

and does not satisfy Statement b).
c) a): Assume that satisfies Statement c).
Suppose is a generator matrix obtained from

by permuting the rows of such that
is nonde-

creasingly ordered. Clearly, satisfies Statement
c) and .
Then, Lemma 1 implies and

,
. is hence monotonically weight-re-

taining, which implies that is weight-retaining.

By Theorems 1 and 2, we can further obtain that a weight-
retaining matrix is an optimal generator matrix.

Corollary 2: Every weight-retaining generator matrix for an
convolutional code is an optimal generator matrix for

.
Proof: Suppose is a weight-retaining generator ma-

trix for . By Theorem 2, there exists a monotonically weight-
retaining generator matrix whose rows are a permuta-
tion of rows of . Denote by the
rows of . Let and set

. It is clear that . Moreover,
there exists an integer such that

. If , then and,
hence, . If , then

and, thus, we have . Since
, it also implies the UEP optimality of both

and .

By Corollary 2 and Statement b) in Theorem 2, Procedure 1
is proposed for obtaining a monotonically weight-retaining (and
hence optimal) PGM for a given convolutional code.

Procedure 1:
Step 1) Given an convolutional code , choose a poly-

nomial codeword such that
. Set . If , go to Step 5; else go

to the next step.
Step 2) Choose a polynomial codeword

such that

Step 3) Set .
Step 4) If , then replace by and go to Step 2; else

go to the next step.
Step 5) Set to be the generator matrix of rows

, which will be a desired
optimal generator matrix for .

B. Transformation Between Optimal Generator Matrices

To clarify the transformation between optimal generator ma-
trices, consider a binary convolutional code which has an op-
timal generator matrix

with . Suppose we choose a transformation
matrix

which is lower triangular; the resulting generator matrix
is still optimal. However, if the following non-

lower triangular matrix is selected:

we have and the optimality is de-
stroyed. Such an interesting observation motivates Lemma 2.

Lemma 2: Let be an optimal generator matrix of an
convolutional code with in the nondecreasing

order, i.e., , . For any
nonsingular lower triangular matrix over ,

is also optimal.
Proof: Denote by the th entry of ,

; we have , , since
is lower triangular. Let , and denote the
rows of and by ’s and ’s, ,
respectively. Since is nonsingular, it implies that

, and thus

(5)

By (2), (3) and (5), it follows that

(6)

However, since is optimal, we have
; together with (6), it hence implies that
and is also optimal.

By extending the concept of a lower triangular matrix, an ef-
fective lower triangular matrix is defined as follows.

Definition 8: Let be a generator matrix of an
convolutional code. Without loss of generality, assume
is in the nondecreasing order and has different component
values, each with repetitions, . For a matrix
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over , let be the entry in position
of , . is called effectively lower
triangular with respect to if and only if ,

, , and .
For example, suppose ; an effec-

tively lower triangular matrix with respect to is of the
following form:

where all zero entries in the blank area are neglected for conve-
nience. If , , an effectively lower
triangular matrix will be reduced to a lower triangular matrix.
Based on the effectively lower triangular matrices, a necessary
and sufficient condition for the transformation between all op-
timal generator matrices is derived in Theorem 3.

Theorem 3: Given an convolutional code , without
loss of generality, let be an optimal generator matrix of
nondecreasing separation vector. For any nonsingular
matrix over , is optimal if and only if

is effectively lower triangular with respect to .
Proof: By Gaussian decomposition, can be decom-

posed as

(7)

where is a permutation matrix, is a upper-
triangular matrix, and is a lower triangular matrix.
Suppose is nonsingular and effectively lower triangular;
then, is also nonsingular, and is both nonsingular
and effectively lower triangular. Let and

of rows ’s and ’s,
, respectively. By Lemma 2, is optimal,

and hence .
Assume that is of different component values:

, each with repetitions, , and
, . Given an integer , suppose

for some . It can be shown that

Hence, , we have

Since is optimal, it implies and
are both optimal.

For the reverse direction, suppose is not effectively
lower triangular with respect to . By Lemma 2 and (7),

is still optimal, but is not effectively lower tri-
angular. Consider the simplest case that only one entry, say

in position of , violates the condition for an
effectively lower triangular matrix. Suppose

and for some and ,
where . It is clear that

(8)

and

(9)

Then, we have

Since and , it implies
. Therefore, neither nor

is optimal. Following a similar
procedure in the above proof, we can easily obtain the same
result for other cases of which are not effectively lower
triangular, thereby completing the proof.

For convolutional codes, there exist a class of catastrophic
generator matrices [39]. If a catastrophic generator matrix is
used for encoding, a finite number of channel errors can cause an
infinite number of decoding errors. This should be avoided at all
costs. Although Procedure 1 can generate an optimal PGM for
any given code, it does not guarantee the resulting matrix to be
noncatastrophic. In the following, we will show how to trans-
form an optimal PGM into a noncatastrophic matrix without
sacrificing the optimality. Consider an optimal PGM of
an convolutional code . Without loss of generality, as-
sume is in the nondecreasing order. It has been shown
in [39] that there exists an unimodular matrix2

such that

...
...

. . .
...

...
. . .

...
(10)

where , and .
Let be the inverse of ; is also
a unimodular matrix. Let be the ma-
trix consisting of the first rows of . We have

where is the matrix
formed by the first columns of the matrix .

2A unimodular matrix is a square polynomial matrix whose determinant is a
nonzero element in � .
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Since is of full rank, and its inverse are
both nonsingular lower triangular matrices over . Thus,

is a generator matrix for . Then, by
Lemma 2, . Hence,

is optimal. Let be the matrix formed
by the first columns of . Since ,
we have , which implies is basic
[39]. Therefore, is successfully transformed into a PGM

which is optimal and basic, and we have the following
theorem.

Theorem 4: Every convolutional code has at least an optimal
PGM which is also basic and hence noncatastrophic.

Remark: This theorem was proposed previously in [31, Sec-
tion 11.3], but no detailed proof was given.

Example 1: Consider a binary convolutional code with a
canonical generator matrix

which has the separation vector . After
Procedure 1, we obtain a monotonically weight-retaining and
hence optimal PGM

with the separation vector increased to .
Furthermore, by (10), we have

where

and, hence

Therefore, the basic generator matrix consisting of the first 3
rows of is

which is also an optimal PGM for .

Remark: Note that there existed UEP results for linear block
codes [4], [5] parallel to Lemma 1 and all those in Section III-A

except Corollary 1. The transformation between optimal gen-
erator matrices by the effectively lower triangular matrices de-
fined in Section III-B is also similar to that between the canon-
ical-form generator matrices for linear UEP block codes [2]. Not
only for convolutional codes, in fact it can be shown that Lemma
1, all the UEP results in Section III-A, Lemma 2, and Theorem
3 hold for all linear codes.

IV. RELATION BETWEEN UEP CAPABILITY AND COMPLEXITY

OF CONVOLUTIONAL ENCODERS

In Example 1, is transformed into to
achieve the optimal UEP performance but at the cost of in-
creasing the external degree from to

. For a PGM, the external degree corre-
sponds to the number of memory elements in its direct-form
realization, which dominates the complexity of building the
encoder and conducting the Viterbi algorithm. To reduce the
hardware/computation complexity while maintain the optimal
UEP capability, it is desirable to find an optimal generator
matrix which is also canonical or minimal (hence with the min-
imum degree) for encoding. However, the following example
shows that in general there may not exist such a desirable
matrix for every convolutional code.

Example 2: Consider a convolutional code generated by
the following canonical PGM:

which has and . By Proce-
dure 1, we obtain an optimal PGM

with , , and the
. Obviously, is neither canon-

ical nor minimal, since its external degree and McMillan de-
gree are larger than . As a result of [45], there are only
a finite number of minimal generator matrices for a convolu-
tional code. Evaluating all the minimal generator matrices for
shows that all of them have separation vectors equal to
( ), and hence no minimal generator matrix is optimal.
Since every canonical PGM is also minimal, it indicates that for

there exists no optimal generator matrix which is also canon-
ical or minimal.

Since there is no guarantee that an optimal generator ma-
trix can always achieve the degree of the code, the tradeoff be-
tween the complexity and UEP capability can then be tackled
from two aspects. On the one hand, we can keep the UEP op-
timality of a generator matrix and try to minimize the corre-
sponding complexity requirement. On the other hand, we can
optimize the UEP capability of a generator matrix while still
keep the minimal complexity. In the following, we first char-
acterize the PGMs for which the external degree is as small as
possible among all optimal generator matrices.
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A. Optimal Generator Matrix With Lowest External Degree

For a convolutional code , define to be the set of
all optimal generator matrices and to be the set of
the optimal PGMs with the smallest external degree among

. Let be a set of integers
such that , ,
and . For convenience, define . The
subcodes of are independent of
the choice of generator matrices and have the property that

.

Theorem 5: Let be a PGM of an convolutional
code with ; then if
and only if, ,

a) there exists such that
, and

b) the generator matrix for the subcode has
the smallest possible external degree given .

Proof: Condition a) obviously follows from The-
orem 1. Let satisfying Condition b).
Suppose . Then, there exists a PGM

such that .
Let such that ,

. Clearly, and
. Denote by the smallest integer in

satisfying .
Then, we have

and hence

(11)
Let which forms
a basis of . Extend to a basis

of . Clearly, satisfies Condition a),
but by (11), which con-
tradicts Condition b) that has the smallest external de-
gree given . The assumption that
is, hence, false.

Conversely, suppose . Assume that
does not satisfy Condition b) for some . Then the external de-
gree of can be reduced, and it yields a generator ma-
trix having external degree less than , thereby reaching a
contradiction.

By Theorem 5, we have the following procedure for obtaining
a PGM .

Procedure 2:
Step 1) Given an convolutional code with

, find a least-degree codeword
.

Step 2) Set , , and . Go to Step 5.
Step 3) Find a least-degree codeword

.
Step 4) Set and .

Step 5) If , then set
and go to Step 3; else set and go to Step 6.

Step 6) If , then set and go to Step 3; else stop.

The subcodes can be obtained from
an arbitrary optimal generator matrix for , e.g., the
optimal generator matrix obtained by Procedure 1. Then, by
Theorem 1, there exists such that

, .
Although Procedure 2 can be used to find an optimal PGM

with the smallest external degree among all optimal generator
matrices, there is no guarantee that the resulting optimal PGM
is noncatastrophic. In the following, we turn to find an optimal
PGM which is basic and with the external degree as small as
possible. Based on Theorem 3, we can obtain the necessary and
sufficient conditions for the transformation of basic and optimal
PGMs in Corollary 3.

Corollary 3: Let be a basic and optimal generator ma-
trix of an convolutional code . For a nonsingular
matrix over , is also basic and optimal
if and only if

a) is unimodular, and
b) is effectively lower triangular with respect to .

Proof: Let be the determinant operator. Suppose
is unimodular; by definition, we have

(12)

since is a nonzero element in . Therefore, by Def-
inition 1, is also basic.

For the other direction, suppose is basic. Since
there always exists a polynomial right inverse for a basic gen-
erator matrix, it implies that is also a polynomial ma-
trix. Moreover, since
and is nonsingular, by (12), we can have that
is a nonzero element in and thus is unimodular. Finally,
by Theorem 3, is effectively lower triangular with respect
to , thereby completing the proof.

Given an convolutional code with a basic and op-
timal PGM , suppose is in the nondecreasing
order and of distinct component values, each with repeti-
tions, . By Corollary 3, the associated transforma-
tion matrix which can still keep the optimality and basic prop-
erty of must be of the following form:

...
...

. . .
...

(13)

where is a polynomial matrix, . Since
is unimodular and

’s should also be unimodular, . Let
and denote the rows of and
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by ’s and ’s, , respectively. By (13),
, we have

...
...

(14)
where and Under the constraint of
(14), a procedure for obtaining a PGM with the smallest external
degree among all the PGMs which are both basic and optimal is
proposed here.

Procedure 3:
Step 1) Given an convolutional code , find a gener-

ator matrix which is basic and optimal based
on the discussion in Section III. Suppose that
has rows ’s, , and is
in the nondecreasing order of distinct component
values, each with repetitions, .

Step 2) Set , , and be the collection of
all codewords whose degree is not more than

.
Step 3) Choose independent codewords, say

, of the smallest
sum of degrees from which are independent
to all codewords in and satisfy the following
constraints:

...
...

where is a matrix over ,
, is unimodular, and .

Step 4) Set and
.

Step 5) If , then replace by and go to Step 3; else
go to the next step.

Step 6) Set to be the generator matrix whose rows
consist of all codewords in , which will be a de-
sired basic and optimal PGM of the smallest external
degree.

Since the degree of each row of never exceeds
, the initialization of in Step 2 and the con-

straints on choosing in Step 3 can
guarantee the correctness of Procedure 3. Moreover, owing to
the finite cardinality of , Procedure 3 can be finished in finite
steps.

Example 3: Consider the convolutional code in Example 1.
By Procedure 3, is converted to the following basic and
optimal PGM:

Then, a reduction of 4 in the external degree is obtained. More-
over, since is the same as the degree of the
code, it implies that achieves both of the optimal UEP
capability and the lowest complexity requirement in this case.

B. Relation Between Optimal and Canonical Generator
Matrices

In Section IV-B, the discussion is concerned with minimizing
the external degree of a basic and optimal PGM. For further
investigation of the UEP optimality and canonicity of gener-
ator matrices, we are now interested in how much the separa-
tion vector can be increased as the generator matrix is required
to be canonical. First, if there exists a canonical PGM which
has the greatest separation vector among all canonical PGMs,
the corresponding necessary and sufficient condition is given in
Theorem 6.

Theorem 6: Consider an convolutional code .
Without loss of generality, assume the following gener-
ator matrices of are nondecreasingly ordered in terms
of their separation vectors. A canonical generator matrix

with rows has the greatest
separation vector among all canonical generator matrices if
and only if, , for any canonical generator ma-
trix with rows satisfying

for some , we have
.

Proof: Suppose satisfies the condition but
does not have the greatest separation vector, i.e., there exist
a canonical generator matrix such that, for some ,

, , and .
Since , it implies that

and

thereby contradicting the condition.
For the reverse direction, suppose does not sat-

isfy the condition; it implies that and
such that but

, for some . It is
clear that and .
Therefore, we have , and does
not have the greatest separation vector.

Aided with Theorem 6 and Lemma 1, we further propose
Lemma 3 and Theorem 7 to demonstrate the existence of a
canonical PGM with the greatest separation vector among all
canonical PGMs for every convolutional code.

Lemma 3: Consider an convolutional code . For
and with , if there exist two canon-
ical generator matrices

and
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where, for , and denote two
and matrices, respectively, with
satisfying and , then we
can always choose a matrix with rows in

such that

(15)

forms another canonical generator matrix for .
Proof: For , denote the rows of

by ’s, , respectively. Since
, we can choose rows from such that

where
and , , and the remaining rows of

are in . Let

and

If , can be obtained by deleting the rows
’s from . Denote by the matrix in (15).

Then is of full rank because all rows of are in
. We also have

since . It thus implies the canonicity of .
Suppose we now have . Then, rows of can

be replaced by ’s to obtain the matrix:

which is of full rank and has the external degree less than
, hence, contradicting the canonicity of .

For the remaining case that , with the same choice
of as in the case that , the matrix of the form
in (15) is of full rank and with the external degree less than

, which also contradicts the assumption that
is canonical, thereby completing the proof.

Theorem 7: For every convolutional code, there always exists
a canonical generator matrix which has the greatest separation
vector among all canonical generator matrices.

Proof: Consider an convolutional code of free
distance . To avoid possible ambiguity, is referred to

as is mentioned.
Consider the set containing all the
nonempty ’s which can be spanned by rows of canon-
ical generator matrices except consisting of only the
all-zero codeword. Without loss of generality, assume that

and , ,
where is a submatrix of the canonical generator

matrix ; it implies that ,
, and . For any canonical generator matrix

, by Theorem 6, we have

(16)

where denotes a proper permutation of vector components,
has repetitions, and has repetitions,

.
By Lemma 3, it implies that there exists a PGM

such that is canon-
ical, . Repeating the above process with respect
to successively, we can obtain the
following canonical PGM :

with

since . By (16),
is, therefore, a desired canonical generator matrix which has
the greatest separation vector among all canonical generator
matrices.

Since the constructive proof of Theorem 7 can be employed to
produce a canonical PGM with the greatest separation vectors
among all canonical matrices, a ready-made search procedure
will be available as long as we can find all the ’s which can
be spanned by canonical PGMs. In the following, a necessary
and sufficient condition is first presented to test whether
can be spanned by a canonical PGM. Based on Theorem 7 and
Lemma 4, Procedure 4 is then proposed for construction of a
canonical PGM with the best UEP capability.

Lemma 4: Consider an convolutional code with
an optimal generator matrix . For , let

with . Let the dimen-
sion of be . Then is canonically splittable,
i.e., there exists a canonical generator matrix and

such that , if and only
if, for the codewords of with the smallest sum of
degrees, say , which make the
matrix full-rank,
we have

(17)

Proof: If the condition holds, we first convert to
a canonical generator matrix for by a standard
procedure to produce canonical generator matrices [39] and set

Then is canonical since
and by (17). It

follows that is canonically splittable.
For the reverse direction, suppose is canonically

splittable, i.e., there exists a canonical generator matrix
with such that .

Let denote the remaining submatrix of
by deleting . Since is canonical, we have

and rows of are
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qualified for the candidates of .
Therefore, it follows that

which completes the proof.

Procedure 4:
Step 1) Given an convolutional code , use Procedure

1 to generate an optimal generator matrix of
rows ’s, . Suppose that
is in the nondecreasing order of distinct compo-
nent values ’s, each with repetitions,

.
Step 2) Set and .
Step 3) Let be the matrix of rows

’s, . Convert
to a canonical matrix, say , for ,
and choose codewords of , say

, where ,
with the smallest sum of degrees such that the
matrix

is of full rank.
Step 4) If ,

then set and replace by
.

Step 5) If , then replace by and go to Step 3;
else convert to a canonical matrix and assign it
to . Let the rank of be and denote
rows of by ’s, and

.
Step 6) Set and initialize by .
Step 7) Choose rows ’s from , where

, , such that re-
maining rows of are in .

Step 8) Replace ’s in by all rows in
and assign the resulting to .

Step 9) If , then replace by and go to Step
7; else stop and will be a desired canonical
generator matrix of the greatest separation vector for

.

In Steps 3 and 4, it is checked whether is canonically
splittable or not. Since all ’s can be specified by an optimal
generator matrix by Theorem 1, we never miss any which
is canonically splittable after the search in Steps 1 to 5. Also by
the constraints on producing in Step 7, the correctness
of Procedure 4 is therefore guaranteed.

Example 4: Consider the convolutional code in Example
1 with an optimal generator matrix of

and . We have

By Lemma 4, it follows that , , and are canonically
splittable. By Procedure 4, is updated as follows:

Since , in this case, the resulting canonical
PGM is also optimal but with the external degree reduced to .

C. Relation Between Optimal and Systematic Generator
Matrices

Systematic generator matrices which inherit the lowest
McMillan degree and the noncatastrophic property of minimal
generator matrices and possess the advantage of easy inversion
of the encoder operation have been extensively employed for
encoding of convolutional codes in various applications. To op-
timize the UEP performance by systematic encoding, we intend
to find a systematic generator matrix which has the greatest
separation vector among all systematic matrices. However, as
shown in Example 5, we observe that there may not exist a
systematic generator matrix which is also optimal for every
convolutional code.

Example 5: Consider the convolutional code in Example
1 with the optimal separation vector . By exhaustive
search, there are four kinds of systematic generator matrices for

:

without considering the possible permutation of rows
and multiplication of scalars over GF . Since
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, , none of the above
systematic generator matrices is optimal.

Recall Theorem 6 which presents the necessary and sufficient
condition of a canonical generator matrix with the greatest sep-
aration vector among all canonical matrices, where the canon-
icity of generator matrices is surprisingly not used throughout
the proof. The same necessary and sufficient condition can then
be combined with the following Lemma 5 to yield Theorem 8 for
the existence of a systematic generator matrix with the greatest
separation vector among all systematic generator matrices for a
given code.

Lemma 5: Consider an convolutional code . For
and with , if there exist two system-
atic generator matrices

and

where, for and , and denote two
and matrices, respectively, with

satisfying and
, then there exists a matrix
and we can always choose code-

words, say , generated by

such that the resulting matrix

forms a submatrix of a systematic generator matrix for
.

Proof: Without loss of generality, assume that is of
the following form:

...
...

. . .
...

...
. . .

...
...

. . .
...

(18)

where the left columns form the identity matrix
followed by columns of all zero entries, and ’s

; otherwise, a proper permutation of the components of
every codeword can be conducted to make (18) valid. Arbitrarily
choose a submatrix consisting of rows
in which are linearly independent of rows in .
(This can always be done because .) Using the
standard procedure to make a generator matrix systematic, we

can convert to

which forms a systematic generator matrix for , where

Since and both of and
are submatrices of systematic generator matrices for , there are
at least common columns of and which
have all zero entries. Let . Without loss of gener-
ality, the new obtained matrix can be written as shown in (19)
at the bottom of the page where the left columns form the

identity matrix, the columns with boldface zeros in-
dicate the common columns of and mentioned
above, and ’s . Obviously, (19) is qualified for
a submatrix of a systematic generator matrix for , hence fin-
ishing the proof.

Theorem 8: For every convolutional code, there always exists
a systematic generator matrix which has the greatest separation
vector within the class of systematic generator matrices.

Proof: Following all the same terms defined in the proof
of Theorem 7 except that the set now
contains all the nonempty ’s which can be spanned by rows
of systematic generator matrices of , we continue the proof
as follows. By Lemma 5, we can choose codewords

’s, which are generated by

where , such that the resulting matrix

(20)
forms a submatrix of a systematic generator matrix for with

and . Repeating the
above procedure with respect to

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

(19)
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successively, we can obtain with
and

where ’s are generated in a similar way to those in (20),
. Since , it implies

that

Therefore, is a desired systematic generator matrix
with the greatest separation vector.

Similar to the discussion in Section IV-C, the constructive
proof of Theorem 8 can be employed to generate a systematic
generator matrix with the largest separation vector as long as we
can find all the ’s which are spanned by systematic gen-
erator matrices. In Lemma 6, necessary and sufficient condi-
tions are presented to check whether can be spanned by
a systematic generator matrix. Then, Procedure 5 is proposed
for obtaining a systematic generator matrix with the best UEP
capability.

Lemma 6: Consider an convolutional code with an
optimal generator matrix . For , let

with , and denote by the matrix
comprising the remaining rows of . Let the dimension of

be . Then is systematically splittable, i.e., there ex-
ists a systematic generator matrix and
such that , if and only if the following condi-
tions are satisfied:

a) there exist at least all-zero columns in , and
b) there exist columns of in the same positions

as the all-zero columns of which form a nonsin-
gular matrix.

Proof: Suppose both Conditions a) and b) hold. On account
of Condition a), without loss of generality, can be con-
verted to

...
. . .

...
...

. . .
...

...
. . .

...

(21)
by proper row operations, where the left columns form the

identity matrix followed by all-zero columns,
and ’s ; otherwise, a proper permutation of the
columns of can be conducted to make (21) valid. Due
to Condition b), by multiplying a proper transformation matrix,

can also be transformed to

...
. . .

...
...

. . .
...

...
. . .

...

(22)

where the left columns are with zero entries followed the
identity matrix, and ’s . Since

and is systematic for

, is hence systematically splittable.
For the reverse direction, suppose is systematically

splittable, i.e., there exists a systematic generator matrix
with a submatrix such that

. Since is systematic, there exist at
least columns of which are of all zero entries.
If a codeword is generated by , at
least components of are zeros, which implies that
there exist at least all-zero columns in because

. Moreover, if Condition b) does not
hold, will be rank-deficient, thereby contradicting the
assumption that is a generator matrix for . The proof is
then completed.

Procedure 5:
Step 1) Given an convolutional code , use Procedure

1 to generate an optimal generator matrix of
rows ’s, . Suppose that
is in the nondecreasing order of distinct compo-
nent values ’s, each with repetitions,

.
Step 2) Set and .
Step 3) Let be the matrix of rows

’s, , and denote
the matrix containing the remaining rows of .
If the following conditions are satisfied:

a) there exist at least all-zero columns in
, and

b) there exist columns of in the
same positions as the all-zero columns of

which form a nonsingular matrix,
then convert to a systematic generator matrix,

, for and replace by .
Step 4) If , then replace by and go to Step 3;

else convert to a systematic generator matrix
for and assign it to . Denote by ’s
the rows of and let the rank of be ,

and .
Step 5) Set and initialize by .
Step 6) Choose codewords

generated
by

, where , such
that the resulting matrix

forms a submatrix of a systematic generator matrix
for . Then set .

Step 7) If , then replace by and go to Step
6; else stop and will be a desired systematic
generator matrix of the greatest separation vector for

.
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In Step 3, it is checked whether is systematically split-
table. Similar to Procedure 4, none of the ’s which are sys-
tematically splittable is missed since all ’s can be specified
by an optimal generator matrix by Theorem 1. Also by the con-
straints on producing in Step 6, the correctness of Pro-
cedure 5 is guaranteed.

Example 6: Consider the convolutional code which has an
optimal PGM with in Example 1.
By Lemma 6, we observe that only and are systemati-
cally splittable with

and

By Procedure 5, is updated as follows:

Therefore, if the systematic property is preserved, then the
greatest separation vector available is ,
which is consistent with the observation in Example 5.

V. BOUND ON LENGTH OF UEP CONVOLUTIONAL CODES

Besides the above discussion on UEP generator matrices, an-
other basic and significant issue worth investigation is to find
a UEP convolutional code with a given memory distribution
and a separation vector such that its length is minimized and
hence its information rate is maximized. In this section, a lower
bound on the length of an convolutional code with the
given memory distribution and separation vector is proposed.
Let be a canonical PGM for and denote the degree of
the th row of by , . For any integer ,
define to be the set of polynomial codewords of degree ,
and then is a vector space over . We denote the -dimen-
sion of by and the -dimension of with respect to
the th message space by . It is clear that .
The dimension of the polynomial subcode for the th message
space can then be computed from the code’s Forney indices

as shown next.

Lemma 7: Suppose is a canonical generator matrix of a
convolutional code with Forney indices . De-
note as the dimension of with respect to the th message
space. Then, , we have

and

Proof: Let be any polynomial codeword
of degree . Since , where

, the inequality
follows from the predictable degree

property [39] of a reduced matrix. Thus, for , the
set is a basis for the -space with
respect to the th message space. Hence

Since , we can obtain

Thus, the coefficient of is , thereby com-
pleting the proof.

Denote by the -tuple vector with all components equal
to . By Lemma 7, a bound on the length of UEP convolutional
codes is given in Theorem 9.

Theorem 9: If is a canonical generator ma-
trix of an convolutional code with Forney in-
dices and separation vector

, then we have

(23)

where denotes the minimum possible length of a
block code over with dimension and separation vector

.
Proof: Recall that forms a vector space over with

the basis ’s, and .
Let with , , , ,
and denote by the vector comprising

It follows that is equivalent to the
block code over with the following generator

matrix:

Let be the separation vector of . Since ,
it implies that

and hence

(24)

Since (24) holds for all possible ’s with , the proof is
thus completed.

By Theorem 9, many lower bounds on the length of a linear
UEP block code may then be employed to establish lower
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TABLE I
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

bounds on the length of a UEP convolutional code. For example,
by the generalized Griesmer bound [7], [11], we have

where denotes the order of and
is a permutation such that

is nonincreasingly ordered.
A canonical PGM with separation vector satisfying the

lower bound (23) with equality does not mean that it is optimal
over all codes of the same Forney indices. We have Definition
9 for “UEP-optimal” convolutional codes.

Definition 9: An convolutional code with separation
vector is said to be UEP-optimal over all codes with Forney
indices if and only if an convolutional
code with separation vector larger than and Forney indices

does not exist.

Good UEP convolutional codes with canonical optimal
PGMs, obtained by computer search, are shown in Tables I–III
with and , respectively. In the tables, every polyno-
mial is expressed in the octal form. For example, the polynomial

is first rewritten as and
then converted to binary string which is in the

TABLE II
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

TABLE II (Continued)
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)
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TABLE II (Continued)
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

the octal form. Note that all the convolutional codes shown in
Tables I–III satisfy the lower bound in (23) with equality; those
which are further verified to be UEP-optimal are marked by .

Compared with optimal convolutional codes with
which were reported previously without consideration of UEP,

we observe that many optimal codes have the intrinsic UEP ca-
pability. For those codes, the results presented here can be em-
ployed to optimize the protection and complexity requirements.
However, for the other optimal codes which can provide equal
error protection only, UEP is usually obtained at the cost of a
worsened BER performance for some of the information bits.
For example, consider the optimal binary convolutional
code with generator matrix [39]

and for equal error protection only. For
UEP codes with the same , , and degree of the code, the best
two in Table II are with the following generator matrices:

TABLE III
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

and

which have and ,
respectively. For , a better performance of
is achieved at the cost of some performance loss of

and compared with since we have
but

. For , experiences
worse protection than that for but receives
better protection than that for since we have
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TABLE III (Continued)
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

and .
The simulation results of the three codes on AWGN channels
with BPSK modulation are shown in Fig. 2, where the BER
curves are consistent with the above discussion.

VI. CONCLUSION

In this paper, we study the UEP capability of convolutional
codes from an algebraic perspective. For every convolutional

TABLE III (Continued)
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

code, we prove the existence of optimal generator matrices
for UEP and show that there exists at least one optimal PGM
which is basic and hence noncatastrophic with the aid of
effective lower triangular matrices. A counterexample shows
that in general the set of optimal generator matrices for a
given convolutional code may contain neither canonical nor
minimal generator matrices which achieve the minimum degree
requirement. To optimize the tradeoff between UEP perfor-
mance and hardware/computation complexity, we turn to find
an optimal PGM with the smallest external degree among all
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TABLE III (Continued)
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

optimal PGMs or a canonical generator matrix with the greatest
separation vector among all canonical PGMs. In addition, UEP
is combined with systematic generator matrices. Although the
comparison of separation vectors involves a partial ordering,
we show the existence of the above desirable generator matrices
along with corresponding necessary and sufficient conditions.

TABLE III (Continued)
CONVOLUTIONAL CODES FOR UNEQUAL ERROR PROTECTION WITH � � �.

(� DENOTES THE EXTERNAL DEGREE OF THE CANONICAL PGM)

Fig. 2. BER curves of information bits fed to different inputs of � ���,
� ���, and � ���.

Several procedures are also given for obtaining these desirable
generator matrices. Finally, we propose a lower bound on the
length of a UEP convolutional code with given Forney indices
and separation vector. Several convolutional codes that are
UEP-optimal or near UEP-optimal are presented with their
lengths equal to the derived lower bound.
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