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摘要 

 

本論文旨在探討與了解在半導體中運用數種純電性方式來產生和操控自旋流與

自旋堆積之現象。我們研究了在彈道傳輸與擴散範疇中，Rashba 和 Dresselhaus

本質自旋軌道交互作用對電子自旋的影響。在彈道傳輸的 Rashba 量子窄通道

中，我們論證了自旋流可以藉由時變指狀閘極所產生之時變調制的 Rashba 自旋

係數來產生。我們也建構了反彈散射效應對此自旋流堅實性質的影響。在擴散半

導體的條狀系統中，我們論證了在自旋霍爾電場中，Dresselhaus 自旋軌道交互

作用的確會引起條狀系統橫向邊緣的自旋堆積。更進一步，我們探討在外加一個

平面弱磁場下，由 Dresselhaus 自旋軌道交互作用產生之自旋特性。當外加磁場

沿著電場方向時，自旋堆積 Sz 是此磁場的偶函數﹔當外加磁場沿著條狀系統的

橫方向時，自旋堆積 Sz 對磁場的關係變成不對稱。我們發現此一自旋軌道的磁

效應可以當作鑑別不同自旋軌道機制的一個工具。類似在一個侷域的散射子附近

所形成的 Landauer 電偶極矩，我們也發現在沒有塊材自旋流存在的 Rashba 自旋

軌道交互作用的系統中，一個正常的散射子附近仍會有自旋偶極的存在，這個結

果吻合一般理論結果﹕在擴散範疇中 Rashba 自旋軌道交互作用的系統中沒有自

旋堆積 Sz在樣品橫向邊緣。 
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Abstract

The thesis of this work is to explore and to understand various ways of generating and

manipulating spin flow and spin accumulation in a semiconductor by pure electrical means.

Taking the intrinsic spin-orbit interaction (SOI) such as the Dresselhaus SOI and the

Rashba SOI as our major wrenches on the electron spin, we focus upon two different

regimes: the ballistic and the diffusive regimes. In a ballistic Rashba-type quantum

channel, we demonstrate that time-modulation of the Rashba SOI coupling parameter,

via an ac-biased finger gate, leads to a dc spin current. That this dc spin current is

robust against elastic backscattering is also established. In a diffusive semiconductor

stripe, we show that the Dresselhaus SOI does lead to spin accumulation at the lateral

edges in a spin-Hall electric field. Further signature of the Dresselhaus SOI is explored by

introducing a weak in-plane magnetic field. The spin accumulation Sz is an even function

of magnetic field when it is longitudinal, pointing along the driving electric field direction.

For a transverse magnetic field, when it is pointing parallel to the width of the stripe,

the spin accumulation becomes asymmetric. Our finding thus provide a basis for the

establishment of a SOI mechanism diagnostic tool out of the magnetic field effect on the

spin accumulation. Furthermore, we find that, in analogy with the Landauer charge dipole

around a local scatterer, a spin dipole can exist around a normal scatterer in a Rashba-

type 2DEG host where the bulk spin-Hall current is known to be zero. The prediction

of these spin dipoles is consistent with another known fact: that no macroscopic spin

accumulation occurs at the lateral sample edges in the case of Rashba SOI.
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Chapter 1

Introduction

1.1 Introduction to background

Traditional electronic devices depend on the transport of charges in semiconductors. Most

recently, scientists try to develop devices based on the electron ’spin’ rather than the

electron charge. It becomes very remarkable to buildup a new generation of spin-based

devices. Since the fabrication technology of the semiconductor become very ingenious

and functional, more and more quantum devices can be achieved and a lot of hidden

quantum phenomena are excavated. These electronic devices have been widely applied on

industry and those devices are based on the macroscopic electron dynamics. It has been

found another possible way in the use of the electron spin to construct the spin-based

quantum devices and modulate the spin dynamics via the conventional electric means.

Spin is the only internal degree of freedom of an electron and conventional semiconductor

devices are based on the electron charge. One can merge spin and electron dynamics into

spintronics in the semiconductor and provide electronics devices with new functionalities

and achieving quantum computing via reliable spintronics based on the electron spin[1, 2].

Both theory and experiments succeed in impressive progress in the spintronics field in

recent years. However, the high challenges and difficulties still exist and have to be solved

by developing the theory and experimental techniques such as ”enhancement of the spin

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Magnetoresistance of three Fe/Cr superlattices at 4.2 K. The current and
applied field are along the same [110] axis in the plane of the layers. (PRL, 61, 2427
(1988))

coherent length”, and ”suppression of the spin relaxation”.

The first application of the spin-based device is fabricated by the magnetic materials

and use the effect of giant magnetoresistance (GMR)[3, 4]. This effect was observed in the

structures of ferromagnetic-nonmagnetic-ferromagnetic layers by Albert Fert and Peter

Gunberg in 1988. The magnetoresistance of GMR materials can be largely decreased via

a weak magnetic field (see Fig. 1.1). This technique has been realized for write-in and

read-out data from the hard-disk.

More recent research focus on the challenge of creating spintronics devices in semi-

conductor configurations without magnetic materials and applying magnetic fields. To

control electron spins in electric means can be achieved by the spin-orbit interaction (SOI).

Datta and Das proposed a simple model of spin-transistor in which the electron spin can

transport and precess via SOI from a ferromagnetic source injecting into semiconductor

to reaching a ferromagnetic drain [5]. In this spin-transistor, the polarization of the elec-

tron spin depends on the strength of spin-orbit interaction (SOI) which can be tuned by

applying a gate voltage. Because the spin polarization parallel to the polarization of the
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drain can pass through the channel, one can tune the voltage to modulate the current

flow for ’on-’ or ’off-’state. However, the difficulty of Datta-Das transistor is the very low

injection rate (∼ 1 percentage) for electron spins injecting from the magnetic metal into

the semiconductor [6, 7]. This difficulty for spin injection from a magnetic metal into

a semiconductor originates from the conductivity mismatch between these materials [8].

Because the spin injection coefficient γ is proportional to σN/σM leading to γ ¿ 1 in the

diffusive regime, where σN and σM are conductivities of the normal (N) (semiconductor)

and magnetic metallic (M) contacts, respectively. The low spin injection rate can be

enhanced by inset a tunnel contact between a magnetic metal and a semiconductor [9].

However, combining with metallic, tunnel, and semiconductor contacts is inconvenient

and complicated fabrications. Because the strength of SOI is much larger in semicon-

ductors than in vacuum, building up the all-semiconductor devices provides a possible

solution for conductivities mismatch between NM junction. In this way, the manipulation

of electron spins through the SOI can be achieved in all electric means. Basically, the

transport behavior of electron spins can be investigated in the ballistic regime and in the

diffusive regime. The former concentrates on the interference between wave functions of

spinors through an external field because the spin relaxation time is much larger than the

scattering time. The latter one concentrates on the macroscopic coupling-behavior be-

tween electric current and spins through an external field because the spin relaxation time

is much smaller than the scattering time. The enhancement of SOI would be discussed in

semiconductors in next section.

1.2 Spin-orbit coupling in the semiconductor system

We start from Dirac’s equation and extend it to semiconductors in order to understand the

importance of SOI in the solid state community. Electron spin is the only internal degree

of freedom of electrons following naturally from the Dirac equation when Dirac tried to

put wave function in a covariant form, when space and time appear on equal footing. A
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Figure 1.2: (a)With the gate voltage off, the aligned spins pass through the channel and
are collected in the other side. (b)With the gate voltage on: if spins are not aligned
with the direction of magnetization of the collector, no current can pass. In this way, the
emitter-collector current is modulated by gate electrode.
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non-relativistic limit of the Dirac equation gives rise to the spin-orbit interaction term, a

term that has found great success in atomic energy spectra. In vacuum, the form of this

spin-orbit interaction can be expressed by [10]

HSO =
−e~

4m2
0c

2
σ · (E× p) =

~
4m2

0c
2
σ · (∇V × p) (1.1)

where m0 is the free electron mass, ~ is the Plank’s constant and c is the light speed. This

term HSO can be interpreted that an electron moving in an electric potential region sees,

in its frame of reference, an effective magnetic field which couples with the electron spin

through the magnetic moment of the electron spin. Through this effective magnetic field,

which certainly depends on the orbital motion of the electron, the SOI is established.

This physics holds in semiconductor too, when V(r) becomes the periodic potential of the

host lattice and also the impurities.

Electronic state calculation in semiconductor can be properly described by the k · p
model, when we investigate physical effect in the vicinity of the band edges. Furthermore,

within the envelope function approximation (EFA), the energy band can be characterized

by effective masses. The model of EFA is valid to describe the electron states in the

presence of electric and magnetic field that vary slowly on the length of lattice constant.

While there is an build-in effective electric field in the material, the SOI naturally occurs in

this semiconductor. Such effective electric field can be divided into the contribution from

the build-in crystal field due to bulk inversion asymmetric (BIA) the so-called Dresselhaus

SOI [11], or structural inversion asymmetry (SIA), the so-called Rashba SOI [12]. The

BIA is found in zincblende structure and the SIA in asymmetric quantum wells (QWs)

or heterostructures.

In use of the effective mass approximation, all the fast-varying atomic potential has

been included into the effective mass. Slower variation of V(r), its variation length scale

much larger than the lattice spacing, is found to contribute to SOI with a much larger

SO coupling constant λ. For a central potential V(r) depends on only r without angular
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dependence in vacuum, the SO coupling can be recognized as

~
4m2

0c
2
σ ·(∇V × p) =

~
4m2

0c
2

1

r

dV

dr
σ ·(r× p) =

~
4m2

0c
2

1

r

dV

dr
σ ·L
~

= −λvac

~
1

r

dV

dr
L·σ (1.2)

where the angular momentum is L and the vector Pauli’s matrices is σ with λvac =

−~2/(4m2
0c

2) ≈ −3.72× 10−6Å2.

For a central potential V (r) = V (r) in the semiconductor, the SO coupling can be

expressed in the form of

HSO = −λ

~
1

r

dV

dr
L · σ (1.3)

where λ ≈ P 2

3

[
1

E2
g
− 1

(Eg+∆0)2

]
. P is the momentum matrix element between s- and p-

orbitals, Eg is energy gap between conduction- and valence-bands, and ∆0 is the SOI

energy split due to spin split-off hold band [13]. However, λ can greatly enhanced in

semiconductors, such as λ = 120Å2 in InAs and λ = 5.3Å2 in GaAs. It is six order of

magnitude larger than λvac in vacuum [13].

The huge enhancement of SO coupling can be roughly understood as follow. We have

the relation

λ

λvac

∼ m0

m∗
m0c

2

Eg

(1.4)

and m∗ is the effective mass in the semiconductor. For GaAs, we have m0c
2/Eg ∼

0.5MeV/1.519eV and m0/m
∗ ∼ 1/0.0665 leading to

λ/λvac ∼ 4.7× 106.

Comparing with |λ/λvac| = 1.4× 106 in GaAs, the above calculation roughly agrees with

our argument. For GaAs, we have m0c
2/Eg ∼ 0.5MeV/0.418eV and m0/m

∗ ∼ 1/0.0229
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leading to

λ/λvac ∼ 52× 106.

Comparing with |λ/λvac| = 32 × 106 in GaAs, again, the above calculation also agrees

with our argument. This result shows that the effect of SOI is possible to be utilized to

reach the spintronics devices in semiconductors.

1.3 Electrical means of spin manipulations through

SOI in ballistic and diffusive systems

Due to advancement in controlled crystal growth and lithographic techniques, the co-

herent length and spin relaxation length can be enhanced in semiconductors with the

SOI. The advantages of manipulating electron spins via SO coupling in semiconductors

have been realized in: (i) long spin relaxation [14] time and (ii) gate voltage control of

the SO coupling [15]. From Datta-Das transistor based on SOI [5], several theoretical

and experimental results reveal the possible way to reach the spintronics devices by all

electrical means coupling to SOI in semiconductors. Nonmagnetic triple barrier resonant

tunnelling diode based on Rashba SOI can be used in the spin filter by electrical means

[16]. The spatially tunable Rashba SOI quantum wire can modulate the spin-dependent

transmissions by spatial-dependent electrical gates [17]. The spin-dependent tunnelling

through a symmetric semiconductor barrier was studied for the case of cubic Dresselhaus

SOI [18]. The spin interferometer is experimentally realized through Rashba SOI in use

of square-loop arrays fabricated by quantum wells in ballistic regime [19].

Instead of magnetic fields, using time-dependent electric fields would be much bet-

ter and various mechanisms of SOI guide interesting possibilities for electron control of

electron spins [20]. A time-dependent electric field is applied perpendicular to a 2DEG

with Rashba and Dresselhaus SOI to manipulate spins due to the electron dipole spin
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resonance (EDSR) [21]. One key issue of spintroics devices is the generation of spin cur-

rents by combining the SOI with the time-dependent field. The generations of a dc spin

current (SC) accompanying a charge current (CC) are proposed by two adiabatic time-

dependent gates [22]. In the diffusive regime, the ac spin current can be generated by

applying a time-dependent gate and detected in electric means [23]. The dc spin cur-

rent can be induced by time-dependent gates with appropriate geometries in the diffusive

regime [24]. This spin current is very important quantity to understand the fundamental

spin transport. However, the spin current is not strictly related to the spin densities Si

via a conservation law,

∇k · Ji
k +

∂Si

∂xi

6= 0, (1.5)

where the conventional spin current operator is Ĵ i
k =

{
Ŝi, v̂i

}
with velocity operator v̂i.

This nonconservation spin current is due to the spin precession mechanism and it is not

necessary zero even in equilibrium [25, 26]. Some proper definitions of SC were discussed

[27, 28] but the spin current still remains an subtle issue.

Another one physical quantity is the spin accumulation which can be directly measured

experimentally. When an electric current passes through a sample in the presence of SOI,

a spin accumulation is induced near the edges with opposite polarization at opposite edges

[29]. It is known that carriers with opposite charge accumulate near opposite edges with

a magnetic field perpendicular to the sample due to the conventional Hall effect (CHE).

Analogue to CHE, the opposite spin polarization accumulating near opposite edges is the

spin-Hall effect (SHE), see review in Ref.[30]. There are a lot of interesting physics and

applications for the spin due to SHE.

1.4 Historical introduction to spin-Hall effect

In general, the SHE can be divided into the intrinsic and extrinsic SHE. The intrinsic SHE

is due to the intrinsic spin-orbit coupling and the extrinsic SHE is the contribution of the
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skew-scattering processes due to impurities. The extrinsic SHE was first considered by

D’yakonov [29] et al . and more currently was also studied by Hirsch [31]. In contrast to

the extrinsic SHE, the intrinsic SHE occurs totally due to the intrinsic SOI even without

impurities scattering processes. Murakami et al . [32] and Sinova et al . [33] considered the

intrinsic SHE in the hole and electron gas, respectively. The latter one claims that there is

universal spin-Hall conductivity σsH = e/8π~ in a two-dimensional electron gas (2DEG)

with Rashba SOI. The simply picture is shown in Fig. 1.3 in which the spin polarization

perpendicular to 2DEG is induced by the applied electric field [33]. The intrinsic SHE

of the hole system was studied theoretically [34] and the experiment was also realized

by using optical techniques [35]. Kato et al . used optical Kerr rotation to measure the

spin-Hall accumulation in n-doped GaAs of bulk systems [36]. The Fig. 1.4 shows the

spin accumulations are measured by Kerr rotation in the bulk system.

In more realistic situations, the disorder should be taken into account in the macro-

scopic system due to a finite elastic mean free path. The intrinsic SHE is absent for

arbitrary weak disorder in the dc limit due to impurities scattering when the electron

system is in the presence of Rashba SOI [37–40]. Therefore, there is no spin accumulation

near the sample boundaries, except for the vicinity of the source and drain contacts [38].

However, the symmetric n-doped quantum well incorporated with Dresselhaus SOI [40]

and the cubic Rashba SOI [41] in the hole system are calculated giving rise to the finite

spin-Hall conductivities of the order e/8π~. In the case of Dresselhaus SOI, the spin

accumulations near boundaries was studied [42]. Most recently, the spin polarization can

be generated far away from boundaries by nonlinear transport in the extrinsic case [43].

The difference of chemical potential is due to the imbalance populations with respect to

source and drain reservoirs. These spin accumulations give rise to the magnetic potential

difference µ↑ − µ↓ between two boundaries, where µ↑ and µ↓ are the magnetic potential

at the boundaries for spin-up and spin-down, respectively. As such, the spin current can

be driven by the difference of µ↑ − µ↓ from one boundary to the opposite boundary.
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Figure 1.3: The red and green arrows denote the electron spin and momentum, respec-
tively. In the presence of an electric field the Fermi surface (circle) is displaced an amount
|eExt0/~|at time t0 (shorter than typical scattering times). While moving in momentum
space, electrons experience an effective torque which tilts the spin up for py > 0 and
down for py < 0, creating a spin current in the y direction.(Phys. Rev. Lett. 92, 126603
(2004)).

1.5 Motivations

The generation of a spin current becomes one of important goals to carry out the quantum

computing processes [44]. To generate spin currents can use Ferromagnetic materials

[45, 46], external magnetic field [47, 48], optical-polarized technique [49, 50]. There are

several realizable proposals in use of imbalance spin populations to produce the spin

currents via magnetic materials (see a review in Ref.[51]). Here, we want to generate and

control electron spins in all-electric means in a semiconductor such that the spintronics

can be realized through the conventional fabricating processes of the semiconductor. In

semiconductors, the great enhancement of SOI provides a novel way to manipulate the

electron spin by applying the ac external fields in ballistic and diffusive regimes [21, 23, 52].

Form the insight of conventional charge pumping, we open an inspiration to make

spin pump through SOI by time-dependent electric fields in ballistic regime. The ballis-

tic regime, the spin relaxation length lso is much smaller than the mean free path lmean.

The conventional charge pumping indicates that a dc charge current can be generated
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Figure 1.4: (A and B) Two-dimensional images of spin density ns and reflectivity R,
respectively, for unstrained GaAs sample measured at T=30 K and E=10 mV/µm (Science
306, 1910 (2004)).
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by applying two time-dependent field in mesoscopic structures in the adiabatic regime

[53, 54]. The non-adiabatic pumping show the time-dependent Bragg reflection mech-

anism for a time-dependent finger-gate array system.[55] In the first case, either Fermi

energy is larger than the oscillating frequency EF À Ω or energy level spacing is larger

than the oscillating frequency ∆E À Ω. The latter can release the restriction of oscillating

frequency Ω. These above cases involve only the generation of the charge current with-

out the spin-dependent transport. When the semiconductors are incorporated the SOI,

the time-dependent fields can induce both of the charge-dependent and spin-dependent

transport to pump electron spins. The SO coupling constant can be experimentally tuned

up to 50 percentage by modulating the gate voltage [15, 56]. One can expect that the

ac-biased gate can cause the SO coupling constant varying with time. Different from adi-

abatic regime, two independent time-dependent potentials have to be applied in order to

generate a spin current [22]. It is a new finding that applying a single ac-biased finger-gate

(FG) can generate a dc spin current without charge current in a Rashba-type quantum

(RQC) channel [52]. We also found that such a dc spin current can be greatly enhanced

by two ac-biased FG structure in the coherent regime. Due to this constrain, the spin

relaxation length lso is lager than the coherent length lc such that the spin can not be

relaxed during transport. Furthermore, we are also interested in the generation of spin

and charge currents by two FG with a finite phase difference.

In the ballistic regime, the suppression of spin current generation by backscattering

processes is one important issue to examine the generation of a dc spin current via a

ac-biased FG. We demonstrate two kinds of elastic scatterers: type (A) is a full static

barrier across the RQC and type (B) is a small scatterer located within the RQC. The

scatterer of type (B) can be repulsive or attractive one in order to understand the potential

dependence of backscattering processes. The robustness of spin current generation against

the elastic scattering has been studied [57].

The spin accumulations can be induced by the SHE to become a powerful tool of the

spin injection in the diffusive regime. In the diffusive regime, the spin relaxation length
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is much larger than the mean free path (lso À lmean). The finite spin-Hall current can

be established in a 2DEG with cubic Dresselhaus SOI in the diffusive two-dimensional

(2D) strip [42]. The advantage is the all-semiconductors junction and the manipulation of

spins in electric means to avoid the conductivity mismatch. Because the spin-Hall current

is induced by a driving electric current, the electric current can be influenced due to the

feedback of the spin-Hall current [42].

An applied in-plane magnetic field can modulate the symmetric properties of spin

accumulations induced by either extrinsic or intrinsic SHE. Several experiments observed

the symmetric properties of Sz by varying the in-plane magnetic field Bŷ perpendicular

to the electric field Ex̂ [36, 59] for the extrinsic SHE. Because the bulk spin polarization

is zero for the case of extrinsic SHE, the lowest correlation of the magnetic field By is

up to the second order of By. Such that the spin accumulation Sz is even function of

By. However, there is a finite bulk spin density associated with Dresselhaus SOI, the spin

accumulation can be varied proportional to linear in-plane magnetic field. Our calculation

shows that spin density Sz demonstrates the asymmetric property with varying Bŷ for

the intrinsic SHE by applying an electric field Ex̂. However, we also show symmetric

property of Sz in varying Bx̂ in our result.

Although the zero spin-Hall current is presented for the case of Rashba SOI, the

local spin polarization can be formed a ”spin dipole” around an elastic impurity for both

ballistic and diffusive regimes. From Landauer’s dipole concept, the total resistance can

be recognized as summing over contribution of each electric dipole induced around each

impurity by a driving current. Because the electric current can be correlated by the spin-

Hall current, the nonequilibrium spin dipole around each impurity can be induced by

the intrinsic SHE. The spin polarization perpendicular to the two-dimensional electron

gas (2DEG) was calculated for the ballistic regime around a scatterer with Rashba SOI

[60]. The electric dipole induced around the impurity is parallel to the electric field

but the spin dipole induced around the impurity is perpendicular to the electric field.

Furthermore, one can utilize spin dipoles created by SOI near macroscopic boundaries
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and sum over contributions of spin dipoles to obtain the spin accumulation near the

macroscopic boundaries. For the case of hard-wall boundary, this finite spin density

should be cancelled by the same magnitude but opposite-polarized spin density generated

by the boundary surface.

1.6 A guiding tour to this thesis

In Chapter 2, we investigate the characteristics of a spin-dependent pumping in the low-

dimensional system. We propose and demonstrate theoretically that resonant inelastic

scattering (RIS) can play an important role in dc spin current generation. The RIS

makes it possible to generate dc spin current via a simple gate configuration: a single

finger gate that locates atop and orients transversely to a quantum channel in the presence

of Rashba spin-orbit interaction. The ac-biased finger gate gives rise to a time variation

in the Rashba coupling parameter, which causes spin-resolved RIS and, subsequently,

contributes to the dc spin current. The spin current depends on both the static and

the dynamic parts in the Rashba coupling parameter. The proposed gate configuration

has the added advantage that no dc charge current is generated. Our study also shows

that the spin current generation can be enhanced significantly in a double finger-gate

configuration. In double finger-gate with the finite phase difference φ, it is also show that

the spin current and the charge current are generated by the double ac-biased finger-gate

with a finite phase difference φ. We also explore the robustness of such dc spin current

generation against elastic scattering in the RQC. The effect of backscattering is studied

by introducing two kinds of scattering potentials in the transverse dimension. These two

kinds of scattering potentials are divided into type (A): full static barrier and type (B):

small scatterer in the transverse dimension of a RQC. The modulations of spin currents

depend on the forms of scattering potentials.

In Chapter 3, the diffusion equation of spin densities Si (for i =x, y, z) is derived for the

intrinsic spin-Hall effect (SHE) due to the spin-orbit interaction (SOI). At the same time,
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the diffusion equation of spin currents is also derived and the spin currents are associated

with the spin densities. Here, we employ the nonequilibrium Green’s functions to calculate

all diffusion equations and take the suitable orders into account. The restrictions of

boundary conditions are given by spin currents. In particularly, spin currents turn out to

vanish for hard-wall boundaries. In our cases, we consider the hard-wall boundaries in a

2D strip.

In Chapter 4, the intrinsic spin Hall effect (SHE) on spin accumulation and electric

conductance in a diffusive regime has been studied for a 2D strip with a finite width d. It is

found that the spin polarization near the edges of the strip exhibits damped oscillations as

a function of the width and strength of the Dresselhaus spin-orbit interaction (SOI) while

an electric current is applied in the longitudinal direction. Cubic terms of Dresselhaus

SOI are crucial for spin accumulation near the edges. As expected, no effect on the

spin accumulation and electric conductance have been found in the case of Rashba SOI.

At the same time, the conventional electric current can be correlated by the SHE. This

correlation is associated with the magnitude of the spin accumulations on the edges.

In Chapter 5, we studied the intrinsic spin-Hall effect (SHE) induced by a driving

electric field Ex̂, in the presence of an in-plane magnetic field B‖ = Bxx̂ + Byŷ on a 2D

strip. In the diffusive regime, the spatial distribution of the spin density Si (i = x, y, z)

is calculated from a spin diffusion equation derived from the nonequilibrium Green’s

function. In the presence of the in-plane magnetic field, the z-component spin density

Sz normal to the 2D strip remains zero with or without B‖ field for the case of Rashba

spin-orbit interaction (SOI). For the case of Dresselhaus SOI, the spatial distribution of

spin density show either symmetric or asymmetric features which depend on the direction

of the in-plane magnetic field. By applying the longitudinal magnetic field Bx, the spatial

distributions of spin densities Sx and Sz show the even parity in Bx but Sy shows the

odd parity in Bx. The asymmetric property of Sz versus By is demonstrated for the

intrinsic SHE in case of Dresselhaus SOI. The extrinsic SHE experimentally performed

the symmetric behavior of Sz at boundaries by applying in-plane magnetic field By. These
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robust features of spin densities provide a possible diagnostic tool to identify the intrinsic

and extrinsic SHE by applying an in-plane magnetic field.

In Chapter 6, the nonequilibrium spin dipoles which are induced around spin-independent

elastic scatterers by the intrinsic spin-Hall effect in the two-dimensional electron gas

(2DEG) subject to the Rashba spin-orbit interaction. The spin polarization normal to the

2DEG can be calculated in the diffusive regime around the elastic scatterer. It is found

that there is the finite spin polarization around each impurity. However, the macroscopic

spin density turns out to vanish by averaging of individual spin dipole distribution over

impurities for a hard wall boundary. At the same time, the spin density is finite near the

boundary of 2DEG for a soft-wall boundary.

Finally, we present our conclusion and future works in Chapter 7.
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Chapter 2

Dc spin current generation in a

Rashba-type ballistic quantum

channel

In this chapter, we investigate the characteristics of a spin-dependent pumping in the

low-dimensional system. We propose and demonstrate theoretically that resonant inelastic

scattering (RIS) can play an important role in dc spin current generation. The RIS makes

it possible to generate dc spin current via a simple gate configuration: a single finger

gate that locates atop and orients transversely to a quantum channel in the presence of

Rashba spin-orbit interaction. The ac-biased finger gate gives rise to a time variation

in the Rashba coupling parameter, which causes spin-resolved RIS and, subsequently,

contributes to the dc spin current. The spin current depends on both the static and

the dynamic parts in the Rashba coupling parameter, α0 and α1, respectively, and is

proportional to α0α
2
1. The proposed gate configuration has the added advantage that

no dc charge current (CC) is generated. Our study also shows that the spin current

generation can be enhanced significantly in a double finger-gate configuration. In a double

finger-gate with a finite phase difference φ, it is also show that the spin current and the

CC are generated by a double ac-biased finger-gate with a finite phase difference φ. We
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also explore the robustness of such dc spin current generation against elastic scattering

in the RQC. The effect of backscattering is studied by introducing a static barrier (type

A) that is uniform in the transverse dimension. The effects of both backscattering and

subband mixing is studied by introducing a static partial-barrier (type B) that is spatially

localized and non-uniform in the transverse dimension. In addition, we compare the cases

of attractive and repulsive partial-barriers. It is found that attractive partial-barrier

gives rise to additional DC spin current structures due to resonant inter-subband and

inter-sideband transition to quasi-bound states formed just beneath subband thresholds.

2.1 Introduction

Quantum charge pumping (QPC) has attracted a lot of interest in recent years [61–

64]. The dc CC can be generated across an unbiased mesoscopic structure by time-

dependent periodic deformation of two structure parameters. Original proposal of QCP,

was suggested [53, 54] in the adiabatic regime. They considered the current generated

by a slowly varying travelling wave in an isolated one-dimensional system. The number

of electrons transported per period was found to be quantized if the Fermi energy lies

in the gap of the spectrum of the instantaneous Hamiltonian. This quantized charge

pumping has great potential for the direct-current standard [65]. The requirement of

the adiabatic pumping is either the Fermi energy εF À Ω in a continuum mesoscopic

system (ex: quantum wires) or the discrete level spacing ∆E À Ω in the quantized

system (ex: quantum dots), where Ω is the oscillating frequency. In above cases, the

frequency Ω of a time-modulation structure parameters is restricted to be much smaller

than an energy scalar in the considered system such that the charge evolves with time

adiabatically. Beyond the regime of adiabatic QPC, the non-adiabatic QCP becomes

applicable and interesting in a quantum system without strict restriction of Ω. The

non-adiabatic pumping show the time-dependent Bragg reflection mechanism for a time-

dependent finger-gate array system [55]. The charge evolution has to be treated quantum-
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mechanically in non-adiabatic QCP respecting to the semiclassical adiabatic QCP.

More recently, the spintronics has become an emerging field because of in both ap-

plication and foundation arenas [1, 32, 44, 66]. The recent key issue of great interest is

the generation of dc spin current (SC) without charge current. Various dc SC genera-

tion schemes have been proposed, involving static magnetic field [67–69], ferromagnetic

material [70], or ac magnetic field [47]. More recently, Rashba-type spin-orbit interaction

(SOI) in two dimension electron gas (2DEG) [12, 15, 56] has inspired attractive proposals

for nonmagnetic dc SC generation [22, 23, 71]. Of these recent proposals, including a

time-modulated quantum dot with a static spin-orbit coupling [71], and time modula-

tions of a barrier and the spin-orbit coupling parameter in two spatially separated regions

[22], the working principle is basically adiabatic quantum pumping. Hence, simultaneous

generation of both dc spin and charge current is the norm. The condition of zero dc CC,

however, is met only for some judicious choices for the values of the system parameters.

It is known, on the other hand, that quantum transport in a narrow channel exhibits

resonant inelastic scattering (RIS) features when it is acted upon by a spatially localized

time-modulated potential [72, 73]. This RIS is coherent inelastic scattering, but with

resonance at work, when the traversing electrons can make transitions to their subband

threshold by emitting m~Ω [72, 73]. Should this RIS become spin resolved in a Rashba-

type quantum channel (RQC), of which its Rashba coupling parameter is time modulated

locally, we will have a simpler route to the nonmagnetic generation of dc SC. Thus, we

opt to study, in this work, the RIS features in a RQC. This requires us to go beyond

the adiabatic regime and into the regime when either µ or µn ∼ ~Ω. We solve the

time-dependent spin-orbit scattering (SOS) for all possible incident electron energies and

obtain large RIS contribution. In the adiabatic regime, however, with µ, µn À ~Ω, we

find that the dc spin-pumping effect from a sole SOI time-modulated region is small [22].

The system configuration considered is based on a RQC that forms out of a 2DEG in

an asymmetric quantum well by the split-gate technique. As is depicted in Fig. 2.1 (a),

a finger gate (FG) is positioned above while separated from the RQC by an insulating
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Figure 2.1: (a) Top-view schematic illustration of the RQC. The ac-biased FG, of width
l , is indicated by the gray area; (b) the electron dispersion relation of an unperturbed
RQC.
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layer. A local time variation in the Rashba coupling parameter α(r, t) can be induced by

ac biasing the FG [22, 23]. The Hamiltonian is given by H = p2/2m + Hso(r, t) + Vc(y)

where the Rashba term

Hso(r, t) = M · 1
2

[α(r, t)p + pα(r, t)]. (2.1)

Here, M = ẑ×σ is normal to the 2DEG, σ is the vector of Pauli spin matrices, and Vc(y)

is the confinement potential. The unperturbed Rashba coupling parameter α(r, t) is α0

throughout the RQC, but becomes α0 +α1cos(Ωt) in the region underneath the ac-biased

FG. In principle, the time-modulating potential can also modulate the electron density

but one can applying a backgate to compensate the fluctuation of electron density [56].

The Dresselhaus term is neglected for the case of a narrow-gap semiconductor system [74].

We also investigate the effect of elastic scattering on the dc SC generation in a single

FG configuration. The method of approach is time-dependent scattering matrix method

[52, 75] with a static potential V (x, y) in a RQC. The backscattering effect can be studied

via a static full-barrier locating either inside or outside of the AC-biased FG. Strong barrier

position-dependent effect on the dc SC generation is found in our theoretical calculation.

The elastic scattering effect is further studied by considering a repulsive or attractive

partial-barrier. The partial-barrier introduces intersubband scattering to the system due

to the fact that it covers only part of the transverse dimension of the quantum channel. We

have studied the barrier position dependence of the dc SC generation. For an attractive

partial-barrier, the intersubband transition into a quasi-bound state formed just beneath

the subband bottom causes the SC to have an additional structure at m below the second

subband bottom. In all the above elastic scattering effect on the dc SC, as long as

the barrier breaks the longitudinal symmetry of the configuration, the CC will become

nonzero.
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2.2 The generation of a spin current via ac-biased

FG in the RQC

To demonstrate the pumping mechanism, we consider a narrow RQC in which its subband

energy spacing is much greater than the Rashba-induced subband mixing. As such, the

unperturbed Hamiltonian, in its dimensionless form, is H0 = −∇2 +α0σy(i∂/∂x)+Vc(y).

Appropriate units have been used such that all physical quantities presented here, and

henceforth, are dimensionless. In particular, α is in unit of v ∗F/2 , and spin in unit of

~/2. The right-going (R) eigenstate of H0, in the nth subband, is φn(y)ψσ
n(x), where

ψσ
n(x) = exp[ikσ

nR(x)]χσ. The wave vector kσ
nR =

√
µn + ησα0/2, while ησ = ±1 denotes

the eigenvalue of χσ to the operator σy. µn is the energy measured from the nth subband

threshold such that the energy of the eigentstate is E = µn + εn−α2
0/4, for εn = (nπ/d)2.

This dispersion relation is shown in Fig. 2.1 (b). The subband with µn ∼ ~Ω is found to

contribute most to the RIS-enhanced spin pumping. It is of import to note that right-

going electrons have |k↑R| > |k↓R| and that, at the subband threshold k
↑(↓)
R = k

↑(↓)
L .

The physical origin of the dc SC generation can be understood from two perspectives.

A weak pumping regime result is then obtained for an explicit confirmation of our physical

reasoning. The first perspective is associated with the vector potential. In the ac-biased

region, H = Hx + Hy, the transverse part Hy = −∂2/∂y2 + Vc(y), and the longitudinal

part

Hx(t) =

(
−i

∂

∂x
+

α(x, t)

2
M · x̂

)2

− α(x, t)2

4
(2.2)

The form of Eq. (2.2) suggests an effective vector potential, A(t) = 1
2
α(x, t)M · x̂, which

depends on the spin and gives rise to a spin-resolved driving electric field E = −∂A/∂t.

However, in Hx, the A2 term does not depend on σ, while for the term linear in A,

Aχσ = −1
2
ησα(x, t)χσ gives rise only to a trivial spin dependence, which can be easily

removed by a shift in the origin of time for the case of an oscillatory α(x, t). Yet it
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turns out that the full term linear in A, given by −i(∂/∂x)x̂ ·A, manages to give rise to

nontrivial spin-resolved transmissions. By the perturbation concept, this term becomes

k
↑(↓)
R Ax, for the case of a right-going electron incident upon a spatially uniform α(t).

This renders the effective longitudinal driving field to become spin dependent, through

the factor k
↑(↓)
R . The difference in the current transmissions, for spin-up and spin down

cases, is proportional to the difference in k
↑(↓)
R , or α0, and is found to be amplified by

RIS. This breaking of the longitudinal symmetry in the effective driving field by α0 leads

to the generation of dc spin current in a FG-RQC structure that has but an apparent

longitudinal configuration symmetry, and with zero source-drain bias. No dc CC will be

generated, however, in such a structure.

An alternate perspective for the understanding of the origin of the spin-resolved cur-

rent transmission is associated with unitary transformation. By introducing the unitary

transformation Ψσ (x, t) = exp[(iησ/2)
∫ x

−l/2
α (x′, t) dx′]ψσ (x, t), the Schrödinger equation

[Eq. (2.2)] becomes

[
− ∂2

∂x2
+ U1(t) + Uσ

2 (t)

]
ψσ (x, t) = i

∂

∂t
ψσ (x, t) (2.3)

of which the two time-dependent potentials are U1(t) = −α(x, t)2/4 and Uσ
2 (t) = (Ωα1/2)(x+

l/2)cos(Ωt/+ ησπ/2). Even though only Uσ
2 depends on spin, both the term in U1(t) that

oscillates with frequency Ω and Uσ
2 together constitute a pair of quantum pumping po-

tential that pump SC. This is our major finding in this work: that spin pumping nature

is built-in even in a single FG configuration.

Next, we can write down the total wave functions in the different region for the

one-FG configuration in Fig. 2.2. For convenience, the region of the ac-biased FG is

located from x = −l/2 to x = l/2 and the channel width is d. The Appendix A

shows the derivation of x-dependent wave function in the region (II) via a transformation

Ψσ(x, t) = exp(ησ
α1

Ω
sin (Ωt) ∂

∂x
)ψσ(x, t). The wave function Ψσ satisfies Hx(t)Ψσ(x, t) =

i∂Ψσ(x, t)/∂t and one can rewrite the wave function in the Bessel’s function form. The

23



CHAPTER 2. DC SPIN CURRENT GENERATION IN A RASHBA-TYPE
BALLISTIC QUANTUM CHANNEL

right-going scattering wave functions in regions (I) are consisted of the incident and re-

flection waves. The right-going scattering wave functions in regions (III) is consisted of

the transmission waves. The reflection and transmission wave functions are involved the

inelastic and spin-dependent scattering processes due to the time-modulation FG in region

(II). In summary, we can express the scattering wave function in x direction as following





Ψ
(I)
σ (x, t) = eikσ

n,Rxeiµ0t +
∑
m

rm,σ
n,LL (m)eikm,σ

n,L xeiµmt, for x < −l/2

Ψ
(II)
σ (x, t) =

∑
m,m′

(ησ)m−m′{Am′,σ
n,RL (m′) eikm′,σ

n,R xJm−m′

(
α1

ω
km′,σ

n,R

)

+Bm′,σ
n,LL (m′) eikm′,σ

n,L xJm−m′

(
α1

ω
km′,σ

n,L

)
}e−iµmt for − l/2 < x < l/2

Ψ
(III)
σ (x, t) =

∑
m

tm,σ
n,RLeikm,σ

n,R xeiµmt for x > l/2.

(2.4)

Here the wave vector km′,σ
n,R(L) = ±(µm′

n )1/2 + ησα0/2, with upper (lower) sign corresponds

to the right-(left-) moving electron in the nth subband, m′th sideband, and with kinetic

energy µm′
n . The reflection amplitude rm,σ

n,LL indicates that an incident electron is injected

from the left-hand side and scattered into the left-hand side with energy µm
n in region (I).

The transmission amplitude tm,σ
n,RL indicates that an incident electron is injected from the

left-hand side and scattered into the right-hand side with energy µm
n in region (III). The

coefficients Am′,σ
n,RL and Bm′,σ

n,LL corresponding to the amplitude of right-going and left-going

wave functions have an energy µm′
n and the spin state σ in the region (II), respectively.

Furthermore, the total scattering wave functions can be written as Ψσ(x, t)ϕn(y), where

ϕn(y) =
√

2/dsin(nπy/d) is the nth subband wave function for the hard-wall confinement

with the channel width d.

Our aim is to solve the reflection and transmission coefficients by the imposed bound-

ary conditions: (i) wave functions continuous at x = ±l/2 and (ii) the slope of wave

functions are continuous at x = ±l/2. For continuity of wave functions, the Eq. (2.4)
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FG
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x= −l/2 x= l/2
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Figure 2.2: The wave functions can be separated by three different regions (I)(x < −l/2),
(II) (−l/2 < x < l/2), and (III) (x > l/2). The region (II) includes the static and dynamic
Rashba spin-orbit coupling constant.

satisfy





Ψ
(I)
σ (x = −l/2, t) = Ψ

(II)
σ (x = −l/2, t)

Ψ
(II)
σ (x = l/2, t) = Ψ

(III)
σ (x = l/2, t)

. (2.5)

For the continuity of the wave function’s slope, the Eq. (2.4) satisfy





− ∂
∂x

Ψσ

∣∣
x=− l

2

+ ∂
∂x

Ψσ

∣∣
x=− l

2

− i
2
ησα1 cos (Ωt) Ψσ|x=− l

2
= 0

− ∂
∂x

Ψσ

∣∣
x= l

2

+ ∂
∂x

Ψσ

∣∣
x= l

2

+ i
2
ησα1 cos (Ωt) Ψσ|x= l

2
= 0.

. (2.6)

Essentially, all unknown variables can be calculated from Eqs. (2.5) and (2.6) by cutting

off the large enough sideband index m (m′) in the exactly numerical sense. (Appendix B)

The charge transport generates a CC and the spin transport generates a spin current

(SC). The CC is a good physical quantity due to the conservation of the total charges.

However, the spin current is not conserved due to the flip of spin during the scattering

processes. In our case, the SC conservation is maintained by the suppression of subband

mixing and the associated spin-flipping in a RQC. The SC expression for a state Ψσ is
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given by the spin density operator

ĵy
x =

[
i
∂Ψ†

σ

∂x
σyΨσ −H.c.

]
+

α

2
Ψ†

σ {σy,M}x Ψσ. (2.7)

The density operator ĵy
x describes the electron moving along x-direction with the y-

component spin polarization. For a scattering state Ψσ, the SC can be expressed in terms

of the transmission coefficients. More specifically, the ratio between the time-averaged

transmitted and the incident SC gives the spin-resolved current transmission T σ
βα, where α,

β, are, respectively, the incident and the transmitting lead. Summing over contributions

from all states in reservoirs R and L, the SC is

Is = I↑ − I↓, (2.8)

where

Iσ =

∫
dEf (E) [T σ

RL − T σ
LR] (2.9)

and Iσ is the number current due to electrons with spin from both reservoirs that are

under zero source-drain bias condition. Here T σ
RL =

∑
n

∑
m(µm

n >0) Tm,σ
n,RL and f(E) is the

Fermi-Dirac distribution. The transmission coefficient Tm,σ
n,RL =

∣∣tm,σ
n,RL

∣∣2 √
µm

n /µn denotes

the current transmission that an electron incident from terminal L in the spin channel

σ, subband n, energy E, is scattered into terminal R, sideband m, with kinetic energy

µm
n = µn + mΩ. The reflection coefficient is calculated by Rm,σ

n,LL =
∣∣rm,σ

n,LL

∣∣2 √
µm

n /µn. The

net CC is given by Ic = I↑+I↓. In a symmetric FG configuration, we have T σ
LR = T−σ

=RL, so

that the net spin current is Is = 2
∫

dEf (E)
(
T ↑

RL − T ↓
RL

)
and the net CC is identically

zero. Our numerical results have to check the conservation of the particle flux to satisfy

with

∑

m(µm
n >0)

(
Tm,σ

n,RL + Rm,σ
n,RL

)
= 1 (2.10)
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for the nth subband.

2.3 One-sideband approximation of the single ac-biased

FG in the weak pumping regime

For the case of a single ac-biased FG, we can employ the one-sideband approximation

to estimate the transmission coefficient Tm,σ
n,RL(LR) with m = 0,±1, and the SC in the

weak pumping (WP) regime. In the WP regime, when α1 is small, we can demonstrate

analytically, and most unequivocally, that spin-dependent reflection arises merely from

the aforementioned linear A term in Hx(t). We outline the derivation here while leaving

the detail in Appendix C. Tracing up to the first order in α1, our derivation retains the

reflection amplitudes to m = ±1 sideband and drops that to the m = 0 sideband. Contri-

bution to the total reflection includes thus reflection at either the left or the right edges

of the time-modulated region. For an electron incident from terminal L with wave vec-

tor kσ
n,R(E), the reflection at the left edge is obtained from the wave-function continuous

condition and the boundary condition

− ∂

∂x
Ψ(I)

σ

∣∣∣∣
x=−( l

2
)−

+
∂

∂x
Ψ(II)

σ

∣∣∣∣
x=−( l

2
)+

+
i

2
ησα1cosΩtΨ(II)

σ

∣∣∣∣
x=− l

2

= 0 (2.11)

In the time-modulated region, the wave function Ψσ consists of one-sideband terms, given

by the form eikσ
n,R(E±Ω)xe−i(E±Ω)t, and eikσ

n,R(E)xe−iEt
[
1 + ησ/ (2Ω) α1k

σ
n,R(E)

(
eiΩt − e−iΩt

)]

is given by m = 0 term. The extra Ωt dependence in the m = 0 term is resulted from

the time-dependent driving effect of A, which is obviated by the weighting factor that

involves α1k
σ
n,R. The reflection amplitude rm,σ

L , at the left edge is obtained

rm,σ
L = sgn(m)

ησ

2

α1

[
kσ

n,R(kσ
n,R − km,σ

n,R ) + mα1

2

]

km,σ
n,R − km,σ

n,L

×e−i(kσ
n,R−km,σ

n,L )l/2 (2.12)
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for m= 1. The first term in the numerator of Eq. (2.12) is clearly due to A, because of

the factor α1k
σ
n,R, and the second term is due to the scattering at the edge. Here the wave

vector km,σ
n,R(L) = ±(µm

n )1/2 + ησα0/2, with upper (lower) sign corresponds to the right-

(left-) moving electron in the nth subband, mth sideband, and with kinetic energy µm
n .

It is clear then that wave-vector differences in both the numerator and the denominator

of rm,σ
L , are spin independent. Hence, the spin dependence arises solely from the α1k

σ
n,R

factor in the first term of the numerator in Eq. (2.12), or from A. This confirms our

understanding of the physical origin of the dc SC generation.

Including the reflection at the right edge, we obtain the total reflection amplitude

rm,σ
n,LL =

[
1− ei(kσ

n,R−km,σ
n,L )l

]
rm,σ
L (2.13)

We note that the spin dependence of this total reflection amplitude is associated with

α0. In fact, it turns out that the SC is proportional to α0. The SC is related to the

current transmission, which, within the aforementioned approximation, is given by T σ
RL ≈

1 −∑
n

[
R1,σ

n,LL + R−1,σ
n,LL

]
, where Rm,σ

n,LL =
∣∣rm,σ

n,LL

∣∣2√µm
n /
√

µn. From Eq. (2.9), the energy

derivative of the zero-temperature SC is given by ∂Is/∂E = 2∆TRL = 2
(
T ↑

RL − T ↓
RL

)

from which its explicit expression is given by

∂Is

∂E
= 2α0α

2
1

∑
n

∑
m=±1
(µm

n >0)

{1− cos
[(√

µn +
√

µm
n

)
l
]}

[(
1
4

)2 − (
1
Ω

(µn −√µnµm
n ) + m

4

)2
]

µn
√

µm
n

.

(2.14)

That this expression diverges when µm
n = 0, for m < 0, exhibits the RIS feature unam-

biguously and also demonstrates the need to go beyond the one-sideband approximation

near the RIS condition.

28



CHAPTER 2. DC SPIN CURRENT GENERATION IN A RASHBA-TYPE
BALLISTIC QUANTUM CHANNEL

2.4 Numerical results for the ac-biased FG in a RQC

In the following, we present results obtained from solving the time-dependent SOS ex-

actly, in the numerical sense. An outline of the method is presented in Appendix B.

Physical parameters are chosen to be consistent with the InGaAs-InAlAsVbased narrow-

gap heterostructures such that the electron density ne = 1 × 1012cm−2, effective mass

m∗ = 0.04m0, and α0 = 0.13(~α0 = 3 × 10−11eV m).[56] Accordingly, the length unit

l∗ = 4.0nm and the energy unit E∗ = 59meV .

For the case of one FG (N=1), the energy dependence of the spin-resolved transmission

T sigma
RL is plotted in Figs. Fig. 2.3 (a) - (c), and that of the corresponding dc SC is plotted

in Fig. 2.3 (d). The FG width l = 20 (80 nm), driving frequency Ω = 0.002(ν = Ω/2π ≈
28GHz), and energy µ = E − ε1. Dip features in T σ

RL at µ/Ω = 1 are the quasi-bound

state (QBS) features, where electrons undergo coherent inelastic scattering to a QBS just

beneath its subband bottom [72]. Higher-order QBS features at µ/Ω = 2 are barely

shown by the small peaks. Of particular interest is the change in sign in the transmission

difference ∆TRL = T ↑
RL−T ↓

RL across the dip structures, namely, ∆TRL(µ = Ω−) > 0 while

∆TRL(µ = Ω+) < 0. This leads to a nonzero dc SC, peaked at µ/Ω = 1, and is exhibited

in Fig. 2.3 (d).

It is also shown that the dc SC increases with the oscillating amplitude α1 of the ac-

biased gate voltage. More importantly, all the above dc SC characteristics, including even

their order of magnitudes, are already captured by Eq. (2.14). This lends strong support

to our finding that RIS has played a pivotal role in the generation of dc SC. Similar RIS

induced peak in Is is found if we vary d instead ofµ. The nonlinear enhancement in the

dc SC by two FGs (N=2) is presented in Fig. 2.5(a)-(c). The driving frequency is chosen

to be Ω = 0.001(ν ≈ 14GHz), and with l = 22 (≈ 88 nm). For comparison, the N=1

FG transmissions are plotted along with that of the N=2 FG case, in Fig. 2.5 (a) and

(b), respectively. The corresponding dc SC, expressed in terms of pumped spins per cycle

N s
P = (2π/Ω)|Is|, is shown in Fig. 2.5 (c). The pumping is optimized by a choice of the
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Figure 2.3: Spin-resolved current transmissions T ↑
RL (red-solid) and T ↓

RL (blue-dashed)
versus the incident energy µ/Ω. Parameters N=1, α0=0.13, Ω=0.002, l=20, and α1=(a)
0.03, (b) 0.04, and (c) 0.05. The corresponding dc SC is plotted in (d).
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2DEG 2DEG

α1cosΩt α1cos(Ωt+φ)

Figure 2.4: The configuration of two ac-biased FGs is illustrated with a tunable phase
difference φ.

FG separation, with the edge-to-edge separation ∆l = 22.

The QBS dip structures are significant up to the fourth sideband in Fig. 2.5 (b). As

indicated by arrows, the pumped spin-per-cycle peaks at µ/Ω ≈ 1.57 (1.92), with peak

value 0.8 (0.1) for the N=2 (N=1) FG case. The case of N=2 is illustrated in Fig. 2.4,

where the phase difference φ can be tuned. In this case, we choose the parameter φ = 0 to

guarantee the generation of a SC without CC. The enhancement in NP s is far greater than

doubling the N s
P of N=1 FG. Finally, we discuss the effectiveness of tuning α. Grundler

showed that a static FG bias change ∆VFG ≈ 0.075 V can tune ∆α ≈ 0.25α0.[56] This

tuning ability should remain valid in ac FG bias if the wave function in the asymmetric
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Figure 2.5: Current transmission versus µ/Ω for N=(a) 1, and (b) 2. Pumped spins per
cycle are plotted in (c) for N=1 (thick curve) and N=2 (thin curve) with α1=0.065, and
driving frequency Ω=0.001. Other parameters are the same as in Fig. 2.3.
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quantum well responses adiabatically. We estimate the quantum-well energy-level spacing

∆E ≈ 0.08 eV À ~Ω ≈ 0.06 meV, for Ω/2π = 14 GHz. Thus, the adiabatic response of

the wave function in the quantum well is established. Furthermore, the ac FG biases, with

amplitude ∆VFG ≈ 0.075 V, is estimated to be within reach of coaxiable cable technology.

The Fig. 2.6 is plotted the pumping SC and CC with varying the phase difference φ

for N=2 case in Fig. 2.4. In this situation, the pumping SC always accompanies with

finite CC for a finite phase difference φ. However, the CC vanishes at φ = 0, π, and 2π

corresponding to the characteristic of the charge pumping in case of 2FG [55]. Otherwise

the pumping charge-current is finite. The positive and negative charge currents indicate

the net CC moving towards right-hand side and left-hand side, respectively. The pump-

ing SC reveals the symmetric behavior but the pumping CC reveals the anti-symmetric

behavior respecting to φ.

2.5 The backscattering effect of dc SC generation in

a RQC

The schematic structure shown in Fig. 2.7 is based on a RQC that forms out of a 2DEG

in an asymmetric quantum well by the split-gate technique, and a single barrier is located

in the RQC. This effective Hamiltonian is given by

H =
p2

2m∗ + Hso (r, t) + Vc (y) + f0 (y) δ (x− x0) (2.15)

where p = (px, py) is the in-plane momentum, Hso (r, t) is the Rashba term, and Vc(y) is

the confinement potential. The form of elastic scatterer can be introduced by (i) elastic

scatterer type A: f0(y) = V0 in the entire width of the quantum channel 0 ≤ y ≤ d and

(ii) elastic scatterer type (B): f0(y) = V0 in the region y1 ≤ y ≤ y2, with 0 ≤ y1, y2 ≤ d,

and f0(y) = 0 for other regions.

The unperturbed RQC we considered is narrow so that its subband energy spacing is
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Figure 2.6: Pumped spin current and charge currents in unit of nA are plotted as a
function of phase difference φ. Other parameters are α0 = 0.13, α1 = 0.065, and the
oscillating frequency Ω = 0.002. The FG width is l =20 and the separation distance
∆l =20. The solid (blue) and dashed (red) curves denote the spin current and CC,
respectively.
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Figure 2.7: Top-view schematic illustration of the RQC with a static barrier. The ac-
biased FG, of width l, is indicated by the shaded area. The elastic scatterers are sketched
by long-solid line of type A and short-solid line of type B.

much greater than the subband mixing due to the Rashba interaction. As such the un-

perturbed Hamiltonian in the dimensionless form is given by H0 = −∇2 +α0σy (i∂/∂x)+

Vc (y). Here we have chosen appropriate units for all physical quantities [52]. In par-

ticular, α is in unit of vF /2, where vF denotes the Fermi velocity, and spin is in unit

of ~/2. The right-going (R) eigenstate of H0, in the nth subband, is φn(y)ψσ
n(x) where

ψσ
n(x) = exp(ikσ

n,Rx)χσ. The wavevector kσ
n,R =

√
µn + ησα0/2 while ησ = ±1 denotes the

eigenvalue of χσ to the operator σy. µn is the energy measured from the nth subband

threshold such that the energy of the eigenstate is E = µn+εn−α2
0/4, for εn = (nπ/d)2. In

the ac-biased FG region, the Rashba coupling parameter becomes α(t) = α0 + α1cos(Ωt).

According to Eq. (2.4), one can obtain all wave functions in different regions of Fig. 2.7

and boundary conditions of Eq. (2.5) and Eq. (2.6) are used to match at the interface be-

tween AC-biased FG region and the region outside the FG. In addition, the backscattering
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potential gives us the continuity of wave functions

∑
n

Ψσ (x, t) ϕn (y)

∣∣∣∣∣
x=x+

0

=
∑

n

Ψσ (x, t) ϕn (y)

∣∣∣∣∣
x=x−0

(2.16)

and wave function slopes

−
∑

n

∂Ψσ (x, t)

∂x
ϕn (y)

∣∣∣∣
x=x+

0

+
∑

n

∂Ψσ (x, t)

∂x
ϕn (y)|x=x−0

+f0 (y)
∑

n

Ψσ (x, t) ϕn (y)

∣∣∣∣∣
x=x0

= 0

(2.17)

are obtained from the Schrödinger equation. These boundary conditions lead to obtain

the transmission coefficients.

2.6 Numerical results for the backscattering effect of

a SC generation

We present numerical results for the case of a full-barrier. The physical parameters are

chosen to be consistent with InGaAs-InAlAs based narrow gap heterostructure such that

the electron density ne = 1 × 1012cm−2, effective mass m∗ = 0.04m0, and α0 = 0.13

(~α0 = 3 × 10−11 eV m) [56]. The length unit is l∗ =4.0 nm, and the energy unit is

E∗ =59 meV. We present in Fig. 2.8 the dependence of the SC (empty-symbols) and the

CC (filledsymbols) on channel width d for a number of barrier positions. The driving fre-

quency is Ω =0.002 (≈28 GHz), the FG length l = 20 (80 nm), and the barrier strength

is V0 = 0.1. For a fixed Fermi energy E, the nth subband bottom matches E when

E = (nπ/d)2−α2
0/4. Thus in Fig. 2.8, when E =0.0131, the first and the second subband

bottoms match that of E when d = 23.86 and 47.73, respectively. The SC (Is) and CC

(Ic) are defined by Is = I↑ − I↓, and Ic = I↑ + I↓, respectively. Here T σ
βα depicts current

transmission and α, β denotes the incident and the transmitting lead, respectively. The

case of elastic scatterer type A located either inside or outside the time-modulated region
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is given by Fig. 2.8(a) and (b), respectively. The trend shown in Fig. 2.8 is that both the

SC and the CC are smaller when the barrier is located inside the time-modulated region.

This trend is consistent with another feature in Fig. 2.8(a): namely that the current is

largest for x0 =-9.9, when the elastic scatterer type A is closest to the edge of the time-

modulated region, and it is the smallest for x0 =0, when the elastic scatterer type A is

centered. Outside the time-modulated region, the SC and the CC continue to grow with

increasing separation between the barrier and the time-modulated region, until they satu-

rate eventually to certain values. Besides this overall trend, the channel width dependence

of the SC and CC exhibits distinct signatures of the coherent inelastic processes. The

sharp rise in SC occurs when the Fermi energy E aligns with a subband bottom. More

importantly, the SC peaks at d =25.37, and 50.75, when the effective Fermi energy µn of

the highest subband equals ~Ω. This is shown to be associated with the coherent inelastic

scattering to a quasi-bound state (QBS) just beneath the subband bottom [52, 73, 75].

The sharp rises of SC in Fig. 2.8 thus demonstrate that coherent processes have played

an important role in the large enhancement of the DC SC. These coherent processes come

into effect through the reflections at the two edges of the time-modulated region and

through the interference between these reflection amplitudes. An elastic scatterer type

A located inside the time-modulated region will therefore cause greater disruption to the

aforementioned coherent processes than an elastic scatterer type A located outside the

time-modulated region, and hence results in a smaller dc SC pumping.

We present, in Fig. 2.9, both the transmission and the dc SC characteristics for the case

of elastic scatterer type B located inside the time-modulated region. The elastic scatterer

type B has a delta profile in the longitudinal direction and covers only a fraction of the

channel width, which transverse range is from y1 =8 to y2 =12. For a RQC width of d =40,

the center of the partial-barrier is at d/4. Of particular interest here is the effect of the

sign of the partial-barrier potential to the SC. The partial-barrier is repulsive, attractive,

in Fig. 2.9(a)-(c), and in Fig. 2.9(d)-(f), respectively. For the repulsive potential of type

B, the transmission coef.cients are spin-resolved and show both step-like structures, due
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to the subband structures, and the dip structures, due to the coherent inelastic scattering

features. The dip structures are broadened for larger V0. Subsequently, the dc SC is

suppressed. For the attractive elastic scatterer type B, the transmission coef.cients show

additional dip structures at the subband bottom, when µ/Ω ≈9. These additional dip

structures are due to coherent elastic inter-subband scattering into the QBS state just

beneath the subband bottom. On the other hand, the coherent inelastic scattering dip

structures develop into dip-and-peak structures for larger |V0|. Subsequently, the dc SC

has an additional shoulder, near µ/Ω ≈8, before the SC sharp rise at the subband bottom.

Moreover, as is shown by the dotted curve in Fig. 2.9(f), when the elastic scatterer type

B is more attractive, the dc SC is suppressed around µ/Ω ≈1 but is enhanced around

µ/Ω ≈10.

2.7 Summary

In conclusion, a nonmagnetic way of generating dc SC has been established in ballistic

regime. The proposed Rashba-type quantum channel driven by an ac-biased finger gate

is a simple structure and should be within reach of recent fabrication capability. The spin

pumping is studied in both its nature and its pumping mechanism. A resonant inelastic

process is the major factor that contributes to the robustness of the spin pumping. The

coherent nature of the pumping supports further enhancement of the spin pumping by

invoking configuration consisting of more than one finger gate. The configuration of two

ac-biased finger gates can greatly enhance the spin current without CC in φ = 0. On the

other hand, the charge current and spin current are generated by tune the finite phase φ.

The robustness of a dc SC generation is presented in the presence of either elastic

scatterer of type A or type B in a RQC. In general, the barrier inside the time-modulated

region causes a stronger suppression to the SC than it is outside the region. Interest-

ingly, we .nd that an attractive partial-barrier induces inter-subband processes, gives rise

to additional QBS dip structures in the transmission coef.cients, and can lead to the
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Figure 2.8: The SC and CC are plotted as a function of channel width d. The static full-
barrier is located (a) inside and (b) outside the FG with various longitudinal positions.
The empty-symbols and filled-symbols indicate the SC and the CC, respectively. The
Fermi energy is fixed at E =0.0131 and other parameters are α0 = 0.13, α1 =0.03, l =20,
Ω =0.002, and V0 =0.1. The center and the edges of the time-modulated regions are at
x0 =0, ±10, respectively.
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Figure 2.9: The repulsive, (a)-(c) and attractive, (d)-(f), partial-barrier is located at the
FG center but with various V0. We choose V0 =0.1, 0.2, -0.1, -0.2, in (a), (b), (d), (e),
respectively. The current transmission is plotted as incident energy in the unit of µ/Ω.
Other parameters are α0 =0.13, α1 =0.03, Ω =0.002, l =20, and d = 40.
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enhancement of the SC.
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Chapter 3

Derivation of the spin diffusion

equation: a nonequilibrium Green’s

function approach

In this chapter, the diffusion equation of spin densities Si (for i =x, y, z) is derived

for the intrinsic spin-Hall effect (SHE) due to the spin-orbit interaction (SOI). At the

same time, the diffusion equation of spin currents is also derived and the spin currents are

associated with the spin densities. Here, we employ the nonequilibrium (Keldysh) Green’s

functions to calculate all diffusion equations and take the suitable orders into account.

The restrictions of boundary conditions are given by spin currents. In particularly, spin

currents turn out to vanish for hard-wall boundaries. In our cases, we consider the hard-

wall boundaries in a two-dimensional (2D) strip.

3.1 Introduction

Recent years, the great potential of the spintronics attracts a lot of studies in manipulation

of the electron spin because the spintronics provides a novel way to combine the charge

dynamics and the spin degree of freedom in the application of semiconductor devices
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Figure 3.1: Top-view schematic illustration of the 2D strip with a width d. The longitu-
dinal driving electric field is applied in the x-axis. The tunable in-plane magnetic field B‖
can be applied in this 2D strip. The angle θ is between the in-plane magnetic field and
the electric field.

[1, 2, 44]. The SOI plays an important role of coupling the electron orbital motion

and the spin degree of freedom in the semiconductor through a driving electric field.

One new phenomenon is the spin-Hall effect (SHE) which refers to the generation of

a spin current transverse to a charge current in non-magnetic systems with SOI. The

intrinsic and extrinsic SHE can generate spin current transverse to an applied electric

field due to different origins of spin-orbit coupling in the semiconductor. The intrinsic

SHE [33] is come from the spin-split band via either Rashba [12] or Dresselhaus [11]

SOI in the structure inversion asymmetry (SIA) and bulk inversion asymmetry (BIA)

semiconductor, respectively. However, the extrinsic SHE is due to impurity scattering

in the skew-scattering processes, which induce the spin-dependent propagation of the

electron [31, 58]. The intrinsic SHE has been experimentally demonstrated for the p-

doped 2D electron gas [35]. The extrinsic SHE also have been performed in several

experiments [36, 59].

In this chapter, we will use the diffusion approximation to derive the diffusion equations
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with corresponding boundary conditions for both of spin and charge densities coupled

to each other via SOI. We use the Keldysh Green’s function technique to derive the

diffusion equation of charge and spin densities, which is equivalent to the Boltzmann

kinetic equation [24]. All effects of the spin precession, spin relaxation, and spin-charge

coupling can be derived from diffusion approach in a macroscopic semiconductor system.

In principle, all possible effects can be obtained by expanding all diagram up to a suitable

order. The diffusion equations can also be used to investigate the properties of spin

densities in a homogeneous 2D system. Besides, the diffusion equations are also used to

study a 2D strip with two edges at y = ±d/2 sketched in Fig. 5.1.

The diffusion equations can be generalized to include an external magnetic field. In

our consideration, the in-plane magnetic field B‖ can be applied with a angle θ respecting

to the electric field Ex̂ in Fig. 5.1. The symmetric property of spin accumulations have

been observed experimentally when an in-plane magnetic field is applied in cases of the

extrinsic SHE [36, 59, 76].

The finite spin accumulations Sz at the edges of a 2D strip is obtained by the diffusion

equations. It is also found that the electric current is modified by the intrinsic SHE due to

the transverse spin current inducing a small contribution to the classical electric current

due to the spin accumulations.

The section 2 develops Green’s functions with SOI in the presence of disorder. The

section section 3 derives the diffusion equations for spin densities in the presence of an

in-plane magnetic field. The section 4 derives the spin currents in diffusive regime. The

section 5 gives a brief summary.

3.2 Theory of the spin density in the diffusion regime

3.2.1 Green’s function in the presence of the SOI

First, we introduce the retarded and advanced Green’s function for the system in the pres-

ence of SOI. As known, the retarded (advanced) Green’s functions satisfy the Schrödinger
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equation as below

−i
∂

∂t
Gr(a) (t, x, x′) + HGr(a) (t, x, x′) = −δ (x− x′) (3.1)

where the retarded (advanced) Green’s function Gr(a) is the 2×2 matrix in the spinor

space. For the homogeneous system in the Fourier representation, one can obtain the

equation

−ωGr(a) (ω,p) + (εp − hp · σ) Gr(a) (ω,p) = −1, (3.2)

with

Gr(a) (ω,p) =




G
r(a)
↑↑ (ω,p) G

r(a)
↑↓ (ω,p)

G
r(a)
↓↑ (ω,p) G

r(a)
↓↓ (ω,p)


 (3.3)

where the lower index ↑ (↓) denotes the spin-up (-down). The solution for the Schrödinger

equation are expressed in the form retarded Green’s function

Gr (ω,p) = (ω − εp − hp · σ + iδ)−1

= [(ω − εp − hp · σ + iδ) (ω − εp + hp · σ + iδ)]−1 (ω − εp + hp · σ + iδ)

=
ω − εp + hp · σ

(ω − εp + iδ)2 − h2
p

(3.4)

where δ is the infinitesimal positive real number. According to Gr = (Ga)∗, one can write

down the advanced Green’s function

Ga (ω,p) = (ω − εp − hp · σ + iδ)−1

=
ω − εp + hp · σ

(ω − εp − iδ)2 − h2
p

. (3.5)

The poles of the Green’s function are (ω− εp± iδ)2−h2
p = 0 indicating ω = εp±hp which

means the spin-splitting of the conduction band.
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3.2.2 Green’s function in the presence of disorder with the SOI

We calculate the Green’s functions which include the SOI in the presence of disorder.

The electrons are scattered by the impurity potential: U(r) =
∑
i

V (r− ri), where ri is

the ith impurity position. Immediately, the Hamiltonian in the interaction presentation

is expressed as Hint =
∫

drΨ+ (r)U (r) Ψ (r) and the field operator is Ψ (r) = 1
v

∑
k

eik·rck,

where v is the system volume and ck is the annihilation operator. Finally, we obtain

Hint =
1

v

∑

kk′
Vkk′c

+
k ck′ (3.6)

, where Vkk′ ≡ 1
v

∑
i

V (k− k′) e−i(k−k′)·ri and V (k− k′) the Fourier component of V (r− ri).

The perturbation expansion for the retarded (advanced) Green’s function is given by

Gr(a) (ω,k,k′) = δkk′G
r(a)0 (ω,k) + Gr(a)0 (ω,k) Vkk′G

r(a)0 (ω,k′)

+Gr(a)0 (ω,k)

(∑

k′′
Vkk′′G

r(a)0 (ω,k′′) Vk′′k′

)
Gr(a)0 (ω,k′) + ..... (3.7)

We define Vq ≡ Vq − V0δq0 by setting q = k− k′. It is simply to show that

〈
VqV

∗
q

〉∣∣
q 6=0

=
1

v2

〈∑

i6=j

|V (q) |2e−iq(ri−rj)+
∑

i

|V (q) |2
〉

=
ci

v
|V (q) |2, (3.8)

where the angular bracket is denoted the impurity averaging and the impurities concen-

tration is ci. It also easily to calculate 〈Vq〉 = 0 and
〈
VqV

′∗
q

〉∣∣
q 6=q′ = 0.

It is known that Dyson’s equation can be expressed by

G (ω,k) = G0 (ω,k) + G0 (ω,k) Σ (ω,k) G (ω,k) , (3.9)

where G and G0 are exact Green’s function and unperturbed Green’s function, respec-

tively. All possible diagrams can be reduced into a self energy Σ in the Dyson’s equation.

In general, G, G0, and Σ are in matrix forms. Such that the Eq. (3.7) can be rewritten
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in the form of

Gr(a) (ω,k) = δkk′G
r(a)0 (ω,k)

+ Gr(a)0 (ω,k)

(
ci

v

∑

k′
|V (k′ − k)|2 Gr(a)0 (ω,k′)

)
Gr(a)0 (ω,k′)

+ ... (3.10)

with the self energy Σ(ω,k) =

(
ci

v

∑
k′
|V (k′ − k)|2 Gr(a)0 (ω,k′)

)
. Assuming the impurity

potential is a short range interaction, then V (k′ − k) = Vsc is a constant. Therefore, the

self energy can be simplified in the form of

Σ (ω, k) =
ci

v
|Vsc|2

(∑

k

ω − εk + hk · σ
(ω − εk + iδ)2 − h2

k

)
. (3.11)

Due to Eq. (3.9), the exact Green’s function can be obtained from

Gr (ω,k) =
[(

Gr0 (ω,k)
)−1 − Σ (ω,k)

]−1

=
1

ω − εk − hk · σ + iδ − Σ
. (3.12)

The real part of the self-energy, Re[Σ], gives the shift of the electron energy. The most

important physics is the electron energy near the Fermi energy such that the imaginary

part of the self-energy is given by

Im [Σ] =
ci

v
|Vsc|2

∑

k

1

2
Im

[
1

ω − εk − hk + iδ
+

1

ω − εk + hk + iδ

]

=
−ci

v
|Vsc|2

∑

k

π

2
[δ (ω − εk − hk) + δ (ω − εk + hk)]

≈ −πci|Vsc|2N0 ≡ Γ, (3.13)

where N0 is the density of state at the Fermi energy EF . The disorder energy is Γ = 1/(2τ)

and τ is the elastic scattering time. The mean free path is given by lmean = vF τ and vF

is the Fermi velocity. The higher order contributions to the self-energy carry the small

parameter 1/(kF l), which can be neglected. Finally, the Green’s with SOI in the presence
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of disorder is obtained in the form of

Gr(a) (ω,p) =
ω − εp − hp · σ

(ω − εp ± iΓ)2 − h2
p

, (3.14)

where the signs ± denote the retarded and advanced Green’s functions in the upper one

and lower one, respectively.

3.3 Diffusion equation for spin densities with an in-

plane magnetic field

In this section, the nonequilibrium Green’s function is employed to derive the diffusion

equation of spin densities Si (i = x, y, and z) related to intrinsic SHE in the presence of

an in-plane magnetic field B‖. First, it is important to analyze the ranges of characterized

energy in the diffusive regime. In our calculation, the Fermi energy EF of the electron

is the largest energy scale in the diffusive regime. The electron has a drift velocity vd

through the driving electric field E and the electron can be scattered by the random

impurities within a scattering time τ . The scattering rate Γ = ~/(2τ) characterizes the

energy scale of the scattering events. Another important energy scale is the spin-split

energy hso due to the SOI without the external magnetic field. The electron spin can

be relaxed via D’yakonov Perel’ (DP) relaxation mechanism after the electron travelling

time around the spin-relaxation time τso. Especially, the effect of an in-plane magnetic

field can participant in the diffusion equation and the in-plane magnetic field leads to the

changes of spin accumulations. As known, the magnetic field can cause the electron spin

precession about the magnetic field axis with a cyclotron frequency ωc. In weak magnetic

field range, ωcτ ¿ 1 is valid. For the diffusion regime with B‖, the criteria of energy

are restricted by EF À Γ À hso ≥ ωc. It is possible that an electron spin does not be

relaxed due to a lot of elastic scattering events such that the relation hsoτ ¿ 1 is valid in

the diffusive regime. In contrast to diffusive regime, the ballistic regime is described that
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the electron spin can be relaxed completely before it encounters a scattering event. The

requirement of hsoτ À 1 has to be satisfied in the ballistic regime.

In general, we will derive the diffusion equations for the intrinsic SHE in the presence

of an weak in-plane magnetic field. The magnetic field can be simply turned off when we

study the case of the intrinsic SHE without a magnetic field. By averaging all elastic and

spin-independent impurities in the method of nonequilibrium Green’s function has been

calculated in our previous work [42]. It is know that the spin accumulation is induced by

applying a uniform electric field to a homogeneous 2DEG with SOI in the diffusion regime

due to the intrinsic SHE. This method can be generalized in the case of applying in-plane

magnetic in 2DEG. The SOI term can be expressed as hso = hk · σ where hk denotes

the momentum-dependent effective magnetic field due to SOI and σ≡(σx, σy, σz) is Pauli

matrix vector. The effective SOI field have specific forms of (hx, hy) = (αky,−αkx) for

Rashba SOI [12] and (hx, hy) = (βkx(k
2
y−κ2), βpy(κ

2−k2
x)) for cubic Dresselhaus SOI [11].

The spin-orbit coupling constants are α and β, and κ is the average of wave function in the

direction perpendicular to 2DEG. Both of the in-plane magnetic field B‖ and the driving

electric field Ex̂ are applied parallel to 2D strip. One can combine the in-plane magnetic

field B‖ with effective SOI field hso together into the form Hp · σ = (hp + B̃‖) · σ. The

magnetic energy is defined by B̃ = g∗µBB‖/2, where g∗ is the effective g factor and µB

is the Bohr magneton. In the weak magnetic field case, assuming EFÀhso ≥ hB is valid

and the expansion of the exact Green’s function only need to expand up to linear order

of B̃‖. It is the good approximation to treat the external electric field as a perturbation

such that it is expressed in the four vector of potentials in form of H ′ =
∑
i

Φi (r, t) τ i,

where the 2× 2 matrix τ 0 = 1, τx,y,z = σx,y,z. The external potential H ′ can be calculated

in the linear response framework by Kubo formula. It is convenient to introduce four

vector of densities Di(r, t), whose index i = 0 is referring to the charge and i = x , y , z are

referring to the spin indices. The unit of one spin is taken by ~/2 such that spin densities

are Sx,y,z = (~/2)Dx,y,z. The four densities is expressed by using nonequilibrium Green’s
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function method

Di (r, t) =
〈
Tl [D̂i (r, t) Sl (−∞down,−∞up)]

〉

= −iT r[τ iG−+ (r, r, t, t)], (3.15)

where Tl is time-loop order operator and G−+ is the Keldysh Green’s function in the matrix

form. The detailed derivation is shown in Appendix D. The angular brackets denote the

average over random distribution of impurities. The upper time-loop branch (+) denotes

the time order evolution and the lower one (−) denotes anti-time order evolution. The

Green’s function G−+ is described the time loop branch from − to +. In stationary state,

the system response depends only on time difference such that one gets the density in the

Fourier space ω, ω′

Di (r, ω) =

∫
d2r′

∑
j

Πij (r, r′, ω + ω′) Φj (r′, ω)

+ D0
i (r, ω) . (3.16)

Here, it is convenient to express all coordinate-dependent quantities in the momentum

representation for a homogeneous 2DEG system. The derivation of Eq. (3.16) is shown

in Appendix D. The momentum conservation is obeyed for an electron collides with the

random elastic impurity. The most important physical mechanism occurs near the Fermi

energy EF such that the energy can be treated as ω′ ≈ EF . Applying the relation of

fFD(ω′) − fFD(ω + ω′) ≈ ω(dfFD(ω′)/dω′), the retarded and advanced Green’s function

Gr(p1,k1 + q, ω + ω′) and Ga(k1,p1 − q, ω) can be employed to calculate the response

functions in momentum space

Πij (q, ω) = iω
∑

p1k1

∫
dω′

2π

dfFD(ω′)
dω′

×〈Tr[Ga(k1,p1 − q, ω)τ iGr(p1,k1 + q, ω + ω′)τ j]〉,

(3.17)
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where fFD(ω′) is the Fermi-Dirac distribution function at energy ω′. The brackets in

Eq. (3.15) denote averaging over the random distribution of impurities in the 2DEG. For

ω ¿ EF , the relation fFD(ω′ + ω) ≈ fFD(ω′) is assumed and one can obtain the local

equilibrium densities

D0
i (q, ω) = i

∑

p1k1q′

∫
dω′

2π
fFD (ω′)

∑
j

Φj (q′, ω)

× 〈Tr[Gr(p1,k1 − q, ω′)τ iGr(k1,p1 + q′, ω′)τ j

− Ga(p1,k1 − q, ω′)τ iGa(k1,p1 + q′, ω′)τ j]〉, (3.18)

which are associated with four vector of potentials Φj(q
′, ω). These detailed calculation

is shown in Appendix D. Assuming each random impurity potential Vsc(r) is delta-profile

correlation so that the pair correlation 〈Vsc(r)Vsc(r
′)〉 = Γδ(r − r′)/πNF , where Γ =

1/2τ is characterized by the mean elastic scattering time τ . Assuming the semiclassical

approximation EF τ À 1 is valid, the standard perturbation theory can be employed. The

unperturbed average Green’s functions are given by 2× 2 matrix form

Gr(0)(p, ω) = (Ga(0)(p, ω))†

= 1/(ω − Ep −HB · σ ± iΓ), (3.19)

where Ep = p2/2m∗. The local equilibrium densities D0
i are calculated up to the lowest

order expansion of the average Green’s function by setting HB ≈ 0 in Eq. (3.19). Eventu-

ally, we obtain the local equilibrium densities D0
i (q, ω) = −2N0Φi(q, ω) by setting q = 0

in the average Green’s function. The N0 is the electron density of state at Fermi energy

EF . The nth higher order term of average Green’s functions produce the order of power

1/(EF )n for q = 0 and it is the small correlation to the D0
i . Obviously, it is good enough

to estimate the D0
i up to the lowest order approximation in the average Green’s function.

In the presence of SOI, the spin would be relaxed due to DP-relaxation mechanism in

the disorder system after an electron spin travels the characteristic distance, so-called spin

relaxation length lso . In the diffusion limit, lso À lmean is valid such that one electron spin
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can be scattered by several impurities before it is relaxed completely. The most important

goal is to obtain the response function from Eq. (3.17) by calculating the mean products

of the retarded and advanced Green’s functions in the diffusive regime. Only the pair of

retarded and advanced Green’s functions of Eq. (3.17) carrying close enough momenta

have to be taken into count in the ladder series. Redefining k1 = p and p1 = p′ − q,

each matrix element of the impurity averaging can be evaluated in ladder expansions as

following

∑
pp′

τ i
µατ j

βν

〈
Gr

αβ (p,p′, ω + ω′)Ga
νµ (p′ − q,p− q, ω)

〉

=
∑
p

τ i
µατ j

βν{Gr(0)
αβ (p, ω + ω′)Ga(0)

νµ (p− q, ω) δpp′

+Ψαγ
µλ (ω, ω′, q) G

r(0)
γβ (p, ω + ω′) G

a(0)
νλ (p− q, ω)

+Ψαγ′
µλ′Ψ

γ′γ
λ′λG

r(0)
γβ (p, ω + ω′) G

a(0)
νλ (p− q, ω) + ...},

(3.20)

where the simplified notation Ψαγ
µλ (ω, ω′, q) ≡ (ci |Vsc|2 /V )

∑
p′

G
r(0)
αγ (p′, ω + ω′) G

a(0)
λµ (p′ − q, ω),

where ci is the impurity concentration and V is the volume of system . All the repeated

indices have to be summed and Vsc is the strength of the impurity. From Eq. (3.17), the

response function is expressed in the form of

Πij(q, ω) =
iω

2π

∑
j

∫
dω′

dfFD

dω′

(
πN0

Γ

)
τ i
µατ j

βν

× Ψαγ
µλ(ω, ω′,q)[(1−Ψ(ω, ω′,q))−1]γβ

λν , (3.21)

where 1γβ
λν ≡ δγβδλν and Γ/(πN0) = ci|Vsc|2/V . From Eq. (3.16), Eq. (3.17) and Eq. (3.21),

the four densities is given by

Di(q, ω)−D0
i (q, ω) = Πij(q, ω)Φj(q, ω). (3.22)

The four components tensor in Eq. (3.21) can be transformed into two components vector

form via the equality Ψγγ′
λλ′ = (1/2)

∑
ij

τ i
λγΨ

ijτ j
γ′λ′ , where i, j = 0, x, y and z. Immediately,
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we can obtain

τ i
µατ j

βν

[
Ψ(1−Ψ)−1

]αβ

µν
= 2

∑
ij

Ψil
[
(1−Ψ)−1

]lj
,

and the diffusion mechanism is decided by

Ψil =
Γ

2πN0

∑

p′
Tr

[
τ iGr(0)(p′, ω + ω′)τ lGa(0)(p′ − q, ω′)

]
. (3.23)

The Eq. (3.22) can be expressed in matrix form

(1−Ψ)il (Dl −D0
l ) = iωτΨilD0

l , (3.24)

via the relation
∫

dω′(dfFD/dω′) = −δ(ω′ − EF ) at zero temperature. For the case of

a static homogeneous electric field, the left-hand side of Eq. (3.28) is equal to zero by

setting ω = 0 and the charge density D0 = 0 due to charge neutrality.

First, Ψil can be calculated in the absence of the SOI and external magnetic field,

saying Hp = 0, to easily obtain

Ψil (ω, ω′,q)
∣∣
Hp=0

=
Γ

2πN0

∑
p

Tr

[
τ iτ l 1

(ω + ω′ − εp + iΓ)

1

(ω′ − εp−q − iΓ)

]

≈ Γ

2πN0

∫
dε2δilN0

−1

(ε− ω − ω′ − iΓ)

1

(ω′ − ε + q · vF − iΓ)

=
Γ

π
δil (−2πi)

(
1

−ω + q · vF − 2iΓ

)

= δil

(
1− ω

2iΓ
+

ω2 + 1
2
q2v2

F

−4Γ2

)
, (3.25)

where the overline denotes the average over Fermi surface. In linear response regime,

Eq. (3.25) is expanded up to the linear order of ω to give us

Ψil (q, ω) |Hp=0 =
(
1 + iωτ −Dτq2

)
δil, (3.26)
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where the diffusion constant is D = v2
F τ/2 and i, l=0, x, y, and z.

Under the consideration of the static and homogeneous electric field, the time com-

ponent of the electric field ω = 0 is assumed in the below. The standard perturbation

theory is employed to expand Eq. (3.23) respecting to the small parameters of HB and

q. Considering hso ≥ B̃‖ in the weak magnetic field case, the most important effects of

the magnetic field come from the contribution of the linear B̃‖ term. It is known that

hp = −h−p is odd parity and B̃‖ is even parity respecting to the electron momentum

p → −p.

One can expand Eq. (3.23) up to linear hp to give us zero, for q = 0 case, because

the angular averaging integration contains odd parity in the momentum p. It has to be

expanded in small q to get the finite result of

Ψil
∣∣
h
q6=0,ω=0

=
Γ

π

(
2iεilm

) ∫
dεq · vF

(
hm

p

) 1

(εp − ω′ + iΓ)2

∂

∂ε

−1

(εp − ω′ − iΓ)

= −Γ

π

(
2iεilm

)
q · vF

(
hm

p

)
2πi

+2

(2iΓ)3

=
iεilm

Γ2
q · vF

(
hm

PF

)
= i4τ 2εilmq · vF

(
hm

PF

)

= τRilmiqm (3.27)

where Rilm ≡ 4τ
∑
n

εilnhn
Pvm

F . The overline denotes the angular average over Fermi surface

and vm
F is the m component of Fermi velocity. This term is associated with spin precession

due to the SOI.

On the other hand, the linear B̃ term can contribute to Eq. (3.23) in the q = 0 case:
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the Eq. (3.23) is given by

Ψil
∣∣
B̃
q=0,ω=0

=
Γ

2πN0

∑
p

Tr{τ iτ lσm[
1

(ω′ − εp + iΓ)

B̃m

(ω′ − εp − iΓ)2 ]

+ τ iσmτ l[
B̃m

(ω′ − εp + iΓ)2

1

(ω′ − εp − iΓ)
]}

=
Γ

2πN0

∫
dεN0Tr

[
τ iτ lσm

] { −1

(εp − ω′ − iΓ)

B̃m

(εp − ω′ + iΓ)2

− −1

(εp − ω′ + iΓ)

B̃m

(εp − ω′ − iΓ)2}

= −2τεilmB̃m (3.28)

where Rilm
B ≡ −∑

m

2εilmB̃m and m = x, y denotes the x−, y−component of the in-plane

magnetic field. This term is simply related to linear magnetic field term without coupling

to SOI. It can be interpreted that the electron spin processes along the axis of an external

magnetic field B‖ in semiclassical picture. However, the travelling direction of an electron

would be changed by random impurities in diffusion region such that the spin precession

can be randomized due to elastic scattering processes.

Next, we expand Ψil up to orders of h2
p and hpB̃ to give rise

Ψil
∣∣
h2

p,hpB,
q=0

=

(
Γ

2πN0

) ∑
p

{Tr
(
τ iσmτ lσm

) hm
p

(ω′ − εp + iΓ)2

hm
p

(ω′ − εp − iΓ)2

+ Tr
(
τ iσmτ lσm

)
(

hm
p

(ω′ − εp + iΓ)2

B̃m

(ω′ − εp − iΓ)2 +
B̃m

(ω′ − εp + iΓ)2

hm
p

(ω′ − εp − iΓ)2 )

+ Tr
(
τ iτ l

)
(

h2
p + 2B̃ · hp

(ω′ − εp + iΓ)3

1

(ω′ − εp − iΓ)
+

1

(ω′ − εp + iΓ)

h2
p + 2B̃ · hp

(ω′ − εp − iΓ)3 )}

=

(
Γ

2πN0

) ∑
p

{Tr
(
τ iσmτ lσm

) hm
p

(ω′ − εp + iΓ)2

hm
p

(ω′ − εp − iΓ)2

+ Tr
(
τ iτ l

) h2
p

(ω′ − εp + iΓ)3

1

(ω′ − εp − iΓ)

+ Tr
(
τ iτ l

) 1

(ω′ − εp + iΓ)

h2
p

(ω′ − εp − iΓ)3}

= −4τ 2h2
PF

(
δil − ni

kn
l
k

)
= −τΓil (3.29)
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where Γil ≡ 4τh2
PF

(δil − np
inp

l) and the unit vector np ≡ hp/hp. These terms including

hm
p B̃m and hp ·B̃ vanish due to the odd parity of the electron momentum p. The physical

origin of this term is recognized as the DP relaxation. The physical meaning of the

DP relaxation can be understood in the following discussion. In the interval between

collisions, the spin of each electron precesses about an effective magnetic field which is

related to the electron momentum in the SOI system. Consequently, the direction of

electron momentum will be changed via collide with the random elastic impurities and

leads to the change of the precession axis. If the time between collisions is much less than

the precession period, then the electron spin will not be able to follow the change of the

precession axis. Such that the electron spin precession would be relaxed after collisions.

The SHE is strongly related to the spin-charge coupling terms which induce the spin-

Hall current moving normal to the driving electric field Ex̂. The spin-charge coupling

terms can be calculated in higher order expansion of Ψil in the general form of

Ψl0
∣∣
ω=0,ω′,q =

Γ

2πN0

∑
p

{Tr

[
τ l Hp · σ

(ω′ − εp + iΓ)2 −H2
p

Hp−q · σ
(ω′ − εp−q − iΓ)2 −H2

p−q

]

+ Tr

[
τ l (ω′ − εp + iΓ)

(ω + ω′ − εp + iΓ)2 −H2
p

Hp−q · σ
(ω′ − εp−q − iΓ)2 −H2

p−q

]

+ Tr

[
τ l Hp · σ

(ω + ω′ − εp + iΓ)2 −H2
p

(ω′ − εp−q − iΓ)

(ω′ − εp−q − iΓ)2 −H2
p−q

]
}

= {(a) + (b) + (c)}. (3.30)

We can neglect the H2
p terms in the denominators and expand the part (a) up to linear q
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to obtain

(a) ≈ Γ

2πN0

∑
p

{Tr
[
τ lσxσx

] Hx
p

(ω′ − εp + iΓ)2 (−q)
∂

∂p

Hx
p

(ω′ − εp − iΓ)2

+ Tr
[
τ lσyσy

] Hy
p

(ω′ − εp + iΓ)2 (−q)
∂

∂p

Hy
p

(ω′ − εp − iΓ)2

+ Tr
[
τ lσxσy

] Hx
p

(ω′ − εp + iΓ)2 (−q)
∂

∂p

Hy
p

(ω′ − εp − iΓ)2

+ Tr
[
τ lσyσx

] Hy
p

(ω′ − εp + iΓ)2 (−q)
∂

∂p

Hx
p

(ω′ − εp − iΓ)2}

=
Γ

2π
δlzTr

[
τ lσxσy

] ∫
dε{ hx

p + B̃x

(ω′ − εp + iΓ)2 (−q)
∂

∂p

hy
p + B̃y

(ω′ − εp − iΓ)2

− hy
p + B̃y

(ω′ − εp + iΓ)2 (−q)
∂

∂p

hx
p + B̃x

(ω′ − εp − iΓ)2} (3.31)

=
1

2Γ2
(−iq) {B̃x ∂hy

p

∂p
− B̃y

∂hx
p

∂p
}. (3.32)

We note that this spin-charge coupling effect comes from the terms of qB̃hp and this effect

vanishes as B̃ = 0. Furthermore, to calculate (b)+(c) by integral by parts gives us

(b) + (c) =
Γ

2π

∫
dε{Tr

[
τ l (ω′ − εp + iΓ)

(ω + ω′ − εp + iΓ)2 −H2
p

(−q)
∂

∂p

Hp · σ
(ω′ − εp − iΓ)2 −H2

p

]

+Tr

[
τ l Hp · σ

(ω + ω′ − εp + iΓ)2 −H2
p

(−q)
∂

∂p

(ω′ − εp − iΓ)

(ω′ − εp − iΓ)2 −H2
p

]
}

=
Γ

2π

∫
dε{−Tr

[
τ l

H l
pσ

l

(ω′ − εp − iΓ)2 −H2
p

(−q)
∂

∂p

(ω′ − εp + iΓ)

(ω + ω′ − εp + iΓ)2 −H2
p

]

+Tr

[
τ l

H l
pσ

l

(ω + ω′ − εp + iΓ)2 −H2
p

(−q)
∂

∂p

(ω′ − εp − iΓ)

(ω′ − εp − iΓ)2 −H2
p

]
}.(3.33)

If We drop H2
p terms of denominators in Eq. (3.33), the contribution of Eq. (3.33) becomes
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zero. It implies that we have to expand the H2
p terms in denominators to obtain

(b) + (c) ≈ Γ

π

∫
dεhl

ph
2
p

(
1

3
q

)
· ∂

∂p
{ 1

(ω′ − εp − iΓ)3

1

(ω′ − εp + iΓ)2

− 1

(ω′ − εp + iΓ)3

1

(ω′ − εp − iΓ)2}

+ hl
pq ·

∂

∂p
{ 1

(ω′ − εp − iΓ)2

h2
p

(ω′ − εp + iΓ)3 −
1

(ω′ − εp + iΓ)2

h2
p

(ω′ − εp − iΓ)3}

=
Γ

π

∫
dε

2

3
h3

pq ·
∂nl

p

∂p
{ 1

(ω′ − εp − iΓ)3

1

(ω′ − εp + iΓ)2

− 1

(ω′ − εp + iΓ)3

1

(ω′ − εp − iΓ)2}

=
−Γ

π

∫
dε

2

3
h3

pq ·
∂nl

p

∂p
{ 3

(ε− ω′ + iΓ)4

−1

(ε− ω′ − iΓ)

− 3

(ε− ω′ − iΓ)4

−1

(ε− ω′ + iΓ)
} =

1

2Γ3
iq · h3

p

∂nl
p

∂p
. (3.34)

From Eq. (3.31) and Eq. (3.34), spin-charge coupling terms read as

Ψi0 (q, ω = 0) |spin-charge = Mi0 + Mi0
B (3.35)

where the q-dependent operators are defined by





Mi0 = 4τ 3iq · h3
p

∂ni
p

∂p

Mi0
B = 2τ 2 (−iq) ·

(
B̃x

∂hy
p

∂p
− B̃y

∂hx
p

∂p

)
δiz

(3.36)

The first term Mi0 is original spin-charge coupling term in the absence of in-plane

magnetic field, which couples spin and charge together due to SOI for i =x, y, or z.

It is worth to notice that the second term denoted by Mz0
B connects the charge and z

component spin in the SOI background through B̃. This term is a new contribution in

the diffusion equation with a external magnetic field and it causes the bulk value of spin

density varying by B̃. Finally, the diffusion propagator Dil is defined by −(1 − Ψil)/τ

in the dc limit (ω = 0) and it can be transformed into the real space representation by
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replacing iq into the spatial differential operator 5

Dil = −D52 + Rilm
B − Γil + Rilm5m +

(
Mi0 + Mz0

B

) |iq→5. (3.37)

Form Eq. (3.24) and Eq. (3.37), one can rewrite the diffusion equation in terms of diffusion

propagator

Dil(Dl −D0
l ) = 0 (3.38)

in the dc limit ω = 0. By using Si = Di/2, the diffusion equations for the case of Rashba

SOI are given by





D ∂2

∂y2 Sx − ΓxxSx + 2B̃ySz = 0

D ∂2

∂y2 ∆Sy + Ryzy ∂
∂y

Sz − Γyy∆Sy − 2B̃xSz = 0

D ∂2

∂y2 Sz + Rzyy ∂
∂y

∆Sy − ΓzzSz − 2B̃ySx + 2B̃x∆Sy = 0

(3.39)

where ∆Sj ≡ Sj − Sb
j and Sb

j = −2ταN0eEδjy is the bulk solution of the spin density in

the j-component. It is noticeable that only Sb
y survives for Rashba SOI due to applying

a homogeneous electric field E in x direction. The spin precession term Rzyy = −Ryzy =

2τhpF
vF and the DP relaxation term Γxx = Γyy = Γzz/2 = 2τh2

PF
can be calculated from

the definition in Eq. (3.27) and Eq. (3.29). Since the bulk solution of the spin density

is spatial-independent, one can drops the derivative terms respecting to coordinate y.

The majority of electrons are driven by E with the drift velocity vd toward −x direction

and the effective SOI field hso is lying in y direction normal to vd for Rashba SOI case.

Such that the bulk is naturally revealed y-polarized spin density Sb
y in Rashba SOI case.

The magnetic field appearing in diffusion equations doesn’t change the solutions of spin

densities. It is easily to solve the spin densities Sx = Sz = 0 and Sy = Sb
y. Even in the

presence of external magnetic field, there is no spin accumulation in diffusive regime for

the case of Rashba SOI.
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For the case of Dresselhaus SOI, the diffusion equations with the external magnetic

field are given by





D ∂2

∂y2 Sx + Rxzy ∂
∂y

Sz − ΓxxSx + 2B̃ySz − C1 = 0

D ∂2

∂y2 Sy − ΓyySy − 2B̃xSz = 0

D ∂2

∂y2 Sz − ΓzzSz + Rzxy ∂
∂y

Sx − 2B̃ySx + 2B̃xSy

−B̃yC2 = 0

(3.40)

where Rzxy = −Rxzy = βτ(2p2
F κ2 − p4

F /2)/m∗ and Γxx = Γyy = Γzz/2 = β2τ(p6
F /4 −

p4
F κ2 + 2p2

F κ4). The spin-charge coupling terms C1 ≡ Mx0D0
0/2 is related to Mi0 and

C2 ≡ τ(∂hx
p/∂px)(∂D0

0/∂x) is related to Mi0
B . D0

0 = −2N0eEx (e>0) is related to the

electric field. The DP relaxation terms have the relation Γxx = Γyy = Γzz/2. The bulk

solutions of spin densities are given by





Sb
z = Λy

(−1
2
C2 + C1

Γxx

)
/
(
1 + 2Λ2

x + 2Λ2
y

)

Sb
y = −2ΛxS

b
z

Sb
x = 2ΛyS

b
z − C1

Γxx .

(3.41)

where the ratio parameter is defined by Λi ≡ B̃i/Γ
xx. All bulk spin densities Sb

i are

the function of the electric field E and Λi. When the in-plane magnetic field is turn off

(Λi = 0), these bulk spin densities become S
b(0)
y = S

b(0)
z = 0 and S

b(0)
x = −C1/Γ

xx is

finite value, independent of the external magnetic field.[42] All bulk spin densities are

coming from the spin-charge coupling terms in Eq. (3.35) and they vanish as E = 0.

For Dresselhaus SOI, the electric field Ex̂ produces the bulk spin density S
b(0)
x in the

zero magnetic field case and Sb
y, Sb

z are induced by Sb
x(0) through B̃. In the semiclassical

picture and diffusion region of lso À lmean, the external magnetic field B̃ can make S
b(0)
x

flipping to contribute the bulk spin densities Sb
z and Sb

y. For Sb
z(E), the electric field terms

produce the x-component bulk spin density and the y-component external magnetic field

can make Sb
x flipping to contribute Sb

z(E). For Sb
y(E), it is coming from the flip of Sb

z → Sb
y
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via the x-component external magnetic field. For Sb
x(E), the first term describes the flip

of Sb
z → Sb

x via the y-component external magnetic field and the second term is the

contribution coming from the driving electric field. It is clear that the bulk spin densities

without the external magnetic field would be modified by B̃ in Dresselhaus SOI case.

3.4 Theory of the spin current in the diffusion regime

The spin current operator are defined by

J i
l ≡ (1/2) (Vlσi + σiVl) (3.42)

and each spin unit ~/2 is not included here. The velocity operator is given by

Vl ≡ pl

m∗ +
∂hp · σ

∂pl

, (3.43)

where m∗ denotes the effective mass of electron. The first term in right-hand side of

Eq. (4.3) is classical kinetic term and the second term is spin-dependent velocity due to

SOI. The spin current J i
l stands for the electron moving with the velocity vl = (pl/m

∗)

and spin state σi. After some algebra, one can obtain the expression for spin current

densities

I i
l (q, ω) = iω

∫
dω′
2π

dNF

dω′ ×
∑
p,p′

〈
(
vlσi +

∂hi
p

∂pl

)
Gr

(
p + q

2
,p′ + q

2
, ω + ω′

)

×τ jGa
(
p′ − q

2
,p− q

2
, ω′

)〉Φj (q, ω)

(3.44)

where the spin indices i = x, y and z; j = 0, x, y and z. In the dc limit (ω = 0) and at

zero temperature (ω′ = EF ), the spin current densities can be simplified in the form of

I i
l =

1

m∗

[
X ij′

l Dj′ −X i0
l D0

0 + Y ij′
l Dj′ − Y i0

l D0
0

]
(3.45)
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where the index j′ = x, y and z. The operators are defined by

X ij
l ≡

(
Γ

2πN0

) ∑
p

plTr[τ iGr(0)
(
p +

q

2
, ω + EF

)
τ jGa(0)

(
p− q

2
, EF

)
] (3.46)

and

Y ij
l ≡

(
Γ

2πN0

) ∑
p

∂hi
p

∂kl

Tr[Gr(0)
(
p +

q

2
, ω + EF

)
τ jGa(0)

(
p− q

2
, EF

)
]. (3.47)

For the SHE, it is most important to study spin currents flowing along y direction when

a static electric field is applied along x axis. To obtain the spin current densities Iy
i has

to calculate X ij
y and Y ij

y

X ij
y = −m∗

(
iqyDδij +

1

2
Rijy(δiz + δjz)

)
−2iqxm

∗τ 2vF,y

(
hp × ∂hp

∂kx

)

z

δizδj0−
∂hi

p

∂ky

δj0

(3.48)

and

Y ij
y =

∂hi
p

∂ky

δj0. (3.49)

The detailed calculation is shown in Appendix E.It is found that the last term of X ij
y is

exactly cancelled out the contribution of Y ij
y . Eqs. (22), (25) and (26) are allowed to

write down the correct spin current density expressions

I i
y(r) = −2D

∂Si

∂y
−Rijy(Sj − Sb

j ) + 2ĨsHδiz, (3.50)

which are associated with spin densities Si. The first term of I i
y describes the normal

diffusion process of Si along y direction and the second term is contributed from spin

precession due to SOI. The total spin-Hall current is defined by ĨsH = IsH + IB
sH . The

first term IsH is the spin-Hall current term in the absence of external magnetic field. The
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additional term IB
sH is totally contributed from the external magnetic field. Naturally,

these two terms are proportional to the linear electric field E because the origin of SHE

is coming from spin-charge coupling by SOI. Their expressions are given by





IsH = −RzjyS
b(0)
j + 4τ 2eEN0vF,y

(
∂hp

∂kx
× hp

)
z

IB
sH = −Rzjy(Sb

j − S
b(0)
j ).

(3.51)

The explicit boundary conditions of the spin current for the case of Rashba SOI are

expressed as





−D ∂
∂y

Sx

∣∣∣
y=±d/2

= 0

−D ∂
∂y

Sy

∣∣∣
y=±d/2

−Ryzy

2
Sz

∣∣
y=±d/2

= 0

−D ∂
∂y

Sz

∣∣∣
y=±d/2

−Rzyy

2
Sy

∣∣
y=±d/2

− 2N0eEτ 2vF,y

(
hp × ∂hp

∂kx

)
z

= 0.

(3.52)

Another boundary conditions of the spin current for the case of Dresselhaus SOI are

expressed as





−2D ∂
∂y

Sx

∣∣∣
y=±d/2

− RxzySz|y=±d/2 = 0

−2D ∂
∂y

Sy

∣∣∣
y=±d/2

= 0

−2D ∂
∂y

Sx

∣∣∣
y=±d/2

−RzxySx|y=±d/2 − 4N0eEτ 2vy
F

(
hp × ∂hp

∂kx

)
Z

= 0.

(3.53)

For Rashba SOI case, it is easily to check that IsH vanishes without an external magnetic

field B̃‖. Furthermore, the bulk spin density Sb
y is equal to S

b(0)
y such that the total

spin-Hall current ĨsH is still zero even in the presence of external magnetic field. For

Dresselhau SOI case, IsH is finite even without B̃‖. However, IB
sH is dependent on B̃‖ and

can modulate ĨsH by tuning either the strength or the direction of B̃‖.

In the cases of a 2D strip, the hard-wall boundary conditions I i
y(y = ±d/2) = 0 are

imposed. The boundary conditions indicate that both of the spin and charge current

cannot penetrate the edges. The solutions of spin densities can be obtained by solving
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Eq. (3.37), Eq. (3.39) with the imposed boundary conditions. For Rashba SOI case, the

spin densities Sx,z = 0 and Sy = S
b(0)
y are analytically solved for both cases of the zero

and finite in-plane magnetic field. For Dresselhaus SOI case, the spin density has form of

Si =
∑

j Aije
iλjy for indices j = 1 ∼ 6, i = x, y, and z. One can solve Aij and λj by using

the Eq. (3.40) and boundary conditions.

Furthermore, the SHE is associated with the spin polarization flow, or the spin density

accumulation on the strip edges, in response to the electric field. In the other word, the

SHE can show up in the electric conductance as well. In Eq. (3.44), i = 0 and l = x

indicate the charge flowing along x axis with the velocity operator Vx = px/m
∗ + ∂hp ·

σ/∂px. One can obtain the electric current density

Ix = σDE + A
∂Sz

∂y
(3.54)

where σD is the Drude conductivity and

A =
e

2Γ2

[
2vy

F

(
∂hp

∂px

× hp

)

z

+ vx
F

(
∂hp

∂py

× hp

)

z

]
. (3.55)

The detailed calculation is shown in Appendix F. The total current is obtained by inte-

grating Eq. (3.54) over y. Therefore, the spin-Hall correlation to the strip conductance is

given by

∆G =
A

E
[Sz (d/2)− Sz (−d/2)] = 2

A

E
Sz (d/2) . (3.56)

It is the evidence that the spin accumulations feedback to modify the traditional electric

current in x direction due to the intrinsic SHE.
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3.5 Summary

In summary, we have derived the diffusion equations for spin densities Si with or without

an in-plane magnetic field in the case of either Rashba or Dresselhaus SOI. It is emphasized

that the electron spin relaxation length lso is much larger than the electron mean free path

lmean in the diffusive regime. In the weak magnetic field limit, the diffusion equation is

proportional to linear magnetic field. In the case of zero magnetic field, the spin there

is no spin accumulation occurring near a 2D strip edges for Rashba SOI. However, the

spin densities Sz and Sx accumulate near a 2D strip edges for cubic Dresselhaus SOI.

The conventional electric current is also modified by the spin-charge coupling due to the

intrinsic SHE.

The case of intrinsic SHE without the external magnetic field will be studied in

Chapter4. Another case of intrinsic SHE with the in-plane magnetic field will be studied

in Chapter5. Both cases are described by the diffusion equations which are obtained in

this chapter.
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Chapter 4

The intrinsic spin-Hall effect without

the magnetic field on a

two-dimensional strip

In this chapter, the intrinsic spin Hall effect (SHE) on spin accumulation and electric

conductance in a diffusive regime has been studied for a 2D strip with a finite width d,

shown in Fig. 4.1. It is found that the spin polarization near the edges of the strip exhibits

damped oscillations as a function of the width and strength of the Dresselhaus spin-orbit

interaction (SOI) while an electric current is applied in the longitudinal direction. Cubic

terms of Dresselhaus SOI are crucial for spin accumulation near the edges. As expected,

no effect on the spin accumulation and electric conductance have been found in the case

of Rashba SOI. At the same time, the conventional electric current can be correlated by

the SHE. This correlation is associated with the magnitude of the spin accumulations on

the edges.
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4.1 Introduction

Starting from 1990, Datta and Das first proposed a quantum device to manipulate the

electron spins through the spin-orbit interaction (SOI) produced by a tunable-biased gates

atop the semiconductor [5]. The field of spintronics becomes attractive and emerging in

the solid state physics. The SOI plays an important role of coupling the electron orbital

motion and the spin degree of freedom in the semiconductor through a driving electric

field. It is because the strength of SOI is much larger in the semiconductor than in the

vacuum [13].

The spin densities can accumulate near the transverse boundaries y = ±d/2 in a semi-

conductor with SOI by applying a longitudinal electric field due to SHE. The SHE can

be understood that an electron spin encounters a transverse force which is induced by a

longitudinal driving electric field [77]. It is different from the extrinsic SHE induced by

impurities scattering, however, the intrinsic SHE is owe to either Rashba [12] or Dressel-

haus SOI [11] coupling the electric field and the electron spin. For linear Rashba SOI,

the spin accumulation near the sample boundaries due to the intrinsic SHE can produce

a universal spin Hall conductivity e/(8π~) in the ballistic regime [33]. However, the in-

trinsic SHE vanishes [37–40] at the arbitrary weak disorder in dc limit for isotropic as

well as anisotropic [78] impurity scattering while the sample is in presence of the linear

Rashba SOI in the asymmetric quantum well. However, the spin accumulation can occur

for cubic Rashba SOI in the hole system [41]. At the same time, the cubic Dresselhaus

SOI gives rise a finite spin Hall conductivity in the symmetric quantum well [40].

In our study, we consider the diffusion equation for spin densities Si (for i = x, y,

and z). Instead of Boltzmann equation, the Green’s functions are used in the diffusion

approach, in which the spin relaxation length lso is larger than the mean free path lmean.

We treat this disorder system by taking averaging over all impurity positions. The spin

densities and spin currents are computed in linear response of the electric field E. The bulk

spin densities S
b(0)
x and S

b(0)
y are finite in Dresselhaus and Rashba SOI cases, respectively.
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y= d/2

E

x

y

y= −d/2y= d/2

E

x

y

x

y

y= −d/2

Figure 4.1: The 2D strip of the width d is applied a electric field along x axis. The
transverse boundaries at y = ±d/2.

Furthermore, the spin Hall current vanishes leading to zero spin accumulation in the

case of Rashba SOI. On the other hand, the spin Hall current is finite resulting in spin

accumulation at edges y = ±d/2. The spatial distributions of Sx and Sz are shown the

symmetric and anti-symmetric properties, respectively, in Dresselhaus SOI case. However,

the spatial distribution of Sy is zero in this case. It is remarkable that the spin polarization

of Sz can be changed sign at the same time, by changing either the electron density n

or the quantum well thickness w. Several boundary effects are considered for SHE with

interfaces [42, 79–81]. In a 2D strip, spin currents have to be zero for hard-wall boundaries

[42]. Based on the boundary conditions, the spin accumulation near edges can be obtained

in a 2D strip.

It is also addressed that the conventional electric current is correlated by the intrinsic

SHE. Because the spin-charge mixing induces the transverse spin Hall current resulting

in spin accumulation at y = ±d/2, the correlation of the electric current is proportional

to the magnitude of the spin accumulation Sz at the boundary.
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4.2 The diffusion equations of the spin densities for

intrinsic SHE

The diffusion equations of spin densities can be calculated by Eq. (3.37) in Chapter4.

Because there is no external magnetic field, these terms Rilm
B and Mz0

B associated with

the magnetic field become zero. Thus the diffusion propagator is expressed as

Dil = −D52 − Γil + Rilm5m + Mi0|iq→5, (4.1)

where the diffusion constant is D = v2
F τ/2. The spin precession term is Rilm ≡ 4τ

∑
n

εilnhn
k vm

F

and the spin relaxation term is Γil ≡ 4τh2
kF

(δil − nk
ink

l) due to SOI. The spin-charge cou-

pling term is Mi0 = 4τ 3iqh3
p

∂ni
p

∂p
describing the spin coupling to charge through the SOI.

In general, the SOI Hamiltonian is hso · σ and hso is the effective magnetic field of SOI.

First, we consider the case of Rashba SOI and the spin-orbit field is specifically referred

to (hx
k, h

y
k) = (αky,−αkx), where α is the Rashba spin-coupling constant. In the absence

of the external magnetic field, diffusion equations from Eq. (3.39) become





D ∂2

∂y2 Sx − ΓxxSx = 0

D ∂2

∂y2 ∆Sy + Ryzy ∂
∂y

Sz − Γyy∆Sy = 0

D ∂2

∂y2 Sz + Rzyy ∂
∂y

∆Sy − ΓzzSz = 0

(4.2)

where the ∆Sj ≡ Sj−S
(0)b
j and S

(0)b
j is the bulk spin density in the absence of the external

magnetic field. More generally, the bulk spin densities can be expressed by

Sb
i = 4τ 2N0eE

∑
j

1

Γij
h3

k

∂nj
k

∂kx

δij (4.3)

where the unit vector is nk = hk/hk and Γij is spin relaxation energy.

Next, we consider the diffusion equations for the case of Dresselhaus SOI. In a suf-

ficiently narrow quantum well grown along the [001] direction, and at sufficiently low
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temperatures, one can approximate the operators kz and k2
z by their expectation val-

ues < kz >= 0 and κ2 =< k2
z >. The Dresselhaus spin-orbit field becomes (hx

k, h
y
k) =

(βkx(k
2
y −κ2), βky(κ

2− k2
x)). We can write down diffusion equations without the external

magnetic field in the form of





D ∂2

∂y2 Sx + Rxzy ∂
∂y

Sz − ΓxxSx − C1 = 0

D ∂2

∂y2 Sy − ΓyySy = 0

D ∂2

∂y2 Sz − ΓzzSz + Rzxy ∂
∂y

Sx = 0

(4.4)

where the constant is given by

C1 =
1

2
Mx0D0

0 = −4N0eEτ 2β3k8
F

(
−1

2
C6 +

3

8
C4 +

1

16
C2 − 3

128

)
(4.5)

with C ≡ κ/kF and D0
0 = −2N0eE (e > 0). It is convenient to define Rxzy ≡ 2D/lso and

Γxx = Da/l2so, where the spin relaxation length is

lSO = 4
hy

kF
vy

F

v2
F

(4.6)

and the constant is given by a = 1 + 1/(16C2− 4). The dimensionless diffusion equations

of spin densities from Eq. (4.4) are expressed by





∂2

∂ξ2 ∆Sx + 2 ∂
∂ξ

∆Sz − a∆Sx = 0

∂2

∂ξ2 ∆Sy − a∆Sy = 0

∂2

∂ξ2 ∆Sz − 2 ∂
∂ξ

∆Sx − 2a∆Sz = 0

(4.7)

where ξ ≡ y/lso. Then we can calculate the bulk spin density S
(0)b
i by dropping all

spatial derivative terms. It turns out to obtain bulk solutions S
(0)b
y = S

(0)b
z = 0 and

S
(0)b
x = −C1/Γ

xx. It is easily to check that ∆Sx(ξ) are corresponding to the odd parity

and ∆Sz(ξ) is corresponding to the even parity.
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4.3 The spin currents for the intrinsic SHE

The spin currents for either Rashba or Dresselhaus SOI are calculated in this section.

First, we consider the spin currents for the case of Rashba SOI. The expressions of spin

currents are determined by the spin densities and the spin densities are a realistic physical

quantity to measure. Under this framework, the spin current can be avoided to discuss

the exact definition of spin currents. At the same time, the boundary conditions are

determined by spin currents in a 2D strip. The spin current cannot penetrate the hard-

wall boundaries such that one requires all spin currents to be zero at boundaries y = ±d/2.

The spin currents at boundaries y = ±d/2 are read as





D ∂
∂y

∆Sx

∣∣∣
y=±d/2

= 0

D ∂
∂y

∆Sy

∣∣∣
y=±d/2

+Ryzy

2
∆Sz

∣∣
y=±d/2

= 0

D ∂
∂y

∆Sz

∣∣∣
y=±d/2

+Rzyy

2
∆Sy

∣∣
y=±d/2

− ISH = 0.

(4.8)

where spin-Hall current

ISH = −2N0eEτ 2vF,y

(
hp × ∂hp

∂kx

)

z

−RzyyS(0)b
y /2. (4.9)

In this case, the bulk spin density is only S
(0)b
y = −2N0eEατ proportional to the driving

electric field E and Rashba spin-coipling constant α. This bulk spin density S
(0)b
y can

be simply interpreted that a shifted Fermi sphere driven by an electric field produces

a nonzero spin polarization S
(0)b
y in a 2D system. This nature implies that there is a

effective magnetic field in y axis leading to spins aligning this field, when an electric field

Ex̂ is applied. Agreeing with many papers [37–40], the spin-Hall current ISH = 0 for the

case of Rashba SOI in the disorder system. Therefore, there is no spin accumulation near

edges, Sz = 0. The solutions of Eq. (4.2) are easily obtained that Sx(y) = Sz(y) = 0 and

Sy(y) = S
(0)b
y by imposing the boundary conditions in Eq. (4.8).

For the case of Dresselhaus SOI, the spin currents at edges y = ±d/2 are expressed
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by

− 2D
∂

∂y
Sx

∣∣∣∣
y±
− RxzySz|y± = 0

− 2D
∂

∂y
Sy

∣∣∣∣
y±

= 0

− 2D
∂

∂y
Sx

∣∣∣∣
y±
−RzxySx|y± − 4N0eEτ 2vy

F

(
hk × ∂hk

∂kx

)

Z

= 0 (4.10)

with y± = ±d/2. The dimensionless expressions of spin currents from Eq. (4.10) are

expressed by





∂
∂ξ

∆Sx|ξ± + ∆Sz|ξ± + S
(0)b
z = 0

∂
∂ξ

∆Sy|ξ± = 0

∂
∂ξ

∆Sz|ξ± −∆Sx|ξ± − ĨSH = 0

(4.11)

where ξ± = y±/lso and the spin-Hall current is defined by

ĨSH ≡ − lso
2D

4τ 2N0eEvy
F

(
∂hk

∂kx

× hk

)

Z

− S(0)b
x . (4.12)

These boundary conditions are also satisfied with odd parity of S̃x and even parity of S̃z.

4.4 The solutions of spin densities in the case of Dres-

selhaus SOI

We can use the standard formula to solve the spatial distribution of spin densities. In

general, the spin density is assumed S̃i = eλξ and is substituted into Eq. (4.7) to obtain

det




λ2 − a 0 2λ

0 λ2 − a 0

−2λ 0 λ2 − 2a




= 0. (4.13)
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Thus these eigenvalues are λ =
√

a,−√a, λ3, λ4, λ5, λ6 and spin densities are

∆Si = ai+e
√

aξ + ai−e−
√

aξ + bi+eλ3ξ + bi−eλ4ξ + ci+eλ5ξ + ci−eλ6ξ, (4.14)

where λ3
∗ = λ4 and λ5

∗ = λ6 and i = x, y, z. These coefficients are given by (ax±, ay±, az±) =

(0, ay±, 0), (bx±, by±, bz±) =
(
bx±, 0,

a−λ2
j

2λj
bx±

)
and (cx±, cy±, cz±) =

(
cx±, 0,

a−λ2
j

2λj
cx±

)
and

index j = 3, 4, 5, 6. Therefore one can express spin densities in terms of

∆Sx = bx+eλ3ξ + bx−eλ4ξ + cx+eλ5ξ + cx−eλ6ξ (4.15)

∆Sy = ay+e
√

aξ (4.16)

∆Sz =
a− λ2

3

2λ3

bx+eλ3ξ +
a− λ2

4

2λ4

bx−eλ4ξ +
a− λ2

5

2λ5

cx+eλ5ξ +
a− λ2

6

2λ6

cx−eλ6ξ. (4.17)

To solve above coefficients is to substitute spin densities ∆Si into boundary conditions

Eq. (4.11). Immediately, one obtains the spin density ∆Sy = 0 everywhere by substitut-

ing Eq. (4.16) into Eq. (4.7). At the same time, ∆Sy = 0 also satisfies Eq. (4.11) at

boundaries ξ = ξ±. The coupled equations of ∆Sx and ∆Sz in Eq. (4.11) have to be

solved numerically. These numerical results are shown in next section.

4.5 Numerical results and discussions

In this section, the intrinsic SHE give rise the spatial distribution of the spin density Si

(i = x, y, z) exhibits significant symmetry properties on the 2D semiconductor strip in

the absence of an in-plane magnetic field. The spin accumulation strongly depends on the

specific SOI form. For the case of Rashba SOI, there is no spin density Sz accumulating

near the edges because the spin-Hall current is exactly cancelled by arbitrary weak disorder

in the diffusive regime. Only the bulk spin density Sb
y = −2ταN0eE is induced by

Rashba SOI through a driving electric field Ex̂. However, the spin density Sz(x) shows

the anti-symmetric (symmetric) accumulation behavior on the 2D strip for the case of
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Dresselhaus SOI. Below, our numerical results demonstrate the spin density behavior for

the Dresselhaus SOI.

In our numerical result, the effective mass of GaAs is 0.067m0 and m0 is the free

electron mass. We choose the electric field E = 25mV/µm. Now, it is convenient to

define the electron density n0 = 1015(1/m2) such that the units of the Fermi wave vector

and the Fermi velocity are kF0 =
√

2πn0 = 7.92 × 107 (1/m) and vF0 =1.36 × 105 (m/s),

respectively. The typical mean free path is lmean = 1 µm so that the unit scattering

time τ0 = 7.3 × 10−12(s) is given by lmean = vF0τ0. The Dresselhaus SOI constant is

β = 27.5eV Å
3
[13] and the DP relaxation energy is given by Γxx = 0.0042(C4−C2/2+1/8)

(meV). The unit of quantum well thickness is w0 = 1×10−8 m such that the nth subband

energy are εn
z = ~2(nπ/w0)

2/2m∗. By above definition, we can study the variation of spin

densities in various parameters.

The electron density is n = n∗n0 and quantum well thickness is w = w∗w0, where n∗,

w∗ are dimensionless numbers. The total electron energy is restricted to be lower than the

second subband energy of quantum well leading to ~2k2
F /2m∗ + ε1

z > ε2
z in a 2D system.

The Fermi wave vector is kF = kF0

√
n∗ and the parameter denotes C = C0/

√
X, where

X = nw2 and C0 = κ0/kF0. This restriction of energy gives us X < 3C2
0 . Secondly, the

spin relaxation length lso in Eq. (4.6) is larger than the electron mean free path lmean in the

diffusive regime. Therefore we have the another restriction for X > [4C0
2−13.16w2, 0]max.

The Fig. 4.2 shows that spin accumulation S±z respecting to y = ±d/2 are plotted as a

function of X in various quantum well thickness (a) w = 2 × 10−8m, (b) 2.5 × 10−8m,

and (c) 3× 10−8m with an electric field E = 25mV/µm. This criterion in Fig. 4.2 shows

that S±z can be changed the polarization direction by increasing X cross a critical value

Xc. Because the spin-Hall current depends on parameter X and Xc = 34.15 is fixed for

various thickness w. The spin-Hall current in Eq. (4.12) vanishes at the critical point

Xc. This result implies that the magnitude of the spin accumulation S±z depends on the

electron density n for a fixed w.

For the case of Dresselhaus SOI, spin density ∆Si ≡ Si − Sb
i depends on not only X
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Figure 4.2: Spin densities S±z (1/µm2) and spin-Hall current ISH in unit of
τβk2

F N0eED/(~lso) are plotted as a function of X = nw2 for various quantum well
thickness: (a) w = 2 × 10−8m, (b) 2.5 × 10−8m, and (c) 3 × 10−8m. S±z is the spin
accumulations for y = d/2 and y = −d/2, respectively. These bold(red) arrows indicate
the allowed ranges of parameter X: (a) 10.4 < X < 47.28, (b) 0 < X < 47.28, and (c)
0 < X < 47.28. The corresponding electron density is given by n = X/w2.
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but also the 2D strip width d for a fixed w. It is clear that ∆Sy vanishes in the absence

of an in-plane magnetic field for the case of Dresselhaus SOI. The bulk solution of spin

density S
b(0)
x = −C1/Γ

xx is given by Eq. (4.3)for the zero magnetic field case. Both of bulk

spin densities Sb
y and Sb

z are equal to zero due the characteristics of a cubic Dresselhaus

SOI. The dependence of spin densities ∆Sx(y = d/2) at left-hand side edge y = d/2, is

represented as a function of the strip width d in the Fig. 4.3 for a fixed quantum well

thickness w = 3w0, where w0 = 1× 10−8m. The spin density at y = d/2 is shown in the

unit of 1/µm2. All the length scales of the width d and the transverse coordinate y normal

to the electric field Ex̂ are in the unit of a spin relaxation length lSO. The blue (solid),

red (dashed), and green (dotted) curves are plotted for different parameters X =22,

30, and 40, respectively. The relation κ/kF = C0/
√

X gives us the ratio of κ/kF =

0.84, 0.72, and 0.63 corresponding to X =22, 30, and 40, respectively. These curves

are effectively corresponded to the variation of electron densities (a)n = 2.4n0, 3.3n0,

and 4.4n0 in Fig. 4.3 with n0 = 1 × 1015(1/m2). The spin density ∆Sx is symmetric in

transverse coordinate y to indicate ∆Sx(−d/2) = ∆Sx(−d/2). It is shown that magnitude

of ∆Sx(d/2) saturate for a fixed X when the strip width d is beyond several lSO.

The dependence of spin densities ∆Sz(y = d/2) at left-hand side edge y = d/2, is

represented as a function of the strip width d in the Fig. 4.4. The spin density is shown

in the unit of 1/µm2. The blue (solid), red (dashed), and green (dotted) curves are

plotted for different parameters X =22, 30, and 40, respectively. It is different from ∆Sx

because the spin density ∆Sz is anti-symmetric in transverse coordinate y to indicate

∆Sz(y = d/2) = −∆Sz(y = −d/2). In cases of X = 22 and 30, the spin accumulations

∆Sz(y = d/2) show the same polarization direction due to X < Xc. However, in case of

X = 40, ∆Sz(y = d/2) show the opposite polarization direction to cases of X = 22 and 30

due to X > Xc. The general features also show that magnitude of ∆Sz(y = d/2) saturate

for a fixed X when the strip width d is beyond several lSO. This result is similar with

Fig. 4.3. Because the spin relaxation dominates a large contribution to ∆Si(y = d/2) as

the strip width is comparable to the lSO. When the strip width d is much larger than lSO,
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Figure 4.3: Spin densities ∆Sx(y = d/2) are plotted as a function of the strip width d in
unit of lSO for various values of X(κ/kF ) in a fixed w = 3w0, where the unit of thickness
denotes w0 = 1 × 10−8m. The blue (solid), red (dashed), and green (dotted) curves are
represented for X =22, 30, and 40, respectively. The spin densities ∆Sx(y = −d/2) have
the same values with respect to ∆Sx(y = d/2) due to even parity property of ∆Sx(y).

77



CHAPTER 4. THE INTRINSIC SPIN-HALL EFFECT WITHOUT THE MAGNETIC
FIELD ON A TWO-DIMENSIONAL STRIP

0 2 4 6 8 10

-3

-2

-1

0

1

2

3

4

5

 

 

∆
 S

z
 (

y
=

d
/2

) 
(1

/µ
m

2
)

d (l
so

)

 X=40 (κ/k
F
=0.63)

 X=30 (κ/k
F
=0.72)

 X=22 (κ/k
F
=0.84)

Figure 4.4: Spin densities ∆Sz(y = d/2) are plotted as a function of the strip width d in
unit of lSO for various values of X(κ/kF ) in a fixed w = 3w0, where the unit of thickness
denotes w0 = 1 × 10−8m. The blue (solid), red (dashed), and green (dotted) curves are
represented for X =22, 30, and 40, respectively. The spin densities ∆Sz(y = −d/2)
have the same values but opposite sign with respect to ∆Sz(y = d/2) due to odd parity
property of ∆Sz(y).
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the spin coming far from the edge is completely relaxed. Thus the accumulation of spin

densities ∆Si(y = d/2) is dominated by the electron spin in the region within the several

lSO.

The Fig. 4.5 and Fig. 4.6 present that the total spin densities Si (i = x, z) which

include the bulk spin densities S
b(0)
i . According to the Eq. (4.7) and Eq. (4.11), the total

spin density Sx(y) exhibits the symmetric property to the transverse coordinate y. On the

other hand, the spin density Sz(y) exhibits the anti-symmetric property to the transverse

coordinate y. The blue (solid), red (dashed), and green (dotted) curves are plotted in a

fixed w = 3w0 for various parameters X = 22, 30, and 40, respectively. The Sx(y) are

shift by the bulk values S
b(0)
x which are related to different values of X. It is easily found

that the polarization direction of Sz(y) near two edges is reversed for X = 40 respecting

to cases of X = 22, and X = 30.

4.6 Summary

In summary, we have studied the spatial distribution of the spin density Si without an

in-plane magnetic field for the case of either Rashba or Dresselhaus SOI. In the case of

zero magnetic field, the spin there is no spin accumulation occurring near a 2D strip edges

for Rashba SOI. However, the spin densities Sz and Sx accumulate near a 2D strip edges

for cubic Dresselhaus SOI. We also find that spatial distribution of Sx demonstrates the

symmetric property in y axis. On the other hand, spatial distribution of Sz demonstrates

the anti-symmetric property in y axis, corresponding to the intrinsic SHE.
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Figure 4.5: Total spin densities Sx(y) are plotted as a function of transverse coordinate y
in unit of lso. The blue (solid), red (dashed), and green (dotted) curves are represented
for X = 22, 30, and 40, respectively. The total spin densities Sx(y) exhibit the symmetric

behavior. The bulk values of S
b(0)
x depend on the values of X.
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Figure 4.6: Total spin densities Sz(y) are plotted as a function of transverse coordinate y
in unit of lso. The blue (solid), red (dashed), and green (dotted) curves are represented
for X = 22, 30, and 40, respectively. The total spin densities Sz(ξ) exhibit the anti-

symmetric behavior. The bulk values of S
b(0)
z = 0 in the absence of an in-plane magnetic

field.
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Chapter 5

The intrinsic spin-Hall effect with an

in-plane magnetic field on a

two-dimensional strip

In this chapter, we studied the intrinsic spin-Hall effect (SHE) induced by a driving electric

field Ex̂, in the presence of an in-plane magnetic field B‖ = Bxx̂ + Byŷ on a 2D strip. In

the diffusive regime, the spatial distribution of the spin density Si (i = x, y, z) is calculated

from a spin diffusion equation derived from the nonequilibrium Green’s function. In the

presence of the in-plane magnetic field, the z-component spin density Sz normal to the 2D

strip remains zero with or without B‖ field for the case of Rashba spin-orbit interaction

(SOI). For the case of Dresselhaus SOI, the spatial distribution of spin density show

either symmetric or asymmetric features which depend on the direction of the in-plane

magnetic field. By applying the longitudinal magnetic field Bx, the spatial distributions

of spin densities Sx and Sz show the even parity in Bx but Sy shows the odd parity in Bx.

The asymmetric property of Sz versus By is demonstrated for the intrinsic SHE in case

of Dresselhaus SOI. The extrinsic SHE experimentally performed the symmetric behavior

of Sz at boundaries by applying in-plane magnetic field By. These robust features of spin

densities provide a possible diagnostic tool to identify the intrinsic and extrinsic SHE by
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applying an in-plane magnetic field.

5.1 Introduction

More recently, the most important issue is to generate and control the spin-polarized

electrons in the achievement of spin-based semiconductor devices [1, 44]. Among the

different methods, spin-orbit coupling, which couples the electron spin to its momentum

is attracted a lot of remarkable interest. Because the energy gap E0 in a semiconductor is

much larger than the effective energy gap m0c
2 in the vacuum (m0 is the free electron mass

and c is the light speed) such that the ratio of the SOI is proportional to E0/m0c
2 ∼ 106.

In conclusion, the strength of SOI is much larger in a semiconductor than in the vacuum

[13].

In the spin-orbit coupling system, a nonzero spin current is predicted in the direction

perpendicular to the applied electric field due to the intrinsic SOI or extrinsic impurities

scattering, referring to the intrinsic and the extrinsic SHE, respectively. The intrinsic

SHE is involved with either Rashba SOI [12] or Dresselhaus SOI [11], or both, and the

behavior of spin accumulations sensitively depends on the different type of SOI. In contrast

to intrinsic SHE, the extrinsic SHE is contributed by skew-scattering processes, which

induce the spin-dependent transport perpendicular to the electric field [31, 58]. Recently,

the several experiments succeed to measure the SHE by either electronic [82] or optical

detections. So far, the intrinsic SHE was demonstrated for the p-doped 2D electron gas

[35]. Most experiments demonstrated the extrinsic SHE [36, 59].

The 2D strip with two edges at y = ±d/2 is sketched in Fig. 5.1. The in-plane

magnetic field B‖ with a angle θ respecting to the electric field E. The intrinsic SHE

vanishes [37–40] for the disorder approach in the dc limit with Rashba SOI. At the same

time, the Dresselhaus SOI gives a finite spin Hall conductivity due to the crystalline

inversion asymmetry [40]. Instead of detecting spin current, one realistic way to detect

the SHE is measure the spin accumulations in a semiconductor [36]. It is important to
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study the behavior of the spin accumulations near the boundary due to Dresselhaus SOI.

The symmetric accumulation of Sx is demonstrated and Sz is shown the anti-symmetric

accumulation versus y-coordinate in the absence of the external magnetic field.

We have studied that the spin accumulations are induced by the intrinsic SHE with an

applied in-plane magnetic field in this chapter. The spin transport and relaxation of the

intrinsic SHE with a perpendicular magnetic field have been studied in the diffusion ap-

proximation for Rashba SOI [83, 84]. Recently, Rashba et al . studied the time-dependent

electric field with a static in-plane magnetic field to produce a z-component spin accumu-

lation via either non-parabolic band or the anisotropic scatterer [85]. Lin et al . studied

the spin current and spin-Hall conductivity for short-range and remote impurities in the

case of the intrinsic SHE with an in-plane magnetic field [86]. As known, the spin cur-

rent is not conserved and its definition still remains an issue [54]. However, the spin

accumulations can be realistically measured in the recent experiment[36]. Therefore, it is

interesting to study the the behavior of the spin accumulation versus an in-plane mag-

netic field near the boundaries. The symmetric property of spin accumulations have been

observed experimentally when an in-plane magnetic field normal to the electric field is

applied with the same magnitude but in the opposite direction [36, 59, 76]. This sym-

metric spin accumulation is explained as the extrinsic SHE in the presence of an in-plane

magnetic field [76]. As know, the extrinsic SHE produces the zero bulk spin density Sz

which is perpendicular to 2DEG due to the spin-dependent distribution being propor-

tional to linear electron momentum [87]. Therefore, the lowest-order spin accumulation

Sz is expected up to the second order of the in-plane magnetic field resulting in symmetric

Sz(y) to the in-plane magnetic field [36, 59]. In Sec. 5.2, the diffusion equations of spin

densities are studied for the intrinsic SHE in the presence of an in-plane magnetic field. In

Sec. 5.3, the spin currents are calculated to satisfy the boundary conditions. The solution

for spin densities with boundary conditions are shown in Sec. 5.4. The numerical results

are shown in Sec. 5.5 and the summary is in the Sec. 5.6.
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Figure 5.1: Top-view schematic illustration of the 2D strip with a width d. The longitu-
dinal driving electric field is applied in the x-axis. The tunable in-plane magnetic field B‖
can be applied in this 2D strip. The angle θ is between the in-plane magnetic field and
the electric field.

5.2 The diffusion equations for the intrinsic SHE with

an in-plane magnetic field

The effect of the in-plane magnetic field for the spatial distribution of spin densities

can be calculated by the diffusion equations with the spin-orbit coupling. The diffusive

propagator with an external magnetic field in Eq. (3.37) of Chapter3. is given by

Dil = −D52 + Rilm
B − Γil + Rilm5m +

(
Mi0 + Mz0

B

) |iq→5, (5.1)

where the diffusion constant is D = v2
F τ/2. The spin precession term Rilm5m, spin

relaxation term Γil, and spin-charge coupling M i0|iq→5 are as the same as the results

without a magnetic field. In the presence of an in-plane magnetic field, there are two

additional terms Rilm
B and Mz0

B |iq→5 participating into diffusive equations. The first term

Rilm
B is associated with the spin precession due to the in-plane magnetic field. The second

term Mz0
B |iq→5 is associated with spin-charge coupling via the in-plane magnetic field.

85



CHAPTER 5. THE INTRINSIC SPIN-HALL EFFECT WITH AN IN-PLANE
MAGNETIC FIELD ON A TWO-DIMENSIONAL STRIP

Below, we study the diffusion equations derived in Chapter3 for Rashba SOI and

Dresselhaus SOI with an in-plane magnetic field. First, for the case of Rashba SOI, the

diffusion equations in the presence of an in-plane magnetic field are given by





D ∂2

∂y2 Sx − ΓxxSx + 2B̃ySz = 0

D ∂2

∂y2 ∆Sy + Ryzy ∂
∂y

Sz − Γyy∆Sy − 2B̃xSz = 0

D ∂2

∂y2 Sz + Rzyy ∂
∂y

∆Sy − ΓzzSz − 2B̃ySx + 2B̃x∆Sy = 0

(5.2)

from Eq. (3.37) of Chapter3. The notation is ∆Sj ≡ Sj − Sb
j and Sb

j is the bulk spin

density for the case of Rashba SOI. It is surprisingly found that bulk spin density Sb
j =

−2ταN0eEδjy coincides with the bulk spin density S
(0)b
y without the magnetic field in

Chapter4. The density of state at Fermi energy is N0, τ is the scattering time due to

impurities, and driving electric field is Ex̂. Obviously, the bulk spin density vanishes while

the driving electric field E is turn off. The magnetic field energy B̃x(y) is contributed from

the in-plane magnetic field Bx(y). For Rashba SOI, the spin precession terms have specific

forms of Rzyy = −Ryzy = 2τhkF
vF and the DP relaxation terms are Γxx = Γyy = Γzz/2 =

2τh2
kF

, where kF is the Fermi wave vector and Fermi velocity is vF . When an in-plane

magnetic field is applied, electron spin densities can be flip by the magnetic field. The first

equation of Eq. (5.2) shows that magnetic field By flip the spin density Sz contributing to

Sx. The second equation of Eq. (5.2) shows that magnetic field Bx flip the spin density

Sz contributing to Sy. The last equation of Eq. (5.2) shows that magnetic field Bx(y) flip

the spin density Sy(x) contributing to Sz.

Next, we consider the case of Dresselhaus SOI from Eq. (3.40) of Chapter3 such that

the diffusion equations are expressed as





D ∂2

∂y2 Sx + Rxzy ∂
∂y

Sz − ΓxxSx + 2B̃ySz − C1 = 0

D ∂2

∂y2 Sy − ΓyySy − 2B̃xSz = 0

D ∂2

∂y2 Sz − ΓzzSz + Rzxy ∂
∂y

Sx − 2B̃ySx + 2B̃xSy − B̃yC2 = 0

(5.3)
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where the spin precession term Rzxy = −Rxzy = βτ(2k2
F κ2 − k4

F /2)/m∗ is due to the

SOI and the spin relaxation term is Γxx = Γyy = Γzz/2 = β2τ(k6
F /4 − k4

F κ2 + 2k2
F κ4).

The Fermi wave vector is kF and the expectation value κ2 =< k2
z > is in the crystal

growth direction [001]. The spin-charge coupling terms C1 ≡ Mx0D0
0/2 is contributed

from the spin-charge coupling Mi0 of zero magnetic filed with D0
0 = −2N0eE (e > 0).

C2 ≡ τ(∂hx
k/∂kx)(∂D0

0/∂x) is coming from spin-charge coupling Mi0
B through an in-plane

magnetic field. The dimensionless forms of Eq. (5.3) can be written by





∂2

∂ξ2 ∆Sx + 2 ∂
∂ξ

∆Sz − a∆Sx + 2aΛy∆Sz = 0

∂2

∂ξ2 ∆Sy − a∆Sy − 2aΛx∆Sz = 0

∂2

∂ξ2 ∆Sz − 2 ∂
∂ξ

∆Sx − 2aΛy∆Sx + 2aΛx∆Sy − 2a∆Sz = 0

(5.4)

where dimensionless length ξ ≡ y/lso and a = 1 + 1/(16C2 − 4). The ratio parameter

Λi ≡ B̃i/Γ
xx denotes the strength of the magnetic field in the unit of Γxx. Then we can

calculate the bulk spin density Sb
i by dropping all spatial derivative terms in Eq. (5.3). It

turns out to obtain bulk solutions

Sb
x =

−C1

Γ
(1 + 2Λ2

x)− C2Λ
2
y

1 + 2Λ2
x + 2Λ2

y

Sb
y =

ΛxΛy

(
C2 − 2C1

Γ

)

1 + 2Λ2
x + 2Λ2

y

Sb
z =

Λy

(−1
2
C2 + C1

Γ

)

1 + 2Λ2
x + 2Λ2

y

(5.5)

where these constants are given by

C1 =
1

2
Mx0D0

0 = −4N0eEτ 2β3k8
F

(
−1

2
C6 +

3

8
C4 +

1

16
C2 − 3

128

)
(5.6)

C2 = τ
∂hx

k

∂kx

∂

∂x
D0

0 = −2eEτN0
∂hx

k

∂kx

= −2N0eEτβk2
F

(
1

2
− C2

)
(5.7)

with C ≡ κ/kF . When the magnetic field turns off, the bulk spin densities are recovered

the results of zero magnetic field Sb
y(z) = S

(0)b
y(z) = 0 and Sb

x = S
(0)b
x in Eq. (4.3) of Chapter4.
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5.3 Theory of the spin current in the diffusion regime

The spin currents with the external magnetic field for either Rashba or Dresselhaus SOI

are calculated in this section. The linear order correlation to spin currents vanishes in

Appendix E due to the parity properties. We can neglect the higher order correlations

B̃2 contributing to spin currents. From the Sec. 3.4 of Chapter3, the spin currents with

magnetic field are totally the same with the spin currents without magnetic field. The

expressions of spin currents are determined by the spin densities and the spin densities are

a realistic physical quantity to measure. The spin current cannot penetrate the hard-wall

boundaries such that one requires all spin currents to be zero at boundaries y = ±d/2.

First, we consider the spin currents for the case of Rashba SOI. The spin currents at

boundaries y = ±d/2 are read as





D ∂
∂y

Sx

∣∣∣
y=±d/2

= 0

D ∂
∂y

∆Sy

∣∣∣
y=±d/2

+Ryzy

2
Sz

∣∣
y=±d/2

= 0

D ∂
∂y

Sz

∣∣∣
y=±d/2

+Rzyy

2
∆Sy

∣∣
y=±d/2

− ISH = 0.

(5.8)

where spin-Hall current

ISH = −2N0eEτ 2vF,y

(
hp × ∂hp

∂kx

)

z

−RzyySb
y/2. (5.9)

Combining the diffusion equations Eq. (5.2) and boundary conditions Eq. (5.8), one can

easily to solve the spin densities in the presence of an in-plane magnetic field given by

Sx (y) = 0,

Sy (y) = Sb
y = −2N0eEατ,

Sz (y) = 0.

(5.10)

For Rashba SOI, the magnetic field is expanded up to the first order and one can conclude

that the effect of the magnetic field does not change the spin densities Si(y). The solutions
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of spin densities in the presence of B̃‖ are as the same as results of the zero magnetic field.

Of course, the results should be changed when the higher order correlations of magnetic

field is included.

For the case of Dresselhaus SOI, the spin currents at edges y = ±d/2 can be expressed

by

− 2D
∂

∂y
Sx

∣∣∣∣
y±
− RxzySz|y± = 0

− 2D
∂

∂y
Sy

∣∣∣∣
y±

= 0

− 2D
∂

∂y
Sx

∣∣∣∣
y±
−RzxySx|y± − 4N0eEτ 2vy

F

(
hk × ∂hk

∂kx

)

Z

= 0 (5.11)

with y± = ±d/2.The dimensionless expressions of spin currents from Eq. (4.10) are ex-

pressed by





∂
∂ξ

∆Sx|ξ± + ∆Sz|ξ± + S
(0)b
z = 0

∂
∂ξ

∆Sy|ξ± = 0

∂
∂ξ

∆Sz|ξ± −∆Sx|ξ± − ĨB
SH = 0

(5.12)

where ξ± = y±/lso. The spin-Hall current with an in-plane magnetic field is defined by

ĨB
SH ≡ τβk2

F N0eE

~
{g2 +

(1 + 2Λ2
x) g1 + 2Λ2

y

(
1
2
− C2

)

1 + 2Λ2
x + 2Λ2

y

}, (5.13)

where these constants are given by

g1 =
−64C6 + 48C4 + 8C2 − 3

64C4 − 32C2 + 8
(5.14)

and

g2 =
8C4 − 4C2 − 1

8C2 − 2
. (5.15)
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In order to solve the spin densities with an in-plane magnetic field, we have to solve the

Eq. (5.4) by imposing the boundary conditions in Eq. (5.12).

5.4 The solutions of spin densities with the in-plane

magnetic field for the case of Dresselhaus SOI

We can use the standard formula to solve the spatial distribution of spin densities. In

general, the spin density is assumed S̃i = eλξ and is substituted into Eq. (5.4) to obtain

det




λ2 − a 0 2aΛy + 2λ

0 λ2 − a −2aΛx

−2λ− 2aΛy 2aΛx λ2 − 2a




= 0. (5.16)

Thus these eigenvalues are λ =
√

a,−√a, λ3, λ4, λ5, λ6 and spin densities are

∆Si = ai+e
√

aξ + ai−e−
√

aξ + bi+eλ3ξ + bi−eλ4ξ + ci+eλ5ξ + ci−eλ6ξ, (5.17)

where λ∗3 = λ4 and λ∗5 = λ6 and i = x, y, z. These coefficients satisfy the relations

(ax±, ay±, az±) = (
aΛx

aΛy +
√

a
, ay±, 0), (5.18)

(bx±, by±, bz±) =

(
bx±,

−aΛx

2 (aΛy + λi)
bx±,

a− λ2
i

2 (aΛy + λi)
bx±

)
, (5.19)

(cx±, cy±, cz±) =

(
cx±,

−aΛx

2 (aΛy + λi)
cx±,

a− λ2
i

2 (aΛy + λi)
cx±

)
, (5.20)

and index j = 3, 4, 5, 6. Therefore one can express spin densities in terms of

∆Sx = f+ay+e
√

aξ + f−ay−e−
√

aξ + bx+eλ3ξ + bx−eλ4ξ + cx+eλ5ξ + cx−eλ6ξ, (5.21)

∆Sy = ay+e
√

aξ + f−ay−e−
√

aξ + r3bx+eλ3ξ + r4bx−eλ4ξ + r5cx+eλ5ξ + r6cx−eλ6ξ (5.22)
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and

∆Sz = p3bx+eλ3ξ + p4bx−eλ4ξ + p5cx+eλ5ξ + p6cx−eλ6ξ, (5.23)

where ri = −aΛx/(aΛy + λi), pi = a− λ2
i /2 (aΛy + λi), and f± = aΛx/(aΛy ±

√
a).

To solve above coefficients is to substitute spin densities ∆Si into boundary conditions

Eq. (5.12). These diffusion equations of ∆Sx, ∆Sy and ∆Sz are coupled through the

in-plane magnetic field in Eq. (5.4) and they have to be solved numerically. The total

spin densities can be obtained by Si = ∆Si + Sb
i . These numerical results are shown in

next section.

5.5 Numerical results and discussions

The spin accumulations due to intrinsic SHE has been investigated for the 2D strip in

the presence of an in-plane magnetic. The driving electric field Ex̂ is applied on a 2D

strip and the transverse direction is in the y axis with boundaries at y = ±d/2. For

the case of Rashba SOI, there is no spin accumulations in the diffusion region with the

in-plane magnetic field on the 2D strip. The diffusion equation and boundary conditions

of the spin density on a 2D strip with the in-plane magnetic field have been calculated in

Sec. 5.3. According to Eq. (5.2) and Eq. (5.8), it is easily to obtain zero spin accumulation

corresponding to the case of Rashba SOI in the presence of B‖.

For the case of Dresselhaus SOI on the 2D strip, the spin-Hall current I i
y survives

after averaging over all impurities without the external magnetic field. Furthermore, it

is remarkable the behavior of the spin accumulation due to the in-plane magnetic. As

following, we will focus on the case of Dresselhaus SOI because there is no accumulation

for the case of Rashba SOI with the in-plane magnetic field or without the magnetic field.

It is known that the spin density Sz is exhibited the anti-symmetric behavior but Sx is

exhibited the symmetric behavior in the case of B‖ = 0. For B‖ 6= 0 case, the symmetric

properties of spin accumulations are determined by not only the magnitude but also the
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direction of B‖. The hard-wall boundary conditions requires spin-Hall current I i
y = 0

at the boundaries. The nonzero spin-Hall currents are compensated by the spin density

accumulations near the boundaries to achieving I i
y = 0 in Dresselhaus SOI case.

In our numerical result, the effective mass of GaAs is 0.067m0 and m0 is the free

electron mass. We choose the electric field E = 25mV/µm. Now, it is convenient to

define the electron density n0 = 1015(1/m2) such that the units of the Fermi wave vector

and the Fermi velocity are kF0 =
√

2πn0 = 7.92 × 107 (1/m) and vF0 =1.36 × 105 (m/s),

respectively. The typical mean free path is lmean = 1 µm so that the unit scattering

time τ0 = 7.3 × 10−12(s) is given by lmean = vF0τ0. The Dresselhaus SOI constant is

β = 27.5eV Å
3
[13] and the DP relaxation energy is given by Γxx = 0.0042(C4−C2/2+1/8)

(meV). The unit of quantum well thickness is w0 = 1×10−8 m such that the nth subband

energy are εn
z = ~2(nπ/w0)

2/2m∗. By above definition, we can study the variation of

spin densities in various parameters. The effective g-factor g∗ = 0.44 is used in GaAs

and the magnetic field energy B̃‖ is equal to 0.013 meV corresponding to B‖ = 1 Tesla.

The electron density is n = n∗n0 and quantum well thickness is w = w∗w0, where n∗, w∗

are dimensionless numbers. The Fermi wave vector is kF = kF0

√
n∗ and the parameter

denotes C = C0/
√

X, where X = nw2 and C0 = κ0/kF0.

The y-direction distribution of spin densities reveals the symmetric and anti-symmetric

characteristics on the 2D strip due to the longitudinal magnetic field Bx. When the lon-

gitudinal magnetic field Bx is applied, the spin densities can be calculated from Eq. (5.4)

with boundary conditions in Eq. (5.12). The spin densities Sy and Sz turn out to be

the odd function of y, but Sx results in the even function of y. The Fig. 5.2 (a)-(c)

show that spin densities are plotted as a function of y for the parameter X = 22 with

a fixed quantum well thickness w = 3 × 10−8m. The Spin density Si in unit of 1/µm2

are plotted for Bx = −300mT in triangle (black) curve, B = 0 in solid (blue) curve,

and Bx = 300mT in dashed (red) curve for each panel. The spin densities Sx and

Sz are symmetric and anti-symmetric respecting to y, and Sy = 0 in the case of zero

magnetic field [42]. Furthermore, one can be examine Eq. (5.4) to analyze behavior of
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Figure 5.2: Spin densities Si are plotted as a function of y in the unit of lso for a fixed
w = 3×10−8m in various Bx. Other parameters are X = 22 and the electron density n =
2.4× 1015(1/m2). Each panel shows the different curves with parameters Bx = −300mT
(black-triangle), B = 0 (blue-solid) and Bx = 300mT (red-dashed). Spin densities Sx, Sy

and Sz in the unit of 1/µm2 are shown in (a), (b) and (c), respectively.
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Figure 5.3: Spin densities Si are plotted as a function of y in the unit of lso for a fixed
w = 3×10−8m in various By. Other parameters are X = 22 and the electron density n =
2.4× 1015(1/m2). Each panel shows the different curves with parameters By = −300mT
(black-triangle), B = 0 (blue-solid) and By = 300mT (red-dashed). Spin densities Sx and
Sz in the unit of 1/µm2 are shown in (a) and (b), respectively.
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spin densities for Bx 6= 0 case. By applying Bx, Sx, and Sz satisfy the symmetry and

anti-symmetry respecting to y in Eq. (5.4). At the same time, Sy also satisfy the anti-

symmetry of y in Eq. (5.4). Fig. 5.2 also presents that Sx and Sz are the even parity in

Bx. In summary, the spin densities correspond to relations of Sx(z)(y, Bx) = Sx(z)(y,−Bx)

and Sy(y, Bx) = −Sy(y,−Bx) as reversing the direction of Bx. The spin densities also

correspond to relations of Sy(z)(y,Bx) = −Sy(z)(−y, Bx) and Sx(y,Bx) = Sx(−y,Bx) as

reversing the direction of y.

Next, we consider that the in-plane magnetic field By perpendicular to Ex̂ is applied

on the 2D strip. The Fig. 5.3 (a)-(b) show that spin densities are plotted as a function

of y for the parameter X = 22 with a fixed quantum well thickness w = 3 × 10−8m.

The Spin density Si in unit of 1/µm2 are plotted for Bx = −300mT in triangle (black)

curve, B = 0 in solid (blue) curve, and Bx = 300mT in dashed (red) curve for each panel.

Immediately, Sy = 0 is straightforward obtained from the second equation of Eq. (5.4),

where Sy is decoupled with Sx and Sz. Sx and Sz present the asymmetric properties in y

by applying By on the 2D strip. In summary, the spin densities correspond to relations of

Sx(y, By) = Sx(−y,−By) and Sz(y, By) = −Sz(−y,−By). The experimental data showed

the symmetric behavior of Sz versus By and it is explained by the extrinsic SHE [36, 76].

Next, we focus on the parity properties of spin densities S±i at edges y = ±d/2 for the

case of y → −y with a fixed in-plane magnetic field and another case of Bx(y) → −Bx(y)

at a fixed edge y = d/2 or y = −d/2. The edge spin densities S±i are plotted in Fig. 5.4

for i = x, y and z. In the case of y → −y, a fixed magnetic field Bx is applied, it

can be found out the S±y and S±z satisfying the same parity as y → −y in the second

equation of Eq. (5.4). Therefore, S±x have to satisfy the opposite parity to S±y(z) such that

three equations become consistent in Eq. (5.4) corresponding to boundary conditions.

These parities obey the S+
y(z)(y) = −S−y(z)(−y) and S+

x (y) = S−x (−y) and are shown in

Figs. 4 (a) and (b). For the case of Bx → −Bx, Eq. (5.4) reveal the characteristics of

S+
x(z)(Bx) = −S+

x(z)(−Bx) and S+
y (Bx) = −S+

y (−Bx) at the edge y = d/2. With the same

argument, the characteristics of S−x(z)(Bx) = −S−x(z)(−Bx) and S−y (Bx) = −S−y (−Bx) is
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also satisfied at the edge y = −d/2. These features are plotted in Fig. 5.4 (a) and (b). In

the case of y → −y, a fixed magnetic field By is applied, the S±y = 0 is easily to calculated

from the second equation of Eq. (5.4) but S±x(z) become asymmetric. In this case, S±x(z)

also show asymmetric behavior for By → −By at y = ±d/2. These features are shown

in Fig. 5.4 (c) and (d). If the By and coordinate y are reversed at the same time, it is

found out that Sz(By, y) = −Sz(−By,−y) and Sx(By, y) = Sx(−By,−y) are agreed with

the Eq. (5.4). It is important that those signature of spin densities can characterize the

intrinsic SHE in the presence of the in-plane magnetic field.

More clearly, Fig. 5.5 (a) and (b) present the contour plot of spin densities Sz versus

y with varying Bx and By, respectively. The quantum well thickness w = 3 × 10−8m is

fixed for X = 22 and the electron density is n = 2.4 × 1015(1/m2). In Fig. 5.5 (a), spin

Sz demonstrate the anti-symmetric accumulations in transverse coordinate y by varying

Bx from 400 mT to −400 mT . It also shows that the accumulation of Sz decreases near

the edges as the Bx increasing. However, the Fig. 5.5 (b) demonstrates the asymmetric

behavior of Sz in transverse coordinate ξ by varying By. It is because the bulk solution

of Sz is proportional to linear By and the spin accumulation Sz is also affected by the

boundary conditions leading to asymmetry characteristic.

5.6 Summary

In summary, we have studied the spatial distribution of the spin density Si with an in-plane

magnetic field for the case of either Rashba or Dresselhaus SOI. In the weak magnetic

field limit, the diffusion equation is proportional to linear magnetic field. For Rashba

SOI case, the in-plane magnetic field doesn’t affect the spatial distribution of the spin

density in space. For Dresselhau SOI case, the spatial distribution of spin density shows

symmetric or asymmetric properties depending on the direction of the in-plane magnetic

field. This result provide a possible way to identify the intrinsic SHE and extrinsic SHE

via an in-plane magnetic field.
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Figure 5.4: The spin densities S±i is plotted as a function of the magnetic field Bx and
By for i = x, y, and z. The quantum well thickness w = 3 × 10−8m is fixed for X = 22.
The notation S±i denotes the spin density Si at y = ±d/2.
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Figure 5.5: The contour feature of the spin density Sz is plotted as a function of y versus
the (a) longitudinal magnetic field Bx and (b) transverse magnetic field By. The 2D strip
edges are from y = −5 to y = 5.
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Chapter 6

Spin-Hall interface resistance in

terms of Landauer-type spin dipoles

The nonequilibrium spin dipoles which are induced around spin-independent elastic scat-

terers by the intrinsic spin-Hall effect in the two-dimensional electron gas (2DEG) subject

to the Rashba spin-orbit interaction. The spin polarization normal to the 2DEG can be

calculated in the diffusive regime around the elastic scatterer. It is found that there is

the finite spin polarization around each impurity. However, the macroscopic spin density

turns out to vanish by averaging of individual spin dipole distribution over impurities for

a hard wall boundary. At the same time, the spin density is finite near the boundary of

2DEG for a soft-wall boundary.

6.1 Introduction

The recent intensive studies on the spin-Hall effect (SHE), it has attracted a lot of interest

because the SHE provides a method to manipulate electron spins by applying an driving

electric field Ex̂. The electric field leads to spin flow in the transverse direction such that

the spin accumulation at lateral edges and spin polarization in the bulk, [33, 35, 36, 42]

demonstrate great potential in the generation of spin transport and accumulation in the
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semiconductor.

For the SHE, one can calculate the spin current, [89] which carries the spin polarization

to buildup the spin density near the sample boundaries. This is one of significant features

for the SHE. However, the spin accumulation is not the only special feature belonged to

the SHE. There is an analogical phenomena to the charge transport. Landauer charge

dipoles can be produced by a dc electric current around impurities [90, 91] and observed

experimentally [92]. The Landauer dipoles can been calculated from the asymptotic form

of the electron waves scattered elastically by an isotropic scatterer. Naturally, the spin-

Hall current can induce the nonequilibrium spin dipoles around impurities as well. The

spin dipole (or spin cloud) is expected to appear not only for a spin-dependent scatterer

in the case of the extrinsic SHE, but also for a spin-independent scatterer in the case of

the intrinsic SHE. The spin-dependent local chemical potential difference µs = µ↑ − µ↓

is a response of the dc electric current. For the 2DEG, the spin-dependent potential

difference is related to z-polarized (perpendicular to 2DEG) spin density following the

relation Sz = N0µs, where N0 is the density of state near the Fermi energy. Therefore,

the spin-Hall resistivity is associated with the accumulation of Sz near the boundaries. So

far, to measure the spin polarization is the realistic way to detect the SHE [35, 36]. The

conventional Hall effect induces the electric potential difference due to the imbalance of the

charge density accumulating on the different edges of a 2D strip. Thus the conventional

Hall voltage depends on the 2Dstrip width d. However, the spin-Hall chemical potential

does not depend on the width d as d → ∞ because the spin relaxation mechanism

suppresses the long-range contribution to spin-polarization nearby boundaries of a 2D

trip.

We will start from the microscopic point of view to introduce the spin-Hall resistance.

Similar to Landauer’s concept that each impurity is surrounded by a nonequilibrium

charge cloud forming a charge dipole for a given electric current. Following Landauer’s

framework, the spin cloud can be induced by the spin-Hall current. The Green’s function

method is employed with the linear response theory. In the 2DEG with Rashba SOI, the
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spin polarization perpendicular to the 2DEG has been calculated in the ballistic regime

[93]. Recently, the resonance spin dipoles can also be induced by an in-plane potential

gradient SOI [94] in the ballistic regime. In order to study the spin polarization and

spin-Hall resistance in the macroscopic scale, one has to consider that the spin density

distribution is restricted to the scale much larger than the electron mean free path lmean.

6.2 Spin cloud induced by a single impurity

It is well-known that a spin polarization Sy is induced in the bulk by applying an electric

field Ex̂ to a homogeneous 2DEG in xy-plane with the Rashba SOI [95]. However, the

z-polarized spin density is equal to zero due to the SHE in this case. This result can be

understood via averaging over impurity positions in a homogeneous electron gas. When

the scale of the system is down to microscopic scale, the system becomes non-uniform due

to the impurity breaking the homogeneity. Such that the influence of each impurity upon

spin polarization can be handled through calculating one single impurity (target impurity)

at a fixed position. Under this consideration, other background impurities should be taken

average over their positions. Based on this concept, the Landauer electric dipole has been

calculated [90, 91]. The target impurity is treated as an elastic scatterer and the electron

density can be expressed in terms of the asymptotic expansion of the scattered wave

functions of the electron. The wave vectors of an incident electron was weighted with the

nonequilibrium part of the Boltzmann distribution function. In this chapter, instead of

the Boltzmann equation, the nonequilibrium Green’s function formalism is employed to

derive the spin dipole [96]. According to the standard Kubo formula, the response of the

spin density is proportional to the linear term of the driving electric field E. The scattering

potential of the target impurity should be taken into account in the retarded (advanced)

Green’s function Gr(a). Then, assuming a homogeneous electric field is applied to 2DEG.

The electric field can be represented by the vector potential A, where E = iωA/c, as

ω → 0 in the dc limit. The spin polarization can be derived similarly to Appendix
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D. Here, the interaction Hamiltonian H ′ can be equivalently represented in the vector

potential form of eA · v/c in Eq. (D.2) of Appendix D. At the same time, the velocity

operator v is consist of spin-dependent part due to SOI and spin-independent part due

to the kinetic term. The velocity operator is obtained by

vj =
pj

m∗ +
∂hk · σ

∂pj

. (6.1)

The spin-orbit field hk depends on the electron wave vector k such that the spin-orbit

interaction can be written as

Hso = hk · σ, (6.2)

where σ = (σx, σy, σz). In the case of Rashba SOI, the spin-orbit field is expressed in the

form of

(hx
k, h

y
k) = (αky,−αkx) (6.3)

with the Rashba spin-orbit coupling constant α. The n-component of the stationary spin

polarization is given by

Sn (r) = −e

∫
d2r′

∫
dω

2π

nF (ω)

dω
〈Tr [σnGr (r, r′, ω) (v · E)Ga (r′, r, ω)]〉, (6.4)

where the angular brackets denotes the averaging over impurity positions and nF (ω)

is the Fermi distribution function, with the trace running over all spin variables. The

charge e > 0 such that an electron carries charge −e with its effective mass m∗ in the

semiconductor. The angular momentum is given by ~Sn(r)/2. The electric field E is

homogeneous on the 2DEG. At very low temperature, the dnF (ω)/dω ≈ −δ(ω − Ef )

is valid and the Fermi energy is EF ≈ ω. Within this approximation, the frequency

argument can be replaced by a fixed Fermi energy EF in Green’s functions.
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The spin cloud induced by a single impurity can be induced by a single impurity,

namely, target impurity. The target impurity is located at ri with a potential Vtg(r −
ri)respecting to an electron position r. We only take into account the Green’s functions

in Eq. (6.4) up to the second order of Vtg. Therefore the retarded (advanced) Green’s

functions can be expanded in the form of

Gr(a) (r, r′) = Gr(a)0 (r, r′) +
∫

ds2Gr(a)0 (r, s) Vtg (s− ri) Gr(a)0 (s, r′)

+
∫

ds2ds′2Gr(a)0 (r, s) Vtg (s− ri) Gr(a)0 (s, s′) Vtg (s′ − ri) Gr(a)0 (s′, r′) .
(6.5)

Here, Gr(a)0 is the unperturbed Green’s function depending on the scattering of back-

ground impurities. The background impurity with potential Vsc(r) is assumed to be

delta potential in the short-range correlations. We have calculated the pair correlation

< Vsc(r)Vsc(r
′) >= Γδ(r − r′)/πN0 in Chapter3, where Γ = 1/2τ is the scattering rate

associated with scattering time τ and the density of state is N0 at Fermi energy EF .

Actually, the target impurity can be different from background impurities. It could be

a special impurity doped into the 2DEG. However, the target impurity and background

ones should become identical when all spin dipoles contribute to the spin accumulation

near the interface.

One can substitute Eq. (6.5) into Eq. (6.4) to compute the background impurity av-

erages in the products of several Green’s functions. If the semiclassical limit EF τ À 1 is

valid, the perturbation theory can be employed [97]. The building blocks are the ladder

perturbation series expressed by the unperturbed averaging Green’s functions

G
r(a)
k =

∫
d2(r− r′)eik·(r−r′)Gr(a)0(r, r′) (6.6)

in the momentum space. This Green’s functions are given in the 2×2 matrix form of

G
r(a)
k = (EF − Ek − hk · σ ± iΓ)−1, (6.7)
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Figure 6.1: Examples of diagrams for the spin density Sz. Scattering of electrons by
the target impurity is shown in the solid circles. Dashed lines denote the ladder series
of particles scattered by the background random impurities. p, k, and k′ represent the
electron momenta.

where signs ± denote the retarded Green’s function in the upper sign and the advanced

Green’s function in the lower sign for Ek = k2/(2m∗). For the ladder approximation, the

pairs of retarded and advanced Green’s functions carrying close enough momenta should

be chosen to form elements of of the ladder series. We can decouple the mean products

of Green’s function into the ladder series and the Fourier transformation of Eq. (6.4) can

become the diagrams in Fig. 6.1.

In these diagrams, the left-hand side vertex Σz(q) and the right-hand side vertex

T (p) represent the renormalization of ladder series. For example, we can represent the
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Figure 6.2: The constructions of diagram (a) of Fig. 6.1 are decomposed into ladder series.

diagram (a) of Fig. 6.1 by decomposing all ladder series with a target impurity scattering

processes in Fig. 6.2 and similar processes can be done for Fig. 6.1 (b)-(e). The vertex

Σz(q) is related to the qth Fourier component of the induced spin density Sz(r) with the

wave vector q. Accordingly, r < lmean is valid for ballistic regime and r À lmean is valid

for diffusive regime. On the other hand, the vertex T (p) is related to the homogeneous

electric field E represented by the ladder at the zeroth wave vector. The vertex Σz(q)

also contributes to the ballistic results, in which Σz(q) has been taken unrenormalized

corresponding to q À 1/(vF τ) in the ballistic regime [60]. Fig. 6.1 (e) and (f) show some

diagrams where the diffusion propagator separates two scattering events of the target

impurity. These two diagrams give rise to small correlations to the spin density and can

be neglected. Therefore, the spin density Sz has to be calculated from contributions of

diagrams in Fig. 6.1 (a)-(d). Hence, the spin polarization can be rewritten by

Sz (q) =
1

2π

∑

p,k

Tr
[
Ga

p,kΣz (q) Gr
k+q,pT (p)

]
. (6.8)
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The retarded (advanced) Green’s functions G
r(a)
k′,k are expressed in the Fourier expansion of

Eq. (6.5) respecting to r and r′ by substituting average vale G0(r, r′), instead of G0(r, r′).

To calculate Eq. (6.8) corresponding to the diffusion regime, we only need to calculate up

to the second order of the scattering potential Vtg.

The vertex Σz(q) was calculated in Chapter3 and it can be expressed in terms of

propagator

Sz (q) =
∑

j

Dzjτ j, j = 0, x, y, z (6.9)

where the 2×2 matrices are τ 0 = 1 and τ i = σi, with i = x, y, z. The matrix ele-

ment Dzj(q) of the diffusion propagator satisfying the diffusion equation in Eq. (3.38) of

Chapter3. The element Dz0 of the spin-charge mixing vanishes for the case of Rashba

SOI [37–40].

The vertex T (q) can be calculated due to the cancellation of diagrams for the case of

Rashba SOI , shown in Appendix F. Finally, one obtain the vertex

T (p) =
e

m∗p · E, (6.10)

where the momenta is p = m∗v. We substitute T (p) and Σz(q) into Eq. (6.8) to obtain

the spin density in the Fourier q−space

Sz (q) =
∑

n=x,y,z

Dzn(q)In(q), (6.11)

where the source function is

In(q) =
e

2πm∗
∑

p,k

(p · E) Tr
[
Ga

p,kσ
nGr

k+q,p

]
. (6.12)

This source function In=x,y,z(q) can be interpreted the source contributed from the spin-

polarized particle scattered by the target impurity. This source term feature is concep-
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tually similar, though different in its context, to the original charge cloud consideration

when SOI is not present and the Boltzmann equation is used to describe the subsequent

background scattering. For q ¿ l−1
mean ¿ kF , the source can be expanded in powers of

q. Therefore, the wave-vector-independent terms represent the delta source located at ri,

while the terms linear in q are associated with the gradient of the delta function. Below,

we will keep only the constant and linear terms for each nth component In(q) and as-

sume, for simplicity, the short-range scattering potential Vtg(r), such that the kth Fourier

transformation is simply Vtgexp(−ik ·ri), where Vtg is a constant. Furthermore, the source

can be written by

In(q) = In
1 (q) + In

2 (q), (6.13)

where In
1 and In

2 are the source contributed from the first order and the second order of

Vtg. These source terms can be calculated by substituting Eq. (6.5) into Eq. (6.12). The

source terms In
1 can be interpreted by Fig. 6.1 (a) and (b) in the form

In
1 (q) =

eVtg

2πm∗ e
iqri

∑
p

(p · E) Tr
[
Gr

pG
a
p

(
σnGr

p+q + Ga
p−qσ

n
)]

. (6.14)

Another source term In
2 can be interpreted by Fig. 6.1 (c) and (d) in the form of

In
2 (q) =

eV 2
tg

2πm∗ e
iqri

∑

p,k

(p · E) Tr
[
Gr

pG
a
p

(
Ga

kσ
nGr

k+q − γσnGr
p+q + γGa

p−qσ
n
)]

, (6.15)

where γ = iIm

(∑
k

Ga
k

)
= iπN0.

We assume that the electric field is applied along x axis and z axis is perpendicu-

lar to the 2DEG. From Rashba-SOI Hamiltonian α(kyσx − kxσy), there are some use-

ful symmetric properties σi → σyσ
iσy by changing momentum (kx, ky) → (kx,−ky) in

Rashba-SOI Hamiltonian. Connecting to Eq. (6.12), we have relations of Ix(z)(qx, qy) =

−Ix(z)(qx,−qy) and Iy(qx, qy) = Iy(qx,−qy). Also, we can obtain another symmetric
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properties σi → σzσ
iσz by changing (kx, ky) → (−kx,−ky) in Rashba-SOI Hamiltonian.

It is worth to notice the momentum change of px → −px in Eq. (6.12) to give rise to

Ix(y)(qx, qy) = Ix(y)(−qx,−qy) and Iz(qx, qy) = −Iz(−qx,−qy). From above arguments,

one can easily to see the leading term of expansion of Iz proportional to linear q. The

leading term of Iy is a constant and the next order is proportional to quadratic q, which

can be neglected. However, the leading term of Ix implies that it is proportional to qxqy

and this source term is too small correlation to be neglected.

Because of energy EF À Γ À hkF
, the small correlations to band effects hkF

/EF

and Γ/EF can be ignored. At the same time, q ¿ l−1
mean is valid in the diffusive regime.

Another important length scale is spin-relaxation length lso which is the distance of spin

relaxation due to D’yakonov-Perel’ (DP) mechanism [88]. The spin relaxation length is

determined by lso =
√

Dτso = vF /hkF
, where the diffusion constant is D = v2

F τ/2 and

the spin-relaxation time is τso = 4(h2
kF

τ)−1. In the diffusion approximation, the condition

Γ À hkF
indicates q ∼ l−1

so ¿ l−1
mean. Hence, we can calculate In

1 by keeping the leading

term hkF
/Γ ¿ 1 in the diffusive regime. From Eq. (6.3), Eq. (6.7) and Eq. (6.14), we can

calculate all components of In
1 in appendix G. Finally, we found the contribution In

1 = 0.

From appendix G, we can evaluate In
2 to obtain the total contribution In in the forms of





Ix = Ix
1 + Ix

2 = 0

Iy = Iy
1 + Iy

2 = vdN0m
∗αh2

kF

Γ′
Γ3

Ix = Ix
1 + Ix

2 = −iqyvdN0m
∗h2

kF

Γ′
2Γ3

(6.16)

where Γ′ = πN0V
2
tg and vd = eEτ/m∗ is the electron drift velocity. If the target impurity

is represented by one of the random scatterers, we get Γ′ = Γ/ni, where ni is the density

of impurities.

In the above calculation, we did not take into account the diagrams shown in Fig. 6.1

(e) and (f) and those similar to them. It can be easily seen that such diagrams contain

In
1 as a factor. For example, the sum of the diagrams in Fig. 6.1 (e) and (f) contains

as a multiplier the sum of the diagrams shown in Fig. 6.1 (a) and (b). Therefore, such
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diagrams are small by the same reason as In
1 are, at least, in the most important range

of f ¿ l−1
mean , where f is the small momentum transfer in Fig. 6.1 (e) and (f).

Now, one can combine the source In with the diffusion propagator to find from

Eq. (6.11) the shape of the spin cloud around a single scatterer. Taking into account

Eq. (6.16), Eq. (6.11) is transformed into

Sz (q) = −vdN0h
2
kF

Γ′

2Γ3
(iqyD

zz (q)− 2m∗αDzy (q)) . (6.17)

The matrix elements Dij satisfy the spin-diffusion equation [42]

∑

l

(
−δilDq2 − Γil + i

∑
m

Rilmqm

)
Dlj (q) = −2Γδij, (6.18)

where the DP relaxation term is given by

Γil = 4τ
〈
δilh2

kF
− hi

kF
hl

kF

〉
(6.19)

with the angular brackets denoting averaging over the Fermi surface. For the case of

Rashba SOI, substituting Eq. (6.3) into Eq. (6.19) give us Γxx = Γyy = 4h2
kF

τ and

Γzz = 2h2
kF

τ . The spin precession term associated with SOI field is given by

Rilm = 4τ
∑

p

εilj
〈
hj

kv
m
F

〉
(6.20)

and nonzero results are i
∑
m

Rizmqm = −i
∑
m

Rzimqm = 4iDm∗αqi for the case of Rashba

SOI. We ignored the spin-charge mixing term in 7diffEQ due to the small correlation. This

mixing is already taken into account in the source term because In for n = x, y, z describes

the source of the spin polarization in response to the electric field. From Eq. (6.18),
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Eq. (6.19), and Eq. (6.20), we can obtain

Dzz =
1

2h2
kF

τ 2

q̃2 + 1

(q̃2 + 2) (q̃2 + 1)− 4q̃2

−Dzy = Dyz =
1

2h2
kF

τ 2

2iq̃y

(q̃2 + 2) (q̃2 + 1)− 4q̃2

Dyy =
1

2h2
kF

τ 2

q̃2 + 2

(q̃2 + 2) (q̃2 + 1)− 4q̃2
, (6.21)

where the dimensionless wave vector is defined by q̃ = qlso/2. By substituting Eq. (6.21)

into Eq. (6.17), we have spin polarizations

Sz = −2ivd
m∗α
~

N0
Γ′

Γ

q̃y (q̃2 + 3)

(q̃2 + 2) (q̃2 + 1)− 4q̃2
(6.22)

and

Sy = 2vd
m∗α
~

N0
Γ′

Γ

(3q̃2 + 2)

(q̃2 + 2) (q̃2 + 1)− 4q̃2
. (6.23)

We have restored the physical unit by putting ~ in the above expressions. The z-

component of the spin density in real space is shown in Fig. 6.3. As our expecting,

it has the shape of a dipole oriented in y direction perpendicular to the electric field Ex̂.

Its spatial behavior is determined by the single parameter lso, which gives the range of

exponential decay of the spin polarization with increasing distance from an impurity. The

Sy component averaged over impurity positions gives the uniform bulk polarization. It is

interesting to note that when the target impurities are identical to the background ones

(Γ′ = Γ), the so obtained uniform polarization Sy|q→0 coincides with the electric spin

orientation Sy = 2vdm∗αN0

~ agree with the result in Eq. (4.3) of Chapter4.
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Figure 6.3: Spatial distribution of Sz component of the spin density around a single
scatterer. The unit of length is lso.
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6.3 Spin accumulation in the semi-infinite system with

a boundary at y=0

we will consider a semi-infinite electron gas y > 0 bounded at y = 0 by a boundary

parallel to the electric field. Our goal is to calculate a combined effect of spin clouds from

random impurities. It is important to note that the summation of spin dipoles from many

scatterers does not result in a magnetic potential gradient in the bulk of the sample. This

is principally different from the Landauer charge dipoles, which are associated with the

macroscopic electric field. The origin of such a distinction can be immediately seen from

Eq. (6.22). The magnetic potential µs is proportional to Sz. By taking its gradient, one

gets qySz. After averaging over impurity positions q → 0, qySz → 0. It happens due to

spin relaxation, which provides at q = 0 a finite value of the denominator in Eq. (6.22).

For the case of the charge cloud, the denominator of the particle diffusion propagator is

proportional to q2. Hence, the corresponding gradient of the electrochemical potential

(electric field) is finite at q = 0. Although the bulk magnetic potential is zero, one cannot

expect that it will also be zero near an interface. In order to calculate the spin polarization

near the boundary, Eq. (6.18), with q = −i∇ and 2Γδ(r)δij in the right-hand side, has

to be solved using appropriate boundary conditions. With the so obtained Dij(r), the

resultant spin density induced by impurities placed at points ri is given by Eq. (6.9)

Sj (r) =
∑

n=x,y,z

∫
d2r′Djn (r− r′) In

tot (r′), (6.24)

where the source term is obtained by the inverse Fourier transform of Eq. (6.16):

Iy
tot (r) = vdN0m

∗αh2
kF

1

Γ2ni

∑
i

δ (r− ri)

Iz
tot (r) = −vdN0h

2
kF

1

2Γ2ni

∑
i

∂

∂y
δ (r− ri)

Ix
tot (r) = 0, (6.25)
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where the relation Γ′ = Γ/ni is used because we assumed that the target impurities are

identical to the random ones. The macroscopic polarization is obtained by averaging

of Eq. (6.24) and Eq. (6.25) over impurity positions. After averaging over xi and the

semi-infinite region yi > 0, the spin-polarization source Eq. (6.25) transforms to In
av(y):

Iy
av (y) = vdN0m

∗αh2
kF

1

Γ2

Iz
av (y) = −vdN0h

2
kF

δ
(
y − 0+

) 1

2Γ2
. (6.26)

It follows from Eq. (6.25) that the corresponding mean value of the spin polarization,

Sav(y), satisfies the diffusion equation Eq. (6.18) with the source 2ΓIn
av(y) in its right-hand

side. However, this diffusion equation is not complete. We should take into account that

the boundary itself can create the interface spin polarization. Most easily, it can be done

in the framework of the Boltzmann approach. In terms of the Boltzmann function, the

spin density is defined as Sav(y) =
∑
k

gk. The equation for the Boltzmann function can

be written in the form Ref.[24]

vy∇ygk + 2 (gk × hk) + eEx
∂gk

(0)

∂kx

=
1

τ
[SE (y)− gk] , (6.27)

where SE (y) = δ (E − EF ) Sav(y)
N0

and gk
(0) = −hkδ (E − EF ) is the equilibrium Boltz-

mann function. The terms proportional to the charge component of the Boltzmann func-

tion have been omitted in Eq. (6.27) due to the system local electroneutrality, at least

in the scale of the mean free path, which is the smallest characteristic scale of gk spa-

tial variations. The scattering part of Eq. (6.27) is written in the simple relaxation time

approximation. Such a scattering term follows from the Keldysh formalism assuming

isotropic scattering from impurities, as has been adopted in this work.

The spin-polarization source associated with the boundary is given by a direct interac-

tion of the electric field, without taking into account secondary scattering from impurities.

Hence, the term with Sav(y) in the right-hand side of Eq. (6.27) can be ignored. Also,

the boundary independent bulk part of gk has to be subtracted from the general solution
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of Eq. (6.27). The so obtained interface Boltzmann function will be denoted as gkif . The

corresponding spin density is Sif (y) =
∑
k

gkif . In order to calculate gkif , the boundary

condition has to add to Eq. (6.27). For a hard wall specularly reflecting boundary, the

condition is simply

gkx,ky |y=0 = gkx,−ky |y=0 . (6.28)

This condition means that the spin orientation does not change after specular reflection

from the interface. The solution of Eq. (6.27) satisfying Eq. (6.30) can be easily found.

By expanding up to the order of α2, we obtain

Sy
if (y) = Sx

if (y) = 0

Sz
if (y) = 8vdα

2τm∗ ∑

ky>0

kyδ (Ek − EF ) exp

(
−m∗y

kyτ

)
. (6.29)

Within the diffusion approximation, the second of these equations represents a delta

source of the spin polarization with intensity

1

τ

∫ ∞

0

dySz
if (y) = vdN0h

2
kF

1

Γ
. (6.30)

This source is exactly of the same magnitude, but opposite in sign to the spin polarization

emerging from impurities, which is represented by the integral of 2ΓIz
av(y), with Iz

av(y)

given by Eq. (6.26). Taking into account that both sources are located at the interface,

so that they cancel each other out, one sees that only the y-component of the source

originating from impurity scattering retains in the diffusion equation which acquires the

form

∂2Sz
av

∂y2
− 4m∗α

∂Sy
av

∂y
− 8m∗2α2Sz

av = 0

∂2Sy
av

∂y2
+ 4m∗α

∂Sz
av

∂y
− 4m∗2α2Sy

av = −2Γ

D
Iy
av. (6.31)
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The bulk solutions of this equation are Sz
av = 0 and Sy

av ≡ Sb = 2τeEN0α, which coincide

with the polarization obtained from Eq. (6.22) and Eq. (6.22) by setting q → 0.

In order to calculate the spin polarization near the boundary (y=0), we employ the

hard wall boundary conditions for Eq. (6.31). Such boundary conditions can be easily

obtained from Eq. (6.27) by performing its summation over k and integrating from y = 0

to some point y0, placed at a distance much larger than l but still small compared to lso.

A simple analysis of Eq. (6.27) shows that up to the order of α2, the sum over k of the

vector product in the left-hand side of Eq. (6.27) can be neglected, while the right-hand

side and the term containing the electric field turn to zero identically. As a result, we get

1

m∗
∑

k

kygkx,ky |y=y0 =
1

m∗
∑

k

kygkx,ky |y=0 (6.32)

According to Eq. (6.30), the above sum is zero at y=0. Hence, it is also zero at y=y0.

The latter sum coincides with the spin current within its conventional definition,26 where

a contribution associated with the charge density due to the second term of the velocity

operator Eq. (6.1) is ignored in an electroneutral system. Using the gradient expansion

of Eq. (6.27), this current can easily be expressed through Sj
av|y = 0, its y derivative, and

the last term in the left-hand side of Eq. (6.27). In this way, one arrives at the boundary

conditions from Refs. [42, 81]. We generalize these conditions by adding possible surface

spin relaxation (see also Ref. [98]). These additional terms are characterized by the two

phenomenological parameters rhoy and ρz. Finally, we obtain

−D
∂Sz

av (y)

∂y
|y=0 + 2Dm∗α [Sy

av (0)− Sb] = −ρzS
z
av (0)

−D
∂Sy

av (y)

∂y
|y=0 − 2Dm∗αSz

av (0) = −ρyS
y
av (0) (6.33)

One can easily see from Eq. (6.31) and Eq. (6.33) for ρy = ρz = 0, the homogeneous

bulk solutions Sz
av = 0 and Sy

av = Sb turn out to be the solutions of the diffusion equation

everywhere at y > 0. Therefore, the z-components of spin clouds from many impurities
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completely cancel each other out and there is no spin accumulation near the interface

y = 0. This result, as well as boundary conditions Eq. (6.33) for the hard wall case,

agrees with Refs. [42, 81].

When ρi 6= 0 for the soft-wall boundary, the spin density Sz
av is not zero. In the case of

weak surface relaxation, ρi ¿ D/lso, Eq. (6.31) and Eq. (6.33) give the finite out-of-plane

spin density:

Sz
av(0) = 0.35ρyτeE

1

2π~D
, (6.34)

where ~ is restored the conventional units. It is notable that in such a regime of small

enough ρi, the surface polarization does not depend on the spin-orbit constant.

6.4 Spin-Hall resistance and energy dissipation

According the above discussions, the finite spin accumulation Sz
av(0) can survive for soft-

wall boundary (ρi 6= 0) and we can introduce the spin-Hall resistance due to this spin

accumulation. Considering the magnetic potential difference Sz
av(0) = N0µs near the

interface y = 0, the spin-Hall resistance is computed by

RsH =
µs

j
=

Sz
av(0)

jN0

, (6.35)

where the current density j = σE, with the Drude conductivity σ = ne2τ/m∗. This spin

accumulation is due to the spin-relaxation mechanism and the spin-relaxation mechanism

produces the energy dissipation near the interface. We have shown that spin accumulation

is associated with the correlation of the electric conductivity of a dc current flowing in

the x-direction [42]. For Rashba SOI, the correlation of a current density is given by

∆j(y) = − e

4m∗
α2k2

F

Γ2

∂Sz
av

∂y
. (6.36)
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The above result is finite within the distance of lso from the interface. After integration

over y, the correlated current has the form of

∆I =
e

4m∗
α2k2

F

Γ2
Sz

av(0). (6.37)

The interface dissipation per unit of the interface length can be calculated from Eq. (6.35)

and Eq. (6.37)

∆W = E∆I =
m∗

e~3
α2τRsHj2. (6.38)

6.5 Summary

We found out that the intrinsic spin-Hall effect induces in 2DEG a nonequilibrium spin

density around a spin-independent isotropic elastic scatterer. The z-component of this

density has the shape of a dipole directed perpendicular to the external electric field,

while the polarization parallel to 2DEG is isotropic. Due to the DP spin relaxation,

the spin density decays exponentially at a distance larger than the spin-orbit precession

length. It is noteworthy that such a cloud exists even in the case of the Rashba spin-

orbit interaction when the macroscopic spin current is absent. We also calculated the

macroscopic spin density near an interface by taking the sum of clouds due to many

scatterers and independently averaging over their positions. Surprisingly, in the case of

the hard wall boundary, the so calculated spin polarization exactly coincides with that

found from the drift diffusion or Boltzmann equations. In this case, the out-of-plane spin

polarization Sz
av is zero, while the parallel polarization is a constant determined by the

electric spin orientation. The spin-Hall resistance of the interface can be calculated by

the finite spin accumulation ∆Sz
av(0) for the case of soft boundary.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In Chapter 2, we studied the characteristics of a spin-dependent pumping in the Rashba-

type quantum channel (RQC) via a ac-biased finger-gate (FG). This ac-biased finger

gate gives rise to a time variation in the Rashba coupling parameter, which causes spin-

resolved RIS and, subsequently, contributes to the dc spin current. The resonant inelastic

scattering (RIS) plays an important role in dc spin current generation. The spin current

depends on both the static and the dynamic parts in the Rashba coupling parameter,

α0 and α1, respectively, and is proportional to α0α
2
1. The proposed gate configuration

has the added advantage that no dc charge current is generated. Our study also shows

that the spin current generation can be enhanced significantly in a double finger-gate

configuration. In a double finger-gate with a finite phase difference φ, it is also show that

the spin current and the charge current are generated by a double ac-biased finger-gate

with a finite phase difference φ. We also studied the dc spin current (SC) generation in

the presence of either a full-barrier or a partial-barrier in a RQC. In general, a barrier

inside the time-modulated region causes a stronger suppression to the SC than it is outside

the region. Interestingly, we .nd that an attractive partial-barrier induces inter-subband

processes, gives rise to additional quasi-bound state dip structures in the transmission
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coef.cients, and can lead to the enhancement of the SC.

In Chapter3, the diffusion equation is derived based on the nonequilibrium Green’s

function by using the standard perturbation theory. The external electric field is treated

in Kubo formula up to linear order. The spin-orbit interaction (SOI) and an in-plane

magnetic field are also included in our calculation. This diffusion equation includes spin

precession due to the SOI field and magnetic field, spin relaxation due to Dyakonov-Perel

mechanism, and the spin-charge mixing can be induced by SOI and magnetic field through

the driving electric field. The spin current expressions associated with the spin densities

are also derived to give us the boundary conditions.

In Chapter4, we studied the spatial distribution of the spin density Si with or without

an in-plane magnetic field for the case of either Rashba or Dresselhaus SOI. In the case of

zero magnetic field, the spin there is no spin accumulation occurring near a 2D strip edges

for Rashba SOI. However, the spin densities Sz and Sx accumulate near a 2D strip edges

for cubic Dresselhaus SOI. We also find that spatial distribution of Sx demonstrates the

symmetric property in y axis. On the other hand, spatial distribution of Sz demonstrates

the anti-symmetric property in y axis, corresponding to the intrinsic SHE.

In Chapter 5, we studied the spatial distribution of the spin density Si in the presence

an in-plane magnetic field for the case of either Rashba or Dresselhaus SOI. In the weak

magnetic field limit, the diffusion equation is proportional to linear magnetic field. For

Rashba SOI case, the in-plane magnetic field doesn’t affect the spatial distribution of the

spin density in space. For Dresselhau SOI case, the spatial distribution of spin density

shows symmetric or asymmetric properties depending on the direction of the in-plane

magnetic field. This result provide a possible way to identify the intrinsic SHE and

extrinsic SHE via an in-plane magnetic field.

In Chapter 6, we found out that the intrinsic spin-Hall effect induces in 2DEG a

nonequilibrium spin density around a spin-independent isotropic elastic scatterer. The z-

component of this density has the shape of a dipole directed perpendicular to the external

electric field, while the polarization parallel to 2DEG is isotropic. We also calculated the
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macroscopic spin density near an interface by taking the sum of clouds due to many

scatterers and independently averaging over their positions. Surprisingly, in the case of

the hard wall boundary, the so calculated spin polarization exactly coincides with that

found from the drift diffusion or Boltzmann equations. In this case, the out-of-plane spin

polarization Sz
av is zero, while the parallel polarization is a constant determined by the

electric spin orientation.

7.2 Future works

It is more realistically to consider the intersubband mixing in Chapter 2 by keep the term

−iαpyσx in a RQC. Furthermore, we can calculate the behavior of the spin-dependent

transport in the presence of subband mixing by applying the time-modulation field. The

time-dependent magnetic field can be applied in a spin-orbit semiconductor to change

the spin-resolved bands. When the oscillating magnetic field energy is comparing with

the energy splitting due to the intrinsic SOI, one can expect the interesting transport

behavior appearing. Our goal is to enhance the strength of the spin-orbit coupling via a

resonance mechanism.

We can extend the two-dimensional diffusion equation to three-dimensional diffu-

sion equation in a realistic semiconductor material. The boundary conditions for spin-

dependent particles have to be treated carefully. One can start from the microscopic

quantum mechanics represented by wave functions to determine the wave function near

the boundary and the asymptotic wave function can address the distribution far away

the boundary. As such, the Green’s function can be presented in the real space such that

we can connect the boundary in real space. One can explicitly determine the boundary

conditions. Also, we can consider the scatterer to be anisotropic. Therefore, we can study

the finite thickness thin film by diffusion equation with a suitable boundary condition.

Furthermore, one can consider the intrinsic spin-Hall effect in the presence of the strain

effect included in a semiconductor. The effect of strain can modify the spin-orbit field in
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a semiconductor. We are also interested in the influence of intrinsic spin-Hall effect due

to magnetic impurities.

In the future, we will also study the magnetic impurities doped in a semiconductor

with spin-Hall effect. The spin-spin interaction has to be considered due to the magnetic

impurities. The more interesting spin-dependent behavior can be investigated.
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Appendix A

Transformation of the wave function

in region (II)

The Hamiltonian in the ac-biased region, given by Eq. (2.2), can have its time-modulated

term transformed away by the use of a transformation: Ψσ(x, t) = exp(ησ
α1

ω
sin(Ωt) ∂

∂x
)ψσ(x, t)

in the region (II) (Fig. 2.2) and substitute it into the Schrödinger equation

(
− ∂

∂x2

2
+ iησα0

∂
∂x

+ iησα1 cos (Ωt) ∂
∂x

)
eησ

α1
Ω

sin(Ωt) ∂
∂x ψσ(x, t)

= i ∂
∂t

eησ
α1
Ω

sin(Ωt) ∂
∂x ψσ(x, t)

= iησα1 cos (Ωt) ∂
∂x

ψσ + e−ησ
α1
Ω

sin(Ωt) ∂
∂x i ∂

∂t
ψσ(x, t).

(A.1)

Obviously, the equation simply becomes

(
− ∂

∂x2

2

+ iησα0
∂

∂x

)
ψσ = i

∂

∂t
ψσ = εψσ (A.2)

such that it is easily to obtain the solution

ψσ (x, t) =

∫
dε{Ãσ(ε)eikσ

R(ε)x + B̃σ(ε)eikσ
R(ε)x}e−iεt. (A.3)
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Finally, the scattering wave function can be expressed as

Ψσ (x, t) = eησ
α1
Ω

sinΩt ∂
∂x

∫
dε{Ãσ(ε)eikσ

R(ε)x + B̃σ(ε)eikσ
L(ε)x}e−iεt

=
∫

dε{Ãσ(ε)eiησkσ
R

α1
Ω

sinΩteikσ
R(ε)x + B̃σ(ε)eiησkσ

L
α1
Ω

sin Ωteikσ
L(ε)x}e−iεt

. (A.4)

We use the identity relation of the Bessel’s function eiησZ sin ωt =
∑

p (−ησ)p Jp (z) e−ipωt

and match at all time via F̃ (ε) =
∑
m′

F (m′) δ (ε− (µn + m′ω)) to calculate the scattering

wave function in the region (II) as

Ψ
(II)
σ (x, t) =

∫
dε

∑
m′,p

(ησ)p{Aσ (m′) eikσ
R(ε)xδ (ε− µn −m′ω) Jp

(
α1

Ω
kσ

R(ε)
)

+Bσ (m′) eikσ
L(ε)xδ (ε− µn −m′ω) Jp

(
α1

Ω
kσ

L(ε)
)}e−ipωte−iεt

=
∑

m′,m
(ησ)m−m′ {Aσ (m′) eikm′,σ

n,R (µm′
n )xJm−m′

(
α1

Ω
km′,σ

n,R

)

+ Bσ (m′) eikm′,σ
n,L (µm′

n )xJm−m′

(
α1

Ω
km′,σ

n,L

)
}e−iµm

n t

(A.5)

where the nations km′,σ
n,R(L) = ±(µm′

n )1/2 + ησα0/2, with upper (lower) sign corresponds to

the right-(left-) moving electron in the nth subband, m′th sideband, and with kinetic

energy µm′
n . The incident wave is at a fixed energy µn and the reflection (transmission)

wave is the linear combination of wave functions at all possible energy µm′
n due to the

inelastic scattering processes of the ac-biased FG. The right-going x-direction scattering

wave functions are





Ψ
(I)
σ (x, t) = eikσ

n,Rxϕn (y) eiµ0t +
∑
m

rσ (m)eikm,σ
n,L xeiµmt; x < −l/2

Ψ
(II)
σ (x, t) =

∑
m,m′

(ησ)m−m′{Aσe
ikm′,σ

n,R xJm−m′

(
α1

ω
km′,σ

n,R

)

+Bσe
ikm′,σ

n,L xJm−m′

(
α1

ω
km′,σ

n,L

)
}e−iµmt;−l/2 < x < l/2.

Ψ
(III)
σ (x, t) =

∑
m

tσe
ikm,σ

n,R xeiµmt; x > l/2

(A.6)

in the different regions.
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Appendix B

Numerical method to solve the

transmission and reflection

amplitudes

According to Eq. (2.4), the wave functions are continuous for matching the mth sideband

e−ikσ
n,R

l
2 δm,0 + rm,σ

n,LL (m) e−ikm,σ
n,L

l
2

=
∑
m′

(ησ)m−m′{Am,σ
n,RLe−ikm′,σ

n,R
l
2 Jm−m′

(
α1

ω
km′,σ

n,R

)
+ Bm,σ

n,LLe−ikm′,σ
n,L

l
2 Jm−m′

(
α1

ω
km′,σ

n,L

)
}

(B.1)

tm,σ
n,RL (m) eikm,σ

n,R
l
2

=
∑
m′

(ησ)m−m′{Am,σ
n,RLeikm′,σ

n,R
l
2 Jm−m′

(
α1

ω
km′,σ

n,R

)
+ Bm,σ

n,LLeikm′,σ
n,L

l
2 Jm−m′

(
α1

ω
km′,σ

n,L

)
}

(B.2)

at x = ±l/2. The dynamic Rashba spin-orbit coupling constant induced by the ac-biased

FG is expressed by α1cos(Ωt)θ(l/2− |x|). The slope of wave functions continuity can be
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computed by integrating across the boundaries x = ±l/2:

− l
2
+δ∫

− l
2
−δ

{− ∂2

∂x2 + iησα0
∂
∂x
}Ψσ (x, t) dx

+
− l

2
+δ∫

− l
2
−δ

1
2
{ησα1 cos Ωtθ

(
l
2
− |x|) (

i ∂
∂x

)
+

(
i ∂
∂x

)
ησα1 cos Ωtθ

(
l
2
− |x|)}Ψσ (x, t) dx

=
− l

2
+δ∫

− l
2
−δ

EΨσ (x, t)dx = 0.

(B.3)

In result, the slope continuity of wave functions is satisfied with





− ∂
∂x

Ψ
(I)
σ

∣∣∣
x=− l

2

+ ∂
∂x

Ψ
(II)
σ

∣∣∣
x=−L

2

+ i
2
ησα1cosΩtΨ

(II)
σ

∣∣∣
x=−L

2

= 0

− ∂
∂x

Ψ
(II)
σ

∣∣∣
x= l

2

+ ∂
∂x

Ψ
(III)
σ

∣∣∣
x=L

2

− i
2
ησα1cosΩtΨ

(II)
σ

∣∣∣
x=L

2

= 0
. (B.4)

According to Eq. (2.4), the above equations can be rearranged in the elegant form of

kσ
n,Reikσ

n,R(−l/2)δm,0 + km,σ
n,L rm,σ

n,LLeikm,σ
n,L (−l/2)

=
∑
m′
{Am,σ

n,RLeikm′,σ
n,R (−l/2) (−ησ)m−m′

Jm−m′

(
α1

Ω
km′,σ

n,R

)
×

[
km′,σ

n,R + (m−m′)ω
2km′,σ

n,R

]

+Bm,σ
n,LLeikm′,σ

n,L (−l/2) (−ησ)m−m′
Jm−m′

(
α1

Ω
km′,σ

n,L

)
×

[
km′,σ

n,L + (m−m′)ω
2km′,σ

n,L

]
}

(B.5)

and

km,σ
n,R tm,σ

n,RLeikm,σ
n,R (−l/2)

=
∑
m′
{Am,σ

n,RLeikm′,σ
n,R (l/2) (−ησ)m−m′

Jm−m′

(
α1

Ω
km′,σ

n,R

)
×

[
km′,σ

n,R + (m−m′)ω
2km′,σ

n,R

]

+Bm,σ
n,LLeikm′,σ

n,L (l/2) (−ησ)m−m′
Jm−m′

(
α1

Ω
km′,σ

n,L

)
×

[
km′,σ

n,L + (m−m′)ω
2km′,σ

n,L

]
}.

(B.6)

For solving the transmission and reflection amplitudes, we should solve the coefficients

Am,σ
n,RL and Bm,σ

n,LL first. The matrices form of these equations Eq. (B.1), Eq. (B.2), Eq. (B.5)
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and Eq. (B.6) can be rewritten as




M11 M12

M21 M22







Aσ
n,RL

Bσ
n,LL


 =




K1

0


 . (B.7)

It is important that each electron can make transition |m|Ω above or below the incident

energy µn. For exactly numerical sense, we should cut off the largest number of sideband

up to a certain positive integer mtot for the stable numerical solution. The sideband

index m(m′) = −mtot, ..., mtot is the integer number. Each square sub-matrix Mij has

(mtot ×mtot) dimensions and the (i, j) element corresponds to the relations

M11(i, j) = (−ησ)m−m′
e−ikm′,σ

n,R l/2Jm−m′

(
α1

Ω
km′,σ

n,R

) (
km′,σ

n,L − km′,σ
n,R − (m−m′)ω

2km′,σ
n,R

)

M12(i, j) = (−ησ)m−m′
e−ikm′,σ

n,L l/2Jm−m′

(
α1

Ω
km′,σ

n,L

) (
km′,σ

n,L − km′,σ
n,L − (m−m′)ω

2km′,σ
n,L

)

M21(i, j) = (−ησ)m−m′
eikm′,σ

n,R l/2Jm−m′

(
α1

Ω
km′,σ

n,R

) (
km′,σ

n,R − km′,σ
n,R − (m−m′)ω

2km′,σ
n,R

)

M22(i, j) = (−ησ)m−m′
eikm′,σ

n,L l/2Jm−m′

(
α1

Ω
km′,σ

n,L

) (
km′,σ

n,R − km′,σ
n,L − (m−m′)ω

2km′,σ
n,L

)

(B.8)

where i = m + mtot + 1 and j = m′ + mtot + 1 are row and column indexes, respectively.

The vectors of Aσ
n,RL and Bσ

n,LL are (m′ × 1) column vectors. The dimension of K1 is

(mtot × 1) column vector with the element K1(i, 1) =
[
km,σ

n,L − km,σ
n,R

]
e−ikm,σ

n,R l/2δm0. On the

other hand, the reflection and transmission amplitudes satisfy the matrix equation




rσ
n,LL

tσn,LR


 =




P11 P12

P21 P22







Aσ
n,RL

Bσ
n,LL


 +




C1

0


 (B.9)
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via Eq. (B.1), Eq. (B.2), Eq. (B.5) and Eq. (B.6). The dimension of the square matrix

Pij is as the same as Mij and they have relations

P11 (i, j) = (−ησ)m−m′
Jm−m′

(
α1

Ω
km′,σ

n,R

)
e−i(km′,σ

n,R −km,σ
n,L )(l/2)

P12 (i, j) = (−ησ)m−m′
Jm−m′

(
α1

Ω
km′,σ

n,L

)
e−i(km′,σ

n,L −km,σ
n,L )(l/2)

P21 (i, j) = (−ησ)m−m′
Jm−m′

(
α1

Ω
km′,σ

n,R

)
ei(km′,σ

n,R −km,σ
n,R )(l/2)

P22 (i, j) = (−ησ)m−m′
Jm−m′

(
α1

Ω
km′,σ

n,L

)
ei(km′,σ

n,L −km,σ
n,R )(l/2).

(B.10)

The column vector C1 (i, 1) = −e−i(km,σ
n,R−km,σ

n,L )(l/2)δm0 has (mtot × 1) dimension. Finally,

the total reflection and transmission amplitudes can be calculated by




rσ
n,LL

tσn,LR


 =




P11 P12

P21 P22







M11 M12

M21 M22




−1 


K1

0


 +




C1

0


 . (B.11)
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Appendix C

One-side band approximation in the

weak pumping regime

In the weak-pumping (WP) regime, we can obtain analytic results. The WP regime refers

to the case when the Rashba coupling parameter oscillates with a small amplitude α1.

Keeping only up to the lowest nonvanishing contribution of α1, it is simpler to calculate

the reflection amplitudes than the transmission coefficients. The reflection amplitudes

to m = ±1 sidebands are first order in α1 and are the major objects of our calculation

here. The reflection amplitudes to m = 0 sideband, however, is second order in α1 and is

neglected. When the Rashba coupling parameter oscillates in time within a spatial region

−l/2 < x < l/2, the longitudinal Hamiltonian is given by

Hx =

(
− ∂

∂x2

2

+ α0i
∂

∂x
σy

)
+

α1

2
cos (Ωt) i

∂

∂x
σy

×
[
θ (l/2− |x|) i

∂

∂x
+ i

∂

∂x
θ (l/2− |x|)

]
(C.1)

where θ(x) is the step function. For an electron incident from terminal L with wave vector

kσ
n,R(E), the reflection coefficients consist of contributions from reflections at the left and

the right edges of the time-modulated region. We first calculate the reflection amplitudes
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due to reflection at x = −l/2. The wave function is given by

Ψσ
n (x < −l/2) = eikσ

n,R(E)xeiEt +
∑

m=±1
(m6=0)

rm,σ
L eikm,σ

n,L xe−i(E+mΩ)t (C.2)

Ψσ
n (−l/2 < x < l/2) =

∑
m=±1
(m6=0)

tm,σ
L eikm,σ

n,R xe−i(E+mΩ)t

+ t0,σ
L eikσ

n,R(E)xe−iEt
[
1 +

ησ

2Ω
α1k

σ
n,R (E)

(
eiΩt − e−iΩt

)]
.(C.3)

Here, tm,σ
L and rm,σ

L denote, respectively, the transmission and reflection coefficients at the

left edge of the time-modulated region. We have not included, in Eq. (C.3), corrections to

the wave functions associated with the coefficients tm,σ
L , for m = ±1, that arise from the

time-modulation of the Rashba spin-orbit interaction (SOI). It is because the coefficients

tm,σ
L , are already first order in α1. These coefficients are solved from the wave-function

continuous condition and the boundary condition in Eq. (2.11). The reflection coefficients

are calculated, and the expression is presented in Eq. (2.12). It is worth noting that

t0,σ
L = 1, up to first order in α1. Following a similar procedure, the reflection at the right

edge of the time-modulated region can be obtained from the following wave function:

Ψσ
n (−l/2 < x < l/2) = eikσ

n,R(E)xeiEt
[
1 +

ησα1

2Ω
kσ

n,R (E)
(
eiΩt − e−iΩt

)]

+
∑

m=0,±1

rm,σ
R eikm,σ

n,L xe−i(E+mΩ)t
[
1 +

ησα1

2Ω
km,σ

n,R

(
eiΩt − e−iΩt

)]
,(C.4)

Ψσ
n (x > l/2) =

∑
m=±1
(m6=0)

tm,σ
R eikm,σ

n,R xe−i(E+mΩ)t. (C.5)

Again, tm,σ
R , and rm,σ

R , denote the transmission and the reflection coefficients, respectively,

at the right edge of the time-modulated region. It is noted that in Eq. (C.4), only one

incident wave needs to be considered. The incident waves associated with coefficients

tm,σ
L in Eq. (C.3), for m = ±1, is neglected because these coefficients are, themselves, first
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order in α1. Invoking the wave-function continuous condition and the boundary condition

− ∂

∂x
Ψσ

∣∣∣∣
x=( l

2
)−

+
∂

∂x
Ψσ

∣∣∣∣
x=( l

2
)+

+
i

2
ησα1 cos (Ωt) Ψσ|x= l

2
= 0, (C.6)

we obtain

rm,σ
R = −ei(kσ

n,R−km,σ
n,L )lrm,σ

R , (C.7)

and the total reflection coefficient, up to the first order in α1 is given by rm,σ
n,LL = rm,σ

L +rm,σ
R ,

for m = ±1, which explicit expression is presented in Eq. (2.13).
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Appendix D

Fourier transformation of the four

density

The unperturbed Hamiltonian is written in the form of H0 = p2/2m + Hso. The spin-

orbit coupling term is hso = hp · σ where hp denotes the momentum-dependent effective

magnetic field due to SOI and σ≡(σx, σy, σz) is Pauli matrix vector. The external po-

tential Hamiltonian can be expressed in the general potential Φi (r, t) in the form of

H ′ =
∑
i

Φi (r, t) τi with τ 0 = 1 and τx,y,z = σx,y,z. The density operator is expressed in

the second quantization form D̂i = Ψ̂µ(r, t)τ i
µνΨν(r, t) such that the four-density is given

by

Di (r, t) =
〈
Tl[D̂i (r, t) Sl (−∞+,−∞−)]

〉

=
〈
Tl[Ψ̂

+
µ (r, t) τ i

µνΨ̂ν (r, t) Sl (−∞+,−∞−)]
〉

= −iτ i
µνG

−+
νµ (r, r, t, t) . (D.1)

For simplicity of notations, the repeated indices have to be summed over and Ψi(r, t) is

the field operator. The lower indices of −∞± denote that the time loop ordering is from

−-branch to +-branch in the Fig. D.1.
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We now consider the linear response of Di(r, t) to H ′ such that we have

G−+
νµ (r, r, t, t) = −i

〈
Tl


Ψ̂ν (r, t−) Ψ̂†

ν (r, t+) (−i)

∫

loop

H ′ (τ) dτ




〉
. (D.2)

The angular brackets denote the average over random distribution of impurities. The

second quantization form of H ′ is given by H ′ (τ) =
∫

dr′′Ψ̂+
α (r′′, τ) Φj (r′′, τ) Ψ̂β (r′′, τ)

substituting into Eq. (D.2) to obtain

G−+
νµ (r, r, t, t) = −i

〈
Tl


Ψ̂ν (r, t−) Ψ̂†

µ (r, t+) (−i)

∫

loop

H ′ (τ) dτ




〉

= −
∫

dr′′
∫

loop

dτ
〈
Tl

[
Ψ̂ν (r, t−) Ψ̂†

ν (r, t+) Ψ̂†
α (r′′, τ) Φj (r′′, τ) τ j

αβΨ̂β (r′′, τ)
]〉

(D.3)

The four field operators can be constructed by using Wick’s theorem to rewrite Eq. (D.3)

as

G−+
νµ (r, r, t, t)

= −τ j
αβ

∫
dr′′

∫

loop

dτΦj (r′′, τ)
〈
Tl

[
Ψ̂ν (r, t−) Ψ̂†

µ (r, t+)
]〉〈

Tl

[
Ψ̂†

α (r′′, τ) Ψ̂β (r′′, τ)
]〉

−τ j
αβ

∫
dr′′

∫

loop

dτΦj (r′′, τ)
〈
Tl

[
Ψ̂ν (r, t−) Ψ̂†

α (r′′, t+)
]〉〈

Tl

[
Ψ̂β (r′′, τ) Ψ̂†

µ (r, τ)
]〉

.(D.4)

The second line of the Eq. (D.4) is equal to zero due to the equal-time construction.

Finally, the Keldysh Green’s function can be obtained in the form of

G−+
νµ (r, r, t, t) = −τ j

αβ

∫
dr′′

∫
loop

dτΦj(r
′′, τ)iG−−

να (r, r′′, t, τ)iG−+
βµ (r′′, r, t, τ)

−τ j
αβ

∫
dr′′

∫
loop

dτΦj(r
′′, τ)iG−+

να (r, r′′, t, τ)iG++
βµ (r′′, r, t, τ).

(D.5)
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−∞ ∞

− branch

+ branch

−∞ ∞

− branch

+ branch

Figure D.1: The time loop ordering is shown in this figure. The state evolves from
−-branch to +-branch.

Now, we can express f(t) in the form of

f (t) =

∫ ∞

−∞
dτg1 (t− τ)V (τ) g2 (τ − t) (D.6)

=

∫ ∞

−∞
dτ

∫
dω1

2π
eiω1(t−τ)g̃1 (ω1)

∫
dω

2π
eiωτ Ṽ (ω)

∫
dω′

2π
eiω′(τ−t)g̃2 (ω′)

=

∫ ∞

−∞

dτ

(2π)3

∫
dω1

∫
dω

∫
dω′ei(ω1−ω′)tei(ω+ω′−ω1)τ g̃1 (ω1) Ṽ (ω) g̃2 (ω′)

=

∫ ∞

−∞

dω1

(2π)2

∫
dω

∫
dω′ei(ω1−ω′)tg̃1 (ω1) Ṽ (ω) g̃2 (ω′) δ (ω + ω′ − ω1)

=

∫ ∞

−∞

dω

(2π)2

∫
dω′eiωtg̃1 (ω + ω′) Ṽ (ω) g̃2 (ω′)

=

∫ ∞

−∞

dω

(2π)2 eiωt

∫
dω′g̃1 (ω + ω′) Ṽ (ω) g̃2 (ω′)

=

∫
dω

2π
eiωtf̃ (ω) (D.7)

such that f̃(ω) is the Fourier transformation of f(t)

f̃ (ω) =

∫
dω′

2π
g̃1 (ω + ω′) Ṽ (ω) g̃2 (ω′) . (D.8)
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Such that the time-dependent variables in Eq. (D.5) can be transformed into ω space

G−+
νµ (r, r, ω)

=
∫

dr′′
∫

loop

dτG−−
να (r, r′′, ω + ω′) Φj (r′′, ω) τ j

αβG−+
βµ (r′′, r, ω′)

− ∫
dr′′

∫
loop

dτG−+
να (r, r′′, ω + ω′) Φj (r′′, ω) τ j

αβG++
βµ (r′′, r, ω′)

(D.9)

by using the Eq. (D.8).
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Appendix E

Detailed calculation for the spin-Hall

current and the charge current

E.1 Spin-Hall current

According to Eq. (3.42), the current density can be calculated by non-equilibrium Green’s

function in the form of

I l
i (r, ω), t) =

〈
Tl

[
J l

i (r, t) Sl (−∞down,−∞up)
]〉

(E.1)

with the spin current operator

J l
i =

1

2
{vl, σ

i}+
1

2

∂

∂pl

{σi,hpσ} = vlσ
i +

∂hi
p

∂pl

, (E.2)

where i is the spin indces and vl = pl/m
∗ is the electron velocity along the l direction.

We note that the spin unit ~/2 has not been included yet. Similar processes with the spin
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density, Eq. (E.1) can be rewritten as

I l
i (q, ω) = iω

∫
dω′
2π

dNF

dω′
∑
p,p′

<J l
iG

r
να (p,p′, ω + ω′) τ j

αβGa
βµ (p′ − q,p− q, ω′) > Φj (q, ω)

= iω
∫

dω′
2π

dNF

dω′ ×
∑
p,p′

〈
(

pl

m∗σ
i +

∂hi
p

∂kl

)
Gr

να

(
p + q

2
,p′ + q

2
, ω + ω′

)
τ j
αβGa

βµ

(
p′ − q

2
,p− q

2
, ω′

)〉Φj (q, ω)

(E.3)

via the Fourier transformation. The index j = 0 is denoted the electric potential energy

Φ0(q, ω) and Φj(q, ω) = 0 for j 6= 0. It is easily to see that there are two parts pl

m∗σ
i,

∂hi
p

∂kl contributing to the spin current in Eq. (E.3). Such that the total spin current is

I l
i = I

(1)l
i + I

(2)l
i , where I

(1)l
i is coming from the first part and I

(2)l
i is coming from the

second part. Immediately, the z-polarized spin-Hall current Iy
z flowing along y axis, the

second part vanishes due to hi=z
p = 0 in our 2D system. The first part can be expanded

in the series form of

∑
p,p′

pl <Gr
να

(
p + q

2
,p′ + p

2
, ω + ω′

)
Ga

βµ

(
p′ − q

2
,p− q

2
, ω′

)
>

= X̃νγ
l,µβ + X̃νγ

l,µλΨ
γα
λβ + .....

= X̃νγ
l,µβ [1 + Ψ + Ψ2 + .....]

γα
λβ = X̃νγ

l,µβ{[1−Ψ]−1}γα
λβ

(E.4)

where the notation X̃νγ
l,µβ = (πN0/Γ)Xνγ

l,µβ by the definition

Xνγ
l,µβ ≡

(
Γ

πN0

) ∑

p,p′
plG

0r
να

(
p +

q

2
, ω + ω′

)
G0a

λµ

(
p− q

2
, ω′

)
, (E.5)

and the other notation

Ψνγ
µλ =

Γ

πN0

∑
p

G(0)r
νγ

(
p +

q

2
, ω + ω′

)
G

(0)a
νλ

(
p− q

2
, ω′

)
(E.6)
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i
lp µνσ

( , , )
2

r q
G p pνα ω ω′ ′+ +

j
αβτ

( , , )
2

a q
G p q pβµ ω′ ′ ′− −

=
i

lp µνσ

(0) ( , )
2

r q
G pνα ω ω′+ +

j
αβτ

(0) ( , )
2

a q
G pβµ ω′ ′−

+ i
lp µνσ

(0) ( , )
2

r q
G pνγ ω ω′+ +

j
αβτ

(0) ( , ’)
2

a q
G pλµ ω−

(0) ( , )rG pγα ω ω′ ′+

(0) ( , )aG p qβλ ω′ ′−

+� �+

i
lp µνσ

( , , )
2

r q
G p pνα ω ω′ ′+ +

j
αβτ

( , , )
2

a q
G p q pβµ ω′ ′ ′− −

=
i

lp µνσ

(0) ( , )
2

r q
G pνα ω ω′+ +

j
αβτ

(0) ( , )
2

a q
G pβµ ω′ ′−

+ i
lp µνσ

(0) ( , )
2

r q
G pνγ ω ω′+ +

j
αβτ

(0) ( , ’)
2

a q
G pλµ ω−

(0) ( , )rG pγα ω ω′ ′+

(0) ( , )aG p qβλ ω′ ′−

+� �+

Figure E.1: The diagram of I
(1)l
i shows that average retarded (advanced) Green’s function

Gr (Ga) can be expanded by summing over all unperturbed Green’s function G(0)r (G(0)a)
in ladder series. The dashed lines denote the interaction of impurities.

is just like before. It is easily to illustrate these processes in Fig. E.1. Therefore, we can

obtain the spin current as

I
(1)l
i (q, ω)

= iω
m∗

∫
dω′
2π

dNF

dω′
∑
p,p′

pl < Tr[σiGr
(
p + q

2
,p′, ω + ω′

)
τ jGa

(
p′ − q,p− q

2
, ω′

)
] > Φj (q, ω)

= iω
m∗

(−1
2π

)
2
(

πN0

Γ

) {Xl [1−Ψ]−1}ijΦj (q, ω) .

(E.7)

By setting the Fermi energy EF = ω′, the first part contributing to the spin current

I
(1)l
i is constructed from the operator

Xmn
l ≡

(
Γ

2πN0

) ∑

p,p′
plTr

[
τmG(0)r

να

(
p +

q

2
, ω + EF

)
τnG

(0)a
λµ

(
p− q

2
, EF

)]
(E.8)

for m,n = 0, x, y, and z. Next, it is very important to express the spin current by the
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spin density in the form of

I
(1)l
i = −iωN0

m∗Γ

∑
m=0,x,y,z

X im
l Dm0Φ0

= −iωN0

m∗Γ

∑
m=0,x,y,z

X im
l {[1−Ψ]−1}m0Φ0

= −iωN0

m∗Γ

∑
m=0,x,y,z

X im
l {Ψ [1−Ψ]−1 + 1}m0Φ0

= 1
m∗

∑
m′=x,y,z

X im′
l (Dm′ −D0

m′)− iωN0

m∗Γ X i0
l Φ0

(E.9)

where [...]−1 is denoted the matrix inversion and the relation

(
Dm −D0

m

)
=
−iωN0

Γ

(
Ψ [1−Ψ]−1)m0

Φ0 (E.10)

has been used in Eq. (E.9).

In general, the second part spin-Hall current I
(2)y
i has to be considered for i = x, y.

The second part can be estimated in the following

∑
p,p′

〈
∂hi

p

∂kl
τ 0
µνG

r
να

(
p + q

2
,p′ + q

2
, ω + ω′

)
τ j
αβGa

βµ

(
p′ − q

2
,p− q

2
, ω′

)〉
Φj (q, ω)

=
(

πN0

Γ

)
τ 0
µντ

j
αβ

∑
p

(
Γ

πN0

)
∂hi

p

∂kl
G

(0)r
να

(
p + q

2
, ω + ω′

)
G

(0)a
βµ

(
p− q

2
, ω′

)
δpp′

+τ 0
µντ

j
αβ

∑
p,p′

(
Γ

πN0

)
∂hi

p

∂kl
G

(0)r
νγ

(
p + q

2
, ω + ω′

)
G

(0)a
λµ

(
p− q

2
, ω′

)×

G
(0)r
γα

(
p + q

2
, ω + ω′

)
G

(0)a
βλ

(
p− q

2
, ω′

)
+ ........

(E.11)

and the illustration is shown in Fig. E.2.

By defining the notation

Yi,νγ
l,µλ =

∑
p

(
Γ

πN0

)
∂hi

p

∂kl

G0r
να

(
p +

q

2
, ω + ω′

)
G0a

βµ

(
p− q

2
, ω′

)
δpp′ , (E.12)
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+� �

0
i
p

l

h

k µντ
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∂
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Figure E.2: The diagram of I
(2)l
i shows that average retarded (advanced) Green’s function

Gr (Ga) can be expanded by summing over all unperturbed Green’s function G(0)r (G(0)a)
in ladder series. The dashed lines denote the interaction of impurities.

the Eq. (E.11) can be expressed by

∑
p,p′

〈
∂hi

p

∂kl
τ 0
µνG

r
να

(
p + q

2
,p′ + q

2
, ω + ω′

)
τ j
αβGa

βµ

(
p′ − q

2
,p− q

2
, ω′

)〉

=
(

2πN0

Γ

) ∑
n=0,x,y,z

Yin
l

(
[1−Ψ]−1)nj

.
(E.13)

In the dc limit (ω = 0), the second part of the spin current is given by

I
(2)l
i

1

m∗
∑

j=x,y,z

(
Y ij

l Dj − Y i0
l D0

0

)
, (E.14)

where the constructing operator

Y in
l ≡

(
Γ

2πN0

) ∑
p

∂hi
p

∂kl

Tr
[
τ 0G(0)r

(
p +

q

2
, ω + EF

)
τnG(0)a

(
p− q

2
,EF

)]
, (E.15)

with D0
0 = −2N0eEx. In summary, the total spin current expression is given by

I l
i =

1

m∗
∑

j=x,y,z

(
X ij

l Dj −X i0
l D0

0

)
+

1

m∗
∑

j=x,y,z

(
Y ij

l Dj − Y i0
l D0

0

)
(E.16)
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in the dc limit (ω = 0).

The main purpose is to obtain spin-Hall currents Iy
i which flow alonf the y axis with

all spin-polarized states i. First, we calculate the z-polarized spin-Hall current by the

relation

Iy
z =

1

m∗
∑

j=x,y,z

Xzj
y Dj − 1

m∗X
z0
y D0

0. (E.17)

The most important tasks is to calculate the the constructing operators Xzj
y and Xz0

y .

The operator Xz0
y is given by

Xz0
y

∣∣
ω=0

=
(

Γ
2πN0

)∑
p

pyTr{σz

(
h
p+

q
2

+B
)
·σ

(
EF−εp+

q
2
+iΓ

)2−H2
p+

q
2

(
h
p−q

2
+B

)
·σ

(
EF−εp− q

2
−iΓ

)2−H2
p− q

2

}

=
(
−iΓ
πN0

) ∑
p

py
1

(EF−εp+iΓ)2

(
hp× ∂hp

∂pn

)
z
qn

(EF−εp−iΓ)2
}

+
(

Γ
2πN0

) ∑
p

pyTr{σz hi
pσi

(EF−εp+iΓ)2
Bjσj

(EF−εp−iΓ)2
+ σz Biσi

(EF−εp+iΓ)2
hj

pσj

(EF−εp−iΓ)2
}

= −i
2Γ2

(
hp × ∂hp

∂pn

)
z
qnpy + 0 = −i2m ∗ τ 2

(
hp × ∂hp

∂pn

)
z
qnvy

(E.18)

and the operator Xzj=x,y
y is given by

Xzj=x,y
y

∣∣
ω=0

=
(

Γ
2πN0

) ∑
p

pyTr{σz hl
pσl

(EF−εp+iΓ)2
σj 1

(EF−εp−iΓ)

+σz 1
(EF−εp+iΓ)

σj hl
pσl

(EF−εp−iΓ)2
}

=
(

Γ
2πN0

) ∫
dεN0pyh

y
pTr{σzσlσj}{ 1

(ε−EF−iΓ)2
−1

(ε−EF +iΓ)

− 1
(ε−EF +iΓ)2

−1
(ε−EF−iΓ)

}
= −2τεzjyhy

F pF,y = −1
2
m∗Rzjy,

(E.19)

where Rijm ≡ 4τεijl[hl
PF

V m
F ]. The other operator is obtained from

Xzz
y

∣∣
ω=0

=
(

Γ
2πN0

) ∑
p

pyTr{σz (EF−εp+q/2+iΓ)+Hp+q/2·σ
(EF−εp+q/2+iΓ)

2−H2
p+q/2

σz (EF−εp−q/2−iΓ)+Hp−q/2·σ
(EF−εp−q/2−iΓ)

2−H2
p−q/2

}

=
(

Γ
2πN0

) ∑
p

2py{ q
2

(
∂
∂p

1
(EF−εp+iΓ)

)
1

(EF−εp−iΓ)

+ 1
(EF−εp+iΓ)

(
− q

2
∂
∂p

1
(EF−εp−iΓ)

)
} = −Dm∗ (iql) ,

(E.20)
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where the diffusion constant is D = 1
2
v2

F τ and τ is the scattering time of the electron.

Substituting Eq. (E.18), Eq. (E.19), and Eq. (E.20) into Eq. (E.17) to obtain the z-

component spin-Hall current in real space as the form of

Iy
z = −2D

∂

∂y
Sz −RzxySx −RzyySy − 4N0eEτ 2vF,y

(
hp × ∂hp

∂px

)

z

, (E.21)

where the spin density Sj = Dj/2.

Next, we will calculate x-polarized spin-Hall current

Iy
x =

1

m∗

( ∑
j=x,y,z

Xxj
y Dj −Xx0

y D0
0

)
+

1

m∗
(−Y x0

y D0
0

)
=

1

m∗X
xx
y Dx +

1

m∗X
xz
y Dz (E.22)

because the operators satisfy Xxy
y = Xx0

y = Y x0
y = 0. According to Eq. (E.8), one can

calculate

X ii
y =

(
Γ
π

) ∫
dεpy{− qy

2
1

(EF−ε+iΓ)
∂

∂py

1
(EF−ε−iΓ)

+ qy

2
1

(EF−ε−iΓ)
∂

∂py

1
(EF−ε+iΓ)

}
= −Dm∗iqy

(E.23)

and

X iz
y =

(
Γ
2π

) ∫
dεpy

(
hl

p + Bl
)
Tr

[
σiσlσz

] { 1
(ε−EF−iΓ)2

−1
(ε−EF +iΓ)

− −1
(ε−EF−iΓ)

1
(ε−EF +iΓ)2

}
= −2τεizlhl

F m∗VF,y = −1
2
m∗Rizy.

(E.24)

Therefore, the x-polarized spin-Hall current is given by

Iy
x = −2D

∂

∂y
Sx −RxzySz (E.25)

in the real space.
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Next, we will calculate y-polarized spin-Hall current

Iy
y =

1

m∗

( ∑
j=x,y,z

Xyj
y Dj −Xy0

y D0
0

)
+

1

m∗
(−Y y0

y D0
0

)
=

1

m∗X
yy
y Dy +

1

m∗X
yz
y Dz (E.26)

because the operators satisfy Xyx
y = Xy0

y = Y y0
y = 0. According to Eq. (E.34) and

Eq. (E.24), one can seasily to obtain the y-polarized spin-Hall current

Iy
y = −2D

∂

∂y
Sy −RyzySy (E.27)

in the real space.

In the 2D strip, the requirements of the hard-boundary conditions are

−2D ∂
∂y

Sx

∣∣∣
y=±d/2

= 0

−2D ∂
∂y

Sy

∣∣∣
y=±d/2

−RyzySz|y=±d/2 = 0

−2D ∂
∂y

Sz

∣∣∣
y=±d/2

−RzyySy|y=±d/2 − 4N0eEτ 2vF,y

(
hp × ∂hp

∂kx

)
z

= 0

(E.28)

for the case of Rashba SOI. The requirements of the hard-boundary conditions are

−2D ∂
∂y

Sx

∣∣∣
y=±d/2

− RxzySz|y=±d/2 = 0

−2D ∂
∂y

Sy

∣∣∣
y=±d/2

= 0

−2D ∂
∂y

Sx

∣∣∣
y=±d/2

−RzxySx|y=±d/2 − 4N0eEτ 2vy
F

(−→
hp × ∂

−→
hp

∂kx

)
z

= 0

(E.29)

for the case of Dresselhaus SOI.

E.2 Charge current along the x axis

In this section, we derive the expression of the charge current which is corrected by the

SHE along the x axis. From Eq. (E.1) and Eq. (E.2), one can calculate the charge current
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Jx
0 by setting i = 0 and l = x. The charge current operator becomes

J l=x
i=0 =

1

2
{vx, σ

0}+
1

2

∂

∂px

{σ0,hpσ} = vxσ
i +

∂hi
p

∂px

(E.30)

and the current density is read as

Ix =
∑

j=x,y,z

1

m∗
(
X0j

x Dj −X00
x D0

0

)
+

1

m∗

(
Ỹ ij

x Dj − Ỹ i0
x D0

0

)
. (E.31)

with the new operator

Ỹ in
l ≡

(
Γ

2πN0

) ∑
p

∂hi
pσ

i

∂kl

Tr
[
τ 0G(0)r

(
p +

q

2
, ω + EF

)
τnG(0)a

(
p− q

2
,EF

)]
. (E.32)

The operator X0z
x is calculated in the below

X0z
x =

(
Γ

2πN0

) ∫
dεN0pxTr{(hp+q/2

+B)
i
σi

(EF−ε+iΓ)2
σz

(hp−q/2
+B)

j
σj

(EF−ε−iΓ)2
}

= −i2τ 2m∗
(
hp × ∂hp

∂pn

)
z
qnvx

(E.33)

and

X00
y =

(
Γ
π

) ∫
dεpx{− qx

2
1

(EF−ε+iΓ)
∂

∂px

1
(EF−ε−iΓ)

+ qx

2
1

(EF−ε−iΓ)
∂

∂px

1
(EF−ε+iΓ)

}
= −Dm∗iqx.

(E.34)
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The another operator is calculated in the below

Ỹij=z
x =

∑
i,j=x,y
(i6=j)

(
Γ
2π

) ∫
dε

∂hi
p

∂px
Tr [σiσzσj]

(
2

−q
2
v

(ε−EF−iΓ)2
hj

p

(ε−EF +iΓ)2

)

=
∑

i,j=x,y
(i 6=j)

(
Γ
π

) ∫
dε

(−q
2

)
v

∂hi
p

∂px
hj

pTr [σiσzσj]
(

1
(ε−EF−iΓ)2

∂
∂ε

−1
(ε−EF +iΓ)

)

=
∑

i,j=x,y
(i6=j)

(
Γ
π

) (−q
2

)
v

∂hi
p

∂px
hj

pTr [σiσzσj] −2πi
(−2iΓ)3

(−2)

= −π
4Γ2qv

∂hx
p

∂px
hy

pTr [σxσzσy] + −π
4Γ2qv

∂hy
p

∂px
hx

pTr [σyσzσx]

= π
Γ2 iqv

(
∂
−→
hp

∂px
×−→hp

)

z

= π
2Γ2 2iqv

(
∂
−→
hp

∂px
×−→hp

)

z

.

(E.35)

In summary, we obtain the charge current in the form of

Ix = σDE +
e

2Γ2


2vF,y

(
∂
−→
hp

∂px

×−→hp

)

z

+ vF,x

(
∂
−→
hp

∂py

×−→hp

)

z


 ∂Sz

∂y
, (E.36)

where σD is the Drude conductivity.
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Appendix F

Derivation of the vertex T(p)

According to Eq. (6.8), we will calculate the part of vertex T (p) associated with the

velocity operator Eq. (6.1). It is convenient to divide vertex T (p) into the spin-independent

and the spin-dependent diagrams. The spin-indenpendent diagrams include operator

ki/m∗ and the spin-dependent include the operator N ≡ ∂(h · σ)/∂ki. Both of them are

illustrated in Fig. F.

Our goal is to show that the diagram of Fig. F (b) can be cancelled by Fig. F (c) and

the Fig. F (d) can be cancelled by Fig. F (e), and so on. The first order expansion of

ladder series associated with ki/m∗ is cancelled by the zeroth order expansion of ladder

series associated with N shown in Fig. F (b) and (c). Furthermore, the second order

expansion of ladder series associated with ki/m∗ is cancelled by the first order expansion

of ladder series associated with N shown in Fig. F (d) and (e). First, we calculate the

contribution of σi inside the square in Fig. F (c) to obtain

∑

k

Tr

[
σiGr

kG
a
k

ki

m∗

]
Ei, (F.1)
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where Ei is electric field. According to the Green’s function of Eq. (6.7), one can calculate

V 2
∑
k

Tr
[
σiGr

kG
a
k

ki

m∗
]
E

= V 2
∑
k

ki

m∗E[Tr{σi 1
2

(
1

(ω−εk−hk+iΓ)
+ 1

(ω−εk+hk+iΓ)

)

×σ·nk

2

(
1

(ω−εk+hk−iΓ)
− 1

(ω−εk−hk−iΓ)

)
}

+Tr{σi 1
2

(
1

(ω−εk−hk+iΓ)
+ 1

(ω−εk+hk+iΓ)

)

×σ·nk

2

(
1

(ω−εk+hk−iΓ)
− 1

(ω−εk−hk−iΓ)

)
}

= 1
2Γ

V 2
∑
k

ni
k

ki

m∗

(
Γ

(ω−εk−hk)2+Γ2 − Γ
(ω−εk+hk)2+Γ2

)

= π
Γ
V 2

∑
k

hi
k

∂δ(ε−ω)
∂ki = −π

Γ
V 2

∑
k

∂hi
k

∂ki δ (ε− ω)

= −πN0V 2

Γ

∂hi
k

∂ki = −∂hi
k

∂ki

(F.2)

where V is the impurity scattering potential and unit vector nk ≡ hk/hk. Here, the density

of state at Fermi energy is given by
∑
k

δ (ε− ω) = N0 and scattering rate is Γ = πN0V
2.

As a result, the contribution of the diagram (c) becomes the same as diagram (b) but in the

opposite sign. Next, we can see the contribution of the diagram (e) inside the square part

leading to the same result in Eq. (F.2). As such, the diagram (e) can be cancelled by the

diagram (d). Consequently, all the spin-dependent diagram are cancelled by expanding

the spin-independent diagram up to all orders. Only the diagram (a) survives after these

vertex cancellation. Finally, we can obtain the vertex form T (p) = e
m∗p · E.
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+

+

++

+ +

+

++

+

N

ki/m*

ki/m*

(e)

(d)(c)

(b)(a)
ki/m* N

.......

Figure F.1: The diagram of T (p) can be decomposed into several diagrams connecting to
ki/m

∗ and N , where N ≡ ∂(h · σ)/∂ki.
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Appendix G

Detailed calculation for source terms

In(q)

In this section, we will calculate the source function In shown in Eq. (6.12). First, we

can calculate Eq. (6.14) for n = x, y, z at q = 0 case. One can divide Eq. (6.7) into the

spin-independent part and the spin-dependent part as following

G
r/a
k =

[
1

2

(
g

r/a+
k + g

r/a−
k

)
+

nk · σ
2

(
g

r/a−
k − g

r/a+
k

)]
, (G.1)

where the notations gr±
k ≡ 1

EF−εk±hk+iΓ
and ga±

k ≡ 1
EF−εk±hk−iΓ

. Assuming the electric

field E is along x axis. By using the relations
(
G

r(a)
k

)2

= −∂G
r(a)
k

∂EF
and

(
g

r(a)±
k

)2

= −∂g
r(a)±
k

∂EF
,

one can combine Fig. G.1 (a) and (b) to obtain

In
1,ab = e

2πm∗Vtg

∑
k

Tr{σn[(Gr
k)

2 Ga
k + Gr

k (Ga
k)

2]kxE}

= − e
2πm∗Vtg

∑
k

∂
∂EF

Tr{σn[Gr
kG

a
k]kxE}

= − e
2πm∗Vtg

∑
k

∂
∂EF

Tr{σn 1
2

[(
gr+

k ga+
k + gr−

k ga−
k

)
+ nk · σ

(
gr−

k ga−
k − gr+

k ga+
k

)]
kxE}.
(G.2)
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Ga

k
Ga

k

Gr

k

Ga

k

Gr

k

kEσn

(a) (b)

σn kE

Gr

k

Figure G.1: The diagram of In
1 is plotted in case of q = 0.

The cross symbol denotes the scattering potential Vtg due to the target impurity. For

n = z, the result Iz
1 (q = 0) turns out to be zero. For n = x, y, Ix,y

1 (q = 0) can be

calculated by

Ix,y
1,ab = − e

2πm∗2Vtg

∑

k

∂

∂EF

[
nx,y

k

(
1

(ω − εk − hk)
2 + Γ2

− 1

(ω − εk + hk)
2 + Γ2

)]
kxEx

= − e

2πm∗2Vtg

∑

k

∂

∂EF

[
nx,y

k

π

Γ
(δ (ω − εk − hk)− δ (ω − εk + hk))

]
kxEx

=
e

2πm∗4V m∗Ex
π

Γ

∂

∂EF

∫
dεN0

∂hx,y
k

∂kx

δ (EF − ε) , (G.3)

where the relation Γ
x2+Γ2 = πδ (x) is used. For the case of Rashba SOI,

∂hx,y
k

∂kx
is the constant

to give us Ix,y
1,ab(q = 0) = 0. In a brief summary, above results give us Ix,y,z

1 (q = 0) = 0.

Next, we expand Iz
1 up to the small q for Fig. G.2 (a):

Iz
1,a (q) = e

2πm∗Vtg

∑
k

Tr{σz[G
r
k+qG

r
kG

a
k]kxE}

= e
2πm∗

iVtg

2

∑
k

(∂nk/∂k)q× nk

(
gr−

k − gr+
k

) (
gr−

k ga−
k − gr+

k ga+
k

)
kxE

= e
2πm∗

π
4
VtgExN0qy

[
1
Γ2 − 1

Γ2+h2
kF

]
(G.4)
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and Fig. G.2 (b):

Iz
1,b (q) = e

2πm∗Vtg

∑
k

Tr{σz[G
r
kG

a
kG

a
k−q]kxE}

= e
2πm∗

iVtg

2

∑
k

(∂nk/∂k)−q× nk

(
ga−

k − ga+
k

) (
gr−

k ga−
k − gr+

k ga+
k

)
kxE

= − e
2πm∗

π
4
VtgExN0qy

[
1
Γ2 − 1

Γ2+h2
kF

]
.

(G.5)

From Eq. (G.4) and Eq. (G.5), they are cancelled to each other so that we can obtain

Iz
1 (q) = 0 for the expansion of small q.

The contribution of In
2 can be represented in Fig. G.3 for the case of q = 0. By using

the relation

Gr
kG

a
k =

1

2

[(
gr+

k ga+
k + gr−

k ga−
k

)
+ nk · σ

(
gr−

k ga−
k − gr+

k ga+
k

)]
, (G.6)

one can calculate Fig. G.3 (a) in the form of

In
2,a(q = 0) = e

2πm∗V
2
tg

∑
k

Tr{σnGr
k′G

r
kG

a
kG

a
k′kxE}

= e
2πm∗

1
8
V 2

tg

∑
k

Tr{σy

(
gr+

k′ + gr−
k′

)
nkσ

(
gr−

k ga−
k − gr+

k ga+
k

) (
ga+

k′ + ga−
k′

)
kxEx+

σy

(
gr+

k′ + gr−
k′

)
nk · σ

(
gr−

k ga−
k − gr+

k ga+
k

)
nk′σ

(
ga−

k′ − ga+
k′

)
kxEx+

σynk′σ
(
gr−

k′ − gr+
k′

)
nk · σ

(
gr−

k ga−
k − gr+

k ga+
k

) (
ga+

k′ + ga−
k′

)
kxEx+

σynk′σ
(
gr−

k′ − gr+
k′

)
nk · σ

(
gr−

k ga−
k − gr+

k ga+
k

)
nk′σ

(
ga−

k′ − ga+
k′

)
kxEx}.

(G.7)

For the case of n = x, at the right-hand side of Eq. (G.7), the first term is off-diagonal

and the second, third terms involve angular averaging of nx,y
k and the forth term involves

nx
kn

y
k. As a result, the contribution of Ix

2 (q = 0) is equal to zero because ni
k is proportional

to the momentum kj in the case of Rashba SOI. Similarly, for n = z, the contribution of

Iz
2 (q = 0) is also equal to zero. For n = y, the second and third terms are the off-diagonal

terms and they have no contribution to In
2,a(q = 0) after taking trace. Therefore, the first
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(b)

kE

Ga

k

Ga

k
Ga

k-q

Gr

k

σn

σn

Gr

k+q Gr

k

kE

(a)

Figure G.2: The diagram of In
1 is plotted in case of small q.

and forth terms give rise to

Iy
2,a(q = 0) = e

2πm∗
∑
kk′

Tr
[
σyG

r
k′

1
2
nkσ

(
gr−

k ga−
k − gr+

k ga+
k

)
Ga

k′kxEx

]

= e
2πm∗

1
8

∑
kk′

Tr{σy

(
gr+

k′ + gr−
k′

)
(ny

kσy)
(
gr−

k ga−
k − gr+

k ga+
k

) (
ga+

k′ + ga−
k′

)
+

σy (nx
k′σx + ny

k′σy)
(
gr−

k′ − gr+
k′

)
(ny

kσy)
(
gr−

k ga−
k − gr+

k ga+
k

)×
(nx

k′σx + ny
k′σy)

(
ga−

k′ − ga+
k′

)}kxE

= e
2πm∗ (2V2

tgm
∗EN2

0 απ2

Γ2 − V2
tgm

∗EN2
0 απ2

Γ4 h
2
kF

).

(G.8)

From Fig. G.3 (c), one can sum over the contribution of the second order Vtg to obtain

V 2
tg

∑
k′′

Gr
k′′ = V 2

tg

∑
k′′

[
1
2

(
gr+

k′′ + gr−
k′′

)
+

nk′′σ
2

(
gr−

k′′ − gr+
k′′

)]

= V 2
tg

∑
k′′

(
1

EF−ε+iΓ

)
= −iπV 2

tgN0,
(G.9)

and Fig. G.3 (d) give us iπV 2
tgN0. The useful relations are

(Gr
k)

2 Ga
k = 1

2

((
gr+

k

)2
ga+

k +
(
gr−

k

)2
ga−

k

)
+ nk·σ

2

((
gr+

k

)2 (−ga+
k

)
+

(
gr−

k

)2
ga−

k

)

Gr
k (Ga

k)
2 = 1

2

((
ga+

k

)2
gr+

k +
(
ga−

k

)2
gr−

k

)
+ nk·σ

2

((
ga+

k

)2 (−gr+
k

)
+

(
ga−

k

)2
gr−

k

)
.

(G.10)
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So the contribution of Fig. G.3 (c) and (d) can be expressed by

In
2,cd(q = 0) = e

2πm∗
∑
k

Tr{σn
nx

kσx+ny
kσy

2
[− iπV 2

tgN0

2

[(
gr+

k

)2 (−ga+
k

)
+

(
gr−

k

)2
ga−

k

]
+

iπV 2
tgN0

2

[(
ga+

k

)2 (−gr+
k

)
+

(
ga−

k

)2
gr−

k

]
]kxE}.

(G.11)

For n = z, the contribution of this term becomes zero. For n = x, y, we have to expand

the Green’s function up to linear hk to obtain

I
x(y)
2,cd (q = 0) = − e

2πm∗ iπV 2
tgN0Exn

x(y)
k kx×

∫
dεN0{

[
4h

(ε−EF−iΓ)3
1

(ε−EF +iΓ)
− 4h

(ε−EF +iΓ)3
1

(ε−EF−iΓ)

]
.

(G.12)

For the case of Rashba SOI, we have nx
kkx = 0 leading to Ix

2 (q = 0) = 0. At the same

time, Iy
2,cd expanded up to hk to give us

Iy
2,cd(q = 0)|hk

=
e

2πm∗ (−2αm∗π
2

Γ2
V 2

tgN
2
0 E) (G.13)

and it is exactly cancelled by the first term of Eq. (G.8). Furthermore, one can expand

Iy
2,cd(q = 0) up to orders of h2

k and h3
k but all terms associated with h2

k are cancelled.

Hence, we can obtain

Iy
2,cd(q = 0)|h3

k
= e

2πm∗
∫

dεny
kkxh3

kF
N0E{[ −4

(ε−ω−iΓ)2
1

(ε−EF +iΓ)4
+ 4

(ε−EF−iΓ)4
1

(ε−EF +iΓ)2

+ 8
(ε−EF−iΓ)5

1
(ε−EF +iΓ)

− 8
(ε−ω−iΓ)

1
(ε−EF +iΓ)5

]}
= e

2πm∗ (2Vtg
2m∗EN2

0 απ2

Γ4 h
2
kF

).

(G.14)

Combining with Eq. (G.8), Eq. (G.13) and Eq. (G.14), the total source terms are given

by

Iy(q = 0) = vdN0m
∗αh2

kF

Γ′

Γ3

Ix(q = 0) = 0, (G.15)
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k
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Ga
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Ga
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kEkE σn
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Gr
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Gr

k

(a)

σn
kE

Figure G.3: The diagram of In
2 is plotted in case of q = 0.

where the drift velocity vd = eEτ/m∗, and Γ′ = N0πV 2
tg. This results are corresponding

to Eq. (6.16).

Next, we have to calculate the contribution Iz
2 (q) for small q and the diagrams is

plotted in Fig. G.4. First, the Fig. G.4 (a) can be expressed by

Iz
2,a(q) =

e

2πm∗
∑

k,p

V 2
tgTr{σzG

r
p+q (Gr

kG
a
k) Ga

pkxE} (G.16)

and the part of Gr
kG

a
k can be calculated by

Gr
kG

a
k =

[
1
2

(
gr+

k + gr−
k

)
+ nkσ

2

(
gr−

k − gr+
k

)]×
[

1
2

(
ga+

k + ga−
k

)
+ nkσ

2

(
ga−

k − ga+
k

)]

= 1
2

(
gr+

k ga+
k + gr−

k ga−
k

)
+ nkσ

2

(−gr+
k ga+

k + gr−
k ga−

k

)
.

(G.17)

Because Eq. (G.19) contains the matrix σz, the nonzero contribution of Eq. (G.19)

need include two components σxσy coming from Gr
kG

a
k and Gr

p+qG
a
p. Thus, we just need
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to calculated the second part of Eq. (G.17) and give us

Gr
kG

a
k =

∫
dε

nx
kσx+ny

kσy

2

(
1

(EF−εk−hk)2+Γ2 − 1
(EF−εk+hk)2+Γ2

)
kxE

= αN0πm∗Eσy/Γ.
(G.18)

Substituting Eq. (G.18) into Eq. (G.19), one can obtain

Iz
2,a(q) = e

2πm∗V
2
tg

∑
p

Tr{σzG
r
p+q

(
αN0

πm∗E
Γ

σy

)
Ga

p}

= ( e
2πm∗ )

2iV 2
tg

4

(
αN0

πm∗E
Γ

) ∑
p

{nx
p

(
gr−

p+q − gr+
p+q

) (
ga+

p + ga−
p

)

−nx
p

(
gr+

p+q + gr−
p+q

) (
ga−

p − ga+
p

)}
= −( e

2πm∗ )iV
2
tg

(
αN2

0hp
π2

Γ4

)
qyEPF ,

(G.19)

where the expansion of

gr±
p+q ≈ gr±

p +
∂gr±

p

∂ε
(vq) (G.20)

is used for small q with velocity v = ∂ε/∂p.

For Fig. G.4 (b), one can calculate as following

(−iπV 2
tgN0)Tr{σzG

r
k+qG

r
kG

a
kkxE}

= 1
8
Tr{σz (nk+qσ) (nk · σ)

(
gr−

k+q − gr+
k+q

) (
2gr−

k ga−
k − 2gr+

k ga+
k

)
kxE}

= (−iπV 2
tgN0)

i
2
Ex

∑
k

1
k2 (kxkyqx − k2

xqy)
[
ga+

k

((
gr+

k

)2 − gr+
k gr−

k

)
+ ga−

k

((
gr−

k

)2 − gr+
k gr−

k

)]

= (iπV 2
tgN0)

π
4
qyEN0(

h2
kF

Γ2 )

(G.21)

where q can be neglected in (gr−
k+q − gr+

k+q). Similarly, we can obtain Fig. G.4 (c) in the

result of

(iπV 2
tgN0)Tr{σzG

r
kG

a
kG

a
k−qkxE}

= (iπV 2
tgN0)

π
4
qyEN0(

h2
kF

Γ2 ).
(G.22)
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Figure G.4: The diagram of In
2 is plotted in case of small q.

Combining with Eq. (G.21) and Eq. (G.22), we can obtain the source function

Iz
2,bc(q) =

iπN0

2

h2
kF

Γ3
qyE. (G.23)

Finally, the total source function Iz can be obtained from Eq. (G.23) and Eq. (G.19) to

give us

Iz = −iqyvdN0h
2
kF

Γ′

2Γ3
(G.24)

corresponding to Eq. (6.16).
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