
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 26, 291-305 (2010)

291

Short Paper__

Texture Tiling on 3D Models Using Automatic

Polycube-maps and Wang Tiles*

CHIN-CHEN CHANG+ AND CHEN-YU LIN

+Department of Computer Science and Information Engineering
National United University

Miaoli, 360 Taiwan
E-mail: ccchang@nuu.edu.tw

Institute of Computer Science and Engineering
National Chiao Tung University

Hsinchu, 300 Taiwan

In mapping textures onto 3D models, it is essential to eliminate all seams and avoid

excessive distortions. To achieve these goals, texture tiling provides an alternative ap-
proach for texturing surfaces. In this paper, a texture tiling approach that combines poly-
cube-maps and Wang tiles for 3D models is proposed. The polycube of a 3D model is
first constructed automatically and a tiling mechanism is then used to fill the tiles on the
polycube. Finally, rectangular cells which are transformed from the polycube are gener-
ated and textures are mapped onto the 3D model. The results show that the proposed ap-
proach leads to seamless texture mapping on 3D models.

Keywords: computer graphics, texture mapping, texture tiling, polycube-maps, Wang tiles

1. INTRODUCTION

In mapping textures onto 3D models, enhancing the visual appearance of a 3D
model is important. Therefore, it is essential to eliminate seams and avoid excessive dis-
tortions. To achieve these goals, texture tiling offers an approach for texturing surfaces.
In the texture tiling approach, it is only necessary to synthesize textures on the tiles; a
process is independent of the surface geometry. Cube maps [1] provide a method for
seamless texture mapping. The shape of a 3D model should resemble a cube. Polycube-
maps [26] can break this restriction and decrease the distortion. However, users need to
be more involved to construct polycubes which takes more time. Therefore, developing
techniques for automatically determining appropriate polycubes with no user interven-
tion is critical.

In this paper, a texture tiling approach that combines polycube-maps and Wang tiles
for 3D models is presented. The proposed approach automatically constructs a poly-cube
which consists of cubes. It achieves seamless texture mapping between the 3D model and

Received February 14, 2008; revised May 21, 2008; accepted July 25, 2008.
Communicated by Tong-Yee Lee.
* This paper was supported by National Science Council of Taiwan R.O.C., under contract No. NSC 96-

2221-E-239-027.
+ Corresponding author.

CHIN-CHEN CHANG AND CHEN-YU LIN

292

Fig. 1. Flowchart of the proposed approach.

the polycube. The flowchart of the proposed approach is shown in Fig. 1. First, a user
inputs a 3D model and a sample texture image. Then, these two inputs are processed
separately. The polycube of the input model is constructed. Four diamond-shaped sam-
ples are randomly selected from the input texture. Next, the mechanism of Wang tiles is
reformulated to seamlessly tile textures onto a polycube. During the rectangular cell gen-
eration, the system converts the structure of the polycube to rectangular cells. Finally,
texture mapping is performed between the 3D model and the polycube according to the
mapping function of each rectangular cell.

The major contributions of this paper are as follows: First, the proposed approach
can automatically generate polycube-maps. User intervention can be avoided and the
proposed approach can reduce extra time. Second, generated polycube-map parameteri-
zation is used to do texture tiling. The desired texture mapping is easily obtained.

The rest of this paper is organized as follows: In section 2, related works of patch-
based texture synthesis, polycube-maps and Wang tiles are described. Then the construc-
tion of a polycube with tiled textures is presented in section 3. In section 4, the genera-
tion of texture mapping is proposed in detail. Sections 5 and 6 give the results and con-
clusions, respectively.

2. RELATED WORKS

2.1 Texture Synthesis

Efros and Freeman [9] presented a patch-based approach for texture synthesis. This
technique outperforms pixel-based methods for regular textures. Liang et al. [19] devel-
oped a patch-based sampling scheme for texture synthesis based on a source texture to
build blocks. Hertzmann et al. [14] proposed a new framework for processing images by

AUTOMATIC POLYCUBE-MAPS FOR TEXTURE TILING

293

example, called “image analogies.” The output textures have higher visual quality but
still have some undesirable artifacts. Wu and Yu [30] presented a feature-matching and
deforming algorithm for texture synthesis. Kwatra et al. [16] developed a texture synthe-
sis algorithm based on graph cuts. In their approach, patches from a source texture were
transformed and copied to the output and then stitched together along optimal seams to
generate an output texture. Dong et al. [6] proposed a patch-based texture synthesis algo-
rithm that cuts and stitches irregularly shaped patches (IRSPs) to generate output textures.

Wang tiles [4, 27, 28] are a tiling set consisting of a set of square tiles. The edges of
a tile are assigned different colors each of which corresponds to one sample. All shared
edges should have matched colors. Grunbaum and Shepherd [12] provided an algorithm
to tile a plane with a finite set of Wang tiles aperiodically. They create large non-repeti-
tive textures. Culik [5] proved that thirteen tiles are enough to tile aperiodically. Stam
[25] was the first to consider non-periodic Wang tiles for texture synthesis. He applied it
to the rendering of water surface. Cohen et al. [4] further investigated this approach and
invented an automatic method. They presented a simple stochastic system which non-
periodically tiled a large texture with a small set of Wang tiles. Lai and Tai [17] pre-
sented an approach to synthesize the transition texture to be tiled on a terrain. They used
Wang tiles to present a good-looking profile of successions on a terrain for tiling transi-
tion textures.

Kwatra et al. [15] presented an optimization-based technique to progressively opti-
mize the textures. This approach merges local similarity measures into a global metric to
optimize the whole texture. Dong et al. [7] presented an optimization-based approach for
tile-based texture synthesis. Their approach generates an ω-tile set of high pattern diver-
sity and quality and improve the quality of Wang tile based texture synthesis.

2.2 Texture Mapping

Texture mapping mostly follows the multi-chart approach. It focuses on partitioning,
parameterization and packing. Carr and Hart [2] and Cignonoi et al. [3] assigned a patch
consisting of a single or pairs of triangles. Each patch can be parameterized with low
distortion. However, this approach produces seams on patch boundaries. Other ap-
proaches [11, 18, 20, 22, 24] considered large patches and parameterized each patch; all
unsuccessfully. In order to avoid this problem, several researchers [18, 21, 23] cut the
surface where the seam is less visible.

Cube maps [1] achieved a seamless texture mapping, but then the 3D model’s shape
must be similar to a cubic shape. Tarini et al. [26] extended this concept to arbitrary
meshes and provided a new mechanism, called polycube-maps. With this, a user defines
the shape of the polycube roughly approximating the 3D model. Then, the polycube is
warped to approximate the model. The vertices of the model are projected onto the poly-
cube. Finally, the polycube is warped inversely and the projections are optimized. For
texture mapping, a user first roughly approximates the 3D model with a polycube. The
dual space of the polycube is defined. Each cell of the dual space is centered in a corner
of the polycube. Finally, the projection functions of the cells are obtained. This dual par-
tition decreases distortion because the projection function is varied according to the cell
configuration. Wang et al. [29] developed the polycube splines which are built based on
polycube maps. Their modeling techniques can be applied in solid modeling and shape

CHIN-CHEN CHANG AND CHEN-YU LIN

294

computing. Fu and Leung [10] combined polycube-maps with Wang tiles [4]. They used
the algorithm of polycube-maps and reformulated the texture tiling mechanism of Wang
tiles for 3D models.

3. POLYCUBE WITH TILED TEXTURE

3.1 Automatic Polycube Construction

A polycube is composed of axis-aligned unit cubes which are attached face to face.
First, a bounding box of the input model is established. Next, a user can adjust to a suit-
able parameter to set the size of the unit cube. According to this size, the proposed tech-
nique uniformly subdivides the bounding box into unit cubes. Then, the triangle-cube
intersection algorithm [8] which examines the intersection between triangles of the
model and unit cubes is applied to construct a polycube of the model. There are three
phases. In the first phase, there are a trivial-accept and three trivial-reject tests to elimi-
nate easy cases. The second phase detects the triangle edges that penetrate any face of a
cube. The third phase examines whether the cube corners poke through the interior of a
triangle. The remaining cubes do not intersect the model.

After the polycube of the model is constructed, the model is on its inside. Let a cell
equal in size to a unit cube, be centered in a corner of the unit cubes, and intersect the
polycube. Since some unit cells do not intersect the model, some textures which are tiled
on the surfaces of the polycube cannot be mapped on the model, as shown in Fig. 2 (a).
To solve this problem, non-intersectional cells are detected and removed to correct the
structure of the polycube before tiling textures. First, each intersectional cube of the po-
lycube is traced. For each cube, eight cells converted from the cube are examined to de-
termine if they are intersecting the model. The cube is removed from the structure of the
polycube if no non-mapping cell intersects it. Fig. 2 (b) is a corrected structure from Fig.
2 (a).

Finally, when the model is not inside the polycube, they intersect each other.

 (a) (b)
Fig. 2. (a) 2D analogue: relation between cell mapping and the 3D model; (b) 2D analogue: correc-

tion of the polycube structure.

AUTOMATIC POLYCUBE-MAPS FOR TEXTURE TILING

295

3.2 Texture Tiling on Polycube

Wang tiles [4] are a set of square tiles with colored edges. The concept of Wang
tiles is extended to tile textures on the surfaces of the polycube. The proposed algorithm
consists of two parts. One is the edge coloring which arranges each square surface on the
polycube to correspond to four samples; the other is the tile construction which synthe-
sizes four samples to form a tile of each square surface.

The edge coloring technique is based on the approach of Fu and Leung [10]. First,
there are four diamond samples randomly selected from the input texture. Then, all edges
of the surfaces on the polycube are divided into three groups, namely, X, Y, and Z, ac-
cording to three axial directions. For each group, two samples are randomly selected
from four samples. Then each edge of the surface corresponds to a sample which has
been randomly selected from its group samples.

In order to tile textures on the polycube, the concept of Wang tiles is slightly modi-
fied by rotating samples. An example is shown in Fig. 3. A sample is divided into upper
and lower portions. When it is tiled on the surface of a unit cube, the lower half is on the
top side of the blue surface and the upper half is on the right side of the yellow surface.
A sample is appropriately rotated 90 degrees counterclockwise for maintaining seamless
tiling when tiling on the yellow surface. Also, samples are not rotated when synthesizing
tiles on the front, left, back, and right surfaces, as shown in Fig. 4. When tiles are syn-
thesized on the top and bottom surfaces, a sample which corresponds to the edge along
the X-axis is rotated 180 degrees, as shown in Fig. 5. And a sample which corresponds to
the edge along the Z-axis is rotated 90 or 270 degrees counterclockwise. Therefore, each
edge on the surface of the polycube corresponds to a suitable sample. This sample is ro-
tated when tiled on the surface. Textures are tiled on the surface by using this algorithm.

Textures are tiled on each square surface of the polycube based on the approach of
Cohen et al. [4]. The graph cuts algorithm [16] is used to synthesize a tile from four dia-
mond samples which correspond to the edge of the square surface. Hence, texture tiling
can be accomplished on the surface of the polycube. Fig. 6 shows (a) a Laruana model,
(b) an intermediate result which was the polycube of the model with unit cubes and (c)
the polycube and the model with tiled textures intersecting each other.

Fig. 3. Unit cube with a tiled sample. Fig. 4. Expansion of the unit cube.

CHIN-CHEN CHANG AND CHEN-YU LIN

296

Fig. 5. (a), (b), (c), and (d) are portions of the polycube. Four structures that need to rotate a sam-

ple 180 degrees when tiling on the top or bottom surfaces.

(a) (b) (c)

Fig. 6. (a) Laruana model, (b) polycube of the model and (c) polycube with tiled textures and the
model intersecting each other.

4. GENERATION OF TEXTURE MAPPING

4.1 Transforming Polycubes to Polycells

To reduce mapping distortion, cell mapping based on polycube-maps [26] is used.
A polycell is composed of axis-aligned unit cells which are attached face to face. The
polycube is transformed to the polycell before mapping textures onto the model. External
cells are cells which intersect the portions of the tiles on the surfaces; internal cells are
cells which do not. The proposed algorithm defines mapping directions according to the
configuration inside a cell. The configurations inside external cells are then created. The
intersection between external cells and the tiles on the polycube is determined. Each tile
is subdivided into four slices (parts). An example is shown in Fig. 7. There are 63 dif-
ferent configurations of the slices inside a cell. If rotational and reflectional similarities
are removed, these configurations can be further reduced to six basic configurations.
Finally, the polycell and the configurations inside each cell are constructed.

4.2 Rectangular Cell Construction

All external cells intersect with the model surface. Each external cell is processed to

AUTOMATIC POLYCUBE-MAPS FOR TEXTURE TILING

297

Fig. 7. 2D analogue: relation between the polycube and the polycell.

(a) (b)

Fig. 8. (a) 2D analogue: an internal cell intersects the model but is empty; (b) Analogue: combina-
tion of internal and external cells.

map textures on the model. However, although a few internal cells intersect the model,
the configurations inside these cells are empty. The reason is that the polycube cannot
determine the curvature of the model surface precisely. An example is shown in Fig. 8
(a). These internal cells, grouped in set Κ, cannot map any textures and consequently
cause gaps on the model.

In order to solve this problem, each internal cell of Κ is combined with an external
cell which is adjacent to it. Adjacent external cells for each internal cell are numbered
and arranged from small to large. This algorithm stops internal cells merging with exter-
nal cells.

Then, the six surfaces of the internal cell which intersect the model are examined by
using the triangle-cube intersection algorithm [8]. If only one surface intersects the model,
two cells, including this surface, are merged. Fig. 8 (b) shows the modification of Fig. 8
(a). Mapping directions of the basic configurations which are based on polycube-maps
[24] are defined, as shown in Fig. 9. If more than one surface intersects the model, an

CHIN-CHEN CHANG AND CHEN-YU LIN

298

Fig. 9. Mapping directions of six basic configurations.

Fig. 10. Rectangular mapping directions of four configurations; (a), (b) and (c) are Type 3, (d) and

(f) are Type 4a, (e) is Type 4b, and (g) is Type 5.

AUTOMATIC POLYCUBE-MAPS FOR TEXTURE TILING

299

external cell, whose configuration map has a lower distortion, is chosen. Type 4b has the
lowest distortion of all configurations. The selection from high to low is Type 4b, Type
4a, Type 3 and Type 5. Type 6a and Type 6b cannot be adjacent to the internal cell in Κ
because all surfaces of the cells are connecting the slices. Therefore, these two configura-
tions in rectangular cells are not applied.

The problem of K’s empty internal cells is solved by using rectangular cells. How-
ever, some of rectangular cells may create seams on the model. There are two reasons for
this: first, the size of the unit cell is too large; second, the curvature of the model is too
big. The size of the unit cube is reduced to decrease the appearance of the seams but that
does not avoid this problem completely.

4.3 Cells Mapping

Four rectangular configurations are increased to process the internal cells in Κ. Fig.
10 shows all mapping directions of rectangular configurations. For the mapping func-
tions of other configurations, refer to [26].

Triangles of the model are processed separately to map textures. First, the cells
which intersect the bounding box of a triangle are searched. Then, the intersections be-
tween these cells and the triangle are considered. If the triangle is completely within one
cell, the mapping function of the cell is used to map textures onto it. If not, the intersec-
tional points are acquired by detecting a triangle with the cells. There are two kinds of
points between a triangle and a cell:

• Three edges of a triangle and six surfaces of a cell.
• Twelve edges of a cell and the interior of a triangle.

Some intersectional points are increased in the triangle. A triangle is subdivided into
several slices by cells and each slice is included in a cell. An example is shown in Fig. 11.
Then, each slice is processed separately to map textures onto it according to the mapping
function of the cell which includes it. Finally, textures of the polycube are mapped onto
the slices of all triangles of the model.

Fig. 11. A triangle is subdivided by cells into four slices.

CHIN-CHEN CHANG AND CHEN-YU LIN

300

5. RESULTS

To evaluate the effectiveness of the proposed approach, several experiments were
done. The proposed algorithm was implemented in C# language on VC.Net with a Pen-
tium 4 3.4GHz PC with 2 GB memory.

Table 1 shows the related information of a Laruana model, a teapot model and a
Daba model during texture mapping. For the first part, three stochastic textures were
tested. First, the inputs were a 183 × 100 texture T1 and the Laruana model. The size of a
tile was set as 32 × 32. The number of unit cubes was 2555. The number of surfaces on
the polycube was 4264. The number of different tiles was 804. The time for constructing
the polycube with tiles was about 5 minutes and 3 seconds. The time for mapping from
the polycube to the model was 33 seconds. Fig. 12 shows (a) the input texture and the
polycube of the Laruana model with tiled textures and (b) the mapping result with a
zoomed-in view. Next, the inputs were a 183 × 100 texture T2 and the teapot model. The
size of a tile was 32 × 32. The number of unit cubes was 1425. The number of surfaces
on the polycube was 2568. The number of different tiles was 648. It took about 3 min-
utes and 56 seconds to construct the polycube with tiles. It took about 15 seconds to map
textures from the polycube to the model. Fig. 13 (a) shows the input texture and the poly-
cube of the teapot model with tiled textures. The mapping results with a zoomed-in view
are shown in Fig. 13 (b). Third, the inputs were a 433 × 640 texture T3 and the Daba
model. The size of a tile was 64 × 64. The number of unit cubes was 1798. The number
of surfaces on the polycube was 2730. The number of different tiles was 541. The time
for constructing the polycube with tiles was about 6 minutes and 15 seconds. The time
for mapping from the polycube to the model was 27 seconds. Fig. 14 shows (a) the input
texture and the polycube of the Daba model with tiled textures and (b) the final result
with a zoomed-in view.

Table 1. Information of the Laruana model, teapot model and Daba model during tex-
ture mapping.
Model Laruana Teapot Daba

Input texture T1 T4 T2 T5 T3
Size of the input

texture 183 × 100 400 × 400 183 × 100 128 × 128 433 × 640

Size of a tile 32 × 32 64 × 64 32 × 32 64 × 64 64 × 64
Number of unit cubes 2555 3657 1425 1425 1798
Number of surfaces on

the polycube 4264 6030 2568 2568 2730

Number of different
tiles 804 940 648 679 541

Time of constructing
the polycube with tiles

5 min.
03 sec.

10 min.
40 sec.

3 min.
56 sec.

8 min.
35 sec.

6 min.
15 sec.

Time of mapping
textures from the

polycube to the model
33 sec. 47 sec. 15 sec. 14 sec. 27 sec.

AUTOMATIC POLYCUBE-MAPS FOR TEXTURE TILING

301

 (a) (b)

Fig. 12. (a) Input texture T1 and the polycube of the Laruana model with the tiled textures and (b)
mapping result with a zoomed-in view.

(a) (b)

Fig. 13. (a) Input texture T2 and the polycube of the teapot model with tiled textures and (b) map-
ping result with a zoomed-in view.

(a) (b)

Fig. 14. (a) Input texture T3 and the polycube of the Daba model with tiled textures and (b) map-
ping result of the teapot model with a zoomed-in view.

CHIN-CHEN CHANG AND CHEN-YU LIN

302

(a) (b)

Fig. 15. (a) input texture T4 and mapping result of Laruana model with a zoomed-in view, and (b)
input texture T5 and mapping result of Laruana model with a zoomed-in view.

For the second part, two regular or structured textures were tested. First, the inputs
were a 400 × 400 texture T4 and the Laruana model. The size of a tile was set as 64 × 64.
The number of unit cubes was 3657. The number of surfaces on the polycube was 6030.
The number of different tiles was 940. The time for constructing the polycube with tiles
was about 10 minutes and 40 seconds. The time for mapping from the polycube to the
model was 47 seconds. Second, the inputs were a 128 × 128 texture T5 and the Teapot
model. The size of a tile was set as 64 × 64. The number of unit cubes was 1425. The
number of surfaces on the polycube was 2568. The number of different tiles was 679.
The time for constructing the polycube with tiles was about 8 minutes and 35 seconds.
The time for mapping from the polycube to the model was 14 seconds. Fig. 15 shows (a)
the input texture and the mapping result of Laruana model with a zoomed-in view, and (b)
the input texture and the mapping result of Laruana model with a zoomed-in view.

There were some obvious distortions in the results. These distortions were generally
caused by the configurations of Type 5, Type 3 and Type 6. If the size of a unit cube
decreased, the shape of the polycube would be close to the model. Then the distortions
on the model were reduced. However, the size of a tile could not be too small because a
tile should contain the complete structure of a texture. Also, the proposed approach was
not suitable for some models which had a portion with a large curvature. In the experi-
ments, some cubes intersected only a few regions of the model. The textures were se-
verely squashed when mapped on these regions. To solve these problems, the size of a
unit cube was reduced so that the shape of the polycube was close to that of the model.
The distortion on the model was reduced simultaneously.

The proposed approach was theoretically compared with the previous method [26].
Table 2 shows the comparison of the proposed approach and the previous method. In the
proposed approach, a polycube of a 3D model is constructed automatically. Users do not
need to be more involved and spend more time. Also, the size of a unit cube is small and
the number of unit cubes is large. In the previous method, users had to be more involved
and more time was needed to construct a polycube of a 3D model. Also, the inverse
warping technique is used before mapping textures on the model. Finally, the size of a
unit cube is large and the number of unit cubes is small.

AUTOMATIC POLYCUBE-MAPS FOR TEXTURE TILING

303

Table 2. Comparison of the proposed approach and the previous method.
 The proposed approach The previous method

Polycube construction Automatic User intervention
Inverse warping No Yes

Size of a unit cube Small Big
Number of unit cubes Many Few

6. CONCLUSIONS

In this paper, an approach to automatically map textures onto 3D models has been
presented. The proposed approach consists of two important processes: automatic poly-
cube construction and cell mapping. In the first process, the triangle-cube intersection
algorithm was used to construct the polycube of a model. Then textures were tiled seam-
lessly on the polycube. In the second process, cells of the polycell were processed sepa-
rately. The textures of the cell were mapped on the model according to its mapping di-
rections. Therefore, users can easily generate texture mapping on the model.

In the future, another method of inverse warping [26] can be used to reduce the dis-
tortion. Also, the proposed automatic polycube-based technique can be combined with
geometry image approaches [13, 31] to generate a general quad-like remeshing.

REFERENCES

1. A. Watt, 3D Computer Graphics, 3rd ed., Addison Wesley, 2000, pp. 245-247.
2. N. A. Carr and J. C. Hart, “Meshed atlases for real-time procedural solid texturing,”

ACM Transactions on Graphics, Vol. 21, 2002, pp. 106-131.
3. P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and M. Tarini, “Preserving at-

tribute values on simplified meshes by resampling detail textures,” The Visual Com-
puter, Vol. 15, 1999, pp. 519-539.

4. M. F. Cohen, J. Shade, S. Hiller, and O. Deussen, “Wang tiles for image and texture
generation,” ACM Transactions on Graphics, Vol. 22, 2003, pp. 287-294.

5. K. Culik II, “An aperiodic set of 13 Wang tiles,” Discrete Mathematics, Vol. 160,
1996, pp. 245-251.

6. F. Dong, H. Lin, and G. Clapworthy, “Cutting and pasting irregularly shaped patches
for texture synthesis,” Computer Graphics Forum, Vol. 24, 2005, pp. 17-26.

7. W. Dong, N. Zhou, and J. C. Paul, “Optimized tile-based texture synthesis,” in Pro-
ceedings of Graphics Interface, 2007, pp. 249-256.

8. V. Douglas, “Triangle-cube intersection,” Graphics Gems III, 1992, pp. 236-239.
9. A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer,”

in Proceedings of ACM SIGGRAPH, 2001, pp. 341-346.
10. C. W. Fu and M. K. Leung, “Texture tiling on arbitrary topological surfaces,” in

Proceedings of Eurographics Symposium on Rendering, 2005, pp. 99-104.
11. C. M. Grimm, “Simple manifolds for surface modeling and parameterization,” in

Proceedings of Shape Modeling International, 2002, pp. 237-244.

CHIN-CHEN CHANG AND CHEN-YU LIN

304

12. B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman & Co.,
New York, 1986.

13. X. Gu, S. Gortler, and H. Hoppe, “Geometry images,” in Proceedings of ACM SIG-
GRAPH, 2002, pp. 355-361.

14. A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and D. Salesin, “Image analogies,”
in Proceedings of ACM SIGGRAPH, 2001, pp. 327-340.

15. V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization for example-
based synthesis,” ACM Transactions on Graphics, Vol. 24, 2005, pp. 795-802.

16. V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobicks, “Graphcut textures: Image
and video synthesis using graph cuts,” in Proceedings of ACM Transactions on
Graphics, 2003, pp. 277-286.

17. Y. Y. Lai and W. K. Tai, “Transition texture synthesis,” Journal of Computer Sci-
ence and Technology, Vol. 23, 2008, pp. 280-289.

18. B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal maps for
automatic texture atlas generation,” in Proceedings of ACM Transactions on Graph-
ics, Vol. 21, 2002, pp. 362-371.

19. L. Liang, C. Liu, Y. Q. Xu, B. Guo, and H. Y. Shum, “Real-time texture synthesis by
patch-based sampling,” ACM Transactions on Graphics, Vol. 20, 2001, pp. 127-150.

20. J. Maillot, H. Yahia, and A. Verroust, “Interactive texture mapping,” in Proceedings
of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
1993, pp. 27-34.

21. D. Piponi and G. Borshukov, “Seamless texture mapping of subdivision surfaces by
model pelting and texture blending,” in Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, 2000, pp. 471-478.

22. P. Sander, Z. Wood, S. J. Gortler, J. Snyner, and H. Hoppe, “Multi-chart geometry im-
ages,” in Proceedings of the Symposium on Geometry Processing, 2003, pp. 146-155.

23. A. Sheffer and J. C. Hart, “Seamster: Inconspicuous low-distortion texture seam
layout,” in Proceedings of the Conference on Visualization, 2002, pp. 291-298.

24. O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski, “Bounded-distortion
piecewise mesh parameterization,” in Proceedings of the Conference on Visualiza-
tion, 2002, pp. 355-362.

25. J. Stam, “Aperiodic texture mapping,” Technical Report, No. R046, European Re-
search Consortium for Informatics and Mathematics, 1997.

26. M. Tarini, K. Hormann, P. Cignoni, and C. Montani, “Polycube-maps,” in Proceed-
ings of ACM SIGGRAPH, Vol. 23, 2004, pp. 853-860.

27. H. Wang, “Proving theorems by pattern recognition II,” Bell Systems Technical
Journal, Vol. 40, 1961, pp. 1-42.

28. H. Wang, “Games, logic, and computers,” Scientific American, Vol. 213, 1965, pp.
98-106.

29. H. Wang, Y. He, X. Li, X. Gu, and H. Qin, “Polycube splines,” in Proceedings of
Symposium on Solid and Physical Modeling, 2007, pp. 241-251.

30. Q. Wu and Y. Yu, “Feature matching and deformation for texture synthesis,” in
Proceedings of ACM Transactions on Graphics, Vol. 23, 2004, pp. 364-367.

31. C. Y. Yao and T. Y. Lee, “Adaptive geometry image,” IEEE Transactions on Visu-
alization and Computer Graphics, Vol. 14, 2008, pp. 948-960.

AUTOMATIC POLYCUBE-MAPS FOR TEXTURE TILING

305

Chin-Chen Chang (張勤振) received his Ph.D. degree in Computer and Informa-
tion Science from National Chiao Tung University in Hsinchu, Taiwan, in 1998. He is
currently an Associate Professor in the Department of Computer Science and Informa-
tion Engineering, National United University in Miaoli, Taiwan. His current research
interests include computer graphics, image synthesis and digital multimedia.

Chen-Yu Lin (林震雨) received his M.S. degree in Institute of Computer Science
and Engineering from National Chiao Tung University in Hsinchu, Taiwan, in 2007. His
current research interests include computer graphics, texture synthesis and image synthesis.

