Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/aml)

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On the extremal number of edges in hamiltonian connected graphs^{$\hat{ }$} Tung-Yang Ho ª,*, Cheng-Kuan Lin ^{[b](#page-0-3)}, Jimmy J.M. Tan ^b, D. Frank Hsu ^{[c](#page-0-4)}, Lih-Hsing Hsu ^{[d](#page-0-5)}

^a *Department of Information Management, Ta Hwa Institute of Technology, Hsinchu, 30740, Taiwan, ROC*

^b *Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC*

^c *Department of Computer and Information Science, Fordham University, New York, NY 10023, USA*

^d *Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC*

a r t i c l e i n f o

Article history: Received 19 March 2009 Accepted 19 March 2009

Keywords: Hamiltonian connected Edge-fault tolerant hamiltonian connected

a b s t r a c t

Assume that *n* and δ are positive integers with $3 \leq \delta < n$. Let $hc(n, \delta)$ be the minimum number of edges required to guarantee an *n*-vertex graph *G* with minimum degree $\delta(G) \geq \delta$ to be hamiltonian connected. Any *n*-vertex graph *G* with δ(*G*) ≥ δ is hamiltonian connected if $|E(G)| \geq hc(n, \delta)$. We prove that $hc(n, \delta) = C(n - \delta + 1, 2) + \delta^2 - \delta + 1$ if $\delta \leq \lfloor \frac{n+3\times(n \mod 2)}{6} \rfloor + 1,$ $\frac{hc}{n}, \delta) = C(n-\lfloor \frac{n}{2} \rfloor + 1, 2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor + 1$ if $\lfloor \frac{n+3\times(n \mod 2)}{6} \rfloor + 1$ $\delta \leq \lfloor \frac{n}{2} \rfloor$, and $hc(n, \delta) = \lceil \frac{n\delta}{2} \rceil$ if $\delta > \lfloor \frac{n}{2} \rfloor$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we use $C(a, b)$ to denote the combination of "*a*" numbers taking "*b*" numbers at a time, where *a*, *b* are positive integers and $a > b$. For the graph definitions and notations, we follow [\[1\]](#page-3-0). Let $G = (V, E)$ be a graph if V is a finite set and *E* is a subset of $\{(u, v) | (u, v)$ is an unordered pair of *V*}. We say that *V* is the *vertex set* and *E* is the *edge set*. Two vertices *u* and v are *adjacent* if $(u, v) \in E$. The *complete graph* K_n is the graph with *n* vertices such that any two distinct vertices are adjacent. The *degree of a vertex* u *in G, denoted by deg* $_G(u)$ *, is the number of vertices adjacent to* u *. We use* $\delta(G)$ *to denote min{deg* $_G(u)\mid$ $u \in V(G)$. A path of length $m-1$, $\langle v_0, v_1, \ldots, v_{m-1} \rangle$, is an ordered list of distinct vertices such that v_i and v_{i+1} are adjacent for 0 ≤ *i* ≤ *m* − 2. A *cycle* is a path with at least three vertices such that the first vertex is the same as the last one. A *hamiltonian cycle* of *G* is a cycle that traverses every vertex of *G* exactly once. A graph is *hamiltonian* if it has a hamiltonian cycle. A *hamiltonian path* is a path of length |*V*(*G*)|−1. A graph *G* is *hamiltonian connected* if there exists a hamiltonian path between any two distinct vertices of *G*. It is easy to see that a hamiltonian connected graph with at least three vertices is hamiltonian.

It is proved by Moon [\[2\]](#page-3-1) that the degree of any vertex in a hamiltonian connected graph with at least four vertices is at least 3. Therefore, it is natural to consider the *n*-vertex graph *G* with $n \geq 4$ and $\delta(G) \geq 3$. Assume that *n* and δ are positive integers with $3 \leq \delta < n$. Let $hc(n, \delta)$ be the minimum number of edges required to guarantee an *n*-vertex graph with minimum degree $\delta(G) \geq \delta$ to be hamiltonian connected. Any *n*-vertex graph *G* with $\delta(G) \geq \delta$ is hamiltonian connected if $|E(G)| > hc(n, \delta)$. We will prove the following main theorem.

Theorem A. *Assume that n and* δ *are positive integers with* 3 ≤ δ < *n. Then*

$$
hc(n,\delta) = \begin{cases} C(n-\delta+1,2) + \delta^2 - \delta + 1 & \text{if } \delta \le \left\lfloor \frac{n+3 \times (n \text{ mod } 2)}{6} \right\rfloor + 1, \\ C\left(n - \left\lfloor \frac{n}{2} \right\rfloor + 1,2 \right) + \left\lfloor \frac{n}{2} \right\rfloor^2 - \left\lfloor \frac{n}{2} \right\rfloor + 1 & \text{if } \left\lfloor \frac{n+3 \times (n \text{ mod } 2)}{6} \right\rfloor + 1 < \delta \le \left\lfloor \frac{n}{2} \right\rfloor, \\ \left\lceil n\delta/2 \right\rceil & \text{if } \delta > \left\lfloor \frac{n}{2} \right\rfloor. \end{cases}
$$

E-mail address: hoho@thit.edu.tw (T.-Y. Ho).

[✩] This work was supported in part by the National Science Council of the Republic of China under Contract NSC 98-2115-M-233-001. Corresponding author.

^{0893-9659/\$ –} see front matter © 2009 Elsevier Ltd. All rights reserved. [doi:10.1016/j.aml.2009.03.025](http://dx.doi.org/10.1016/j.aml.2009.03.025)

We will defer the proof of [Theorem A](#page-0-6) to Section [4.](#page-3-2) In Section [2,](#page-1-0) we describe an application of [Theorem A,](#page-0-6) which is the original motivation of this paper. In particular, we establish the relationship between *hc*(*n*, *g*) and *g*-conditional edge-fault tolerant hamiltonian connectivity of the complete graph *Kn*. In Section [3,](#page-1-1) we present some preliminary results. Section [4](#page-3-2) gives the proof of [Theorem A.](#page-0-6)

2. An application

A hamiltonian graph *G* is *k edge-fault tolerant hamiltonian* if *G* − *F* remains hamiltonian for every *F* ⊂ *E*(*G*) with |*F* | ≤ *k*. The *edge-fault tolerant hamiltonicity*, $H_e(G)$, is defined as the maximum integer *k* such that *G* is *k* edge-fault hamiltonian if *G* is hamiltonian and is undefined otherwise. It is proved by Ore [\[3\]](#page-3-3) that any *n*-vertex graph with at least *C*(*n*, 2) − (*n* − 3) edges is hamiltonian. Moreover, there exists an *n*-vertex non-hamiltonian graph with *C*(*n*, 2) − (*n* − 2) edges. In other words, $\mathcal{H}_e(K_n) = n - 3$ for $n \geq 3$. In Latifi et al. [\[4\]](#page-3-4), it is proved that $\mathcal{H}_e(Q_n) = n - 2$ for $n \geq 2$ where Q_n is the *n*-dimensional hypercube. In Li et al. [\[5\]](#page-3-5), it is proved that $\mathcal{H}_e(S_n) = n - 3$ for $n \geq 3$ where S_n is the *n*-dimensional star graph.

Chan and Lee [\[6\]](#page-3-6) began the study of the existence of a hamiltonian cycle in a graph such that each vertex is incident with at least a number of nonfaulty edges. In particular, they have obtained results on hypercubes. A graph *G* is *g-conditional k edge-fault tolerant hamiltonian* if *G* − *F* is hamiltonian for every *F* ⊂ *E*(*G*) with |*F* | ≤ *k* and δ(*G* − *F*) ≥ *g*. The *g-conditional* ed ge-fault tolerant hamiltonicity, $\mathcal{H}_e^g(G)$, is defined as the maximum integer k such that G is g -conditional k edge-fault tolerant hamiltonian if *G* is hamiltonian and is undefined otherwise. Chan and Lee [\[6\]](#page-3-6) proved that $\mathcal{H}_e^g(Q_n)\leq 2^{g-1}(n-g)-1$ for $n > g \geq 2$ and the equality holds for $g = 2$.

Recently, Fu [\[7\]](#page-3-7) study the 2-conditional edge-fault tolerant hamiltonicity of the complete graph. In the paper by the authors, Ho et al. [\[8\]](#page-3-8) extend Fu's result by studying the *g*-conditional edge-fault tolerant hamiltonicity of the complete graph for $g \geq 2$.

Several results (Lick [\[9\]](#page-3-9), Moon [\[2\]](#page-3-1), and Ore [\[10\]](#page-3-10)) have studied hamiltonian connected graphs and some good sufficient conditions for a graph to be hamiltonian connected. Fault tolerant hamiltonian connectivity is another important parameter for graphs as indicated in [\[11\]](#page-3-11). A graph *G* is *k edge-fault tolerant hamiltonian connected* if *G*−*F* remains hamiltonian connected for any $F \subset E(G)$ with $|F| \leq k$. The *edge-fault tolerant hamiltonian connectivity* of a graph *G*, $\mathcal{HC}_e(G)$, is defined as the maximum integer *k* such that *G* is *k* edge-fault tolerant hamiltonian connected if *G* is hamiltonian connected and is undefined otherwise. Again, Ore [\[10\]](#page-3-10) proved that $\mathcal{HC}_e(K_n) = n - 4$ for $n \geq 4$.

Similarly, a graph *G* is *g-conditional k edge-fault tolerant hamiltonian connected* if *G*−*F* is hamiltonian connected for every *F* ⊂ *E*(*G*) with $|F|$ ≤ *k* and $\delta(G - F)$ ≥ *g*. The *g-conditional edge-fault tolerant hamiltonian connectivity,* $\mathcal{HC}_e^g(G)$ *, is defined* to be the maximum integer *k* such that *G* is *g*-conditional *k* edge-fault tolerant hamiltonian connected if *G* is hamiltonian connected and is undefined otherwise.

With the inspiration of the work by Fu [\[7\]](#page-3-7) in the study of 2-conditional edge-fault tolerant hamiltonicity of the complete graph, Ho et al. [\[12\]](#page-3-12) begin the study on 3-conditional edge-fault tolerant hamiltonian connectivity of the complete graph. The following result was obtained in [\[12\]](#page-3-12):

Let *n* \geq 4 and *F* \subset *E*(*K_n*) with δ (*K_n* − *F*) \geq 3. Then *K_n* − *F* is hamiltonian connected if $|F| \leq 2n - 10$ for *n* \notin {4, 5, 8, 10}, $|F| = 0$ for $n = 4$, $|F| < 2$ for $n = 5$, and $|F| < 2n - 11$ for $n \in \{8, 10\}$.

We restate this result using our terminology.

Theorem 1. $\mathcal{HC}_e^3(K_n) = 2n - 10$ for $n \notin \{4, 5, 8, 10\}$ and $n \geq 5$, $\mathcal{HC}_e^3(K_4) = 0$, $\mathcal{HC}_e^3(K_5) = 2$, $\mathcal{HC}_e^3(K_8) = 5$, and $\mathcal{H} \mathcal{C}_e^3(K_{10}) = 9.$

Now, we extend the result in [\[12\]](#page-3-12) and use our main result [Theorem A](#page-0-6) to compute $\mathcal{H}C^g_e(K_n)$ for 3 \leq g $<$ n.

Theorem 2. $\mathcal{HC}_{e}^{g}(K_{n}) = C(n, 2) - hc(n, g)$ for $3 \leq g < n$.

Proof. Let F be any faulty edge set of K_n with $|F| \le C(n, 2) - hc(n, g)$ such that $\delta(K_n - F) \ge g$. Obviously, $|E(K_n - F)| \ge$ *hc*(*n*, *g*). By [Theorem A,](#page-0-6) K_n − *F* is hamiltonian connected. Thus, $\mathcal{H}C_e^g(K_n) \geq C(n, 2) - hc(n, g)$.

Now, we prove that $\mathcal{HC}_e^g(K_n) \leq C(n,2) - hc(n,g)$. Assume that $\mathcal{HC}_e^g(K_n) \geq C(n,2) - hc(n,g) + 1$. Let G be any graph with $hc(n, g) - 1$ edges such that $\delta(G) \geq g$. Let $F = E(K_n) \setminus E(G)$. In other words, $G = K_n - F$. Obviously, $|F| = C(n, 2) - hc(n, g) + 1$. Since $\mathcal{HC}_e^g(K_n) \geq C(n, 2) - hc(n, g) + 1$, G is hamiltonian connected. This contradicts to the definition of $hc(n, g)$. Thus, $\mathcal{HC}_e^g(K_n) \leq C(n, 2) - hc(n, g)$.

Therefore, $\mathcal{HC}_e^g(K_n) = C(n, 2) - hc(n, g)$ for 3 ≤ *g* < *n*. □

3. Preliminary results

The following theorem is proved by Ore [\[10\]](#page-3-10).

Theorem 3 ([\[10\]](#page-3-10)). Let G be an n-vertex graph with $\delta(G) > \lfloor \frac{n}{2} \rfloor$. Then G is hamiltonian connected.

The following theorem is given by Lick [\[9\]](#page-3-9).

Fig. 1. The graphs (a) $H_{3,11}$ and (b) $H_{4,12}$.

Theorem 4 ([\[9\]](#page-3-9)). Let G be an n-vertex graph. Assume that the degree d_i of G satisfy $d_1 ≤ d_2 ≤ … ≤ d_n$. If $d_{i-1} ≤ j ≤ n/2 ⇒$ $d_{n-i} \geq n - j + 1$, then G is hamiltonian connected.

To our knowledge, no one has ever discussed the sharpness of the above theorem. In the following, we give a logically equivalent theorem.

Theorem 5. Let G be an n-vertex graph. Assume that the degree d_i of G satisfy $d_1 \leq d_2 \leq \ldots \leq d_n$. If G is non-hamiltonian *connected, then there exist at least one integer* $2 \le m \le n/2$ *<i>such that* $d_{m-1} \le m \le n/2$ *and* $d_{n-m} \le n-m$.

To discuss the sharpness of [Theorem 5,](#page-2-0) we introduce the following family of graphs. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *union* of G_1 and G_2 , written $G_1 + G_2$, has edge set $E_1 \cup E_2$ and vertex set $V_1 \cup V_2$ with $V_1 \cap V_2 = \emptyset$. The *join* of G_1 and G_2 , written $G_1 \vee G_2$, obtained from $G_1 + G_2$ by joining each vertex of G_1 to each vertex of G_2 .

The *degree sequence* of an *n*-vertex graph is the list of vertices degree, in nondecreasing order, as $d_1 \leq d_2 \leq \ldots \leq d_n$. For $2 \le m \le n/2$, let $H_{m,n}$ denote the graph $(K_{m-1} + K_{n-2m+1}) \vee K_m$. The graphs $H_{3,11}$ and $H_{4,12}$ are shown in [Fig. 1.](#page-2-1) Obviously, the degree sequence of *Hm*,*ⁿ* is

$$
(\underbrace{m, m, \ldots, m}_{m-1}, \underbrace{n-m, n-m, \ldots, n-m}_{n-2m+1}, \underbrace{n-1, n-1, \ldots, n-1}_{m})
$$

A sequence of real numbers (p_1, p_2, \ldots, p_n) is said to be *majorised* by another sequence (q_1, q_2, \ldots, q_n) if $p_i \le q_i$ for $1 \le i \le n$. A graph *G* is *degree-majorised* by a graph *H* if $|V(G)| = |V(H)|$ and the nondecreasing degree sequence of *G* is majorised by that of *H*. For instance, the 5-cycle is degree-majorised by the complete bipartite graph *K*2,³ because (2, 2, 2, 2, 2) is majorised by (2, 2, 2, 3, 3).

Lemma 1. Let $G = (V, E)$ be a graph, X be a subset of V, and u, v be any two distinct vertices in X. Suppose that there exists a *hamiltonian path between u and* v*. Then there are at most* |*X*| − 1 *connected components of G* − *X.*

Let *S* be the subset of $V(H_{m,n})$ corresponding to the vertex of K_m . Since $2 \le m \le n/2$, $|S| \ge 2$. Let *u* and *v* be any two distinct vertices in *S*. Obviously, there are *m* connected components of $H_{m,n}$ – *S*. By [Lemma 1,](#page-2-2) $H_{m,n}$ does not have a hamiltonian path between *u* and v. Thus, *Hm*,*ⁿ* is not hamiltonian connected. In other words, the result in [Theorem 5](#page-2-0) is sharp.

So we have the following corollary.

Corollary 1. *The graph* $H_{m,n}$ *is not hamiltonian connected where n and m are integers with* $2 \le m \le n/2$ *.*

Thus, the following theorem is equivalent to [Theorem 5.](#page-2-0)

Theorem 6. If G is an n-vertex non-hamiltonian connected graph, then G is degree-majorised by some $H_{m,n}$ with $2 \le m \le n/2$.

Corollary 2. Let $n \ge 6$. Assume that G is an n-vertex non-hamiltonian connected graph. Then $\delta(G) \le \lfloor \frac{n}{2} \rfloor$ and $|E(G)| \le$ $max\{|E(H_{\delta(G),n})|, |E(H_{\lfloor \frac{n}{2} \rfloor,n})|\}.$

Proof. Let *G* be any *n*-vertex non-hamiltonian connected graph. With [Theorem 3,](#page-1-2) $\delta(G) \leq \lfloor \frac{n}{2} \rfloor$. By [Theorem 6,](#page-2-3) *G* is degreemajorised by some $H_{m,n}$. Since $\delta(H_{m,n}) = m$, $\delta(G) \le m \le \lfloor \frac{n}{2} \rfloor$. Therefore $|E(G)| \le \max\{|E(H_{m,n}^{2})| \mid \delta(G) \le m \le \lfloor \frac{n}{2} \rfloor\}$. Since $|E(H_{m,n})| = \frac{1}{2}(m(m-1) + (n-2m+1)(n-m) + m(n-1))$ is a quadratics function with respect to *m* and the maximum value of it occurs at the boundary $m = \delta(G)$ or $m = \lfloor \frac{n}{2} \rfloor$, $|E(G)| \le \max\{|E(H_{\delta(G),n})|, |E(H_{\lfloor \frac{n}{2} \rfloor,n})|\}.$

By [Corollary 2,](#page-2-4) we have the following corollary.

Corollary 3. Let G be an n-vertex graph with $n \ge 6$. If $|E(G)| \ge \max\{|E(H_{\delta(G),n})|, |E(H_{\lfloor \frac{n}{2} \rfloor,n})|\} + 1$, then G is hamiltonian *connected.*

Lemma 2. Let n and k be integers with $n \ge 6$ and $3 \le k \le \lfloor \frac{n}{2} \rfloor$. Then $|E(H_{k,n})| \ge |E(H_{\lfloor \frac{n}{2} \rfloor,n})|$ if and only if $3 \le k \le 1$ $\lfloor \frac{n+3\times(n \mod 2)}{6} \rfloor + 1$ or $k = \lfloor \frac{n}{2} \rfloor$.

Proof. We first prove the case that n is even. We claim that $|E(H_{k,n})| \geq |E(H_{\frac{n}{2},n})|$ if and only if $3 \leq k \leq \lfloor \frac{n}{6} \rfloor + 1$ or $k = \frac{n}{2}$. Suppose that $|E(H_{k,n})|$ < $|E(H_{\frac{n}{2},n})|$. Then $|E(H_{k,n})|$ = $\frac{1}{2}(k(k-1)+(n-2k+1)(n-k)+k(n-1))$ < $|E(H_{\frac{n}{2},n})|$ = $\frac{1}{2}((\frac{n}{2}-1)(\frac{n}{2})) + (\frac{n}{2})(n-1) + (\frac{n}{2}).$ This implies $3k^2 - (2n+3)k + (\frac{1}{4}n^2 + \frac{3}{2}n) < 0$, which means $(k-\frac{n}{2})(3k-\frac{n}{2}-3) < 0$. Thus $|E(H_{k,n})| < |E(H_{\frac{n}{2},n})|$ if and only if $\frac{n}{6}+1 < k < \frac{n}{2}.$ Note that n and k are integers with n is even, $n \geq 6$, and $3 \leq k \leq \frac{n}{2}.$ Therefore, $|E(H_{k,n})| \geq |E(H_{\frac{n}{2},n})|$ if and only if $3 \leq k \leq \lfloor \frac{n}{6} \rfloor + 1$ or $k = \frac{n}{2}$.

For odd integer *n*, using the same method, we can prove that $|E(H_{k,n})|$ < $|E(H_{\frac{n-1}{2},n})|$ if and only if $\frac{n+3}{6}$ + 1 < k < $\frac{n-1}{2}$. Given that $n \ge 7$, and $3 \le k \le \frac{n-1}{2}$, then $|E(H_{k,n})| \ge |E(H_{\frac{n-1}{2},n})|$ if and only if $3 \le k \le \lfloor \frac{n+3}{6} \rfloor + 1$ or $k = \frac{n-1}{2}$. Therefore, the result follows.

4. Proof of [Theorem A](#page-0-6)

By brute force, we can check that $hc(4, 3) = 6$, $hc(5, 3) = 8$, and $hc(5, 4) = 10$. Therefore, the theorem holds for $n = 4$, 5. Next, we consider the cases that $3 \leq \delta \leq \lfloor \frac{n}{2} \rfloor$ and $n \geq 6$.

 \sup Suppose that $3 \leq \delta \leq \lfloor \frac{n+3\times(n \mod 2)}{6} \rfloor + 1$ or $\delta = \lfloor \frac{n}{2} \rfloor$. By [Lemma 2,](#page-3-13) $|E(H_{\delta,n})| \geq |E(H_{\lfloor \frac{n}{2} \rfloor,n})|$. Let *G* be any *n*vertex graph with $\delta(G) \geq \delta$ and $|E(G)| \geq |E(H_{\delta,n})| + 1$. By [Corollary 3,](#page-3-14) *G* is hamiltonian connected. We note that $|E(H_{\delta,n})|+1=C(n-\delta+1,2)+\delta^2-\delta+1$. Therefore, $hc(n,\delta)\leq C(n-\delta+1,2)+\delta^2-\delta+1$. By [Corollary 1,](#page-2-5) $H_{\delta,n}$ is not hamiltonian connected. Thus, $hc(n, \delta) > |E(H_{\delta,n})| = C(n-\delta+1, 2) + \delta^2 - \delta$. Hence, $hc(n, \delta) = C(n-\delta+1, 2) + \delta^2 - \delta + 1$.

 \sup Suppose that $\lfloor \frac{n+3\times(n\mod 2)}{6} \rfloor + 1 < \delta < \lfloor \frac{n}{2} \rfloor$. By [Lemma 2,](#page-3-13) $|E(H_{\delta,n})| < |E(H_{\lfloor \frac{n}{2} \rfloor,n})|$. Let *G* be any *n*-vertex graph with $\delta(G) \geq \delta$ and $|E(G)| \geq |E(H_{\lfloor \frac{n}{2} \rfloor,n})| + 1$. By [Corollary 3,](#page-3-14) G is hamiltonian connected. We note that $|E(H_{\lfloor \frac{n}{2} \rfloor,n})| + 1 = C(n - 1)$ $\lfloor \frac{n}{2} \rfloor + 1$, 2) + $\lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor + 1$. Therefore, $hc(n, \delta) \leq C(n - \lfloor \frac{n}{2} \rfloor + 1, 2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor + 1$. By [Corollary 1,](#page-2-5) $H_{\lfloor \frac{n}{2} \rfloor, n}$ is not hamiltonian connected. Thus, $hc(n, \delta) > |E(H_{\lfloor \frac{n}{2} \rfloor, n})| = C(n - \lfloor \frac{n}{2} \rfloor + 1, 2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor$. Hence, $hc(n, \delta) = C(n - \lfloor \frac{n}{2} \rfloor + 1, 2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor + 1$. Finally, we consider the case that $\delta > \lfloor \frac{n}{2} \rfloor$ and $n \ge 6$. Let *G* be any graph with $\delta(G) \ge \delta > \lfloor \frac{n}{2} \rfloor$. By [Theorem 3,](#page-1-2) *G* is

hamiltonian connected. Obviously, $|E(G)| \geq \lceil \frac{n\delta}{2} \rceil$. Thus, $hc(n, \delta) = \lceil \frac{n\delta}{2} \rceil$.

The proof of our main result, [Theorem A,](#page-0-6) is complete.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
- [2] J.W. Moon, On a problem of Ore, Mathematical Gazette 49 (1965) 40-41.
- [3] O. Ore, Note on Hamilton circuits, The American Mathematical Monthly 67 (1960) 55.
- [4] S. Latifi, S.Q. Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, in: Proceedings of the IEEE Symposium on Fault-Tolerant Computing, 1992, pp. 178–184.
- [5] T.K. Li, J.J.M. Tan, L.H. Hsu, Hyper hamiltonian laceability on the edge fault star graph, Information Sciences 165 (2004) 59–71.
- [6] M.Y. Chan, S.J. Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4 (1991) 511–527.
- [7] J.S. Fu, Conditional fault hamiltonicity of the complete graph, Information Processing Letters 107 (2008) 110–113.
- [8] T.Y. Ho, C.K. Lin, J.J.M. Tan, D.F. Hsu, L.H. Hsu, On the extremal number of edges in hamiltonian graphs, Journal of Information Science and Engineering (2009) (submitted for publication).
- [9] D.R. Lick, A sufficient condition for hamiltonian connectedness, Journal of Combinatorial Theory 8 (1970) 444–445.
- [10] O. Ore, Hamilton connected graphs, Journal of Mathematic Pures Application 42 (1963) 21–27.
- [11] W.T. Huang, J.J.M. Tan, C.N. Hung, L.H. Hsu, Fault-tolerant hamiltonicity of twisted cubes, Journal of Parallel and Distributed Computing 62 (2002) 591–604.
- [12] T.Y. Ho, Y.K. Shih, J.J.M. Tan, L.H. Hsu, Conditional fault hamiltonian connecticity of the complete graph, Information Processing Letters 109 (2009) 585–588.