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The exciton binding energy and the low-lying exciton states in a type-II broken-gap
quantum well structure are studied. The conduction electron and the hole that form the
exciton are spatially separated and are each confined by a quantum well. A variation-
basis-set approach is proposed in which a set of variation basis set wavefunctions are
constructed from the eigenstates of a variation Hamiltonian. The calculation of the
exciton states can be carried out systematically and the accuracy of the state energies
can be estimated. Numerical examples are presented, showing the rapid convergence
of the excitonic levels with respect to the size of the variation basis set in and beyond
the small well width regime. The effective binding energies for the states are found
to increase with the decreasing of the well width. The low-lying exciton states in and
beyond the small well width regime are presented.

PACS. 71.35.-y - Excitons and related phenomena.
PACS. 31.15.Pf  - Variational techniques.
PACS. 73.20.-r - Surface and interface electron states.

Excitons in semiconductor heterostructures have been of continued interest, both
theoretical and experimental [l-9], in the past two decades. The reasons are firstly, that
the excitons can affect significantly the optical properties of the structures. Secondly, that
the exciton gas, being generated in semiconductor quantum well structures, is a system
favorable for the search of an excitonic phase [g-11].  However, in a type-1 heterostructures,
which are the most studied semiconductor structures, the excitons are formed from electrons
and holes confined in the same quantum well and thus the exciton state is susceptible to
the recombination between the two types of charge carriers. This recombination problem
is expected to be removed in a type-II broken-gap quantum well structure [1,2].

A type-II broken-gap quantum well structure involves, apart from the wide band gap
barrier material, two semiconductors of which the respective band gaps do not overlap in
energy [12,13]. The valence band edge of one of the semiconductors lies in energy above
the conduction band edge of the other semiconductors, resulting in transferring of electrons
from the former to the latter semiconductor, when the quantum well widths are not too
small. This spatial separation of electrons and holes allows for the formation of much stable
excitons. The recombination between the electrons and the holes can be further suppressed
by inserting a separating barrier, formed from a wide band gap material, in between the
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two semiconductors. The confinement on the electrons and the holes can be imposed from
barriers fabricated at both ends of the structure. The exciton binding energy is increased
by decreasing the well width but is decreased by increasing the spatial separation of the
electrons and the holes.

The exciton binding energy in such type-II broken-gap quantum well structures, but
with small well widths (L << a*), has been studied by Bastard et al. [l], Zhu et al. [3], and
Xia et al. [6],  using various versions of variational wavefunctions in their calculations. Here
a* is the effective Bohr radius. Alternatively, an expansion method has been proposed [6]
in which the subband wave functions for the electron and the hole are used as the basis.
This expansion method leads to a group of coupled differential equations, which has to be
solved numerically. Though general in its approach, the expansion method is too involved
numerically. On the other hand, the variational wavefunction approach is simple in its
calculation, but gives only the ground exciton state. In all these methods, however, the
forms of the wavefunctions have been chosen such that they are more appropriate for narrow
well width cases. Thus we propose, in this work, a variation-basis-set approach which
appropriateness covers larger well widths (0 < L N a*), while it is efficient numerically.
Furthermore, the method can be used to obtain the excited states.

The variation-basis-set approach is an extension of a perturbative-variational method
proposed by Mei and Lee [14,15], who used a variation hamiltonian, instead of a variation
wavefunction, in their study of the impurity states in anisotropic crystals. The difference
between the actual and the variation hamiltonian was treated perturbatively. By imposing
a rapid convergence condition on the first order energy term in the perturbation expansion,
the value for the variation parameter as well as the ground state energy were determined.
This method is very general and has been applied to the finding of the exciton binding
energy in type-1 quantum well systems [16-181.  The effectiveness of the method hinges on
the choice of the variation hamiltonian, which has to be tractable yet retaining the essential
physics of the actual hamiltonian. In this work, we propose to make a better use of the
basis set of wavefunctions that are constructed from a variation hamiltonian. We first
introduce a variation hamiltonian for the type-II broken-gap quantum well systems and
then construct a basis set of wavefunctions from the eigenstates of the hamiltonian. The
basis set of wavefunctions are, by construction, orthogonal and variational, and is used to
diagonalize the actual hamiltonian. Finally, the variation parameters are determined from
minimizing the ground state energy.

In our calculation, the dielectric constant 6 is taken to be a constant throughout
the type-II broken-gap quantum well. For the barrier layer, the band gap is assumed wide
enough, encloses not only the band gaps of both the electron and the hole layer materials,
but allows us to approximate it as an infinite potential barrier. The electron mass rn: and
the hole mass ml are the effective masses of the respective materials, with rn; taken to
be that of the heavy hole. The above assumptions are reasonable for a qualitative study
and for a typical type-II broken-gap system such as the GaSb-AlSb-InAs  quantum well
structure [l,S]. The purposes of this paper are: to present model calculations for the well
width dependence of the low-lying exciton states, and to present an approach which can be
easily extended to more quantitative studies in the future.

The hamiltonian for an electron-hole pair in a type-11 quantum well is
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where V,, Vh are the confining potentials of the quantum wells for the electron and the hole,
respectively. As have been mentioned above, we assume a perfect confinement for both of
the charges [6] so that the confining potentials V,, Vh are infinite square well potentials. For
simplicity, we consider the symmetry case where the two well widths L are the same. The
coordinates for the electron z, and the hole .zh are measured from the interface between the
separating barrier and the respective well. Without loss of generality, we shall drop, from
Eq. (l), the kinetic energy due to the motion of the center of mass parallel to the interface.
The hamiltonian is then given by

H= -fW;-&$- 2

e h dp2 +  (Ze +  zh +  w)2

+x(Ze)  f vh(zh) ,
(2)

where y = mz/m;l, and ,O = ml/p. Here w is the width of the separating barrier, p =
mEml/(rnz  + m;E) is the reduced mass, and p’  = (r, - rh)ll  is the relative displacement
parallel to the interface. In obtaining Eq. (a), we have chosen the effective Bohr radius
cz* = hîc/(mzeî),  and the effective Rydberg R’ = e2/(2eu*).

We introduce a variation Hamiltonian 8

I;T = H, + H/, + flFI,, (3)

where

and

He-&-
e

ze + ì, + w + KCze)7

H/, = -7 $ -
h

zh +; + w +  vh(zh),

(4)

(5)

In the variation hamiltonian a, the perpendicular motion of the electron and the
hole are given by H, and Hh, respectively, which have incorporated the effect of the hole
(electron) on the electron (hole) in H, (Hh) through a coulombic  term characterized by a
positive variation parameter a (b). We point out that this choice of the variation hamil-
tonians H, and Hh has the nice features that the confining potentials dominate when L
is small and the  term dominates when L is large. Thus H, and Hh should be
appropriate from the small L (L < a*) to the large L (L > a*) regime. The eigenstates and
eigenvalues for these two hamiltonians, with the dependence on the variation parameters
not explicitly shown, are given by

_
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(7)

and are solved numerically by a Runge-Kutta procedure.
The hamiltonian H, is a two-dimensional hydrogenic hamiltonian with an effective

electron charge -e*e, where -e is the charge of a free electron. The eigenstates I$I~,~,~)
are given by

(píi$~~,~,~)  = A eim4 film’  e

where  @ = e-p//3, m = 0,&l, 4~2 .., k = 0,1,2..,  and nz = k + jrnl + f. Here A is the
normalization constant, F(cY,&,u)  is the Kummer function, m is the azimuthal quantum
number, and EPVrn,k = -e*2/(/3ni)  is the corresponding energy eigenvalue.

The choice of the variation hamiltonian a seems to have the two dimensional (2D)
motion decoupled from the one dimensional (1D) motion. This decoupling is roughly the
case for L < a*, as have been considered in previous variational studies [l, 3,5,6].  But in
the case of not-so-narrow well widths, a better scheme has to include the coupling between
the 2D and the 1D motions. This coupling feature is taken into account here by a heuristic
relation that determines the value of eí. An electric-field-balancing argument [19] is used
to obtain the relation

(10)

w h e r e  Z,R = .z,,-~ t a t w. Here G,,,, is the position at which I(z,/$J,,~)~~ is at its
maximum, and peff is determined from the maximum of I(p($~~,~,n)l~p.  A straightforward
calculation gives peff = p (2]mj  t 1)2/(4e*). The d pe endence of e* on 20, m, and a provides
the coupling between the perpendicular and the parallel motions of the electron and the
hole. This choice of e* is found to greatly enhance the efficiency of the exciton states
calculation.

The eigenstates for I? is denoted by

where N represents the set i,j, and k. The azimuthal quantum number m is a good quantum
number for both fi and H. The exciton ground state is the lowest energy eigenstate of H,
with m = 0. The excited states of the exciton are the higher energy eigenstates of H with
m = 0, and all the eigenstates of H with m # 0. Traditional variation method can provide
an approximation to the lowest energy eigenvalue for each m. Here we proceed to calculate
the other excited states systematically.

In our approach, for a fix m, the wavefunctions Is?) form a variation basis set which,
by construction, is orthogonal and variational. Using these wavefunctions, we obtain the
matrix elements H,yi:,, = (@jJHj$~,),  which expression is given by

-_ ._.
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In principle, when the entire basis set of wavefunctions are used, the exciton energy levels
EE should not depend on the variation parameters. But in practice, when only a finite
number of wavefunctions from the basis set are used, the energy levels would depend on
the variation parameters. Therefore, we fix the values of a, and b by the conditions

aHG = 0

da ’ (13)

The low-lying exciton levels EF, where N = 0, 1,2,.  . . , with N = 0 corresponds to the
lowest levels of the series, are determined from the condition

det]HgNj  - E 6~ppI = 0. (15)

In our numerical examples, we take the type-II broken-gap systems to be the GaSb-
AlSb-InAs  systems where the valence band edge of GaSb is higher in energy than the
conduction band edge of InAs, with AC = E,(GaSb)-  E,(InAs)  = 0.175eV  [S].  In addition,
as a result of the quantum well confinement, an effective indirect energy gap EG = -AC f
E,,o + Eh,O - EB can be used to indicate whether the electron and the hole favor spatial
separation [6].  Here EB = E,,o + Eh,O - Eo is the exciton binding energy. The indirect
energy gap EG can be tuned from positive to negative by increasing the well width L. The
electron and the hole prefer spatial separation only when EG is negative. This is the region
considered in our numerical examples.

For the other physical parameters, we have rnz = O.O23m,,  m;l. = 0.4m,,  and 6 =
14.7. Thus a* = 338 A, and R* = 1.45meV. In our calculation, for a given m, we have
chosen up to six wavefunctions from the basis IQ?;).  These wavefunctions involve the states

~~e,o)~ë+h,o)~~~,m,k  7) where only the lowest energy states from H, and H,I,  are included. We
have attempted to include, in the basis set, higher energy states from H, and Hh, but the
effect on the low-lying exciton states is found to be very small.

In our numerical results, we plot the effective binding energies E$ = E,,o+ Eh,O - E$,
instead of the energy levels EF, for the exciton states. Had we included the complete basis
set of fi, the effective binding energies E$’ would have been exactly determined. But, in
practice, we can only include a finite basis set. Hence the effective binding energies, denoted
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by E,ì(M),  will depend on the size A4 of the basis set. The effectiveness of our approach
can be tested by tracing how rapid k,ì(M)  converges to J!!?; as M increases, as we will
present in the following.

The results for the m = 0 case are shown in Figs. (l)-(3).  In Fig. 1, the m = 0
exciton energy levels, represented by their corresponding effective binding energies, are
plotted as a function of the well width L. The separating barrier width w = 0.2 and the
range of L is up to aî. In all four of the energy levels shown, their effective binding energies
increase as L decreases. The ground state binding energy @, which varies over 0.5 R’ in
Fig. 1, is most sensitive to L. The values of the variation parameters a and b depend on L
and, as shown in Fig. 2, the dependence on L is quite smooth which shows the numerical
stability of the results.

Since the maximum basis set size used in this calculation is M = 6, the effective
binding energies shown in Fig. 1 are actually E;(S). However, these values are very close
to the exact values, because the uncertainties in the &,$(6)  values is found to be small. Both
the uncertainties in E&(6), and the rapid convergence of the E;(M) values with respect to
M are presented in Fig. 3. In Fig. 3, the deviation A$&(M)  = E;(M)  - E&(6)  is plotted
against L, for M = 1,4, and 5. The E;(l) is defined as (~~IHj\k~).  The convergence is
quite rapid and the estimated uncertainties of the respective levels can be read off from the

1.6

I.?.

0.4

FIG. 1. Four lowest m = 0 exciton levels ver-
sus well width L. The barrier width
w = 0.2. The levels are given in
terms of the effective binding energy
ki, with N = 0 corresponds to that
of the ground exciton state.

FIG. 2. The variation parameters a, b versus
well width L for m = 0, and w = 0.2.

-
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FIG. 3. The convergence of the four lowest m = 0 exciton levels E;(M) with respect to the size
M of the variation basis set is shown for various L . The barrier width w = 0.2. The

curves indicated by X, 0, and l correspond to the deviation of the energies E;(l), E&(4),
and E;(5), respectively, from the energy g:(S).  Graphs in (a) are for the ground state
(N = 0), while graphs in (b), (c), and (d) are for the excited states, with N = 1,2,

and 3, respectively. The convergence is quite rapid and the estimated uncertainties of the
respective levels can be read off from the curves indicated by 0.

values of A,!?N(~). From Fig. 1 and Fig. 3, it is found that the relative uncertainties in Es
are less than 0.02%, 0.5%, 2%, and 3%, for N = O,l, 2, and 3, respectively. In addition, the
binding energy in the small L (L < a*) regime compares favorably with previous variational
results [1,3].
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FIG. 4. Four lowest m = 1 exciton levels ver-
sus well width L. The barrier width
w = 0.2. The levels are given in
terms of the effective binding energy
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FIG. 5. The variation parameters a, 6 versus
well width L for m = 1, and w = 0.2.

The results for the m = 1 case are shown in Figs. (4)-(6). In Fig. 4, the four lowest
m = 1 exciton energy levels, represented by their effective binding energies l.?;,  are plotted
as a function of L. Again, all the effective binding energies increase as L decreases. The
N = 0 state, also called the 2p state, [20] has the largest effective binding energy of the
series. IIowever,  this is not the ground exciton state. The values of the variation parameters
a and b are shown in Fig. 5, which dependence on L is quite linear. In Fig. 6, the deviation
A,!?h(M)  = E,$(M)  - E,$(6)  is plotted against L, for M = 1,4, and 5. The Ek(l) is
defined as (Gh]H]*,$). The convergence is quite rapid and the estimated uncertainties are
given by the values of A&h(5). From Figs. (4) and (6), the relative uncertainties in ,??A
are found to be less than 0.05%,  0.5%, 1.5%, and 2%, respectively. These results show the
effectiveness of our approach.

This variation-basis-set approach can be extended quite straight-forwardly to the case
beyond perfect confinement, and also to the case when an external electric or magnetic field
is applied parallel to the growth direction.

In conclusion, we have proposed a variation-basis-set approach to calculate the low-
lying exciton states of a type-II broken-gap quantum well structure. The approach can be
applied to a large range of well width L and the effectiveness is demonstrated.
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FIG. 6.
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I. (37

The convergence of the four lowest m = 1 exciton levels EL(M) with respect to the size
M of the variation basis set is shown for various L. The barrier width w = 0.2. The
curves indicated by x, 0, and l correspond to the deviation of the energies E;(l), Eh(4),
and ,!?,$(5),  respectively, from the energy E;(6). Graphs in (a) are for the lowest level

(N = 0), while graphs in (b), (c), and (d) are for the excited states, with N = 1,2, and 3,

respectively. Note that the two curves indicated by 0, and l in (a) are almost on top of one
another. The convergence is quite rapid, and the estimated uncertainties of the respective
levels can be read off from the curves indicated by 0.
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