

Constructing a Role Playing Interactive Learning Content Model

Dung-Chiuan Wu
1
, Huan-Yu Lin

2
, Shian-Shyong Tseng*

3
, Jui-Feng Weng

4
, Jun-Ming Su

5

Department of Computer Science National Chiao Tung University, ROC

Department of Information Science and Applications, Asia University, ROC
3

donchen.cs94g@nctu.edu.tw
1
, huan.cis89@nctu.edu.tw

2
, sstseng@cis.nctu.edu.tw

3
,

roy@cis.nctu.edu.tw
4
, jmsu@csie.nctu.edu.tw

5

Abstract

In the early years, the E-learning contents are

always written by static HTML pages, which can not

provide a highly interactive learning activity to fulfil the

need of some simulation based learning, e.g., Standard

Operation Procedure Training. As we known, the

learning objective of simulation based learning can be

achieved via Role-Playing Flash interactive learning

contents. Since this kind of contents is usually manually

created, the construction is time-consuming and costly.

Thus, we propose an Object Oriented Interactive

Content Model (OOICM) representing the high level

game knowledge for authors with the interface of

OOICM to assist authors in constructing a Role-Playing

learning content easily without writing low level codes.

OOICM is composed of three components: Story

Control Flow (SCF), Activity, and Scene Object (SO).

System layer of OOICM, where we apply Petri Net

based rule set to model SCF and use frame knowledge

representation to model Activities and SOs, is also

defined as the middleware to separate OOICM from

low-level implementation. Based on OOICM, we

implement a generator with frame engine to help

authors to construct the learning content. Finally, we

compare the generator with other authoring tools and

the experiment result shows the generator has better

reusability.

1. Introduction

With the growth of Internet, the technologies of

e-learning are globally accepted for making learners

study anytime and anywhere. In early years, these

e-Learning contents are static and lack interactive

features due to the pure HTML format, so some learning

objectives, involving scenario simulations and requiring

the interactions with learners, are difficult to be fulfilled.

For example, Standard Operation Procedure training,

which needs a scenario simulation learning activity to

improve the impression, can not be properly represented

in the traditional web pages. Since role playing is an

instructional alternative suitable for scenario simulations,

it mainly has three advantages which are “Motivating

Students“, “Augmenting Traditional Curricula”, and

“Learning Real-World Skills” [1]. According to the

statistics [2] from Adobe, Flash Player is the most

pervasive software platform in the world, which can

represent rich 2D animations on WWW and handle

various interactions by writing ActionScript code, so

Flash is an appropriate media to represent this kind of

interactive learning contents. However, creating a Flash

content for interactive learning is time-consuming and

costly especially for nonprogrammer, and these contents

are difficult to reuse and share, because authors have to

write ActionScript codes to handle various events.

Therefore, how to facilitate the creation of Role-Playing

Flash content and reuse the learning content are

important issues.

Role-Playing content is composed of story (narrative),

characters and scenes. All characters are arranged in the

scene and the story describes the goals flow for

characters to act. According to this structure, we propose

Object Oriented Interactive Content Model (OOICM) to

represent the high level knowledge of Role-Playing

learning content and make authors construct a

Role-Playing learning content easily without writing low

level codes. OOICM is composed of Story Control Flow

(SCF), which is a sequence of sub-goals, Activity, which

is the action for SOs to perform, and Scene Object (SO),

which is the object in a scene. We also define the system

layer to separate the high level knowledge from low

level implementation. In system layer, we apply Petri

Net based rule set, which can support process flow

modeling, concurrency handling, and validation, to

model SCF and apply frame knowledge representation,

which can represent attributes, event procedure,

inheritance relation, and provides a systematic inference

mechanism, to model Activity and SO.

Because we apply rule set and frame, the system

environment must contain a frame engine. We

implement it in ActionScript and develop a generator

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.9

15

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.9

15

based on OOICM to assist authors in constructing the

Role-Playing learning content.

2. Related Work

2.1. Authoring Tools

 Many tools can be used to create the interactive

content.

Adobe Flash [3] is the original and popular authoring

tool to create the flash format content. Since Flash is not

originally designed to construct the Role-Playing

content, authors have to add ActionScript code manually

to simulate the behaviors of the role playing games.

However, it is not easy for a programmer to write

ActionScript code to handle varied events in a game, not

to mention a nonprogrammer.

 RPG-Maker [4], a powerful tool for creating

role-playing games, provides a user-friendly editor

interface for creating a role-playing game without

writing low level codes, where events are attached to the

grids in the game map and the story control flow is

event-driven but not represented explicitly. What

authors see is the game scene and a lot of related events.

The scenario of the game can not be understood by

authors. It results in that the complex role playing

content is difficult to construct, reuse, and maintain.

3. Object Oriented Interactive Content

Model (OOICM)

As mentioned above, it seems necessary to design a

Role-Playing interactive learning content model for

non-professional game developers, such as teachers, to

facilitate constructing and reusing interactive learning

contents. Therefore, we propose Object Oriented

Interactive Content Model (OOICM) from the authors’

viewpoint to let authors construct complete

Role-Playing interactive learning content easily. In

OOICM, object-oriented methodology is used to

encapsulate the internal control codes of interaction

handling and define the component types to ensure the

correctness in component reusing and composing.

As shown in Figure 1, OOICM is composed of three

components: Story Control Flow (SCF), Activity, and

Scene Object (SO). Story Control Flow denotes a flow

of sub-goals, Activity denotes a specific action that SOs

can perform, and some activities may achieve sub-goals

in the SCF. Scene Object denotes the objects that

constitute the scene of learning content.

In other words, with OOICM, learners need to play a

character, defined as an SO, to perform some actions,

defined as Activities, with other SOs to achieve the

sub-goal and finish the story, defined as SCF.

HelloHello

Subgoal

ˇ̌̌̌

ˇ̌̌̌

ˇ̌̌̌

Figure 1: OOICM overview

3.1. Story Control Flow (SCF)

 The SCF denotes a flow of sub-goals in a

Role-Playing learning content. In other words, SCF is

the story, which is a control flow to describe a flow of

events that the learner has to experience, in the

Role-Playing learning content. In [5, 6], the planning is

applied to represent the story. In Interactive Drama

Architecture (IDA) [7, 8], partial-ordering graph is used

to represent story. In [9], Petri Net is used to model an

atomic action called transaction. There are three

relationships of ordering and two logics relationships

between transactions. The language that Petri Net

generates can be used to characterize the topology of the

virtual space in a game [10]. In [11], in order to

characterize narrative structures, they propose

“narrative nets” (N-nets), which are based on colored

Petri nets. In [12], a representation framework called

Narrative Flow Graphs (NFG), derived from 1-safe Petri

Net, is proposed. NFG can be used to verify desirable

properties, or as the basis for a narrative development

system. These researches mainly attempt to verify the

properties of the story flow such as the balance between

the user control and the story coherence, but their story

representation can not be easily understood by authors.

Besides, a complete interactive learning content must

contain Actions and Scene Objects, which can not be

represented by above methodologies. Therefore, we

define the SCF to model the story as follows.

Definition 1

The Story Control Flow is a 3-tuple SCF = (N, C, O),

where

1616

1. N = {n1, n2, …, nm}, which means the plots in a story,

is a finite set of SCF nodes. ni includes four types which

are Start, End, Connective, Regular, and Super.

� The Start node and End node are the unique atomic

nodes that specify the start and the end of a game

respectively.

� The Connective node is an atomic node just for

connecting different connectors.

� The Regular node is an atomic node that denotes the

sub-goal in a game. It has an attached activity

declaration.

� The Super node is a composite node that can be

taken apart into nodes and connectors. An SCF can

be encapsulated into a Super node, which can be

reused as a single node in another SCF. When an

SCF is transformed into a Super node, the Start node

and End node in the SCF will both become a

Connective node.

2. C = {c1, c2, …, cn}, which means the flow directions

of plots, is a finite set of SCF connectors. A connector ci

= (TN, HN, t) is considered to be directed from TN to

HN.

� TN⊂N. TN is called the PreNodes of ci. The side

that connects to TN is called tail of ci.

� HN⊂N. HN is called the PostNodes of ci. The side

that connects to HN is called head of ci.

� t denotes the type of the connection. There are five

types which are “Linear”, “Concurrence”,

“Selection”, “And”,and “Or”. If |TN| = |HN| = 1, the

t would be “Linear”, and if |TN| = 1, |HN| > 1, the

branching sub-goal of HN can be “Concurrence” or

“Selection” which means learners can achieve the all

sub-goal or can select only one sub-goal. If |TN| > 1

and |HN| = 1, the sub-goal of TN may be “And” or

“Or” means that all or one of the previous sub-goals

should be achieved.

3. O = {o1, o2, …, oq}, which means the cast, is a finite

set of Scene Object declarations. oi = (type, variable),

where type is the type of oi, variable is the identification

for oi.

 To our knowledge, SCF is enough to represent most

scenarios. The following is an example to illustrate SCF.

Example 1. The standard graduation procedure

training

Figure 2 shows a partial graduation procedure, which

is a standard operation procedure for a graduate to get a

graduation certificate. In the procedure, the player has to

talk to Mary to receive hints, and then the player knows

that he/she has to make three copies of papers and give

them to the laboratory. At the same time, the player also

has to return the key of the research laboratory to the lab

manager. In SCF, we use regular nodes to represent all

the sub-goals, such as “Talk to Mary”, “Make three

copies of papers”, use “Concurrence”, marked as “C”, to

represent that the two sub-goals can be achieved

concurrently, and use “And”, marked as “A”, to

represent that the two sub-goals should be achieved both.

When the learner reaches the End node, the activity is

completed. This SCF can be encapsulated into single

Super node, which can be reused as a part of story in the

larger scenario of standard graduation procedure

training.

Figure 2: The SCF of the standard graduation

procedure training

3.2. Activity

Activity is the action that the player can perform.

Some activities may achieve some sub-goals in the SCF.

The basic principle is that if the precondition of an

activity is satisfied, this activity will be executed, and

causes some post action to be executed. As shown in

Table 1, authors must assign values to four basic

attributes for every activity.

Table 1: The attributes of an activity
Attribute Description

Participants
Specify the participants for the activity. The
format is (<t1> p1, <t2> p2, …, <ti> pi, ….).
Scene object pi must conform with type ti.

Effect
Specify the effect after the activity is finished.
Some APIs will be provided for authors.

LifeCycle

Specify when the activity can be performed.
There are six options.
○1 “Default”: If this activity is attached to some
SCF node, it can be performed when the node is
enabled. If this activity is not attached to any
SCF node, it can be performed anytime.
○2 “Always”: This activity can be performed
anytime.
○3 “AE_NodeName”: After the given SCF node
is enabled, this activity can be performed.
○4 “AF_NodeName”: After the given SCF node
is finished, this activity can be performed.
○5 “BE_NodeName”: Before the given SCF
node is enabled, this activity can be performed.
○6 “BF_NodeName”: Before the given SCF
node is finished, this activity can be performed.

Sub-goal

Specify the node in the SCF. The activity will
be attached to a given node (sub-goal) in SCF.
After the activity is finished, the sub-goal will
be achieved.

In this paper, we predefine five kinds of activity

templates which are “Conversation”, “Take Item”, “Use

Item”, “Trade”, and “Time”. “Conversation” denotes

that the player has a conversation with another Non

Player Character. “Take Item” denotes that the player

takes some item to his inventory. “Use Item” denotes

that the player uses some item in his inventory (to some

1717

target). “Trade” denotes that the player buys some item

from a trader and then the item is put in the player’s

inventory. “Time” denotes that some event will be

triggered after a given interval of time. If a new kind of

activity is required, a new template can be added to

extend the activity templates. These five templates have

the default preconditions and are described in Table 2.

Table 2: Activity templates
Activity
Template

Attribute

Participants
Type

(<PlayerCharacter> pc,
<NonPlayerCharacter> npc)

Default
Precondition

pc collides with npc and the mouse click
pc.

Conversation

Dialog
{(speaker1, content1), (speaker2,
content2), …}

Participants
Type

(<PlayerCharacter> pc, <Item> item)

Take Item
Default
Precondition

pc collides with item, and item is selected
by the mouse.

Participants
Type

(<PlayerCharacter> pc, <Item> item,
<SceneObject> target)

Use Item
Default
Precondition

Case 1: target is null
The player clicks the useButton for item
in pc’s ventory.
Case 2: target is not null
When pc collides with target, the player
clicks the useButton for item in pc’s
ventory.

Participants
Type

(<PlayerCharacter> pc,
<NonPlayerCharacter> npc, <Item>
goods) Trade

Default
Precondition

pc collides with npc and the player clicks
the buyButton for goods.

Participants
Type

(<SceneObject> so)

Time
Default
Precondition

A given time interval elapses.

3.3. Scene Object (SO)

Scene Object denotes the objects that constitute the

scene, e.g., a person, a dog, a tree, and so on. In order to

describe the features and concepts of various SOs, we

propose Scene Object Ontology to classify SOs with the

inherited attributes and relations. As shown in Figure 3,

SOs are classified into Dynamic Object which is an

animate object such as an animal and Static Object

which is an inanimate object such as a building. The

relation among SOs in Scene Object Ontology is “A kind

of”, which denotes the inheritance from the parent. For

example, “Non Player Character” is a kind of “Dynamic

Object”, so the attributes of “Dynamic Object” are

inherited by “Non Player Character”. The details of all

scene objects are shown in Table 3.

Non Player

Character

Player

Character

Dynamic

Object

Base

Scene

Object

Static

Object

Item Transfer

Sapce

A Kind Of

Figure 3: Scene Object Ontology

Table 3: The descriptions of concepts in Scene Object

Ontology
Scene Object Type Description
Base Scene Object The base object in a scene.
Dynamic Object The animate object. For example, a dog.
Non Player
Character

The AI object.

Player Character
The object that can be controlled by the
player, i.e. the protagonist.

Static Object
The inanimate object. For example, a
building.

Item
The object that can be taken and used by
the Player Character. For example, a pen.

Transfer Space
When touching the Transfer Space, the
player will be transferred to another
scene. For example, a door.

4. System Layer of OOICM

In order to separate the high level knowledge from

low level implementation, the system layer of OOICM,

where we apply Petri Net based rule set to model SCF,

and the frame knowledge representation to model

Activity and SO, is defined. The system layer of OOICM

can make transformation from OOICM into

ActionScript easier with the powerful knowledge

representations, frames and Petri Net, as middleware,

and OOICM can be extended without modifying

ActionScript code structures, because the system

actually handles rule set and frames with fixed execution

mechanism.

4.4. Petri Net for SCF (SCFPN)

The Petri Nets are used to model the SCF, and can be

transformed into rules, which are easy to be executed,

when system is running. The definition of Petri Net for

the SCF is described as follows, and the transformation

method is shown in Table 4, Table 5.

Definition 2

The Petri Net for Story Control Flow is a 5-tuple.

SCFPN = (P, T, F, W, M 0), where

1. P = {p1, p2, …, pm} is a finite set of places. P includes

five types of places.

� PP: The progress of a story.

� PS: The start of a story.

� PE: The end of a story.

� PL: Check whether the activity is completed.

2. T = {t1,t2,…, tn} is a finite set of transitions which

disjoint form P (P∩T=0)

3. F P)(TT)(P ×∪×⊆ is a set of arcs (flow relation).

4. W : F→{1,2,3,…} is a weight function.

5. M0 : P → {0,1,2,3,…}is the initial marking and M0(PS)

= 1.

1818

Table 4: The corresponding Petri Net for SCF nodes.
SCF Node

Type
Petri Net Notation

SCF Node

Type
Petri Net Notation

Start Virtual

End Normal

Table 5: The corresponding Petri Net for SCF

connectors.
 SCF Connector

Type
Petri Net Notation

SCF Connector

Type
Petri Net Notation

Linear And

Concurrence Or

Selection

Example4. Transform SCF in Example 1 into

SCFPN.

Figure 4 shows the steps to transform the SCF of

Example 1 into the corresponding Petri Net. In Step 1, a

new empty Petri Net pn is created. In Step 2, every node

ni is transformed into the corresponding Petri Net. In

Step 3, every connector ci is transformed into the

corresponding Petri Net and arcs are created to connect

PreNode and PostNode of ci.

Figure 4: Transform SCF in example 1 into Petri Net

4.5. Activity Frame

The frame of an activity is shown in Table 6.

PreCondition slot and InActivity slot have default values,

and the other slot values are specified by the author, as

shown in Table 7.

Table 6: The descriptions of the slots in an activity

frame.
Activity

Slot Name Type Description

Actor Scene Object
Scene objects that participant in
this activity.

PreCondition Rule
The condition that triggers this
activity to start.

LifeCycle String
Specify when the activity can
be performed.

InActivity Procedure
The actions that will be
executed when the activity is
proceeding.

Result String
The result of this activity. So
far, it is useful for only
Conversaton activity.

PostAction Rule
The actions that will be
executed after the activity is
finished.

GoalTest Rule
The sub-goal that this activity
will achieve in SCF.

Table 7: Five kinds of templates of activity
Activity
Template

Default Slot Value

PreCondition

If Actor.Collision(SceneObject
target) == true AND ,
target.onRelease == true, then
trigger InActivity.

Conversation

InActivity Call Conversation.run()

PreCondition
If Actor.Collision(Item target) ==
true AND target.MouseDown ==
true, then trigger InActivity.

Take Item

InActivity Call TakeItem.run()

PreCondition

If Actor.Collision(SceneObject
target) == true AND
Actor.Inventory.Items[i].clickUse
== true, then trigger InActivity.

Use Item

InActivity Call UseItem.run()

PreCondition

If Actor.Collision(SceneObject
target) == true AND
target.goods[i].clickBuy == true,
then trigger InActivity.

Trade

InActivity Call Trade.run()

PreCondition
If Time.Elapsed == timeInterval,
then trigger InActivity. Time

InActivity Call Time.run()

Example 5. A Conversation Frame Instance

The Conversation frame instance is shown in Figure 5.

If John collides with Mary, a Conversation procedure

will be called to show the dialogs of John and Mary.

When the conversation ends, a result value will be added

to the Result slot. After that, PostAction and Goal will be

triggered. PostAction checks the Result slot value, if the

value is “result1”, then the appearance of Mary will be

changed. Goal also checks the Result slot value, if the

value is “result1”, then it means sub-goal1 is achieved.

“Default”LifeCycle

if Result == Result1, set subgoal1 = trueGoalTest

if Result == result1,

set Mary.appearence = “smile.gif”

PostAction

result1Result

Conversation procedureInActivity

if Actor.Collision.Name == Mary

then trigger InActivity

PreCondition

JohnActor

ValueSlot Name

Conversation

“Default”LifeCycle

if Result == Result1, set subgoal1 = trueGoalTest

if Result == result1,

set Mary.appearence = “smile.gif”

PostAction

result1Result

Conversation procedureInActivity

if Actor.Collision.Name == Mary

then trigger InActivity

PreCondition

JohnActor

ValueSlot Name

Conversation

If added

Trigger PostAction and

GoalTest

Figure 5: An instance of Conversation frame

1919

4.6. Scene Object Frame

We apply the frame knowledge representation to

describe the attributes of the scene object. The attributes

of the scene object can be classified into three categories

which are resource, profile, and behavior. Resource

denotes the external files of the scene object. Profile

denotes the personal data of the scene object. Behavior

denotes the event-driven behavior. The definition is

described as follows.

Definition 3

The Scene Object Frame is a 4-tuple. SOF = (FN, Rel,

S), where

1. FN is the name of a frame.

2. Rel = {rel
1
, rel

2
, …,rel

h
} and rel

k
= <relation, FN>

which is the relation with other frame specified by

frame name FN. There are three types of relation –“a

kind of”, “a part of”.

3. S = {s
1
, s

2
, ..., s

n
}is a finite set of slots, and s

i
= <SN

i
,

V
i
, P

i
>, where

� SN
i
is the name of the i-th slot

� V
i
is the value of the i-th slot.

� P
i
is a attached procedure that can be triggered by

“if added” events.

Example 6. A frame instance for Non Player

Character

 Figure 6 shows an example of Non Player Character

frame. The scene object Mary will be located at the

coordination (10,100), and its appearance is the image

from “C:\Mary.png”. The Collision slot is null because

no other SOs collide with it.

profile

resource →

behavior → nullCollision

“C:\Mary.png”Appearance

Width = 20, Height = 30Size

(10,100)Location

MaryName

ValueSlot

Non Player Character

nullCollision

“C:\Mary.png”Appearance

Width = 20, Height = 30Size

(10,100)Location

MaryName

ValueSlot

Non Player Character

Figure 6: The frame representation of a SO

4.7. The OOICM Running Process

In this section, we will discuss the running process of

frames and Petri Net. We give an example of a simple

conversation scenario to explain that.

Example 7. The learning content of a simple

conversation scenario.

Continuing from the Example 5, the initial mark of

SCFPN is State 1 shown in Figure 8. PS has one token.

As shown in Figure 7, the scene of the learning content

contains two scene objects which are Player Character

type and Non Player Character type respectively. To

simplify out description, we only show the partial frames

in our example. The man called John and the girl called

Mary will have a conversation activity. The frame

representation of the conversation activity called CsAT

is shown in the bottom side of Figure 7.

“Default”StringLifeCycle

(Activity) CsAT is a Conversation

“Result1”StringResult

if Result == Result1,

set Mary.appearence = “MaryHappy.png”

RulePostAction

Conversation procedureProcedureInActivity

if Result == Result1, set cs1 = trueRuleGoalTest

JohnDynamic

Object

Actor

if Actor.Collision.Name == Mary

then trigger InActivity

rulePreCondition

valueTypeSlot Name

“Default”StringLifeCycle

(Activity) CsAT is a Conversation

“Result1”StringResult

if Result == Result1,

set Mary.appearence = “MaryHappy.png”

RulePostAction

Conversation procedureProcedureInActivity

if Result == Result1, set cs1 = trueRuleGoalTest

JohnDynamic

Object

Actor

if Actor.Collision.Name == Mary

then trigger InActivity

rulePreCondition

valueTypeSlot Name
Procedure()
{

if(…)
{
dialog.show();

…

}
else

{
…

}
…

}

If added trigger
PostAction and GoalTest

2

3

4

5

67

8

10

(200,100)PointLocation

(SO) John is a Player Character

“John”StringName

Scene Object

Type

MaryCollision

ValueSlot name

(200,100)PointLocation

(SO) John is a Player Character

“John”StringName

Scene Object

Type

MaryCollision

ValueSlot name

If added,

Set this to CSwithMary.Actor
Trigger CSwithMary.PreCondition

1

(SO) Mary is a Non Player Character

“Mary”StringName

String

Type

“MaryHappy.png”Appearance

ValueSlot name

(SO) Mary is a Non Player Character

“Mary”StringName

String

Type

“MaryHappy.png”Appearance

ValueSlot name

9

RPG-like Learning Content

Figure 7: The OOICM running process

After the learning activity starts, the Petri Net runs

and becomes State 2 in Figure 8. All scene objects are

set according to their frames. The player can press up,

down, left, and right key to move John. When the player

presses left key, the user event interrupt happens, and if

John collides with Mary, CsAT will be triggered as

shown in Figure 7. In the inference process 1, the

Collision slot value of John frame is added and then the

attached procedure is triggered. In 2, Actor slot value of

CsAT is added. In 3, the process should check whether

PreCondition is satisfied. In 4, if PreCondition is true,

the procedure of InActivity is run. In 5, the procedure of

InActivity causes John and Mary to converse. In 6, after

the conversation, the procedure of InActivity adds result

to Result slot. In 7, Result slot is added, so attached

procedure is triggered. In 8, the PostAction procedure is

run to set Appearance slot of Mary frame. In 9,

Appearance slot of Mary frame is updated. In 10, the

GoalTest procedure is run to add a token in Petri Net,

and therefore Petri Net for SCF becomes State 3 in

Figure 8. Final, the Petri Net runs again and becomes

State 4 in Figure 8. The learning activity will continue

until PE in Petri Net has one token and the story ends.

...PP1

talk
PL1

PP11PS PP2

1
2

3

4
PE

5

Figure 8: The running process of Petri Net

2020

5. Implementation

 In this Section, we will introduce our generator that

can generate ActionScript codes and then compile the

codes into Flash file. Figure 9 shows the prototype

system of the generator. The SCF will be transformed

into Petri Net based rule set. Activity and SO will be

transformed into frames by filling in the slots of frames

according to the attributes of Activity and SO. Because

we apply rules to model SCF and apply frame

knowledge representation to model Activity and SO in

the system layer of OOICM, the system environment

must contain a frame engine to make rules and frames

work cooperatively. Therefore, we implement the Petri

Net engine and frame engine in ActionScript, and

propose an algorithm OOICM2AS to transform rule set

and frames into ActionScript codes.

U
I

T
ran

sfo
rm

O
O

IC
M

2
A

S

Figure 9: A prototype system based on OOICM

(1) Frame Engine

A frame engine is necessary in order to handle the

inference of activity frames and SO frames. We

implement each activity frame and each Scene Object

frames as several ActionScript classes. The

communications among frames and Petri Net mainly

rely on the ActionScript API dispatchEvent().

(2) OOICM2AS

 OOICM must be transformed into ActionScript

(AS) code so that the compiler can compile the code into

SWF file. We have implemented SCFPN AS class,

Activity AS class, SO AS class. OOICM2AS is a tedious

file and string processing. It writes appropriate string

into AS code file according to the setting of Petri Net

and frames.

(3) Generator

 Our generator has four inputs and one output.

“Story.xml”, “Activity.xml”, and “Scene.xml” are the

specifications of SCF, Activity, and Scene Object

respectively. Transform process will parse these xml

files and then apply OOICM2AS algorithm to

transform them into ActionScript file called

“FlashLC.as”. “Source.xml” describes what asset is

imported, such as images and sounds. It is the input for

Swfmill [13] that is an xml2swf and swf2xml processor

with import functionalities. Swfmill will import the

assets described in “Source.xml” into a blank flash file

called “source.swf”. After that, “FlashLC.as” and

“source.swf” are inputted to MTASC [14]. MTASC is an

ActionScript 2 Open Source free compiler. It can

compile large number of .as class files in a very short

time and generate directly the corresponding SWF

bytecode without relying on Adobe Flash or other tools.

“FlashLC.as” may call function from Library, so

MTASC has to import class from Library. Final,

MTASC will generate a Flash file called “FlashLC.swf”.

6. Experiment

 For evaluating the OOICM model, we have

implemented a generator based on OOICM. The

generator transforms XML file into Flash file. Authors

construct the Role-Playing learning content by editing

XML. In addition, a scenario is given to evaluate the

expressive power of OOICM and we also compare the

generator with Adobe Flash and RPG-Maker.

6.1. Experiment Design

 We use the generator to generate the learning

content and compare with Adobe Flash and RPG-Maker.

The experiment gives a scenario of the standard

operation procedure. The player plays the role of a

graduate. The scenario describes the player has to

complete several procedures in order to get the

graduation certificate. Figure 10 shows the SCF, and

Figure 11 shows the screenshot of the game.

Figure 10: The SCF of our experiment

Figure 11: The screenshot of the learning content

2121

6.2. Experiment Results

 We count the steps of constructing this learning

content for our generator and RPG-Maker. Figure 12

shows the comparison of the number of steps. When

constructing a new learning content in our experiment

design, the generator spends about 350 steps and

RPG-Maker spends about 250 steps. Because we have to

construct SCF, the cost for constructing a new learning

content is more than RPG-Maker. However, the

generator spends fewer steps than RPG-Maker for

reusing a learning content. In the experiment, we reuse

the SCF, the author just reconfigure the activities and

SOs. In addition, the AS code, generating by generator,

contains 686 lines. If we take the other library into

account, authors have to write more than 686 lines of

code in Adobe Flash.

0

50

100

150

200

250

300

350

400

Construct Reuse

S
te

ps Generator

RPG-Maker

Figure 12: The comparison of the number of steps

7. Conclusion

In this paper, we apply knowledge-based approach to

propose OOICM, which is composed of SCF, Activity,

and SO. We apply Petri Net to model SCF and apply

Frame knowledge representation to model Activity and

SO. Ontology is proposed to describe the relations of all

kinds of SOs. Moreover, we also implement a

Role-Playing interactive learning content generator and

evaluate the effectiveness of Role-Playing interactive

learning content authoring by means of OOICM. The

result shows that this generator can help authors

construct a Role-Playing flash learning content without

low level programming and it can make reuse of content

scenario easily.

8. Acknowledgement

This research was partially supported by National

Science Council of Republic of China under the number

of NSC95-2520-S009-007-MY3 and NSC95-2520-

S009-008-MY3.

9. References

[1] Teed, R. Role-Playing Exercises. 2006 [cited 2007 Jul

20]; http://serc.carleton.edu/introgeo/roleplaying/.

[2] Adobe. Flash Player Penetration 2007 [cited 2007 Jul 20];

http://www.adobe.com/products/player_census/flashplay

er/.

[3] Adobe. Adobe Flash. 2007 March 3 [cited 2007 Jul 20];

http://www.adobe.com/products/flash/.

[4] Enterbrain. RPG Maker. 2006 Jan 31 [cited 2007 Jul 20];

http://www.enterbrain.co.jp/tkool/RPG_XP/eng/.

[5] Riedl, M.O., C.J. Saretto, and R.M. Young, Managing

interaction between users and agents in a multi-agent

storytelling environment, in Proceedings of the second

international joint conference on Autonomous agents and

multiagent systems 2003.

[6] Young, R.M., et al., An Architecture for Integrating

Plan-based Behavior Generation with Interactive Game

Environments. Journal of Game Development, 2004. 1(1).

[7] Magerko, B., et al., AI Characters and Directors for

Interactive Computer Games, in Proceedings of the 2004

Innovative Applications of Artificial Intelligence

Conference. 2004: San Jose, CA.

[8] Magerko, B., Story Representation and Interactive Drama,

in 1st Artificial Intelligence and Interactive Digital

Entertainment Conference. 2005.

[9] Natkin, S. and L. Vega, A Petri Net Model for Computer

Games Analysis. International Journal of Intelligent

Games & Simulation, 2004. 3(1).

[10] Vega, L., et al., A new Methodology for Spatiotemporal

Game Design, in Fifth Game-On International

Conference on Computer Games: Artificial Intelligence,

Design and Education. 2004.

[11] Purvis, M., Narrative Structures for Multi-Agent

Interaction, in Proceedings of the IEEE/WIC/ACM

International Conference on Intelligent Agent Technology.

2004.

[12] Verbrugge, C., A Structure for Modern Computer

Narratives, in International Conference on Computers

and Games. 2002.

[13] OSFlash. swfmill. 2007 Mar 16 [cited 2007 Jul 20];

http://osflash.org/swfmill.

[14] Motion-Twin. MTASC. 2005 [cited 2007 Jul 20];

http://www.mtasc.org/.

2222

