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Abstract—Location estimation and tracking for the mobile devices have attracted a significant amount of attention in recent years. The

network-based location estimation schemes have been widely adopted based on the radio signals between the mobile device and the

base stations. The location estimators associated with the Kalman filtering techniques are exploited to both acquire location estimation

and trajectory tracking for the mobile devices. However, most of the existing schemes become inapplicable for location tracking due to

the deficiency of signal sources. In this paper, two predictive location tracking algorithms are proposed to alleviate this problem. The

Predictive Location Tracking (PLT) scheme utilizes the predictive information obtained from the Kalman filter in order to provide the

additional signal inputs for the location estimator. Furthermore, the Geometric-assisted PLT (GPLT) scheme incorporates the

Geometric Dilution of Precision (GDOP) information into the algorithm design. Persistent accuracy for location tracking can be

achieved by adopting the proposed GPLT scheme, especially with inadequate signal sources. Numerical results demonstrate that the

GPLT algorithm can achieve better precision in comparison with other network-based location tracking schemes.

Index Terms—Wireless location estimation, Kalman filter, geometric dilution of precision (GDOP), two-step least-square estimators.

Ç

1 INTRODUCTION

WIRELESS location technologies, which are designated to
estimate the position of a Mobile Station (MS), have

drawn a lot of attention over the past few decades. The
Quality-of-Service (QoS) of the positioning accuracy has
been announced after the issue of the emergency 911 (E-911)
subscriber safety service [1]. With the assistance of the
information derived from the positioning system, the
required performance and objectives for the targeting MS
can be achieved with augmented robustness. In recent
years, there are increasing demands for commercial
applications to adopt the location information within their
system design, such as the navigation systems, the location-
based billing, the health care systems, the Wireless Sensor
Networks (WSNs) [2], [3], [4], and the Intelligent Transpor-
tation Systems (ITSs) [5], [6]. With the emergent interests in
the Location-Based Services (LBSs), the location estimation
algorithms with enhanced precision become necessary for
the applications under different circumstances.

A variety of wireless location techniques have been
investigated [7], [8], [9], [10]. The network-based location
estimation schemes have been widely proposed and
employed in the wireless communication system. These
schemes locate the position of an MS based on the measured
radio signals from its neighborhood Base Stations (BSs). The

representative algorithms for the network-based location
estimation techniques are the Time-of-Arrival (TOA), the
Time Difference-of-Arrival (TDOA), and the Angle-of-
Arrival (AOA). The TOA scheme measures the arrival time
of the radio signals coming from different wireless BSs;
while the TDOA scheme measures the time difference
between the radio signals. The AOA technique is conducted
within the BS by observing the arriving angle of the signals
coming from the MS.

It is recognized that the equations associated with the
network-based location estimation schemes are inherently
nonlinear. The uncertainties induced by the measurement
noises make it more difficult to acquire the estimated MS
position with tolerable precision. The Taylor Series Expan-
sion (TSE) method was utilized in [11] to acquire the location
estimation of the MS from the TOA measurements. The
method requires iterative processes to obtain the location
estimate from a linearized system. The major drawback of
the TSE scheme is that it may suffer from the convergence
problem due to an incorrect initial guess of the MS’s position.
The two-step Least-Square (LS) method was adopted to
solve the location estimation problem from the TOA [12], the
TDOA [13], and the TDOA/AOA measurements [14]. It is an
approximate realization of the Maximum Likelihood (ML)
estimator and does not require iterative processes. The two-
step LS scheme is advantageous in its computational
efficiency with adequate accuracy for location estimation.
Instead of utilizing the Circular Line of Position (CLOP)
methods (e.g., the TSE and the two-step LS schemes), the
Linear Line of Position (LLOP) approach is presented as a
different interpretation for the cell geometry from the TOA
measurements. Since the pairwise intersections of N TOA
measurements will establish (N � 1) independent linear
lines, the LS method can, therefore, be applied to estimate the
position of the MS. The detail algorithm of the LLOP
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approach can be obtained by using the TOA measurements
as in [15], and the hybrid TOA/AOA measurements in [16].

In addition to the estimation of an MS’s position,
trajectory tracking of a moving MS has been studied [17],
[18], [19], [20], [21], [22], [23], [24]. The Extended Kalman
Filter (EKF) scheme [17], [18], [19] is considered the well-
adopted method for location tracking. The EKF algorithm
estimates the MS’s position, speed, and acceleration via the
linearization of measurement inputs. The technique by
combining the Kalman filter with the Weighted Least-
Square (WLS) method is exploited in [20]. The Kalman
Tracking (KT) scheme [21], [22] distinguishes the linear part
from the originally nonlinear equations for location estima-
tion. The linear aspect is exploited within the Kalman
filtering formulation; while the nonlinear term is served as
an external measurement input to the Kalman filter. The
technique utilized in [23] adopted the Kalman filters for
both preprocessing and postprocessing in order to both
mitigate the Nonline-of-Sight (NLOS) noises and track the
MS’s trajectory. The Cascade Location Tracking (CLT)
scheme as proposed in [24] utilizes the two-step LS method
for initial location estimation of the MS. The Kalman
filtering technique is employed to smooth out and trace the
position of the MS based on its previously estimated data.

The Geometric Dilution of Precision (GDOP) [25], [26]
and the Cramér-Rao Lower Bound (CRLB) [27] are the well-
adopted metrics for justifying the accuracy of location
estimation based on the geometric layouts between the MS
and its associated BSs. It has been indicated in [28] that the
environments with ill-conditioned layouts will result in
relatively larger GDOP and CRLB values. In general, the ill-
conditioned situations can be classified into two categories:
1) insufficient number of available neighborhood BSs
around the MS and 2) the occurrence of collinearity or
coplanarity between the BSs and the MS. It is noticed that
the problem caused by case 2 can be resolved with well-
planned locations of the BSs. Nevertheless, the scenarios
with insufficient signal sources (i.e., case 1) can happen in
real circumstances, e.g., under rural environments or city
valley with blocking buildings. It will be beneficial to
provide consistent accuracy for location tracking under
various environments. However, the wireless location
tracking problem with deficient signal sources has not been
extensively addressed in previous studies. In the cellular-
based networks, three BSs are required in order to provide
three signal sources for the TOA-based location estimation.
The scheme as proposed in [29] considers the location
tracking problem under the circumstances with short
periods of signal deficiency, i.e., occasionally with only
two signal sources available. The linear predictive informa-
tion obtained from the Kalman filter is injected into its
original LS scheme while one of the BSs is not observable.
However, this algorithm is regarded as a preliminary
design for signal-deficient scenarios, which does not
consider the cases while only one BS is available for
location estimation. Insufficient accuracy for location
estimation and tracking of the MS is, therefore, perceived.

In this paper, a Predictive Location Tracking (PLT)
algorithm is proposed to improve the problem with
insufficient measurement inputs, i.e., with only two BSs or

a single BS available to be exploited. The predictive
information obtained from the Kalman filter is adopted as
the virtual signal source, which is incorporated into the
two-step LS method for location estimation and tracking. It
is also noted that the preliminary design of the PLT scheme
was first presented in our previous work in [30]. A more
comprehensive design and performance comparison with
other schemes will be conducted in this paper. Moreover, a
Geometric-assisted Predictive Location Tracking (GPLT)
scheme is proposed by adopting the GDOP concept into its
formulation in order to further enhance the performance of
the original PLT algorithm. The position of the virtual signal
source is relocated for the purpose of achieving the
minimum GDOP value with respect to the MS’s position.
Consistent precision for location tracking of an MS is
observed by exploiting the GPLT algorithm. Comparing
with the existing techniques, the simulation results show
that the proposed GPLT scheme can acquire higher
accuracy for location estimation and tracking even under
the situations with inadequate signal sources.

The remainder of this paper is organized as follows:
Section 2 briefly describes the modeling of the signal
sources, the two-step LS estimator, and the GDOP metric.
The concepts and motivations of the proposed PLT and
GPLT schemes are explained in Section 3. Section 4 presents
the PLT algorithm with two different scenarios; while the
formulation of the GPLT scheme is exploited in Section 5.
Section 6 illustrates the performance evaluation of the
proposed PLT and the GPLT schemes in comparison with
the existing location tracking techniques. Section 7 draws
the conclusions.

2 PRELIMINARIES

2.1 Mathematical Modeling

In order to facilitate the design of the proposed PLT and the
GPLT algorithms, the signal model for the TOA measure-
ments is utilized. The set rrk contains all the available
measured relative distance at the kth time step, i.e.,
rrk ¼ fr1;k; . . . ; ri;k; . . . ; rNk;kg, where Nk denotes the number
of available BSs at the time step k. The measured relative
distance (ri;k) between the MS and the ith BS (obtained at
the kth time step) can be represented as

ri;k ¼ c � ti;k ¼ �i;k þ ni;k þ ei;k i ¼ 1; 2; . . . ; Nk; ð1Þ

where ti;k denotes the TOA measurement obtained from the

ith BS at the kth time step, and c is the speed of light. ri;k is

contaminated with the TOA measurement noise ni;k and the

NLOS error ei;k. It is noted that the measurement noise ni;k
is, in general, considered as zero mean with Gaussian

distribution. On the other hand, the NLOS error ei;k is

modeled as exponentially distributed for representing the

positive bias due to the NLOS effect [31], [32]. The noiseless

relative distance �i;k (in (1)) between the MS’s true position

and the ith BS can be obtained as

�i;k ¼ ½ðxk � xi;kÞ2 þ ðyk � yi;kÞ2�
1
2; ð2Þ

where xxk ¼ [xk yk] represents the MS’s true position and
xxi;k ¼ [xi;k yi;k] is the location of the ith BS for i ¼ 1 to Nk.
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Therefore, the set of all the available BSs at the kth time step
can be obtained as PPBS;k ¼ fxx1;k; . . . ; xxi;k; . . . ; xxNk;kg.

2.2 Two-Step LS Estimator

The two-step LS scheme [12], [13], [14] is utilized as the
baseline location estimator for the proposed predictive
location tracking algorithms. It is noticed that three TOA
measurements are required for the two-step LS method in
order to solve for the location estimation problem. The
concept of the two-step LS scheme is to acquire an
intermediate location estimate in the first step with the
definition of a new variable �k, which is mathematically
related to the MS’s position, i.e., �k ¼ x2

k þ y2
k. At this stage,

the variable �k is assumed to be uncorrelated to the MS’s
position. This assumption effectively transforms the non-
linear equations for location estimation into a set of linear
equations, which can be directly solved by the LS method.
Moreover, the elements within the associated covariance
matrix are selected based on the standard deviation from
the measurements. The variations within the correspond-
ing signal paths are, therefore, considered within the
problem formulation.

The second step of the method primarily considers the
relationship that the variable �k is equal to x2

k þ y2
k, which

was originally assumed to be uncorrelated in the first step.
An improved location estimation can be obtained after the
adjustment from the second step. The detail algorithm of
the two-step LS method for location estimation can be
found in [12].

2.3 Geometric Dilution of Precision

The GDOP [25] associated with the position error is utilized
as an index for observing the location precision of the MS
under different geometric locations within the networks,
e.g., the cellular or the satellite networks. In general, a larger
GDOP value corresponds to a comparably worse geometric

layout (established by the MS and its associated BSs),
which, consequently, results in augmented errors for
location estimation. Considering the MS’s location under
the two-dimensional coordinate, the GDOP value (G)
obtained at the position xxk can be represented as

Gxxk ¼
�

trace
�
ðHT

xxk
HxxkÞ

�1��1
2; ð3Þ

where

Hxxk ¼

xk�x1;k

�1;k

yk�y1;k

�1;k

. . . . . .
xk�xi;k
�i;k

yk�yi;k
�i;k

. . . . . .
xk�xNk;k
�Nk;k

yk�yNk;k
�Nk;k

2
66664

3
77775: ð4Þ

It is noted that the elements within the matrix Hxxk can be

acquired from (2). It has been shown in [25] that the

minimum GDOP value frequently occurs around the center

of the network layout, e.g., the minimum GDOP inside a

K-side (K � 3) regular polygon is shown to take place at

the center of the layout and the value is obtained as G ¼ 2ffiffiffiffi
K
p .

Moreover, the GDOP and CRLB values are demonstrated to

be identical given a Gaussian-distributed noise model [26].

3 ARCHITECTURE OVERVIEW OF PROPOSED PLT
AND GPLT ALGORITHMS

The objective of the proposed PLT and the GPLT algorithms
is to utilize the predictive information acquired from the
Kalman filter to serve as the assisted measurement inputs
while the environments are deficient with signal sources.
Fig. 1 illustrates the system architectures of the KT [21], the
CLT [24], and the proposed PLT/GPLT schemes. The TOA
signals (rrk as in (1)) associated with the corresponding
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Fig. 1. The architecture diagrams of (a) the Kalman Tracking (KT) scheme; (b) the Cascade Location Tracking (CLT) scheme; and (c) the proposed

Predictive Location Tracking (PLT) and Geometric-assisted Predictive Location Tracking (GPLT) schemes.



location set of the BSs (PPBS;k) are obtained as the signal

inputs to each of the system, which result in the estimated

state vector of the MS, i.e., ŝsk ¼ ½x̂xk v̂vk âak�T , where x̂xk ¼
[x̂k ŷk] represents the MS’s estimated position, v̂vk ¼
[v̂x;k v̂y;k] is the estimated velocity, and âak ¼ ½âx;k ây;k�
denotes the estimated acceleration.

Since the equations (i.e., (1) and (2)) associated with the

network-based location estimation are intrinsically non-

linear, different mechanisms are considered within the

existing algorithms for location tracking. The KT scheme

[21] (as shown in Fig. 1a) explores the linear aspect of

location estimation within the Kalman filtering formulation;

while the nonlinear term (i.e., �̂k ¼ x̂2
k þ ŷ2

k) is treated as an

additional measurement input to the Kalman filter. It is

stated within the KT scheme that the value of the nonlinear

term can be obtained from an external location estimator,

e.g., via the two-step LS method. Consequently, the

estimation accuracy of the KT algorithm largely depends

on the precision of the additional location estimator. On the

other hand, the CLT scheme [24] (as illustrated in Fig. 1b)

adopts the two-step LS method to acquire the preliminary

location estimate of the MS. The Kalman Filter is utilized to

smooth out the estimation error by tracing the estimated

state vector ŝsk of the MS.
The architecture of the proposed PLT and GPLT schemes

is illustrated in Fig. 1c. It is noticed that the GPLT algorithm

involves additional transformation via the GDOP calcula-

tion compared with the PLT scheme. It can be seen that the

PLT/GPLT algorithms will be the same as the CLT scheme

while Nk � 3, i.e., the number of available BSs is greater

than or equal to three. However, the effectiveness of the

PLT/GPLT schemes is revealed as 1 � Nk < 3, i.e., with

deficient measurement inputs. The predictive state informa-

tion obtained from the Kalman filter is utilized for acquiring

the assisted information, which will be fed back into the

location estimator. The extended sets for the locations of the

BSs (i.e., PPe
BS;k ¼ fPPBS;k; PPBSv;kg) and the measured relative

distances (i.e., rrek ¼ frrk; rrv;kg) will be utilized as the inputs

to the location estimator. The sets of the virtual BS’s

locations PPBSv;k and the virtual measurements rrv;k are

defined by the following definitions.

Definition 1 (Virtual Base Stations). Within the PLT/GPLT

formulation, the virtual Base Stations are considered as the

designed locations for assisting the location tracking of the MS

under the environments with deficient signal sources. The set

of virtual BSs PPBSv;k is defined under two different numbers of

Nk as

PPBSv;k ¼
fxxv1;kg; for Nk ¼ 2
fxxv1;k; xxv2;kg; for Nk ¼ 1:

�
ð5Þ

Definition 2 (Virtual Measurements). Within the PLT/GPLT

formulation, the virtual measurements are utilized to provide

assisted measurement inputs while the signal sources are

insufficient. Associating with the designed set of virtual BSs

PPBSv;k, the corresponding set of virtual measurements rrv;k is

defined as

rrv;k ¼
frv1;kg; for Nk ¼ 2
frv1;k; rv2;kg; for Nk ¼ 1:

�
ð6Þ

It is noticed that the major tasks of both the PLT and
GPLT schemes are to design and to acquire the values of
PPBSv;k and rrv;k for the two cases (i.e., Nk ¼ 1 and 2) with
inadequate signal sources. In both the KT and CLT schemes,
the estimated state vector ŝsk can only be updated by the
internal prediction mechanism of the Kalman filter while
there are insufficient numbers of BSs (i.e., Nk < 3, as shown
in Figs. 1a and 1b with the dashed lines). The location
estimator (i.e., the two-step LS method) is, consequently,
disabled owing to the inadequate number of the signal
sources. The tracking capabilities of both schemes signifi-
cantly depend on the correctness of the Kalman filter’s
prediction mechanism. Therefore, the performance for
location tracking can be severely degraded due to the
changing behavior of the MS, i.e., with the variations from
the MS’s acceleration.

On the other hand, the proposed PLT/GPLT algorithms

can still provide satisfactory tracking performance with

deficient measurement inputs, i.e., withNk ¼ 1 and 2. Under

these circumstances, the location estimator is still effective

with the additional virtual BSs PPBSv;k and the virtual

measurements rrv;k, which are imposed from the predictive

output of the Kalman filter (as shown in Fig. 1c). It is also

noted that the PLT/GPLT schemes will perform the same as

the CLT method under the case with no signal input, i.e.,

under Nk ¼ 0. Furthermore, the GPLT algorithm enhances

the precision and the robustness of the location estimation

from the PLT scheme by considering the GDOP effect, i.e., the

geographic relationship between the locations of the BSs and

the MS. By adopting the GPLT scheme, the locations of the

virtual BSsPPPLT
BSv;k

obtained from the PLT method are adjusted

into PPGPLT
BSv;k

in order that the predicted MS has minimal

GDOP value. Consequently, smaller estimation errors can be

acquired by exploiting the GPLT algorithm compared with

the PLT scheme. The virtual BS’s location set PPPLT
BSv;k

and the

virtual measurements rrPLTv;k by exploiting the PLT formula-

tion are presented in the next section; while the adjusted

location set of the virtual BSs PPGPLT
BSv;k

adopted from the GPLT

algorithm will be derived in Section 5.

4 FORMULATION OF PLT ALGORITHM

The proposed PLT scheme will be explained in this section.
As shown in Fig. 1c, the measurement and state equations
for the Kalman filter can be represented as

zzk ¼Mŝsk þmmk; ð7Þ

ŝsk ¼ Fŝsk�1 þ ppk; ð8Þ

where ŝsk ¼ ½x̂xk v̂vk âak�T . The variables mmk and ppk denote the
measurement and the process noises associated with the
covariance matrices R and Q within the Kalman filtering
formulation. The measurement vector zzk ¼ ½x̂ls;k ŷls;k�T re-
presents the measurement input which is obtained from the
output of the two-step LS estimator at the kth time step (as
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in Fig. 1c). The matrix M and the state transition matrix F
can be obtained as

M ¼ 1 0 0 0 0 0
0 1 0 0 0 0

� 	
; ð9Þ

F ¼

1 0 �t 0 1
2 �t2 0

0 1 0 �t 0 1
2 �t2

0 0 1 0 �t 0
0 0 0 1 0 �t
0 0 0 0 1 0
0 0 0 0 0 1

2
6666664

3
7777775
; ð10Þ

where �t denotes the sample time interval. The main
concept of the PLT scheme is to provide additional virtual
measurements (i.e., rrv;k as in (6)) to the two-step LS
estimator while the signal sources are insufficient. Two
cases (i.e., the two-BSs case and the single-BS case) are
considered as given below.

4.1 Two-BSs Case

As shown in Fig. 2, it is assumed that only two BSs (i.e., BS1

and BS2) associated with two TOA measurements are

available at the time step k in consideration. The main target

is to introduce an additional virtual BS along with its virtual

measurement (i.e., PPPLT
BSv;k

¼ fxxPLTv1;k
g and rrPLTv;k ¼ frPLTv1;k

g) by

acquiring the predictive output information from the

Kalman filter. Knowing that there are predicting and

correcting phases within the Kalman filtering formulation,

the predictive state can, therefore, be utilized to compute

the supplementary virtual measurement rPLTv1;k
as

rPLTv1;k
¼ kx̂xkjk�1 � x̂xk�1jk�1k
¼ kMF ŝsk�1jk�1 � x̂xk�1jk�1k;

ð11Þ

where x̂xkjk�1 denotes the predicted MS’s position at time

step k; while x̂xk�1jk�1 is the corrected (i.e., estimated) MS’s

position obtained at the ðk� 1Þth time step. It is noticed that

both values are available at the ðk� 1Þth time step. The

virtual measurement rPLTv1;k
is defined as the distance

between the previous location estimate (x̂xk�1jk�1) as the

position of the virtual BS (i.e., BSv;1: xxPLTv1;k
¼4 x̂xk�1jk�1) and

the predicted MS’s position (x̂xkjk�1) as the possible position

of the MS (as shown in Fig. 2). It is also noted that the

corrected state vector ŝsk�1jk�1 is available at the current time

step k. However, due to the insufficient measurement input,

the state vector ŝskjk is unobtainable at the kth time step

while adopting the conventional two-step LS estimator. By

exploiting rPLTv1;k
(in (11)) as the additional signal input, the

measurement vector zzk can be acquired after the three

measurement inputs rrek ¼ fr1;k; r2;k; r
PLT
v1;k
g and the locations

of the BSs PPe
BS;k ¼ fxx1;k; xx2;k; xx

PLT
v1;k
g have been imposed

into the two-step LS estimator. As zzk has been obtained, the

corrected state vector ŝskjk can be updated with the

implementation of the correcting phase of the Kalman filter

at the time step k as

ŝskjk ¼ŝskjk�1 þPkjk�1M
T ½MPkjk�1M

T þR��1

� ðzzk �Mŝskjk�1Þ;
ð12Þ

where

Pkjk�1 ¼ FPk�1jk�1F
T þQ ð13Þ

and

Pk�1jk�1 ¼½ I�Pk�1jk�2M
T ðMPk�1jk�2M

T þRÞ�1M �
� Pk�1jk�2:

ð14Þ

It is noted that Pkjk�1 and Pk�1jk�1 represent the predicted
and the corrected estimation covariance within the Kalman
filter. I in (14) is denoted as an identity matrix. As can be
observed from Fig. 2, the virtual measurement rPLTv1;k

associated with the other two existing measurements r1;k

and r2;k provide a confined region for the estimation of the
MS’s location at the time step k, i.e., x̂xkjk.

4.2 Single-BS Case

In this case, only one BS (i.e., BS1) with one TOA measure-

ment input is available at the kth time step (as shown in

Fig. 3). Two additional virtual BSs and measurements are
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Fig. 2. The schematic diagram of the two-BSs case for the proposed
PLT and GPLT schemes.

Fig. 3. The schematic diagram of the single-BS case for the proposed

PLT and GPLT schemes.



required for the computation of the two-step LS estimator,

i.e., PPPLT
BSv;k

¼ fxxPLTv1;k
; xxPLTv2;k

g and rrPLTv;k ¼ frPLTv1;k
; rPLTv2;k

g. Similar

to the previous case, the first virtual measurement rPLTv1;k
is

acquired as in (11) by considering x̂xk�1jk�1 as the position of

the first virtual BS (i.e., xxPLTv1;k
¼ x̂xk�1jk�1) with the predicted

MS’s position (i.e., x̂xkjk�1) as the possible position of the MS.

On the other hand, the second virtual BS’s position is

assumed to locate at the predicted MS’s position (i.e.,

xxPLTv2;k
¼4 x̂xkjk�1), as illustrated in Fig. 3. The corresponding

second virtual measurement rPLTv2;k
is defined as the average

prediction error obtained from the Kalman filtering formula-

tion by accumulating the previous time steps as

rPLTv2;k
¼ 1

k� 1

Xk�1

i¼1

kx̂xiji � x̂xiji�1k: ð15Þ

It is noted that rPLTv2;k
is obtained as the mean prediction

error until the ðk� 1Þth time step. In the case while the

Kalman filter is capable of providing sufficient accuracy in

its prediction phase, the virtual measurement rPLTv2;k
may

approach zero value. Associated with the single measure-

ment r1;k from BS1, the two additional virtual measure-

ments rPLTv1;k
(centered at x̂xk�1jk�1) and rPLTv2;k

(centered at

x̂xkjk�1) result in a constrained region (as in Fig. 3) for

location estimation of the MS under the environments with

insufficient signal sources.
It is also noticed that the variations of the measurement

inputs are the required information for adopting the two-
step LS estimator. It utilizes the signal variation as an
indicator to consider the weighting factor for a specific
signal source, i.e., smaller weighting coefficient should be
assigned to a measurement input if it encompasses
comparably larger signal variations. The weighted least-
square algorithm can, therefore, be performed within the
two-step LS estimator according to the designated weight-
ing values associated with the signal sources. A similar
concept can be exploited to assign the weighting coefficients
for the virtual measurements. The virtual measurements
can be represented as

rvi;k ¼ �vi;k þ nvi;k; for i ¼ 1; 2; ð16Þ

where �vi;k is denoted as the deterministic noiseless virtual
measurement; while nvi;k represents the virtual noise (i.e., the
component with randomness) associated with the virtual
measurement rvi;k. The following Lemma illustrates that the
resultant virtual noises nvi;k are considered zero-mean
random variables.

Lemma 1. Based on the definition of the virtual measurements
rPLTvi;k

, as in (11) and (15), the corresponding virtual noises
become zero-mean random variables.

Proof. The first virtual measurement rPLTv1;k
, as proposed in

(11), is considered first. Based on (16), the virtual noise

nPLTv1;k
associated with rPLTv1;k

can be written as

nPLTv1;k
¼ rPLTvi;k

� �PLTvi;k

¼ kx̂xkjk�1 � x̂xk�1jk�1k � kxxk � x̂xk�1jk�1k:
ð17Þ

It is noted that both the variables x̂xkjk�1 and x̂xk�1jk�1 are
acquired from the Kalman filtering formulation. The

primary target of the Kalman filter is to achieve zero-
mean estimation errors, i.e., E½xxk � x̂xkjk� ¼ E½xxk �
x̂xkjk�1� ¼ 0. It can, consequently, be obtained that E½xxk� ¼
E½x̂xkjk� ¼ E½x̂xkjk�1� as the estimation errors converge.
Considering that the variables xxk; x̂xkjk, and x̂xkjk�1 possess
the same probability distribution, the expected value of the
first virtual noise can, therefore, be rewritten as

E
�
nPLTv1;k

�
¼ E½kx̂xkjk�1 � x̂xk�1jk�1k� �E½kxxk � x̂xk�1jk�1k�
¼ kE½x̂xkjk�1� � E½x̂xk�1jk�1�k � kE½xxk��E½x̂xk�1jk�1�k
¼ kE½xxk� � E½x̂xk�1jk�1�k � kE½xxk� � E½x̂xk�1jk�1�k ¼ 0:

The result shows that the first virtual measurement rPLTvi;k

has virtual noise nPLTv1;k
with zero-mean value.

Similarly, the virtual noise nPLTv2;k
associated with the

second virtual measurement rPLTv2;k
(in (15)) can be

expressed as

nPLTv2;k
¼ rPLTv2;k

� �PLTv2;k

¼ 1

k� 1

Xk�1

i¼1

kx̂xiji � x̂xiji�1k
" #

� kxxk � x̂xkjk�1k:
ð18Þ

Based on the same estimation objective by adopting
the Kalman filter, the expected value of the virtual
noise nPLTv2;k

is obtained as

E
�
nPLTv2;k

�
¼ 1

k� 1

Xk�1

i¼1

E½kx̂xiji � x̂xiji�1k� � E½kxxk � x̂xkjk�1k�

¼ 1

k� 1

Xk�1

i¼1

kE½x̂xiji� � E½x̂xiji�1�k

� kE½xxk� �E½x̂xkjk�1�k ¼ 0:

The result indicates that the virtual noise nPLTv2;k

associated with the second virtual measurement is
acquired as a zero-mean random variable. This
completes the proof. tu
It is noticed that the zero-mean characteristics of the virtual

noises (as was proved in Lemma 1) will be utilized as a

property for Lemma 2 in the next section. Based on (11), the

signal variation of rPLTv1;k
is considered as the variance of the

predicted distance kx̂xkjk�1 � x̂xk�1jk�1k between the previous

ðk� 1Þ time steps. Associated with the result obtained from

Lemma 1, the virtual noisenv1;k is regarded as zero mean with

variance �2
nv1 ;k
¼VarðrPLTv1;k

Þ¼Varðkx̂xkjk�1 � x̂xk�1jk�1kÞ. Simi-

larly, since the signal variation of the second virtual

measurement rPLTv2;k
is obtained as the variance of the averaged

prediction errors (as in (15)), the associated virtual noise nv2;k

can also be considered as zero mean with variance

�2
nv2 ;k
¼ VarðrPLTv2;k

Þ. Consequently, the variances of the virtual

noises (i.e., �2
nv1 ;k

and �2
nv2 ;k

) will be exploited as the weighting

coefficients within the formulation of the two-step LS

estimator.

5 FORMULATION OF GPLT ALGORITHM

As was explained in Section 2.3, the geometric relationship
between the MS and its associated BSs (i.e., indicated by the
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corresponding GDOP value) will affect the precision for

location estimation and tracking. The concept of the

proposed GPLT scheme is to adjust the positions of the

virtual BSs such that the predicted MS will, consequently,

be possessed with a smaller GDOP value based on the

newly formed geometric layout. The modified positions of

the virtual BSs will, therefore, be adopted associated with

the existing BSs for location estimation. Similarly, the two-

BSs and the single-BS cases are considered for the GPLT

algorithm as given below.

5.1 Two-BSs Case

In this case, the primary target for the GPLT scheme is to

design the location of the virtual BS, i.e., BSv;1: xxGPLTv1;k
. As

shown in Fig. 2, two parameters (i.e., the distance rGPLTv1;k
and

the angle �k) w.r.t. the predicted MS’s position x̂xkjk�1 are

introduced to represent the designed virtual BS’s position

xxGPLTv1;k
. The selection of these two parameters within the

GPLT algorithm is explained in the following sections.

5.1.1 Computation of Angle �k
The main objective of the GPLT scheme is to acquire the

angle �k of xxGPLTv1;k
such that the predicted MS (x̂xkjk�1) will

possess a minimal GDOP value within its network

topology for location estimation. As illustrated in Fig. 2,

the following equality can be obtained based on the

geometric relationship:

x̂xkjk�1 � xxGPLTv1;k
¼


�rGPLTv1;k

� cos�k; �rGPLTv1;k
� sin�k

�
: ð19Þ

It is noticed that the angle �k is rotated from the positive x-

axis based on the predicted MS (x̂xkjk�1). As mentioned

above, the position of the virtual BS (xxGPLTv1;k
) is designed

such that the predicted MS (x̂xkjk�1) will be located at a

minimal GDOP position based on the extended geometric

set PP e
BS;k ¼ fxx1;k; xx2;k; xx

GPLT
v1;k

g. By incorporating (19) into

(3) and (4), the GDOP value (i.e., Gx̂xkjk�1
) computed at the

predicted MS’s position x̂xkjk�1 ¼ ðx̂kjk�1; ŷkjk�1Þ can be

obtained. The associated matrix Hx̂xkjk�1
becomes

Hx̂xkjk�1
¼

x̂kjk�1�x1;k

r1;k

ŷkjk�1�y1;k

r1;k

x̂kjk�1�x2;k

r2;k

ŷkjk�1�y2;k

r2;k

x̂kjk�1�xGPLTv1 ;k

rGPLT
v1 ;k

ŷkjk�1�yGPLTv1 ;k

rGPLT
v1 ;k

2
66664

3
77775

¼

x̂kjk�1�x1;k

r1;k

ŷkjk�1�y1;k

r1;k

x̂kjk�1�x2;k

r2;k

ŷkjk�1�y2;k

r2;k

�cos�k �sin�k

2
664

3
775:

ð20Þ

It is noted that the noiseless relative distances �i;k in (3)

are approximately replaced by ri;k in (20) since �i;k are

considered unattainable. It can be observed from (20) that

the matrices Hx̂xkjk�1
associated with the resulting Gx̂xkjk�1

values are regarded as functions of the angle �k, i.e.,

Hx̂xkjk�1
ð�kÞ and Gx̂xkjk�1

ð�kÞ. Based on the objective of the

GPLT scheme, the angle �mk which results in the minimal

GDOP value can, therefore, be acquired as

�mk ¼ arg min
8�k

Gx̂xkjk�1
ð�kÞ

� �
: ð21Þ

It is intuitive to observe that (21) can be achieved if the
following conditions on the first and second derivatives of
Gx̂xkjk�1

ð�kÞ are satisfied:

@Gx̂xkjk�1
ð�kÞ

@�k

� 	
�k¼�mk

¼ 0; ð22Þ

@2Gx̂xkjk�1
ð�kÞ

@�k
2

" #
�k¼�mk

> 0: ð23Þ

By substituting (20) and (3) into (22), the angle �mk can be
computed as

�mk ¼ tan�1 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

�

 !
; ð24Þ

where

� ¼ f2½r2
2;kðx̂kjk�1 � x1;kÞðŷkjk�1 � y1;kÞ

þ r2
1;kðx̂kjk�1 � x2;kÞðŷkjk�1 � y2;kÞ�g

=fr2
2;kðx̂kjk�1 � x1;kÞ2 � r2

2;kðŷkjk�1 � y1;kÞ2

þ r2
1;kðx̂kjk�1 � x2;kÞ2 � r2

1;kðŷkjk�1 � y2;kÞ2g:

ð25Þ

It is noted that the selection for either the positive or the
negative value of �mk is determined by (23). At each time
instant k, the relative angle �mk between x̂xkjk�1 and xxGPLTv1;k

can, therefore, be obtained such that x̂xkjk�1 is located at the
position with a minimal GDOP value based on its current
network layout.

Moreover, it is important to observe from (24) and (25)

that the angle �mk is independent of the virtual measurement

rGPLTv1;k
. In other words, considering the two-BS case with one

adjustable virtual BS, the distance rGPLTv1;k
can, arbitrarily, be

chosen along the direction with angle �mk and, consequently,

the minimal GDOP for x̂xkjk�1 is still attained. However, this

result does not guarantee the independency between the

virtual distance rGPLTv1;k
and the estimation errors. In the next

section, the distance effect to the location estimation errors

will further be evaluated.

5.1.2 Selection of Distance rGPLTv1;k

In this section, the virtual measurement rGPLTv1;k
will be

determined, which can be utilized for acquiring the position
of the virtual BS xxGPLTv1;k

. It is observed in (20) that the GDOP
value at the predicted MS’s position is primarily dominated
by the relative angle (i.e., �k) between the MS and the BSs;
while the distance information (i.e., rGPLTv1;k

) is considered
uninfluential to the GDOP value. This uncorrelated relation-
ship between the GDOP value and the relative distance has
also been observed, as in [25]. The following Lemma shows
that the selection of the virtual distance rGPLTv1;k

becomes
insignificant for the WLS-based location estimation.

Lemma 2. A time-based location estimation problem is considered
for the MS using the Weighted Least-Square (WLS) algorithm.
Assuming that a measurement input obtained from a specific
BS is associated with zero-mean random noises, the expected
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value of the location estimation error is independent of the
distance between the specific BS and the MS.

The proof of Lemma 2 is shown in the Appendix. This
lemma states that the expected value of the location
estimation error is independent of the distance between a
specific BS to the MS if the noises associated with the
measurement inputs are statistically distributed with a
zero-mean value. In generic time-based location estimation,
the phenomenon stated in Lemma 2 does not usually exist
since most of the measurement inputs are contaminated
with NLOS noises, i.e., ei;k in (1) is randomly distributed
with positive mean value. The NLOS error is augmented as
the distance between the specific BS and the MS is
increased, which causes the corresponding measurement
input to become unreliable compared with the other signal
sources. This result is consistent with the intuition that BSs
with closer distances to the MS are always selected for
location estimation. In the proposed GPLT scheme, how-
ever, the virtual measurement rGPLTv1;k

is considered as a
designed distance which is infected by its corresponding
virtual noise nGPLTv1;k

with zero mean value (as can be
obtained from Lemma 1). Based on Lemma 2, the selection
of the distance rGPLTv1;k

becomes uninfluential to the estima-
tion error while exploiting the WLS algorithm for location
estimation. This result is similar to the derived GDOP value
that is unrelated to the distance information between the
BSs and the MS (as can be observed from (20)). In the
simulation section, the uncorrelated relationship between
rGPLTv1;k

and the estimation error will further be validated by
exploiting the two-step LS estimator, which is considered
one of the the WLS-based algorithms for location estima-
tion. It will be demonstrated via the simulation results that
the influence from the length of the virtual measurement to
the estimation error is considered insignificant.

The procedures of the proposed GPLT scheme under

the two-BSs case is explained as follows: The target is to

obtain the position of the MS at the kth time step (i.e., x̂xkjk)

based on the available information, including the measure-

ment and location information acquired from both BS1

and BS2 along with the predicted position of the MS (i.e.,

x̂xkjk�1). Two steps are involved within the proposed GPLT

scheme: 1) the determination of the virtual BS’s position

and the virtual measurement and 2) the estimation and

tracking of the MS’s position. As shown in Fig. 2, the

orientation of the virtual BS (�mk ) relative to the predicted

MS’s position x̂xkjk�1 is determined based on the criterion of

minimizing the GDOP value on x̂xkjk�1 (as obtained from

(21) and (24)). As was indicated by Lemma 2, the selection

of the virtual distance rGPLTv1;k
w.r.t. the predicted MS’s

position x̂xkjk�1 is considered insignificant to the estimation

errors. Therefore, the distance is selected the same value as

was designed in the PLT algorithm, i.e., rGPLTv1;k
¼ rPLTv1;k

, as

in (11). The location of the virtual BS (xxGPLTv1;k
) and the

length of the virtual measurement (rGPLTv1;k
) can, conse-

quently, be acquired. It is also noticed that the design of

the virtual noise can, therefore, be selected the same as

that in the PLT scheme, i.e., zero-mean random distributed

with variance �2
nv1 ;k
¼ VarðrPLTv1;k

Þ ¼ Varðkx̂xkjk�1 � x̂xk�1jk�1kÞ.
After acquiring the information of the virtual BS as the

additional signal source, the extended sets of the BSs and

the measurement inputs can be established as PPe
BS;k ¼

fxx1;k; xx2;k; xx
GPLT
v1;k

g and rrek ¼ fr1;k; r2;k; r
GPLT
v1;k

g. As illu-

strated in Fig. 1c, the extended set of signal sources is

utilized as the input to the two-step LS estimator. The

estimated MS’s position x̂xkjk can, therefore, be obtained by

adopting the correcting phase of the Kalman filter, which

completes the location estimation and tracking processes at

the kth time step.

5.2 Single-BS Case

As illustrated in Fig. 3, only one BS (xx1;k) associated with the

measurement input r1;k is available at the considered kth

time instant. Additional two virtual BSs associated with

their virtual measurements are required as the inputs for

the two-step LS estimator, i.e., PPGPLT
BSv;k

¼ fxxGPLTv1;k
; xxGPLTv2;k

g
and rrGPLTv;k ¼ frGPLTv1;k

; rGPLTv2;k
g. By adopting a similar concept

as stated in Section 5.1, the following equations can be

obtained based on the geometric relationships from Fig. 3:

x̂xkjk�1 � xxGPLTv1;k
¼


�rGPLTv1;k

� cos�m1

k ; �rGPLTv1;k
� sin�m1

k

�
; ð26Þ

x̂xkjk�1 � xxGPLTv2;k
¼


�rGPLTv2;k

� cos�m2

k ; �rGPLTv2;k
� sin�m2

k

�
: ð27Þ

Based on (26) and (27), it can be observed that the design

concept of the GPLT scheme for the single-BS case is to

obtain the feasible locations for both xxGPLTv1;k
and xxGPLTv2;k

by

rotating around the predicted MS’s location x̂xkjk�1. For fair

comparison, the two virtual measurements are designed to

be the same as that utilized in the PLT scheme, i.e.,

rrGPLTv;k ¼ frPLTv1;k
; rPLTv2;k

g, as in (11) and (15). The two rotating

angles �m1

k and �m2

k that are designed to be hinged at the

predicted MS’s location x̂xkjk�1 will be sequentially deter-

mined as follows: First of all, as shown in Fig. 3, the position

of the second virtual BS (xxGPLTv2;k
) is designed at a location

with distance rGPLTv2;k
relative to the predicted MS’s position

x̂xkjk�1. It is noted that the position of the first virtual BS that

is designed from the PLT scheme (i.e., xxPLTv1;k
¼ x̂xk�1jk�1) is

assigned as the preliminary position for the first virtual BS,

i.e., xxGPLTv1;k
¼ xxPLTv1;k

. Based on the information acquired from

BS1ðxx1;k) and xxPLTv1;k
associated with the predicted MS’s

position x̂xkjk�1, the rotating angle �m2

k for the second virtual

BS can be acquired, as in (24). After the angle �m2

k has been

obtained, the position of the second virtual BS (xxGPLTv2;k
)

becomes available, as in (27). The same procedure, based on

(24), can be adopted to obtain the rotating angle �m1

k of the

first virtual BS, where the available information includes

xx1;k and xxGPLTv2;k
associated with the predicted MS’s position

x̂xkjk�1. Consequently, the positions for both of the virtual

measurements xxGPLTv1;k
and xxGPLTv2;k

can be determined.
Based on intuitive observation and the computation of

GDOP value from (3), a comparable larger GDOP occurs if the
geometric layout formed by the three BSs is approximately
collinear, i.e., less than 5 degree in one of the triangular
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angles. This situation, in general, happens by adopting the
PLT scheme under the single-BS case, especially under the
situation while the MS is moving along the same direction for
a certain time interval. As shown in Fig. 3, the designed
positions of the virtual BSs, i.e., xxPLTv1;k

and xxPLTv2;k
, are observed

to be collinear with the measurement input BS1ðxx1;k). The
benefits of exploiting the GPLT scheme can be revealed in
consideration of the collinearity problem. With the computa-
tion of the angle �m2

k from the GPLT scheme, the collinear
situation between BS1 and BSv;2 can be avoided; while the
rotated angle �m1

k alleviates the potential small angle between
BS1 and BSv;1. By considering the geometric layout within the
design of the GPLT scheme, the situations with worse GDOP
value can be improved. The precision for location estimation
and tracking of the MS can, consequently, be enhanced.

6 PERFORMANCE EVALUATION

Simulations are performed to show the effectiveness of the
proposed PLT and GPLT schemes under different numbers
of BSs, including the scenarios with deficient signal sources.
The noise models and the simulation parameters are
illustrated in Section 6.1. Section 6.2 validates the GPLT
scheme according to the variations from the relative angle
and the distance between the MS and the designed virtual
BS. The performance comparison between the proposed
PLT and GPLT algorithms with the other existing location
tracking schemes, i.e., the KT and the CLT techniques, are
conducted in Section 6.3.

6.1 Noise Models and Simulation Parameters

Different noise models [32], [33] for the TOA measurements
are considered in the simulations. The model for the
measurement noise of the TOA signals is selected as the
Gaussian distribution with zero mean and 10 meters of
standard deviation, i.e., ni;k � Nð0; 100Þ. On the other hand,
an exponential distribution pei;kð�Þ is assumed for the NLOS
noise model of the TOA measurements as

pei;kð�Þ ¼
1
�i;k

exp � �
�i;k

 �
; � > 0

0; otherwise;

(
ð28Þ

where �i;k ¼ c � �i;k ¼ c � �mð�i;kÞ"	. The parameter �i;k is the
RMS delay spread between the ith BS to the MS. �m
represents the median value of �i;k, which is selected as
0:1 
s in the simulations. " is the path loss exponent which
is assumed to be 0.5. The shadow fading factor 	 is a log-
normal random variable with zero mean and standard
deviation �	 chosen as 4 dB in the simulations. The
parameters for the noise models as listed in this section
primarily fulfill the environment while the MS is located
within the rural area. It is noticed that the reason for
selecting the rural area as the simulation scenario is due to
its higher probability to suffer from deficiency of signal
sources. Moreover, the sampling time �t is chosen as 1 sec
in the simulations.

6.2 Validation of GPLT Scheme

6.2.1 Validation with Angle Effect

As mentioned in Section 5.1.1, the primary objective of the
proposed GPLT algorithm is to adjust the position of the

virtual BS such that the predicted MS can be situated at a
location with minimal GDOP value. The design concept
implicitly indicates that the estimation error can be reduced
if the MS is possessed with a smaller GDOP value formed by
its geometric layout. In this section, the relationship between
the estimation errors and the GDOP values will be verified
via simulations. As shown in Fig. 4, the two-BS case
considered associated with the locations of the BSs are
BS1 ¼ ð505; 2;957Þ and BS2 ¼ ð1;520; 1;234Þ in meters. The
MS’s true position is located at xx ¼ ð1;020; 2;100Þ m. The
position of the virtual BS is assumed at xxv1

ð�Þ ¼ ð1;020þ
1;500 cos�; 2;100þ 1;500 sin�Þ m with � ¼ 0 � 359 degree. It
can be seen that the potential positions of the virtual BS are
considered to be located at a distance 1,500 meters away
from the MS’s true position along with different relative
angles �.

Fig. 5 illustrates the comparison between the average
position error (as in Fig. 5a), the root-mean-square error
(RMSE, as in Fig. 5b), and the GDOP value versus the
relative angle (�) between the true MS and the virtual BS. It
is noted that the average position error (�x) and the RMSE
are computed as: �x ¼ ½

PN
i¼1 kxx� x̂xðiÞk�=N and RMSE ¼

½
PN

i¼1 kxx� x̂xðiÞk
2=N �1=2, where N ¼ 50 indicates the num-

ber of simulation runs. It is also noticed that the GDOP
value (Gxx) is evaluated at the MS’s true position; while the
estimated MS’s position x̂xðiÞ is obtained by the two-step LS
estimator employing the various positions of the virtual BS,
i.e., xxv1

ð�Þ for � ¼ 0 � 359 degree. It can be observed from
both plots in Fig. 5 that the average position error and the
RMSE follow the similar trend as the computed GDOP
value. Both the minimal average estimation error (asso-
ciated with the RMSE) and the minimal GDOP value occur
at the locations of xxv1

ð30:5 degreeÞ ¼ ð2;312; 2;861Þ m and
xxv1
ð210:5 degreeÞ ¼ ð�272:4; 1;338Þ m. It is noted that the

angle �mk for the minimal GDOP value can also be directly
computed and verified from (24). Moreover, the maximal
GDOP values and the maximal estimation errors (including
both the average estimation error and the RMSE) happen
around the locations of xxv1

ð120:5 degreeÞ ¼ ð258:7; 3;392Þ m
and xxv1

ð300:5 degreeÞ ¼ ð1;781; 807:6Þ m. The results can
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Fig. 4. An exemplify diagram for the scenarios with the two-BSs layout.
Stars (xxv1

ð30:5 degree) and xxv1
ð210:5 degree)): the positions of the

virtual BS cause the minimal GDOP value of the MS; Squares
(xxv1 ð120:5 degree) and xxv1 ð300:5 degree)): the positions of the virtual
BS cause the maximal GDOP value of the MS.



further be validated by observing the geometric layout, as
in Fig. 4. The minimal GDOP values of the true MS occur as
the three BSs form an equilateral triangle; while the
maximal GDOP values happen as the three BSs are situated
along a straight line. The above observations validate the
effectiveness of the proposed GPLT scheme by obtaining a
position of the virtual BS with a smaller GDOP value,
which, consequently, reduces the corresponding estimation
error. On the other hand, the estimation errors can be
severely augmented if the MS happens to be located at a
position with the maximum GDOP value by adopting other
schemes. It can, therefore, be concluded that the results
obtained from the simulations comply with the design
objectives of the GPLT algorithm.

6.2.2 Validation with Distance Effect

In this section, the results obtained from Lemma 2 will be
validated via simulations. It is stated in Lemma 2 that the
expected value of the estimation error is independent of the
distance between the MS and a specific BS (which is
associated with the measurement input contaminating zero-
mean random noises) by adopting the WLS location
estimation algorithm. In order to validate Lemma 2 by the
simulation data, the estimation errors induced by adopting
the two-step LS estimator will be obtained for the evaluation
of the distance effect. Fig. 6 illustrates the average position
error (as in Fig. 6a) and the RMSE (as in Fig. 6b) acquired
from the two-step LS method under different relative
distances between the MS and the virtual BS (i.e., rv1

). It is
noted that the distance rv1

is simulated from 1 to 106 m
along the angle � ¼ 60 degree, as shown in Fig. 4. The four
simulated results are conducted under different signal
standard deviations (i.e., �nv1 ¼ 10; 20; 30; 40) in order to
examine the potential effect from the signal variances. As
can be expected, the estimation errors are observed to be
independent of the relative distance between the MS and
the virtual BS, which are similar to the results as concluded
from Lemma 2. Moreover, it is also reasonable to perceive

that the increases on the signal standard deviation �nv1 will

induce proportional augmentation on the RMSE (in Fig. 6b);

while the average position error is considered not related to

the changes due to the signal variations (in Fig. 6a). From

the above observations via the simulation data, the

uncorrelated relationship between the distance rv1
and the

estimation error is found to be consistent with the results as

acquired from Lemma 2. However, a feasible value of rv1

should be selected in the simulations in order not to exceed

the limitation of computation, e.g., matrix inversion can

result in singular value as an extremely large value of rv1
is

exploited. For fair comparison purpose, the distance rv1
for

the GPLT scheme is chosen to be the same as that in the PLT

scheme in the following section.

6.3 Simulation Results

The performance comparisons between the EKF scheme, KT

scheme, the CLT scheme, and the proposed PLT and GPLT

algorithms are conducted under the rural environment.

Fig. 7 illustrates the scenario with various numbers of BSs
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Fig. 6. (a) The average position errors versus the relative distance

between the MS and the virtual BS (rv1
); (b) the RMSE versus the

relative distance between the MS and the virtual BS (rv1
) (with

�nv1 ¼ 10; 20; 30; 40).

Fig. 7. Total number of available BSs (Nk) versus simulation time

(second); Black textbox: available BSs (PBS;k) during each time interval.

Fig. 5. (a) The average position error (solid line) and the GDOP value

(dashed line) versus the relative angle between the MS and the virtual

BS (�); (b) the RMSE (solid line) and the GDOP value (dashed line)

versus the relative angle between the MS and the virtual BS (�).



(i.e., the Nk values) that are available at different time
intervals, where PBS;k denotes the set of available BSs (as
indicated in Fig. 8a) that are visible during each time
interval. It can be seen that the number of BSs becomes
insufficient (i.e., Nk < 3) from the time interval of t ¼ 78 to
129 sec. The total simulation interval is set as 150 seconds.

Figs. 8a, 8b, and 8c illustrate the performance compar-
isons of the trajectory, the velocity, and the acceleration
tracking using the four algorithms. The estimated values
obtained from these schemes are illustrated via the dashed
lines; while the true values are denoted by the solid lines.
The locations of the BSs are represented by the empty circles
as in Fig. 8a. The acceleration is designed to vary at
time t ¼ 40; 55; 100, and 120 sec from aak ¼ ðax;k; ay;kÞ ¼
ð0:5; 0Þ; ð�1; 1:5Þ; ð0; 0Þ; ð0:5; 0Þ; to ð1;�2Þ m=sec2 (as shown
in Fig. 8c). It is noted that the number of BSs becomes
insufficient during the second acceleration change (i.e., at
t ¼ 78 sec). Table 1 illustrates the performance comparison
between the five location tracking algorithms under
different percentages of average position errors, i.e., by
sorting the estimation errors during the entire simulation
interval. It can be observed that both the proposed GPLT
and the PLT schemes provide better performance compared
with the other existing algorithms owing to their considera-
tion of insufficient signal sources, e.g., the GPLT algorithm
outperforms the CLT scheme with around 560 m of
estimation error under 80 percent of average position error.
It is also noticed that the EKF scheme possesses the worst
performance compared with the other algorithms under
different percentages of estimation errors. Therefore, only
the KT, the CLT, the PLT, and the GPLT schemes are further
compared for performance evaluation.

By observing the starting time interval between t ¼ 0
and 77 sec (where the number of BSs is sufficient), the four

algorithms provide similar performance on location track-
ing, as shown in the x� y plots in Fig. 8a. As illustrated in
Figs. 8b and 8c, it can be seen that the KT scheme can
provide better performance on the velocity and accelera-
tion tracking during the transient phase (i.e, from t ¼ 0 to
10 sec) compared with the other schemes. The reason can
be attributed to the inherent architecture difference, as
shown in Fig. 1. The KT scheme is designed to be a unified
scheme which compromises between the estimated state
variables, x̂xk, v̂vk, and âak. On the other hand, the CLT
algorithm associated with the PLT/GPLT schemes are
designed to be a cascaded structure, where the measure-
ment input of the Kalman filter is the resulting estimated
MS’s position from the two-step LS method. The estimated
position of the MS dominates the update of the state
variables; while both the velocity and the acceleration are
considered less essential compared with the update of the
position x̂xk. Consequently, comparable better velocity and
acceleration updates are observed by adopting the KT
scheme during the transient response, as in Figs. 8b and
8c. However, the KT scheme results in the worst
performance among the four schemes after the transient
phase (as shown in Figs. 8b and 8c). Owing to the
utilization of an external location estimator within the KT
scheme, the estimation errors are increasingly accumulated
due to the potential inaccuracy of the estimator.

During the time interval between t ¼ 78 and 129 sec with
inadequate signal sources, it can be observed that only the
proposed GPLT scheme can achieve satisfactory perfor-
mance in the trajectory, the velocity, and the acceleration
tracking. The estimated trajectories obtained from both the
KT and the CLT schemes diverge from the true trajectories
due to the inadequate number of measurement inputs. It is
noticed that the inaccuracy within the PLT scheme
primarily results from the implicitly worse geometric layout
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TABLE 1
Performance Comparison between the Location Tracking Algorithms (Average Position Error (m))

Fig. 8. Performance comparison of MS tracking. (Dashed lines: estimated value; Solid lines: true value; Empty circles in (a): the position of the BSs).

(a) Trajectory. (b) Velocity. (c) Acceleration.



at certain time instants, which will further be explained by
the GDOP plot, as in Fig. 10.

Moreover, Fig. 9 illustrate the average position error (as
in Fig. 9a) and the RMSE (as in Fig. 9b) (i.e., characterizing
the signal variances) for location estimation and tracking of
the MS. The four location tracking schemes are compared
based on the same simulation scenario as shown in Fig. 7. It
can be observed from both plots that the proposed GPLT
and PLT algorithms outperform the conventional KT and
CLT schemes. The main differences between these algo-
rithms occur while the signal sources become insufficient
within the time interval between t ¼ 78 and 129 sec. The
proposed GPLT and PLT schemes can still provide
consistent location estimation and tracking; while the other
two algorithms result in significantly augmented estimation
errors. The major reason is attributed to the assisted
information that is fed back into the location estimator
while the signal sources are deficient. Furthermore, the
GPLT algorithm outperforms the PLT scheme primarily
due to its exploitation of the GDOP criterion.

The comparison of the average GDOP values (associated
with their confident intervals) between the PLT and the
GPLT schemes is illustrated in Fig. 10. It is noted that the
averaged GDOP values are computed based on 25 simulation
runs. The average GDOP values are compared only during
the time interval with deficient signal sources, i.e., while the
virtual BSs and the virtual measurements are exploited in
both schemes. It can be observed that the GDOP values
obtained from the GPLT algorithm are consistent during the
simulation period with reasonable variations. On the other
hand, the GDOP values acquired from the PLT scheme result
in larger variations, especially during the time interval of
t ¼ 96-119 sec. The results are consistent with those estima-
tion errors as acquired from Fig. 9 that worse GDOP value
will result in incorrect location estimation of the MS. During
the time interval of t ¼ 78-95 sec, the GDOP values obtained
from both schemes are considered similar, which represent
that comparable geometric topology are formed by their
individual virtual BSs. The geometric effect will not be an
influential factor as regards the estimation error for the MS.

On the other hand, during the time interval of t ¼ 110-119,
sudden deviates in the GDOP values are observed by using
the PLT scheme. The larger average position error and the
RMSE within the PLT algorithm (as seen from Fig. 9 at
around t ¼ 120 sec) can, therefore, be attributed to the
corresponding increased GDOP values and variations.
Nevertheless, with the adoption of the minimal GDOP
criterion, the proposed GPLT scheme can still maintain
consistent GDOP values under different numbers of avail-
able signal inputs. The resulting estimation error and RMSE
can, consequently, be controlled within a reliable interval.

7 CONCLUSION

In this paper, the PLT and the GPLT schemes are proposed.
The predictive information obtained from the Kalman
filtering formulation is exploited as the additional measure-
ment inputs for the location estimator. With the feedback
information, sufficient signal sources become available for
location estimation and tracking of a mobile device. More-
over, the GPLT algorithm adjusts the locations of its virtual
Base Stations based on the GDOP criterion. It is shown in
the simulation results that the proposed GPLT algorithm
can provide consistent accuracy for location estimation and
tracking even under the environments with insufficient
signal sources.

APPENDIX

The proof of Lemma 2 in Section 5.1.2 is shown below.

Proof. Considering three TOA measurements are available
for estimating the MS’s position (as described in (1) with
Nk ¼ 3), it is assumed that the third TOA measurement
r3;k is only contaminated by random noises with zero-
mean value, i.e., E½n3;k� ¼ 0 and e3;k ¼ 0 in (1). The target
of this proof is to illustrate that the expected value of the
estimation error resulting from the WLS method is
independent of the magnitude of the measurement input
r3;k. By combining (1) and (2), the following matrix
format can be obtained:

Akbbk ¼ Jk; ð29Þ
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Fig. 10. Comparison of the average GDOP values (associated with their
confident intervals) between the PLT and the GPLT schemes during the
time interval with deficient signal sources.

Fig. 9. (a) The average position error versus the simulation time
(second); (b) the RMSE versus the simulation time (second).



where

bbk ¼ xk yk �k½ �T ;

Ak ¼
�2x1;k � 2y1;k 1
�2x2;k � 2y2;k 1
�2x3;k � 2y3;k 1

2
4

3
5; Jk ¼

r2
1;k � �1;k

r2
2;k � �2;k

r2
3;k � �3;k

2
64

3
75:

It is noted that �k ¼ x2
k þ y2

k and �i;k ¼ x2
i;k þ y2

i;k, for i ¼ 1,

2, and 3. Based on (29), the MS’s estimated position by

adopting the WLS method (i.e., x̂xk ¼ ½x̂k; ŷk�T ) can be

acquired as

x̂xk ¼ C


AT
k��1Ak

��1
AT
k ��1Jk; ð30Þ

where

C ¼ 1 0 0
0 1 0

� 	
; ð31Þ

� ¼ E½  T � ¼ E½ðJk �AkbbkÞðJk �AkbbkÞT � ¼ 4c2BLB:

ð32Þ

The parameter � is denoted as the error covariance

matrix, where B ¼ diagf�1;k; �2;k; �3;kg. L represents the

covariance matrix of measured noise. The primary

concern of this proof is to acquire the expected value of

the estimation error �x̂xk ¼ ½�x̂k; �ŷk�T , which can be

obtained by rewriting (30) as

�x̂xk ¼ C


AT
k��1Ak

��1
AT
k��1�Jk: ð33Þ

It is noted that (33) indicates that the estimation error

vector �x̂xk is incurred by the variation within the vector

Jk. The value of �Jk is obtained by considering the

variations from the measurement inputs as (i.e., ri;k ¼
�i;k þ ni;k þ ei;k in (1))

�Jk ¼
2�1;k ðn1;k þ e1;kÞ þ ðn1;k þ e1;kÞ2

2�2;k ðn2;k þ e2;kÞ þ ðn2;k þ e2;kÞ2

2�3;k n3;k þ n2
3;k

2
64

3
75

’
2�1;k ðn1;k þ e1;kÞ
2�2;k ðn2;k þ e2;kÞ

2�3;k n3;k

2
64

3
75;

ð34Þ

where e3;k equals to zero as mentioned at the beginning

of this proof. It is noted that the approximation from the

second equality within (34) is valid by considering that

the noiseless distance �i;k is, in general, larger than the

combined noise effect ðni;k þ ei;kÞ. For simplicity and

without loss of generality, a coordinate transformation

can be adopted within (33) such that ðx1;k; y1;kÞ ¼ ð0; 0Þ.
It is also noted that E½n3;k� ¼ 0. Therefore, the expected

value of the estimation error (i.e., �x̂xk ¼ ½�x̂k; �ŷk�T )

can, therefore, be acquired by expanding (33) as

E½�x̂k� ¼ Ef½�1;kðy2;k � y3;kÞðn1;k þ e1;kÞ
þ �2;ky3;kðn2;k þ e2;kÞ�=½x3;ky2;k � x2;ky3;k�g;

ð35Þ

E½�ŷk� ¼ Ef½�1;kðx2;k � x3;kÞðn1;k þ e1;kÞ
þ �2;kx3;kðn2;k þ e2;kÞ�=½y3;kx2;k � y2;kx3;k�g:

ð36Þ

From (35) and (36), it can clearly be observed that the
expected value of the estimation error (i.e., E½�x̂xk� ¼
½E½�x̂k�; E½�ŷk��T ) is independent of the measured dis-
tance r3;k under the assumption that its associated
measurement noisen3;k is considered a zero-mean random
variable, i.e.,E½r3;k� ¼ E½�3;k� þE½n3;k� ¼ E½�3;k�. This com-
pletes the proof. tu
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[21] M. Nájar and J. Vidal, “Kalman Tracking Based on TDOA for
UMTS Mobile Location,” Proc. IEEE Int’l Symp. Personal, Indoor and
Mobile Radio Comm., pp. 45-49, Sept. 2001.
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