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FIELD MANIPULATIONS OF SPIN FLOW AND SPIN
ACCUMULATION IN SEMICONDUCTORS

Student: Lu Yao Wang Advisor: Chon-Saar Chu

Department of Electrophysics

National Chiao-Tung University

Abstract

The thesis of this work is to explore and to understand various ways of generating and
manipulating spin flow and spin accumulation in a semiconductor by pure electrical means.
Taking the intrinsic spin-orbit interaction (SOI) such as the Dresselhaus SOI and the
Rashba SOI as our major wrenches on the electron spin, we focus upon two different
regimes: the ballistic and the diffusive regimes. In a ballistic Rashba-type quantum
channel, we demonstrate that time-modulation of the Rashba SOI coupling parameter,
via an ac-biased finger gate, leads to a dc spin current. That this dc spin current is
robust against elastic backscattering is also established. In a diffusive semiconductor
stripe, we show that the Dresselhaus SOI does lead to spin accumulation at the lateral
edges in a spin-Hall electric field. Further signature of the Dresselhaus SOI is explored by
introducing a weak in-plane magnetic field. The spin accumulation S, is an even function
of magnetic field when it is longitudinal, pointing along the driving electric field direction.
For a transverse magnetic field, when it is pointing parallel to the width of the stripe,
the spin accumulation becomes asymmetric. Our finding thus provide a basis for the
establishment of a SOI mechanism diagnostic tool out of the magnetic field effect on the
spin accumulation. Furthermore, we find that, in analogy with the Landauer charge dipole
around a local scatterer, a spin dipole can exist around a normal scatterer in a Rashba-
type 2DEG host where the bulk spin-Hall current is known to be zero. The prediction
of these spin dipoles is consistent with another known fact: that no macroscopic spin

accumulation occurs at the lateral sample edges in the case of Rashba SOI.
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Chapter 1

Introduction

1.1 Introduction to background

Traditional electronic devices depend on the transport of charges in semiconductors. Most
recently, scientists try to develop devices based on the electron ’spin’ rather than the
electron charge. It becomes very remarkable to buildup a new generation of spin-based
devices. Since the fabrication technology of the semiconductor become very ingenious
and functional, more and more quantum devices can be achieved and a lot of hidden
quantum phenomena are excavated. These electronic devices have been widely applied on
industry and those devices are based on the macroscopic electron dynamics. It has been
found another possible way in the use of the electron spin to construct the spin-based
quantum devices and modulate the spin dynamics via the conventional electric means.
Spin is the only internal degree of freedom of an electron and conventional semiconductor
devices are based on the electron charge. One can merge spin and electron dynamics into
spintronics in the semiconductor and provide electronics devices with new functionalities
and achieving quantum computing via reliable spintronics based on the electron spin|1, 2].
Both theory and experiments succeed in impressive progress in the spintronics field in
recent years. However, the high challenges and difficulties still exist and have to be solved

by developing the theory and experimental techniques such as "enhancement of the spin
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RIR(H=0)

[Fe 30A/Cr18A)y

[Fe 30A/Cr 12 A)s

(Fe 30 ArCroAl,

(o |

0 2 30 )
Magnetic field (kG)

Figure 1.1: Magnetoresistance of three Fe/Cr superlattices at 4.2 K. The current and
applied field are along the same [110] axis in the plane of the layers. (PRL, 61, 2427
(1988))

coherent length”, and ”suppression of the spin relaxation”.

The first application of the spin-based device is fabricated by the magnetic materials
and use the effect of giant magnetoresistance (GMR)[3, 4]. This effect was observed in the
structures of ferromagnetic-nonmagnetic-ferromagnetic layers by Albert Fert and Peter
Gunberg in 1988. The magnetoresistance of GMR materials can be largely decreased via
a weak magnetic field (see Fig. 1.1). This technique has been realized for write-in and
read-out data from the hard-disk.

More recent research focus on the challenge of creating spintronics devices in semi-
conductor configurations without magnetic materials and applying magnetic fields. To
control electron spins in electric means can be achieved by the spin-orbit interaction (SOI).
Datta and Das proposed a simple model of spin-transistor in which the electron spin can
transport and precess via SOI from a ferromagnetic source injecting into semiconductor
to reaching a ferromagnetic drain [5]. In this spin-transistor, the polarization of the elec-
tron spin depends on the strength of spin-orbit interaction (SOI) which can be tuned by

applying a gate voltage. Because the spin polarization parallel to the polarization of the
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drain can pass through the channel, one can tune the voltage to modulate the current
flow for 'on-" or off-’state. However, the difficulty of Datta-Das transistor is the very low
injection rate (~ 1 percentage) for electron spins injecting from the magnetic metal into
the semiconductor [6, 7]. This difficulty for spin injection from a magnetic metal into
a semiconductor originates from the conductivity mismatch between these materials [8].
Because the spin injection coefficient v is proportional to oy /oy leading to v < 1 in the
diffusive regime, where o and o), are conductivities of the normal (N) (semiconductor)
and magnetic metallic (M) contacts, respectively. The low spin injection rate can be
enhanced by inset a tunnel contact between a magnetic metal and a semiconductor [9].
However, combining with metallic, tunnel, and semiconductor contacts is inconvenient
and complicated fabrications. Because the strength of SOI is much larger in semicon-
ductors than in vacuum, building up the all-semiconductor devices provides a possible
solution for conductivities mismatch between NM junction. In this way, the manipulation
of electron spins through the SOI can be achieved in all electric means. Basically, the
transport behavior of electron spins can be investigated in the ballistic regime and in the
diffusive regime. The former concentrates on the interference between wave functions of
spinors through an external field because the spin relaxation time is much larger than the
scattering time. The latter one concentrates on the macroscopic coupling-behavior be-
tween electric current and spins through an external field because the spin relaxation time
is much smaller than the scattering time. The enhancement of SOI would be discussed in

semiconductors in next section.

1.2 Spin-orbit coupling in the semiconductor system

We start from Dirac’s equation and extend it to semiconductors in order to understand the
importance of SOI in the solid state community. Electron spin is the only internal degree
of freedom of electrons following naturally from the Dirac equation when Dirac tried to

put wave function in a covariant form, when space and time appear on equal footing. A
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Figure 1.2: (a)With the gate voltage off, the aligned spins pass through the channel and
are collected in the other side. (b)With the gate voltage on: if spins are not aligned
with the direction of magnetization of the collector, no current can pass. In this way, the
emitter-collector current is modulated by gate electrode.
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non-relativistic limit of the Dirac equation gives rise to the spin-orbit interaction term, a
term that has found great success in atomic energy spectra. In vacuum, the form of this

spin-orbit interaction can be expressed by [10]

—eh h

where my is the free electron mass, h is the Plank’s constant and c is the light speed. This
term Hgo can be interpreted that an electron moving in an electric potential region sees,
in its frame of reference, an effective magnetic field which couples with the electron spin
through the magnetic moment of the electron spin. Through this effective magnetic field,
which certainly depends on the orbital motion of the electron, the SOI is established.
This physics holds in semiconductor too, when V(r) becomes the periodic potential of the
host lattice and also the impurities.

Electronic state calculation in semiconductor can be properly described by the k - p
model, when we investigate physical effect in the vicinity of the band edges. Furthermore,
within the envelope function approximation (EFA), the energy band can be characterized
by effective masses. The model of EFA is valid to describe the electron states in the
presence of electric and magnetic field that vary slowly on the length of lattice constant.
While there is an build-in effective electric field in the material, the SOI naturally occurs in
this semiconductor. Such effective electric field can be divided into the contribution from
the build-in crystal field due to bulk inversion asymmetric (BIA) the so-called Dresselhaus
SOI [11], or structural inversion asymmetry (SIA), the so-called Rashba SOI [12]. The
BIA is found in zincblende structure and the SIA in asymmetric quantum wells (QWs)
or heterostructures.

In use of the effective mass approximation, all the fast-varying atomic potential has
been included into the effective mass. Slower variation of V(r), its variation length scale
much larger than the lattice spacing, is found to contribute to SOI with a much larger

SO coupling constant . For a central potential V(r) depends on only r without angular
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dependence in vacuum, the SO coupling can be recognized as

ho1d ho 1dV L Avac 1d
VG-(rXp)z Vol dwldVy o (1.2)

o-(VVxp) = 4mgc2;%0- h h rdr

4mic? 4mic2 r dr

where the angular momentum is L and the vector Pauli’s matrices is o with Ay, =
—h2/(4m2c?) ~ —3.72 x 1076 A2,
For a central potential V(r) = V(r) in the semiconductor, the SO coupling can be

expressed in the form of

A1dV
Hypo=——-—L- 1.3
50 hr dr 3 (13)
where \ =~ %2 [ELg — m . P is the momentum matrix element between s- and p-

orbitals, F, is energy gap between conduction- and valence-bands, and A is the SOI
energy split due to spin split-off hold band [13]. However, A can greatly enhanced in
semiconductors, such as A = 120A42% in InAs and A = 5.34% in GaAs. It is six order of
magnitude larger than A, in vacuum [13].

The huge enhancement of SO coupling can be roughly understood as follow. We have

the relation

A Mo Moc>

Avae  mM* Ey

(1.4)

and m* is the effective mass in the semiconductor. For GaAs, we have moc®/E, ~

0.5MeV/1.519¢V and my/m* ~ 1/0.0665 leading to

M Apae ~ 4.7 x 10°.

Comparing with |A/Ayee] = 1.4 x 10% in GaAs, the above calculation roughly agrees with
our argument. For GaAs, we have moc?/E, ~ 0.5MeV/0.418¢V and mg/m* ~ 1/0.0229
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leading to
AN Avae ~ 52 x 10°.

Comparing with |[A/Aye| = 32 x 10° in GaAs, again, the above calculation also agrees
with our argument. This result shows that the effect of SOI is possible to be utilized to

reach the spintronics devices in semiconductors.

1.3 Electrical means of spin manipulations through
SOI in ballistic and diffusive systems

Due to advancement in controlled crystal growth and lithographic techniques, the co-
herent length and spin relaxation length can be enhanced in semiconductors with the
SOI. The advantages of manipulating electron spins via SO coupling in semiconductors
have been realized in: (i) long spin relaxation [14] time and (ii) gate voltage control of
the SO coupling [15]. From Datta-Das transistor based on SOI [5], several theoretical
and experimental results reveal the possible way to reach the spintronics devices by all
electrical means coupling to SOI in semiconductors. Nonmagnetic triple barrier resonant
tunnelling diode based on Rashba SOI can be used in the spin filter by electrical means
[16]. The spatially tunable Rashba SOI quantum wire can modulate the spin-dependent
transmissions by spatial-dependent electrical gates [17]. The spin-dependent tunnelling
through a symmetric semiconductor barrier was studied for the case of cubic Dresselhaus
SOI [18]. The spin interferometer is experimentally realized through Rashba SOI in use
of square-loop arrays fabricated by quantum wells in ballistic regime [19].

Instead of magnetic fields, using time-dependent electric fields would be much bet-
ter and various mechanisms of SOI guide interesting possibilities for electron control of
electron spins [20]. A time-dependent electric field is applied perpendicular to a 2DEG

with Rashba and Dresselhaus SOI to manipulate spins due to the electron dipole spin
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resonance (EDSR) [21]. One key issue of spintroics devices is the generation of spin cur-
rents by combining the SOI with the time-dependent field. The generations of a dc spin
current (SC) accompanying a charge current (CC) are proposed by two adiabatic time-
dependent gates [22]. In the diffusive regime, the ac spin current can be generated by
applying a time-dependent gate and detected in electric means [23]. The dc spin cur-
rent can be induced by time-dependent gates with appropriate geometries in the diffusive
regime [24]. This spin current is very important quantity to understand the fundamental
spin transport. However, the spin current is not strictly related to the spin densities S;

via a conservation law,

where the conventional spin current operator is JA,Q = {S’Z, ﬁl} with velocity operator v;.
This nonconservation spin current is due to the spin precession mechanism and it is not
necessary zero even in equilibrium [25, 26]. Some proper definitions of SC were discussed
[27, 28] but the spin current still remains an subtle issue.

Another one physical quantity is the spin accumulation which can be directly measured
experimentally. When an electric current passes through a sample in the presence of SOI,
a spin accumulation is induced near the edges with opposite polarization at opposite edges
[29]. It is known that carriers with opposite charge accumulate near opposite edges with
a magnetic field perpendicular to the sample due to the conventional Hall effect (CHE).
Analogue to CHE, the opposite spin polarization accumulating near opposite edges is the
spin-Hall effect (SHE), see review in Ref.[30]. There are a lot of interesting physics and

applications for the spin due to SHE.

1.4 Historical introduction to spin-Hall effect

In general, the SHE can be divided into the intrinsic and extrinsic SHE. The intrinsic SHE

is due to the intrinsic spin-orbit coupling and the extrinsic SHE is the contribution of the
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skew-scattering processes due to impurities. The extrinsic SHE was first considered by
D’yakonov [29] et al. and more currently was also studied by Hirsch [31]. In contrast to
the extrinsic SHE, the intrinsic SHE occurs totally due to the intrinsic SOI even without
impurities scattering processes. Murakami et al. [32] and Sinova et al. [33] considered the
intrinsic SHE in the hole and electron gas, respectively. The latter one claims that there is
universal spin-Hall conductivity osg = ¢/87h in a two-dimensional electron gas (2DEG)
with Rashba SOI. The simply picture is shown in Fig. 1.3 in which the spin polarization
perpendicular to 2DEG is induced by the applied electric field [33]. The intrinsic SHE
of the hole system was studied theoretically [34] and the experiment was also realized
by using optical techniques [35]. Kato et al. used optical Kerr rotation to measure the
spin-Hall accumulation in n-doped GaAs of bulk systems [36]. The Fig. 1.4 shows the
spin accumulations are measured by Kerr rotation in the bulk system.

In more realistic situations, the disorder should be taken into account in the macro-
scopic system due to a finite elastic mean free path. The intrinsic SHE is absent for
arbitrary weak disorder in the dc limit due to impurities scattering when the electron
system is in the presence of Rashba SOI [37-40]. Therefore, there is no spin accumulation
near the sample boundaries, except for the vicinity of the source and drain contacts [38].
However, the symmetric n-doped quantum well incorporated with Dresselhaus SOI [40]
and the cubic Rashba SOI [41] in the hole system are calculated giving rise to the finite
spin-Hall conductivities of the order e/87wh. In the case of Dresselhaus SOI, the spin
accumulations near boundaries was studied [42]. Most recently, the spin polarization can
be generated far away from boundaries by nonlinear transport in the extrinsic case [43].
The difference of chemical potential is due to the imbalance populations with respect to
source and drain reservoirs. These spin accumulations give rise to the magnetic potential
difference 1y — p; between two boundaries, where p; and g are the magnetic potential
at the boundaries for spin-up and spin-down, respectively. As such, the spin current can

be driven by the difference of y1y — p; from one boundary to the opposite boundary.
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t=0 t=

Figure 1.3: The red and green arrows denote the electron spin and momentum, respec-
tively. In the presence of an electric field the Fermi surface (circle) is displaced an amount
leE.ty/hlat time ¢y (shorter than typical scattering times). While moving in momentum
space, electrons experience an effective torque which tilts the spin up for p, > 0 and
down for p, < 0, creating a spin current in the y direction.(Phys. Rev. Lett. 92, 126603
(2004)).

1.5 Motivations

The generation of a spin current becomes one of important goals to carry out the quantum
computing processes [44]. To generate spin currents can use Ferromagnetic materials
[45, 46], external magnetic field [47, 48], optical-polarized technique [49, 50]. There are
several realizable proposals in use of imbalance spin populations to produce the spin
currents via magnetic materials (see a review in Ref.[51]). Here, we want to generate and
control electron spins in all-electric means in a semiconductor such that the spintronics
can be realized through the conventional fabricating processes of the semiconductor. In
semiconductors, the great enhancement of SOI provides a novel way to manipulate the
electron spin by applying the ac external fields in ballistic and diffusive regimes [21, 23, 52].

Form the insight of conventional charge pumping, we open an inspiration to make
spin pump through SOI by time-dependent electric fields in ballistic regime. The ballis-
tic regime, the spin relaxation length [, is much smaller than the mean free path l,,cqn.

The conventional charge pumping indicates that a dc charge current can be generated
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Figure 1.4: (A and B) Two-dimensional images of spin density n, and reflectivity R,
respectively, for unstrained GaAs sample measured at T=30 K and E=10 mV /um (Science
306, 1910 (2004)).
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by applying two time-dependent field in mesoscopic structures in the adiabatic regime
[53, 54]. The non-adiabatic pumping show the time-dependent Bragg reflection mech-
anism for a time-dependent finger-gate array system.[55] In the first case, either Fermi
energy is larger than the oscillating frequency Er > € or energy level spacing is larger
than the oscillating frequency AE > ). The latter can release the restriction of oscillating
frequency €2. These above cases involve only the generation of the charge current with-
out the spin-dependent transport. When the semiconductors are incorporated the SOI,
the time-dependent fields can induce both of the charge-dependent and spin-dependent
transport to pump electron spins. The SO coupling constant can be experimentally tuned
up to 50 percentage by modulating the gate voltage [15, 56]. One can expect that the
ac-biased gate can cause the SO coupling constant varying with time. Different from adi-
abatic regime, two independent time-dependent potentials have to be applied in order to
generate a spin current [22]. It is a new finding that applying a single ac-biased finger-gate
(FG) can generate a dc spin current without charge current in a Rashba-type quantum
(RQC) channel [52]. We also found that such a dc spin current can be greatly enhanced
by two ac-biased FG structure in the coherent regime. Due to this constrain, the spin
relaxation length [, is lager than the coherent length [. such that the spin can not be
relaxed during transport. Furthermore, we are also interested in the generation of spin
and charge currents by two FG with a finite phase difference.

In the ballistic regime, the suppression of spin current generation by backscattering
processes is one important issue to examine the generation of a dc spin current via a
ac-biased FG. We demonstrate two kinds of elastic scatterers: type (A) is a full static
barrier across the RQC and type (B) is a small scatterer located within the RQC. The
scatterer of type (B) can be repulsive or attractive one in order to understand the potential
dependence of backscattering processes. The robustness of spin current generation against
the elastic scattering has been studied [57].

The spin accumulations can be induced by the SHE to become a powerful tool of the

spin injection in the diffusive regime. In the diffusive regime, the spin relaxation length

12
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is much larger than the mean free path (I5, > lyean). The finite spin-Hall current can
be established in a 2DEG with cubic Dresselhaus SOI in the diffusive two-dimensional
(2D) strip [42]. The advantage is the all-semiconductors junction and the manipulation of
spins in electric means to avoid the conductivity mismatch. Because the spin-Hall current
is induced by a driving electric current, the electric current can be influenced due to the
feedback of the spin-Hall current [42].

An applied in-plane magnetic field can modulate the symmetric properties of spin
accumulations induced by either extrinsic or intrinsic SHE. Several experiments observed
the symmetric properties of S, by varying the in-plane magnetic field By perpendicular
to the electric field Ez [36, 59] for the extrinsic SHE. Because the bulk spin polarization
is zero for the case of extrinsic SHE, the lowest correlation of the magnetic field B, is
up to the second order of B,. Such that the spin accumulation S, is even function of
B,. However, there is a finite bulk spin density associated with Dresselhaus SOI, the spin
accumulation can be varied proportional to linear in-plane magnetic field. Our calculation
shows that spin density S, demonstrates the asymmetric property with varying By for
the intrinsic SHE by applying an electric field Ex. However, we also show symmetric
property of S, in varying BZ in our result.

Although the zero spin-Hall current is presented for the case of Rashba SOI, the
local spin polarization can be formed a ”spin dipole” around an elastic impurity for both
ballistic and diffusive regimes. From Landauer’s dipole concept, the total resistance can
be recognized as summing over contribution of each electric dipole induced around each
impurity by a driving current. Because the electric current can be correlated by the spin-
Hall current, the nonequilibrium spin dipole around each impurity can be induced by
the intrinsic SHE. The spin polarization perpendicular to the two-dimensional electron
gas (2DEG) was calculated for the ballistic regime around a scatterer with Rashba SOI
[60]. The electric dipole induced around the impurity is parallel to the electric field
but the spin dipole induced around the impurity is perpendicular to the electric field.

Furthermore, one can utilize spin dipoles created by SOI near macroscopic boundaries

13
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and sum over contributions of spin dipoles to obtain the spin accumulation near the
macroscopic boundaries. For the case of hard-wall boundary, this finite spin density
should be cancelled by the same magnitude but opposite-polarized spin density generated

by the boundary surface.

1.6 A guiding tour to this thesis

In Chapter 2, we investigate the characteristics of a spin-dependent pumping in the low-
dimensional system. We propose and demonstrate theoretically that resonant inelastic
scattering (RIS) can play an important role in dec spin current generation. The RIS
makes it possible to generate dc spin current via a simple gate configuration: a single
finger gate that locates atop and orients transversely to a quantum channel in the presence
of Rashba spin-orbit interaction. The ac-biased finger gate gives rise to a time variation
in the Rashba coupling parameter, which causes spin-resolved RIS and, subsequently,
contributes to the dc spin current. The spin current depends on both the static and
the dynamic parts in the Rashba coupling parameter. The proposed gate configuration
has the added advantage that no dc charge current is generated. Our study also shows
that the spin current generation can be enhanced significantly in a double finger-gate
configuration. In double finger-gate with the finite phase difference ¢, it is also show that
the spin current and the charge current are generated by the double ac-biased finger-gate
with a finite phase difference ¢. We also explore the robustness of such dc spin current
generation against elastic scattering in the RQC. The effect of backscattering is studied
by introducing two kinds of scattering potentials in the transverse dimension. These two
kinds of scattering potentials are divided into type (A): full static barrier and type (B):
small scatterer in the transverse dimension of a RQC. The modulations of spin currents
depend on the forms of scattering potentials.

In Chapter 3, the diffusion equation of spin densities S; (for i =x, vy, z) is derived for the

intrinsic spin-Hall effect (SHE) due to the spin-orbit interaction (SOI). At the same time,
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the diffusion equation of spin currents is also derived and the spin currents are associated
with the spin densities. Here, we employ the nonequilibrium Green’s functions to calculate
all diffusion equations and take the suitable orders into account. The restrictions of
boundary conditions are given by spin currents. In particularly, spin currents turn out to
vanish for hard-wall boundaries. In our cases, we consider the hard-wall boundaries in a
2D strip.

In Chapter 4, the intrinsic spin Hall effect (SHE) on spin accumulation and electric
conductance in a diffusive regime has been studied for a 2D strip with a finite width d. It is
found that the spin polarization near the edges of the strip exhibits damped oscillations as
a function of the width and strength of the Dresselhaus spin-orbit interaction (SOI) while
an electric current is applied in the longitudinal direction. Cubic terms of Dresselhaus
SOI are crucial for spin accumulation near the edges. As expected, no effect on the
spin accumulation and electric conductance have been found in the case of Rashba SOI.
At the same time, the conventional electric current can be correlated by the SHE. This
correlation is associated with the magnitude of the spin accumulations on the edges.

In Chapter 5, we studied the intrinsic spin-Hall effect (SHE) induced by a driving
electric field E2, in the presence of an in-plane magnetic field By = B,2 + B,y on a 2D
strip. In the diffusive regime, the spatial distribution of the spin density S; (i = x,y, 2)
is calculated from a spin diffusion equation derived from the nonequilibrium Green’s
function. In the presence of the in-plane magnetic field, the z-component spin density
S, normal to the 2D strip remains zero with or without By field for the case of Rashba
spin-orbit interaction (SOI). For the case of Dresselhaus SOI, the spatial distribution of
spin density show either symmetric or asymmetric features which depend on the direction
of the in-plane magnetic field. By applying the longitudinal magnetic field B,, the spatial
distributions of spin densities S, and S, show the even parity in B, but S, shows the
odd parity in B,;. The asymmetric property of S, versus B, is demonstrated for the
intrinsic SHE in case of Dresselhaus SOI. The extrinsic SHE experimentally performed

the symmetric behavior of S, at boundaries by applying in-plane magnetic field B,. These
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robust features of spin densities provide a possible diagnostic tool to identify the intrinsic
and extrinsic SHE by applying an in-plane magnetic field.

In Chapter 6, the nonequilibrium spin dipoles which are induced around spin-independent
elastic scatterers by the intrinsic spin-Hall effect in the two-dimensional electron gas
(2DEG) subject to the Rashba spin-orbit interaction. The spin polarization normal to the
2DEG can be calculated in the diffusive regime around the elastic scatterer. It is found
that there is the finite spin polarization around each impurity. However, the macroscopic
spin density turns out to vanish by averaging of individual spin dipole distribution over
impurities for a hard wall boundary. At the same time, the spin density is finite near the
boundary of 2DEG for a soft-wall boundary.

Finally, we present our conclusion and future works in Chapter 7.

16



Chapter 2

Dc spin current generation in a
Rashba-type ballistic quantum

channel

In this chapter, we investigate the characteristics of a spin-dependent pumping in the
low-dimensional system. We propose and demonstrate theoretically that resonant inelastic
scattering (RIS) can play an important role in dc spin current generation. The RIS makes
it possible to generate dc spin current via a simple gate configuration: a single finger
gate that locates atop and orients transversely to a quantum channel in the presence of
Rashba spin-orbit interaction. The ac-biased finger gate gives rise to a time variation
in the Rashba coupling parameter, which causes spin-resolved RIS and, subsequently,
contributes to the dc spin current. The spin current depends on both the static and
the dynamic parts in the Rashba coupling parameter, oy and «q, respectively, and is
proportional to aga?. The proposed gate configuration has the added advantage that
no dc charge current (CC) is generated. Our study also shows that the spin current
generation can be enhanced significantly in a double finger-gate configuration. In a double
finger-gate with a finite phase difference ¢, it is also show that the spin current and the

CC are generated by a double ac-biased finger-gate with a finite phase difference ¢. We
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also explore the robustness of such dc spin current generation against elastic scattering
in the RQC. The effect of backscattering is studied by introducing a static barrier (type
A) that is uniform in the transverse dimension. The effects of both backscattering and
subband mixing is studied by introducing a static partial-barrier (type B) that is spatially
localized and non-uniform in the transverse dimension. In addition, we compare the cases
of attractive and repulsive partial-barriers. It is found that attractive partial-barrier
gives rise to additional DC spin current structures due to resonant inter-subband and

inter-sideband transition to quasi-bound states formed just beneath subband thresholds.

2.1 Introduction

Quantum charge pumping (QPC) has attracted a lot of interest in recent years [61—
64]. The dc CC can be generated across an unbiased mesoscopic structure by time-
dependent periodic deformation of two structure parameters. Original proposal of QCP,
was suggested [53, 54] in the adiabatic regime. They considered the current generated
by a slowly varying travelling wave in an isolated one-dimensional system. The number
of electrons transported per period was found to be quantized if the Fermi energy lies
in the gap of the spectrum of the instantaneous Hamiltonian. This quantized charge
pumping has great potential for the direct-current standard [65]. The requirement of
the adiabatic pumping is either the Fermi energy c¢r > () in a continuum mesoscopic
system (ex: quantum wires) or the discrete level spacing AE > Q in the quantized
system (ex: quantum dots), where € is the oscillating frequency. In above cases, the
frequency €2 of a time-modulation structure parameters is restricted to be much smaller
than an energy scalar in the considered system such that the charge evolves with time
adiabatically. Beyond the regime of adiabatic QPC, the non-adiabatic QCP becomes
applicable and interesting in a quantum system without strict restriction of €2. The
non-adiabatic pumping show the time-dependent Bragg reflection mechanism for a time-

dependent finger-gate array system [55]. The charge evolution has to be treated quantum-
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mechanically in non-adiabatic QCP respecting to the semiclassical adiabatic QCP.

More recently, the spintronics has become an emerging field because of in both ap-
plication and foundation arenas [1, 32, 44, 66]. The recent key issue of great interest is
the generation of dc spin current (SC) without charge current. Various dc SC genera-
tion schemes have been proposed, involving static magnetic field [67-69], ferromagnetic
material [70], or ac magnetic field [47]. More recently, Rashba-type spin-orbit interaction
(SOI) in two dimension electron gas (2DEG) [12, 15, 56] has inspired attractive proposals
for nonmagnetic dc SC generation [22, 23, 71]. Of these recent proposals, including a
time-modulated quantum dot with a static spin-orbit coupling [71], and time modula-
tions of a barrier and the spin-orbit coupling parameter in two spatially separated regions
[22], the working principle is basically adiabatic quantum pumping. Hence, simultaneous
generation of both dc spin and charge current is the norm. The condition of zero dc CC,
however, is met only for some judicious choices for the values of the system parameters.

It is known, on the other hand, that quantum transport in a narrow channel exhibits
resonant inelastic scattering (RIS) features when it is acted upon by a spatially localized
time-modulated potential [72, 73]. This RIS is coherent inelastic scattering, but with
resonance at work, when the traversing electrons can make transitions to their subband
threshold by emitting mhS2 [72, 73]. Should this RIS become spin resolved in a Rashba-
type quantum channel (RQC), of which its Rashba coupling parameter is time modulated
locally, we will have a simpler route to the nonmagnetic generation of dc SC. Thus, we
opt to study, in this work, the RIS features in a RQC. This requires us to go beyond
the adiabatic regime and into the regime when either p or u, ~ h{). We solve the
time-dependent spin-orbit scattering (SOS) for all possible incident electron energies and
obtain large RIS contribution. In the adiabatic regime, however, with u, w, > hS), we
find that the dc spin-pumping effect from a sole SOI time-modulated region is small [22].

The system configuration considered is based on a RQC that forms out of a 2DEG in
an asymmetric quantum well by the split-gate technique. As is depicted in Fig. 2.1 (a),

a finger gate (FG) is positioned above while separated from the RQC by an insulating
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Figure 2.1: (a) Top-view schematic illustration of the RQC. The ac-biased FG, of width
[, is indicated by the gray area; (b) the electron dispersion relation of an unperturbed

RQC.
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layer. A local time variation in the Rashba coupling parameter a(r,t) can be induced by
ac biasing the FG [22, 23]. The Hamiltonian is given by H = p*/2m + H,,(r,t) + V.(y)

where the Rashba term
1
HSO(r7 t) =M- E[a(ra t)p + pOé(I‘, t)] (21)

Here, M = z x ¢ is normal to the 2DEG, ¢ is the vector of Pauli spin matrices, and V_(y)
is the confinement potential. The unperturbed Rashba coupling parameter a(r,t) is g
throughout the RQC, but becomes o + a1cos(2t) in the region underneath the ac-biased
FG. In principle, the time-modulating potential can also modulate the electron density
but one can applying a backgate to compensate the fluctuation of electron density [56].
The Dresselhaus term is neglected for the case of a narrow-gap semiconductor system [74].

We also investigate the effect of elastic scattering on the de SC generation in a single
FG configuration. The method of approach is time-dependent scattering matrix method
[52, 75] with a static potential V(z,y) in a RQC. The backscattering effect can be studied
via a static full-barrier locating either inside or outside of the AC-biased FG. Strong barrier
position-dependent effect on the de SC generation is found in our theoretical calculation.

The elastic scattering effect is further studied by considering a repulsive or attractive
partial-barrier. The partial-barrier introduces intersubband scattering to the system due
to the fact that it covers only part of the transverse dimension of the quantum channel. We
have studied the barrier position dependence of the dec SC generation. For an attractive
partial-barrier, the intersubband transition into a quasi-bound state formed just beneath
the subband bottom causes the SC to have an additional structure at m below the second
subband bottom. In all the above elastic scattering effect on the dc SC, as long as
the barrier breaks the longitudinal symmetry of the configuration, the CC will become

nonzero.
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2.2 The generation of a spin current via ac-biased

FG in the RQC

To demonstrate the pumping mechanism, we consider a narrow RQC in which its subband
energy spacing is much greater than the Rashba-induced subband mixing. As such, the
unperturbed Hamiltonian, in its dimensionless form, is Hy = —V? + a0, (10/0z) + V.(y).
Appropriate units have been used such that all physical quantities presented here, and
henceforth, are dimensionless. In particular, « is in unit of v;/2, and spin in unit of
h/2. The right-going (R) eigenstate of Hy, in the nth subband, is ¢,(y)¥2(z), where
V7 (x) = explikyp(x)]xo. The wave vector kg p = \/fin + Ne/2, while , = £1 denotes
the eigenvalue of x, to the operator o,. u, is the energy measured from the nth subband
threshold such that the energy of the eigentstate is £ = p,, +¢&, — a3 /4, for g, = (nm/d)>.
This dispersion relation is shown in Fig. 2.1 (b). The subband with p, ~ Af2 is found to
contribute most to the RIS-enhanced spin pumping. It is of import to note that right-
going electrons have |kL| > |kp| and that, at the subband threshold k}%(l) = /{;E(l).

The physical origin of the dc SC generation can be understood from two perspectives.
A weak pumping regime result is then obtained for an explicit confirmation of our physical
reasoning. The first perspective is associated with the vector potential. In the ac-biased
region, H = H, + H,, the transverse part H, = —9*/9y* + V.(y), and the longitudinal

part

H,(t) = (—z’a% + @M . x) . O‘(Z’t) (2.2)

The form of Eq. (2.2) suggests an effective vector potential, A(t) = za(x,t)M- X, which
depends on the spin and gives rise to a spin-resolved driving electric field E = —0A /0t.
However, in H,, the A? term does not depend on o, while for the term linear in A,
Axo, = —3nsa(z,t)x, gives rise only to a trivial spin dependence, which can be easily

removed by a shift in the origin of time for the case of an oscillatory «(z,t). Yet it
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turns out that the full term linear in A, given by —i(9/dz)Z - A, manages to give rise to
nontrivial spin-resolved transmissions. By the perturbation concept, this term becomes
kIT%(UAx, for the case of a right-going electron incident upon a spatially uniform «(t).
This renders the effective longitudinal driving field to become spin dependent, through
the factor k}g(l). The difference in the current transmissions, for spin-up and spin down
cases, is proportional to the difference in k;(l), or ap, and is found to be amplified by
RIS. This breaking of the longitudinal symmetry in the effective driving field by aq leads
to the generation of dc spin current in a FG-RQC structure that has but an apparent
longitudinal configuration symmetry, and with zero source-drain bias. No de¢ CC will be
generated, however, in such a structure.

An alternate perspective for the understanding of the origin of the spin-resolved cur-
rent transmission is associated with unitary transformation. By introducing the unitary
transformation ¥, (z,t) = exp|(in,/2) ffl/Q a(2,t) da'|, (x,t), the Schrodinger equation

[Eq. (2.2)] becomes

2

9 i i
—55 T UL + US ()| o (2,8) = it (2,1) (2:3)

of which the two time-dependent potentials are Uy () = —a(z, t)? /4 and U3 (t) = (Qa /2)(z+
[/2)cos(2/ 4+ n,m/2). Even though only UJ depends on spin, both the term in Uy (t) that
oscillates with frequency 2 and UJ together constitute a pair of quantum pumping po-
tential that pump SC. This is our major finding in this work: that spin pumping nature

is built-in even in a single FG configuration.

Next, we can write down the total wave functions in the different region for the
one-FG configuration in Fig. 2.2. For convenience, the region of the ac-biased FG is
located from z = —[/2 to = [/2 and the channel width is d. The Appendix A
shows the derivation of z-dependent wave function in the region (II) via a transformation
Uy(z,t) = exp(n, % sin (Qt) £ )iy (z,t). The wave function ¥, satisfies H,(t)¥,(z,t) =

10V, (x,t)/0t and one can rewrite the wave function in the Bessel’s function form. The
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right-going scattering wave functions in regions (I) are consisted of the incident and re-
flection waves. The right-going scattering wave functions in regions (III) is consisted of
the transmission waves. The reflection and transmission wave functions are involved the
inelastic and spin-dependent scattering processes due to the time-modulation FG in region

(IT). In summary, we can express the scattering wave function in = direction as following

gD (z,t) = e*nreinot 4 Zrn 7 (m)eisz“”ei“mt, for v < —1/2

U @ 1) = 3 ()" AT (m) €80 g (2K
mm’

(2.4)

w n,L

B () T T (ETS ”)}e—iumt for —lj2<z<1/2

v (z,t) = ZtnRLe nRTeimt  for x> 1/2.

Here the wave vector kn R(L) = +(u )2 4 n,00/2, with upper (lower) sign corresponds
to the right-(left-) moving electron in the nth subband, m/th sideband, and with kinetic
energy 1. The reflection amplitude TZTfL indicates that an incident electron is injected
from the left-hand side and scattered into the left-hand side with energy u in region (I).
The transmission amplitude tn 7, indicates that an incident electron is injected from the
left-hand side and scattered into the right-hand side with energy p!* in region (III). The
coefficients A:/];L"L and B, /L‘z corresponding to the amplitude of right-going and left-going
wave functions have an energy p and the spin state o in the region (II), respectively.
Furthermore, the total scattering wave functions can be written as W, (x,t)p,(y), where
@n(y) = \/2/dsin(nmy/d) is the nth subband wave function for the hard-wall confinement
with the channel width d.

Our aim is to solve the reflection and transmission coefficients by the imposed bound-
ary conditions: (i) wave functions continuous at x = £[/2 and (ii) the slope of wave

functions are continuous at z = +[/2. For continuity of wave functions, the Eq. (2.4)
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Figure 2.2: The wave functions can be separated by three different regions (I)(z < —1/2),
(I) (—=1/2 < x < 1/2), and (III) (x > [/2). The region (II) includes the static and dynamic
Rashba spin-orbit coupling constant.

satisfy

o (2= —1/2,t) = O (z = —1/2,1)

(2.5)
U (2 =1/2,¢) = VD (z = 1/2,1)
For the continuity of the wave function’s slope, the Eq. (2.4) satisfy
—%‘I’o‘x,_i + %\I/C,Lf_i — %%Oq cos (QU) Vy|,_ 1+ =0
T2 F oy o 2 (2.6)
—%\Pa‘x:% + 8%\1/0 ot + M0 cos (§2t) \Ifa|x:% = 0.

Essentially, all unknown variables can be calculated from Egs. (2.5) and (2.6) by cutting
off the large enough sideband index m (m') in the exactly numerical sense. (Appendix B)

The charge transport generates a CC and the spin transport generates a spin current
(SC). The CC is a good physical quantity due to the conservation of the total charges.
However, the spin current is not conserved due to the flip of spin during the scattering
processes. In our case, the SC conservation is maintained by the suppression of subband

mixing and the associated spin-flipping in a RQC. The SC expression for a state ¥, is
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given by the spin density operator

. oul
= |20, 0, — He.| + %\pg {0, M}, T, (2.7)

The density operator ﬁ describes the electron moving along x-direction with the y-
component spin polarization. For a scattering state W,, the SC can be expressed in terms
of the transmission coefficients. More specifically, the ratio between the time-averaged
transmitted and the incident SC gives the spin-resolved current transmission 7§, where a,
[, are, respectively, the incident and the transmitting lead. Summing over contributions

from all states in reservoirs R and L, the SC is
=1 -1 (2.8)
where

- / dEf (E) (T3, — T2 (2.9)

and 7 is the number current due to electrons with spin from both reservoirs that are

under zero source-drain bias condition. Here T, = > 5" moo T,z and f(E) is the

>0
Fermi-Dirac distribution. The transmission coefficient T, = |t: RL} Vi /i1, denotes
the current transmission that an electron incident from terminal L in the spin channel
o, subband n, energy F, is scattered into terminal R, sideband m, with kinetic energy
pin' = pn +mE2. The reflection coefficient is calculated by Ry, = }r?fLF /1 /. The
net CC is given by I¢ = I'+I'. In a symmetric FG configuration, we have T¢, = T_7,, so
that the net spin current is I* = 2 [ dEf (E) <T1T%L — T}%L) and the net CC is identically

zero. Our numerical results have to check the conservation of the particle flux to satisfy

with

Z (T, + Rivg,) =1 (2.10)

m(upr>0)
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for the nth subband.

2.3 One-sideband approximation of the single ac-biased
FG in the weak pumping regime

For the case of a single ac-biased FG, we can employ the one-sideband approximation
to estimate the transmission coefficient TZ]’;L(LR) with m = 0,41, and the SC in the
weak pumping (WP) regime. In the WP regime, when «; is small, we can demonstrate
analytically, and most unequivocally, that spin-dependent reflection arises merely from
the aforementioned linear A term in H,(t). We outline the derivation here while leaving
the detail in Appendix C. Tracing up to the first order in «y, our derivation retains the
reflection amplitudes to m = +1 sideband and drops that to the m = 0 sideband. Contri-
bution to the total reflection includes thus reflection at either the left or the right edges
of the time-modulated region. For an electron incident from terminal L with wave vec-
tor k7 p(E), the reflection at the left edge is obtained from the wave-function continuous

condition and the boundary condition

9] 0 '
_Z g0 + —pid = %naalcosﬁt\l/gm =0 (2.11)

A A O r=—}

In the time-modulated region, the wave function ¥, consists of one-sideband terms, given
by the form e*nr(FEVT=iBENE and e nlFre=iBt [1 4 g /(20) a1kl p(E) (e — =)
is given by m = 0 term. The extra 2t dependence in the m = 0 term is resulted from
the time-dependent driving effect of A, which is obviated by the weighting factor that

involves i ky] 5. The reflection amplitude r77, at the left edge is obtained

Mo X1 [kZ,R(kZ,R —kyg)+ m;”}
2 ke — kY

s (K i )12 (2.12)

rp” = sgn(m)
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for m= 1. The first term in the numerator of Eq. (2.12) is clearly due to A, because of
the factor a1 k; g, and the second term is due to the scattering at the edge. Here the wave
vector k5 = +(um™)Y? + nyap/2, with upper (lower) sign corresponds to the right-
(left-) moving electron in the nth subband, mth sideband, and with kinetic energy u".
It is clear then that wave-vector differences in both the numerator and the denominator
of 77, are spin independent. Hence, the spin dependence arises solely from the arky p
factor in the first term of the numerator in Eq. (2.12), or from A. This confirms our

understanding of the physical origin of the dc SC generation.

Including the reflection at the right edge, we obtain the total reflection amplitude
Tt = [1 — @i(ch,R*k:,f)l] T (2.13)

We note that the spin dependence of this total reflection amplitude is associated with
ap. In fact, it turns out that the SC is proportional to ay. The SC is related to the
current transmission, which, within the aforementioned approximation, is given by 7%, ~
1-> [Ri[j:/: + R;}j], where RV = ‘r;':‘fL‘Q VIl From Eq. (2.9), the energy
derivative of the zero-temperature SC is given by 0I°/0E = 2ATg;, = 2 <T —4 }%L>

from which its explicit expression is given by

or ey g Lo (O VI )"~ G oo = i) )
OE QO . 2 = '

(py'>0)

(2.14)

That this expression diverges when p)' = 0, for m < 0, exhibits the RIS feature unam-
biguously and also demonstrates the need to go beyond the one-sideband approximation

near the RIS condition.
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2.4 Numerical results for the ac-biased FG in a RQC

In the following, we present results obtained from solving the time-dependent SOS ex-
actly, in the numerical sense. An outline of the method is presented in Appendix B.
Physical parameters are chosen to be consistent with the InGaAs-InAlAsVbased narrow-

2 effective mass

gap heterostructures such that the electron density n. = 1 x 102em™
m* = 0.04myg, and oy = 0.13(hag = 3 x 107"1eVm).[56] Accordingly, the length unit
[x = 4.0nm and the energy unit £* = 59meV .

For the case of one FG (N=1), the energy dependence of the spin-resolved transmission
T3 is plotted in Figs. Fig. 2.3 (a) - (c), and that of the corresponding dc SC is plotted
in Fig. 2.3 (d). The FG width [ = 20 (80 nm), driving frequency Q = 0.002(v = Q /27 ~
28GHz), and energy 1 = E — ;. Dip features in 7%, at u/2 = 1 are the quasi-bound
state (QBS) features, where electrons undergo coherent inelastic scattering to a QBS just
beneath its subband bottom [72]. Higher-order QBS features at /) = 2 are barely
shown by the small peaks. Of particular interest is the change in sign in the transmission
difference ATgr = T}T2 e — 71 }lz ; across the dip structures, namely, ATk (1 = Q27) > 0 while
ATpp (= Q%) < 0. This leads to a nonzero dec SC, peaked at 11/ = 1, and is exhibited
in Fig. 2.3 (d).

It is also shown that the de SC increases with the oscillating amplitude «; of the ac-
biased gate voltage. More importantly, all the above dc SC characteristics, including even
their order of magnitudes, are already captured by Eq. (2.14). This lends strong support
to our finding that RIS has played a pivotal role in the generation of dec SC. Similar RIS
induced peak in Is is found if we vary d instead ofu. The nonlinear enhancement in the
dc SC by two FGs (N=2) is presented in Fig. 2.5(a)-(c). The driving frequency is chosen
to be = 0.001(v ~ 14GHz), and with [ = 22 (=~ 83 nm). For comparison, the N=1
FG transmissions are plotted along with that of the N=2 FG case, in Fig. 2.5 (a) and
(b), respectively. The corresponding dc SC, expressed in terms of pumped spins per cycle

N3 = (2w /Q)|I°], is shown in Fig. 2.5 (¢). The pumping is optimized by a choice of the
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Figure 2.3: Spin-resolved current transmissions T}, (red-solid) and T, (blue-dashed)
versus the incident energy /€. Parameters N=1, ap=0.13, Q=0.002, [=20, and a;=(a)
0.03, (b) 0.04, and (c) 0.05. The corresponding dc SC is plotted in (d).
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Figure 2.4: The configuration of two ac-biased FGs is illustrated with a tunable phase
difference ¢.

FG separation, with the edge-to-edge separation Al = 22.

The QBS dip structures are significant up to the fourth sideband in Fig. 2.5 (b). As
indicated by arrows, the pumped spin-per-cycle peaks at p/Q ~ 1.57 (1.92), with peak
value 0.8 (0.1) for the N=2 (N=1) FG case. The case of N=2 is illustrated in Fig. 2.4,
where the phase difference ¢ can be tuned. In this case, we choose the parameter ¢ = 0 to
guarantee the generation of a SC without CC. The enhancement in NP s is far greater than
doubling the N3 of N=1 FG. Finally, we discuss the effectiveness of tuning . Grundler
showed that a static FG bias change AVpg ~ 0.075 V can tune Ao =~ 0.25a.[56] This

tuning ability should remain valid in ac FG bias if the wave function in the asymmetric
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Figure 2.5: Current transmission versus u/€ for N=(a) 1, and (b) 2. Pumped spins per
cycle are plotted in (c) for N=1 (thick curve) and N=2 (thin curve) with a;=0.065, and
driving frequency 2=0.001. Other parameters are the same as in Fig. 2.3.
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quantum well responses adiabatically. We estimate the quantum-well energy-level spacing
AE =~ 0.08 eV > hQ) ~ 0.06 meV, for /27 = 14 GHz. Thus, the adiabatic response of
the wave function in the quantum well is established. Furthermore, the ac FG biases, with
amplitude AVpg =~ 0.075 V, is estimated to be within reach of coaxiable cable technology.

The Fig. 2.6 is plotted the pumping SC and CC with varying the phase difference ¢
for N=2 case in Fig. 2.4. In this situation, the pumping SC always accompanies with
finite CC for a finite phase difference ¢. However, the CC vanishes at ¢ = 0, 7, and 27
corresponding to the characteristic of the charge pumping in case of 2FG [55]. Otherwise
the pumping charge-current is finite. The positive and negative charge currents indicate
the net CC moving towards right-hand side and left-hand side, respectively. The pump-
ing SC reveals the symmetric behavior but the pumping CC reveals the anti-symmetric

behavior respecting to ¢.

2.5 The backscattering effect of dc SC generation in
a RQC

The schematic structure shown in Fig. 2.7 is based on a RQC that forms out of a 2DEG
in an asymmetric quantum well by the split-gate technique, and a single barrier is located

in the RQC. This effective Hamiltonian is given by

p2

2m*

H= + Hyo (r,0) + Ve (y) + fo (y) 6 (z — o) (2.15)
where p = (ps, py) is the in-plane momentum, H,, (r,t) is the Rashba term, and V_(y) is
the confinement potential. The form of elastic scatterer can be introduced by (i) elastic
scatterer type A: fo(y) = Vp in the entire width of the quantum channel 0 < y < d and
(ii) elastic scatterer type (B): fo(y) = Vi in the region y; < y < yo, with 0 < yp,y2 < d,
and fo(y) = 0 for other regions.

The unperturbed RQC we considered is narrow so that its subband energy spacing is
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Figure 2.6: Pumped spin current and charge currents in unit of nA are plotted as a
function of phase difference ¢. Other parameters are oy = 0.13, a3 = 0.065, and the
oscillating frequency 2 = 0.002. The FG width is [ =20 and the separation distance
Al =20. The solid (blue) and dashed (red) curves denote the spin current and CC,

respectively.
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Figure 2.7: Top-view schematic illustration of the RQC with a static barrier. The ac-
biased FG, of width [, is indicated by the shaded area. The elastic scatterers are sketched
by long-solid line of type A and short-solid line of type B.

much greater than the subband mixing due to the Rashba interaction. As such the un-
perturbed Hamiltonian in the dimensionless form is given by Hy = —V?+ ago, (10/0z) +
V. (y). Here we have chosen appropriate units for all physical quantities [52]. In par-
ticular, « is in unit of vp/2, where vp denotes the Fermi velocity, and spin is in unit
of /2. The right-going (R) eigenstate of Hy, in the nth subband, is ¢, (y)¥?(z) where
Y5 (v) = exp(iky, rr)Xo. The wavevector k7 p = \/lin + 1500 /2 while 1, = £1 denotes the
eigenvalue of x, to the operator o,. u, is the energy measured from the nth subband
threshold such that the energy of the eigenstate is F = p,+¢,—a?/4, for e, = (n7/d)*. In
the ac-biased FG region, the Rashba coupling parameter becomes at) = ag + aycos(§2t).

According to Eq. (2.4), one can obtain all wave functions in different regions of Fig. 2.7
and boundary conditions of Eq. (2.5) and Eq. (2.6) are used to match at the interface be-

tween AC-biased FG region and the region outside the FG. In addition, the backscattering
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potential gives us the continuity of wave functions

= Z v, (1‘7 t) ¥n (y) (2‘16)

— Tt n —
=z T=x

DU, (2,0) on (y)

and wave function slopes

oV, (z,t)
- ; I @n (y) pst

ov,_ (x,t
+Z%Qpn( zx‘i‘fo Z\D xt(pn ) =0

T=x0

(2.17)

are obtained from the Schrodinger equation. These boundary conditions lead to obtain

the transmission coeflicients.

2.6 Numerical results for the backscattering effect of
a SC generation

We present numerical results for the case of a full-barrier. The physical parameters are
chosen to be consistent with InGaAs-InAlAs based narrow gap heterostructure such that

the electron density n. = 1 x 102em—2

, effective mass m* = 0.04mg, and ag = 0.13
(hag = 3 x 107" eV m) [56]. The length unit is [* =4.0 nm, and the energy unit is
E* =59 meV. We present in Fig. 2.8 the dependence of the SC (empty-symbols) and the
CC (filledsymbols) on channel width d for a number of barrier positions. The driving fre-
quency is € =0.002 (=28 GHz), the FG length [ = 20 (80 nm), and the barrier strength
is Vo = 0.1. For a fixed Fermi energy FE, the nth subband bottom matches E when
E = (nm/d)*—a3/4. Thus in Fig. 2.8, when F =0.0131, the first and the second subband
bottoms match that of E when d = 23.86 and 47.73, respectively. The SC (I*) and CC
(I°) are defined by I* = I" — I', and I® = I" + I', respectively. Here T§, depicts current
transmission and «, 3 denotes the incident and the transmitting lead, respectively. The

case of elastic scatterer type A located either inside or outside the time-modulated region
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is given by Fig. 2.8(a) and (b), respectively. The trend shown in Fig. 2.8 is that both the
SC and the CC are smaller when the barrier is located inside the time-modulated region.
This trend is consistent with another feature in Fig. 2.8(a): namely that the current is
largest for xg =-9.9, when the elastic scatterer type A is closest to the edge of the time-
modulated region, and it is the smallest for xy =0, when the elastic scatterer type A is
centered. Outside the time-modulated region, the SC and the CC continue to grow with
increasing separation between the barrier and the time-modulated region, until they satu-
rate eventually to certain values. Besides this overall trend, the channel width dependence
of the SC and CC exhibits distinct signatures of the coherent inelastic processes. The
sharp rise in SC occurs when the Fermi energy E aligns with a subband bottom. More
importantly, the SC peaks at d =25.37, and 50.75, when the effective Fermi energy p, of
the highest subband equals Af). This is shown to be associated with the coherent inelastic
scattering to a quasi-bound state (QBS) just beneath the subband bottom [52, 73, 75].
The sharp rises of SC in Fig. 2.8 thus demonstrate that coherent processes have played
an important role in the large enhancement of the DC SC. These coherent processes come
into effect through the reflections at the two edges of the time-modulated region and
through the interference between these reflection amplitudes. An elastic scatterer type
A located inside the time-modulated region will therefore cause greater disruption to the
aforementioned coherent processes than an elastic scatterer type A located outside the
time-modulated region, and hence results in a smaller de SC pumping.

We present, in Fig. 2.9, both the transmission and the dc SC characteristics for the case
of elastic scatterer type B located inside the time-modulated region. The elastic scatterer
type B has a delta profile in the longitudinal direction and covers only a fraction of the
channel width, which transverse range is from y; =8 to y» =12. For a RQC width of d =40,
the center of the partial-barrier is at d/4. Of particular interest here is the effect of the
sign of the partial-barrier potential to the SC. The partial-barrier is repulsive, attractive,
in Fig. 2.9(a)-(c), and in Fig. 2.9(d)-(f), respectively. For the repulsive potential of type

B, the transmission coef.cients are spin-resolved and show both step-like structures, due
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to the subband structures, and the dip structures, due to the coherent inelastic scattering
features. The dip structures are broadened for larger V5. Subsequently, the dc SC is
suppressed. For the attractive elastic scatterer type B, the transmission coef.cients show
additional dip structures at the subband bottom, when u/Q ~9. These additional dip
structures are due to coherent elastic inter-subband scattering into the QBS state just
beneath the subband bottom. On the other hand, the coherent inelastic scattering dip
structures develop into dip-and-peak structures for larger |Vy|. Subsequently, the dc SC
has an additional shoulder, near 11/€2 &8, before the SC sharp rise at the subband bottom.
Moreover, as is shown by the dotted curve in Fig. 2.9(f), when the elastic scatterer type
B is more attractive, the dc SC is suppressed around p/2 ~1 but is enhanced around

u/Q ~10.

2.7 Summary

In conclusion, a nonmagnetic way of generating dc SC has been established in ballistic
regime. The proposed Rashba-type quantum channel driven by an ac-biased finger gate
is a simple structure and should be within reach of recent fabrication capability. The spin
pumping is studied in both its nature and its pumping mechanism. A resonant inelastic
process is the major factor that contributes to the robustness of the spin pumping. The
coherent nature of the pumping supports further enhancement of the spin pumping by
invoking configuration consisting of more than one finger gate. The configuration of two
ac-biased finger gates can greatly enhance the spin current without CC in ¢ = 0. On the
other hand, the charge current and spin current are generated by tune the finite phase ¢.

The robustness of a dc SC generation is presented in the presence of either elastic
scatterer of type A or type B in a RQC. In general, the barrier inside the time-modulated
region causes a stronger suppression to the SC than it is outside the region. Interest-
ingly, we .nd that an attractive partial-barrier induces inter-subband processes, gives rise

to additional QBS dip structures in the transmission coef.cients, and can lead to the
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Figure 2.8: The SC and CC are plotted as a function of channel width d. The static full-
barrier is located (a) inside and (b) outside the FG with various longitudinal positions.
The empty-symbols and filled-symbols indicate the SC and the CC, respectively. The
Fermi energy is fixed at £ =0.0131 and other parameters are oy = 0.13, oy =0.03, [ =20,
2 =0.002, and Vi =0.1. The center and the edges of the time-modulated regions are at
xo =0, £10, respectively.
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Figure 2.9: The repulsive, (a)-(c) and attractive, (d)-(f), partial-barrier is located at the
FG center but with various Vh. We choose V =0.1, 0.2, -0.1, -0.2, in (a), (b), (d), (e),
respectively. The current transmission is plotted as incident energy in the unit of 1 /€.
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Other parameters are ag =0.13, oy =0.03, €2 =0.002, [ =20, and d = 40.
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enhancement of the SC.
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Chapter 3

Derivation of the spin diffusion
equation: a nonequilibrium Green’s

function approach

In this chapter, the diffusion equation of spin densities S; (for ¢ =x, y, z) is derived
for the intrinsic spin-Hall effect (SHE) due to the spin-orbit interaction (SOI). At the
same time, the diffusion equation of spin currents is also derived and the spin currents are
associated with the spin densities. Here, we employ the nonequilibrium (Keldysh) Green’s
functions to calculate all diffusion equations and take the suitable orders into account.
The restrictions of boundary conditions are given by spin currents. In particularly, spin
currents turn out to vanish for hard-wall boundaries. In our cases, we consider the hard-

wall boundaries in a two-dimensional (2D) strip.

3.1 Introduction

Recent years, the great potential of the spintronics attracts a lot of studies in manipulation
of the electron spin because the spintronics provides a novel way to combine the charge

dynamics and the spin degree of freedom in the application of semiconductor devices
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B y

y=d/2 y=-0/2

Figure 3.1: Top-view schematic illustration of the 2D strip with a width d. The longitu-
dinal driving electric field is applied in the x-axis. The tunable in-plane magnetic field B,
can be applied in this 2D strip. The angle 0 is between the in-plane magnetic field and
the electric field.

[1, 2, 44]. The SOI plays an important role of coupling the electron orbital motion
and the spin degree of freedom in the semiconductor through a driving electric field.
One new phenomenon is the spin-Hall effect (SHE) which refers to the generation of
a spin current transverse to a charge current in non-magnetic systems with SOI. The
intrinsic and extrinsic SHE can generate spin current transverse to an applied electric
field due to different origins of spin-orbit coupling in the semiconductor. The intrinsic
SHE [33] is come from the spin-split band via either Rashba [12] or Dresselhaus [11]
SOI in the structure inversion asymmetry (SIA) and bulk inversion asymmetry (BIA)
semiconductor, respectively. However, the extrinsic SHE is due to impurity scattering
in the skew-scattering processes, which induce the spin-dependent propagation of the
electron [31, 58]. The intrinsic SHE has been experimentally demonstrated for the p-
doped 2D electron gas [35]. The extrinsic SHE also have been performed in several
experiments [36, 59].

In this chapter, we will use the diffusion approximation to derive the diffusion equations
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with corresponding boundary conditions for both of spin and charge densities coupled
to each other via SOI. We use the Keldysh Green’s function technique to derive the
diffusion equation of charge and spin densities, which is equivalent to the Boltzmann
kinetic equation [24]. All effects of the spin precession, spin relaxation, and spin-charge
coupling can be derived from diffusion approach in a macroscopic semiconductor system.
In principle, all possible effects can be obtained by expanding all diagram up to a suitable
order. The diffusion equations can also be used to investigate the properties of spin
densities in a homogeneous 2D system. Besides, the diffusion equations are also used to
study a 2D strip with two edges at y = +d/2 sketched in Fig. 5.1.

The diffusion equations can be generalized to include an external magnetic field. In
our consideration, the in-plane magnetic field B can be applied with a angle ¢ respecting
to the electric field Ez in Fig. 5.1. The symmetric property of spin accumulations have
been observed experimentally when an in-plane magnetic field is applied in cases of the
extrinsic SHE [36, 59, 76].

The finite spin accumulations S, at the edges of a 2D strip is obtained by the diffusion
equations. It is also found that the electric current is modified by the intrinsic SHE due to
the transverse spin current inducing a small contribution to the classical electric current
due to the spin accumulations.

The section 2 develops Green’s functions with SOI in the presence of disorder. The
section section 3 derives the diffusion equations for spin densities in the presence of an
in-plane magnetic field. The section 4 derives the spin currents in diffusive regime. The

section 5 gives a brief summary.

3.2 Theory of the spin density in the diffusion regime

3.2.1 Green’s function in the presence of the SOI

First, we introduce the retarded and advanced Green’s function for the system in the pres-

ence of SOI. As known, the retarded (advanced) Green’s functions satisfy the Schrodinger
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equation as below

0

—iaGT(a) (t7 &€, I/) + HGT(G) <t7 Z, CL’/) = —0 (ZE - l’/) (31)

where the retarded (advanced) Green’s function G™@ is the 2x2 matrix in the spinor
space. For the homogeneous system in the Fourier representation, one can obtain the

equation
—wG@ (w,p) + (e, —hyp - 0) @ (w,p) = —1, (3.2)
with

Gr(a) (w, p) Gr(a) (w,p)
G (w,p) = :(a) T(l) (3.3)
Gy (w, p) G| (w,p)

where the lower index T (]) denotes the spin-up (-down). The solution for the Schrodinger

equation are expressed in the form retarded Green’s function

G (w.p) = (W—g—hy-otid)”

= [(w—ep—hp-0+i0)(w—e,+hy-o+i)] " (w—¢c,+hy-o +id)
w—¢e,+hy-o

p— 3.4
(w—ep+i6)* — h2 (3:4)

where § is the infinitesimal positive real number. According to G = (G*)*, one can write

down the advanced Green’s function

G*(w,p) = (w—g—hy-a+id)"

w—¢e,+hy-o
(w—¢ep—16)" — hZ

The poles of the Green’s function are (w — &, 4149)* — h2 = 0 indicating w = &, & h,, which

means the spin-splitting of the conduction band.
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3.2.2 Green’s function in the presence of disorder with the SOI

We calculate the Green’s functions which include the SOI in the presence of disorder.
The electrons are scattered by the impurity potential: U(r) = Z V (r —r;), where r; is
the ith impurity position. Immediately, the Hamiltonian in the ;nteraction presentation
is expressed as Hiy = [ dr¥™* (r)U (r) U (r) and the field operator is ¥ (r) = %Zk: ke,

where v is the system volume and ¢, is the annihilation operator. Finally, we obtain

1
Hi = — View G cper 3.6
t VZ kk’Cy Ck ( )

kk’

, where Vige = 1 3"V (k — k) e7#"¥)i and V (k — k') the Fourier component of V (r — ;).

The perturbation expansion for the retarded (advanced) Green’s function is given by

(@) (w,k, k/) | 5kk/Gr(a)0 (w, k) + G ()0 (w, k) ka/Gr(a)O (w, k/)

+G" 0 (w, k) (Z Viae G"° (w, K”) Vk“k/> G (w, ) + ... (3.7)

k//

We define V4 = Vq — Vydqo by setting g = k — k'. It is simply to show that

VaVil oo = U% <Z V(@) Pe 0+ 371V (9) \2> =Sy (g (3.8)

o v
i#]

where the angular bracket is denoted the impurity averaging and the impurities concen-

tration is ¢;. It also easily to calculate (Vq) = 0 and (V V) 0.

atqd

It is known that Dyson’s equation can be expressed by

G (w,k) = G° (W, k) + G (w,k) ¥ (w, k) G (w, k), (3.9)

where G and G are exact Green’s function and unperturbed Green’s function, respec-
tively. All possible diagrams can be reduced into a self energy ¥ in the Dyson’s equation.

In general, G, G, and ¥ are in matrix forms. Such that the Eq. (3.7) can be rewritten
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in the form of
Gr(a) ((.d, k) = 5kk/Gr(a)O (w, k)

k/
+ o (3.10)

+ Gr(a)O (W, k) (2 Z ‘V (k/ N k)‘Q Gr(a)o (w7 k’)) GT(G)O (Cd, k/)
A%

with the self energy ¥ (w, k) = (% SV (K — Kk)|? G0 (w, k’)) . Assuming the impurity
k/
potential is a short range interaction, then V (k" — k) = Vj. is a constant. Therefore, the

self energy can be simplified in the form of

: — ety
E(w,k)z%ﬂfscf (Z w — ol AEEIL ) (3.11)

~ (w— ey, +16)° —

Due to Eq. (3.9), the exact Green’s function can be obtained from

1

G (w, k) = [(GTO (,k) ™ = B (w, k)] )
|
:w—ek—hk-a—l—ié—Z'

(3.12)

The real part of the self-energy, Re[Y], gives the shift of the electron energy. The most
important physics is the electron energy near the Fermi energy such that the imaginary

part of the self-energy is given by

Ci 1 1 1
Im[X] = 2V |*) =I
m[] U|V|§2m|:w—8k—hk+i5+w—8k+hk+i5
—C; ™
= ” |‘/5c|2Z§[5(w_€k_hk)+5(w_€k+hk)]
k
~ _Wci“/scFNOEFa (3.13)

where Nj is the density of state at the Fermi energy Er. The disorder energy is I' = 1/(27)
and 7 is the elastic scattering time. The mean free path is given by l,,can = vp7 and vp
is the Fermi velocity. The higher order contributions to the self-energy carry the small

parameter 1/(kpl), which can be neglected. Finally, the Green’s with SOI in the presence
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of disorder is obtained in the form of

w—¢e,—hy-o
(w—ep£iD)* — A2’

G" (w,p) = (3.14)

where the signs + denote the retarded and advanced Green’s functions in the upper one

and lower one, respectively.

3.3 Diffusion equation for spin densities with an in-
plane magnetic field

In this section, the nonequilibrium Green’s function is employed to derive the diffusion
equation of spin densities S; (i = z, y, and z) related to intrinsic SHE in the presence of
an in-plane magnetic field B|. First, it is important to analyze the ranges of characterized
energy in the diffusive regime. In our calculation, the Fermi energy Er of the electron
is the largest energy scale in the diffusive regime. The electron has a drift velocity vy
through the driving electric field E and the electron can be scattered by the random
impurities within a scattering time 7. The scattering rate I' = h/(27) characterizes the
energy scale of the scattering events. Another important energy scale is the spin-split
energy hg, due to the SOI without the external magnetic field. The electron spin can
be relaxed via D’yakonov Perel’ (DP) relaxation mechanism after the electron travelling
time around the spin-relaxation time 7,,. Especially, the effect of an in-plane magnetic
field can participant in the diffusion equation and the in-plane magnetic field leads to the
changes of spin accumulations. As known, the magnetic field can cause the electron spin
precession about the magnetic field axis with a cyclotron frequency w.. In weak magnetic
field range, w.7 < 1 is valid. For the diffusion regime with B, the criteria of energy
are restricted by Er > T' > hy, > w.. It is possible that an electron spin does not be
relaxed due to a lot of elastic scattering events such that the relation h,,7 < 1 is valid in

the diffusive regime. In contrast to diffusive regime, the ballistic regime is described that
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the electron spin can be relaxed completely before it encounters a scattering event. The
requirement of hg,7 > 1 has to be satisfied in the ballistic regime.

In general, we will derive the diffusion equations for the intrinsic SHE in the presence
of an weak in-plane magnetic field. The magnetic field can be simply turned off when we
study the case of the intrinsic SHE without a magnetic field. By averaging all elastic and
spin-independent impurities in the method of nonequilibrium Green’s function has been
calculated in our previous work [42]. It is know that the spin accumulation is induced by
applying a uniform electric field to a homogeneous 2DEG with SOI in the diffusion regime
due to the intrinsic SHE. This method can be generalized in the case of applying in-plane
magnetic in 2DEG. The SOI term can be expressed as hy, = hy - & where hy denotes
the momentum-dependent effective magnetic field due to SOI and o=(c", 0¥, 0%) is Pauli
matrix vector. The effective SOI field have specific forms of (hy, h,) = (ak,, —ak,) for
Rashba SOI [12] and (hg, hy) = (Bka(k; — ), Bpy(k* —kZ)) for cubic Dresselhaus SOI [11].
The spin-orbit coupling constants are o and 3, and « is the average of wave function in the
direction perpendicular to 2DEG. Both of the in-plane magnetic field B| and the driving
electric field Ex are applied parallel to 2D strip. One can combine the in-plane magnetic

field By with effective SOI field hg, together into the form H, - & = (hy, + By) - o. The
magnetic energy is defined by B = g*upB) /2, where g* is the effective g factor and pp
is the Bohr magneton. In the weak magnetic field case, assuming Er>>h,, > hpg is valid
and the expansion of the exact Green’s function only need to expand up to linear order
of ]§||. It is the good approximation to treat the external electric field as a perturbation
such that it is expressed in the four vector of potentials in form of H' = Z ®; (r,t) T,
where the 2 x 2 matrix 7% = 1, 7%%* = ¢, , .. The external potential H' can bze calculated
in the linear response framework by Kubo formula. It is convenient to introduce four
vector of densities D;(r,t), whose index i = 0 is referring to the charge and i = z,y, z are

referring to the spin indices. The unit of one spin is taken by //2 such that spin densities

are Sy, . = (h/2)D,, .. The four densities is expressed by using nonequilibrium Green’s
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function method

D;(r,t) = <Tl[ i (r,t) S (— Oodowm_oow)]>

= —iTr[r'G " (r,r,t,1)], (3.15)

where T} is time-loop order operator and G~ is the Keldysh Green’s function in the matrix
form. The detailed derivation is shown in Appendix D. The angular brackets denote the
average over random distribution of impurities. The upper time-loop branch (+) denotes
the time order evolution and the lower one (—) denotes anti-time order evolution. The
Green’s function G~ is described the time loop branch from — to +. In stationary state,
the system response depends only on time difference such that one gets the density in the

Fourier space w, w’

/d2r’ Z IL; (v, w + ') ®; (v, w)
J

+ DY (r,w). (3.16)

Here, it is convenient to express all coordinate-dependent quantities in the momentum
representation for a homogeneous 2DEG system. The derivation of Eq. (3.16) is shown
in Appendix D. The momentum conservation is obeyed for an electron collides with the
random elastic impurity. The most important physical mechanism occurs near the Fermi
energy Fr such that the energy can be treated as w' =~ Fr. Applying the relation of
frp(W') = frp(w + ') =~ w(dfrp(w')/dw'), the retarded and advanced Green’s function
G"(p1,k1 + q,w + ') and G*(ky,p1 — q,w) can be employed to calculate the response

functions in momentum space

wz/dw dfFD )

piki

x <T7”[Ga(k1, b1 —4q, u))TiCYYT(pla k1 + q,w + w/>7-j]>7

(3.17)

20



CHAPTER 3. DERIVATION OF THE SPIN DIFFUSION EQUATION: A
NONEQUILIBRIUM GREEN’S FUNCTION APPROACH

where frp(w’) is the Fermi-Dirac distribution function at energy w’. The brackets in
Eq. (3.15) denote averaging over the random distribution of impurities in the 2DEG. For
w < FEp, the relation frp(w' + w) =~ frp(w’) is assumed and one can obtain the local

equilibrium densities

D} (q,w) = i Z /—fFD Zq’ (d,w

pikiq’

x (Tr[G"(p1,k1 — q,w)7T'G"(ky,p1 + q, /)77

Ga(p17 kl —q, wl>TiGa(k17 Pa ar q/7 w/)TjD? (318)

which are associated with four vector of potentials ®;(q’,w). These detailed calculation
is shown in Appendix D. Assuming each random impurity potential V.(r) is delta-profile
correlation so that the pair correlation (Vi.(r)Vi.(r')) = T'd(r — r')/7Np, where [' =
1/27 is characterized by the mean elastic scattering time 7. Assuming the semiclassical
approximation Er7 > 1 is valid, the standard perturbation theory can be employed. The

unperturbed average Green’s functions are given by 2 x 2 matrix form

GOp,w) = (GV(p,w))

= 1/(w—E,—Hg o +il), (3.19)

where E, = p?/2m*. The local equilibrium densities DY are calculated up to the lowest
order expansion of the average Green’s function by setting Hg ~ 0 in Eq. (3.19). Eventu-
ally, we obtain the local equilibrium densities DY(q,w) = —2Ny®;(q,w) by setting q = 0
in the average Green’s function. The Nj is the electron density of state at Fermi energy
Er. The nth higher order term of average Green’s functions produce the order of power
1/(Er)™ for @ = 0 and it is the small correlation to the DY. Obviously, it is good enough
to estimate the DY up to the lowest order approximation in the average Green’s function.

In the presence of SOI, the spin would be relaxed due to DP-relaxation mechanism in
the disorder system after an electron spin travels the characteristic distance, so-called spin

relaxation length [,,. In the diffusion limit, I, > [,,can is valid such that one electron spin
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can be scattered by several impurities before it is relaxed completely. The most important
goal is to obtain the response function from Eq. (3.17) by calculating the mean products
of the retarded and advanced Green’s functions in the diffusive regime. Only the pair of
retarded and advanced Green’s functions of Eq. (3.17) carrying close enough momenta
have to be taken into count in the ladder series. Redefining k; = p and p; = p’ — q,
each matrix element of the impurity averaging can be evaluated in ladder expansions as

following

Z Tpa ,By<G pp,w—l—u))Gﬁu(p'—q,p—q,w»
N Gr(o p,w+uw Ga(o) P—q,w)0pp
Z oA ( ) ( w) (3.20)

+US (w, o', q) GQ(BO) (p,w+w') GZ&O) (p—q,w)

UG (p,w + W) GEY (p — q,w) + ...},

where the simplified notation Ui} (w, ', q) = (¢ Vo2 /) GRO (0w + o) G“(O) (p' — q,w),
p/

where ¢; is the impurity concentration and V' is the volume of system . All the repeated

indices have to be summed and V. is the strength of the impurity. From Eq. (3.17), the

response function is expressed in the form of

y(qw) = Z [tz (”N‘))Tmy

X ‘I’zl(w,w L)[(1 = V(w,w', )73 (3.21)

where 177 = 6,30, and T'/(7Ny) = ¢;|Vie|?/V. From Eq. (3.16), Eq. (3.17) and Eq. (3.21),

the four densities is given by

Di(q,w) — DY (q,w) = I1;;(q,w)®;(q,w). (3.22)

The four components tensor in Eq. (3.21) can be transformed into two components vector

form via the equality \I//W =(1/2)> T}\V\Ifijqi,x, where 7, 7 = 0, z, y and z. Immediately,
(]
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we can obtain
[P =) =23 wt [ - w) )Y
5]

and the diffusion mechanism is decided by

il pES %;Tr [7G"O(p,w + W) TGO (p’ — q,u)] . (3.23)

The Eq. (3.22) can be expressed in matrix form
(1—%)" (D, = DY) = iwr¥'DY, (3.24)

via the relation [ dw'(dfpp/dw') = —6(w’ — Ep) at zero temperature. For the case of
a static homogeneous electric field, the left-hand side of Eq. (3.28) is equal to zero by
setting w = 0 and the charge density Dy = 0 due to charge neutrality.

First, U can be calculated in the absence of the SOI and external magnetic field,
saying H,, = 0, to easily obtain

. I ‘ i 1
\Ijzl / o] T i1
@' Dm0 = Zra7 ; . {T "Wt —e, +i0) (W — 2, —iT)
r - —1 1
de26" N,

27TN0/ © "e—w—w —i) (W —e+q-vp—il)

I 1
= =" (—2mi) ,

s —w+q-vp — 2l

: w Wt il
= (1 =42 F 3.25
( oT | —arz )’ (3:25)

Q

where the overline denotes the average over Fermi surface. In linear response regime,

Eq. (3.25) is expanded up to the linear order of w to give us

U (q,w) [i,—0 = (1 + iwr — D7q?) ba, (3.26)
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where the diffusion constant is D = v%7/2 and 4, [=0, z, y, and 2.

Under the consideration of the static and homogeneous electric field, the time com-
ponent of the electric field w = 0 is assumed in the below. The standard perturbation
theory is employed to expand Eq. (3.23) respecting to the small parameters of Hp and
q. Considering h,, > EII in the weak magnetic field case, the most important effects of
the magnetic field come from the contribution of the linear EII term. It is known that
h, = —h_; is odd parity and §|| is even parity respecting to the electron momentum
p— —p.

One can expand Eq. (3.23) up to linear h, to give us zero, for q = 0 case, because
the angular averaging integration contains odd parity in the momentum p. It has to be

expanded in small q to get the finite result of

i |, = / S 1 9 —1
v g;éo,w:o o7 (2Z€ ) Gegq (hp)(ep—w’+if‘)2 Oe (g, —w' —il)
N . A
= —% (2251 )q Vg (h’p )27TZW

s ~ilm Papee— | SN
= a Ve () = e ve ()
= TRilmiqm (3.27)

where R'™ = 47" ™ p2o™. The overline denotes the angular average over Fermi surface
n

and v is the m component of Fermi velocity. This term is associated with spin precession

due to the SOI.

On the other hand, the linear B term can contribute to Eq. (3.23) in the q = 0 case:
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the Eq. (3.23) is given by

B™

(W —ep +1T) (' — g, —iT)°

Bm

(ep —w' —il) (g, — w' +iD)?

(3.28)

, r : 1
VA IS = Triritie™
|qB:0,w:0 21Ny Xp: { |
. B™ 1
4 7_ZO_mTl :
[(w’ — g, +il) (W —gp — @F)]}
r , -1
= N /daNoTr [r'rlo™] {
~1 B™ )
(ep — ' +1T) (g, — ' — i)’
= —2rgimpm
where Rilm = — 25ilm§m and m = z, y denotes the x—, y—component of the in-plane

m

magnetic field. This term is simply related to linear magnetic field term without coupling

to SOI. It can be interpreted that the electron spin processes along the axis of an external

magnetic field B in semiclassical picture. However, the travelling direction of an electron

would be changed by random impurities in diffusion region such that the spin precession

can be randomized due to elastic scattering processes.

Next, we expand W" up to orders of h2 and hpé to give rise

il
v hZh,B,
q=0

r . L h"
Tr (rio™r'c™ L £
(27TN0> Zp: ¥ ) (W — &, + i) (W' — &, — iI)*
. hm B™ B™ h
+ Tr (TZO'mTIO'm) b + . )
2 T 2 . 2 - 2
(W —ep+il)" (W —g, — i) (W —¢gp+il)" (W —¢g, —il)
— h2+ 2B - h, 1 1 h2+2B - h,
" T(TT)((w’—e +il)? (W' —gp —iD) * (W —¢ep+il) (W — ¢, — il )}
P P P w' —¢gp —il)
r . R h
= Tr (rio™rlc™ b P
(27TN0> ;{ ( ) (W — &, +1T)% (W' — g, —iT)?
. h? 1
+ Tr(rir! b :
( ) (w/ — & + ZF)?) (w/ —&p— ZF)
‘ 1 h?
+ Tr (77 _ P
(7'7') (W —ep+1I) (w’—gp—iF)3}
= —47‘2h%F (6% —ninl) = —rri (3.29)
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where T = 47h3, (0" — n,in,!) and the unit vector n, = hy/hy,. These terms including
h;”ém and hp - B vanish due to the odd parity of the electron momentum p. The physical
origin of this term is recognized as the DP relaxation. The physical meaning of the
DP relaxation can be understood in the following discussion. In the interval between
collisions, the spin of each electron precesses about an effective magnetic field which is
related to the electron momentum in the SOI system. Consequently, the direction of
electron momentum will be changed via collide with the random elastic impurities and
leads to the change of the precession axis. If the time between collisions is much less than
the precession period, then the electron spin will not be able to follow the change of the
precession axis. Such that the electron spin precession would be relaxed after collisions.
The SHE is strongly related to the spin-charge coupling terms which induce the spin-
Hall current moving normal to the driving electric field Ez. The spin-charge coupling

terms can be calculated in higher order expansion of ¥¥ in the general form of

o L T > {Tr |+ k7 Hp-a 0
w=0w’",q 27 Ny = (w’ o ZT)2 Hﬁ (W/ —&p—gq ZT)2 - Hg—q
o LN e Hyqo
R i)’ H} (W' —&pyg ir)” Hy |
+ Tr |7 g =&y — i) }
| (wHw e+ ) = H} (W' = ep—q — ir)” Hy

— {(a)+ (b) + (&)} (3.30)

We can neglect the Hg terms in the denominators and expand the part (a) up to linear q
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to obtain
r HY 0 HY
a) ~ Tr[rlo%c” P —q) — P
(a) 21Ny zp:{ [ } (W —ep + zT)2 (=a) op (W —¢g, —1il)
+ Tr[rlo¥o?] 1y 5 (—a) 9 Hy 5
(W' —e, +1I) op (W —¢g, —il)
4+ Tr [Tla"”ay} H;f 5 (— ﬁ Hg
(W —ep, +iI) op (W' — g, — i)
+ Tr [Tlayaﬂ Hy 5 (— )3 Hy 5}
(W —ep, +1iI) op (v — e, —iT)
T e P o  hy+ BY
= T[] [ (g
& (w—sptzl“) P (W —¢g, —il)
hy + BY ) 0 h, + B* ) (3.31)
(W' = &, + i)* Y op (e ) '
L 25y B4 I8

We note that this spin-charge coupling effect comes from the terms of qéhp and this effect

vanishes as B = 0. Furthermore, to calculate (b)+(c) by integral by parts gives us

(b) + (c) L/al@{Tr 7!

:27r

(W' —ep +1I) 0 H, o
2 (—Q)— 2
(w+w —g,+il)" — H? Ip (W' —ep, —il)" — H?
H, o 0 (W —¢g, —1il)
” p— 2(_‘CI)8_ P 1 2 2}
(Wi B e e Wt TS P(w —¢g,—il')" — H2

Hlo' (W — &, +1T) ]

+Tr |7

7_l

r
— [ de{-Tr

:277

0
(' — e, —il')* — H? (_q)%(w%—w’—s +il)? — H2
p p p p

Ho! 0 (W —¢gp,—il)

l
- —q) —
(w+w’—5p+iF)2—Hg( q>0p(w’—€p—iF)2—Hg

+Tr

](}3.33)

If We drop H}) terms of denominators in Eq. (3.33), the contribution of Eq. (3.33) becomes
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zero. It implies that we have to expand the Hg terms in denominators to obtain

r 1 ) 1 1
b) + —/dhth(—)-—
)+ () ~ T [ delyhy {30 3p{(w’—€p—if)3 (W — e, +iI)?

Q

1 1
 (We—e+il)P (W —c —zr)g}
p p
+ Hg %) 1 h2 B 1 h? )
9p (W —e, —il)? (W — e, +il)° (W —gp +iD)* (o — ¢, — )"
l
- E/dfgff”q-%{ S
s 3P0 0p (W —g, — i) (W —¢g, +1iT)
1 1

— 2}

(W' —Ep—i—zF) (w —5p—zF)

3 '
= de=h3 p .
/ M o Ve i) (e —w —iT)

= || 1 onl
- q-h3—2. 3.34
(6—w—zF) (6—w—|—iI‘)} ors'd Mg (3.34)

From Eq. (3.31) and Eq. (3.34), spin-charge coupling terms read as
\Ijio <q7 w = O) |Spin-charge = Mio ah MZBP (335)

where the g-dependent operators are defined by

M0 = 473iq - h32

P (9p
87) . (3.36)

M = 272 (—iq) - (E & — By

The first term M is original spin-charge coupling term in the absence of in-plane
magnetic field, which couples spin and charge together due to SOI for i =x, y, or z.
It is worth to notice that the second term denoted by M#% connects the charge and =z
component spin in the SOI background through B. This term is a new contribution in
the diffusion equation with a external magnetic field and it causes the bulk value of spin
density varying by B. Finally, the diffusion propagator D is defined by —(1 — ¥i) /7

in the dc limit (w = 0) and it can be transformed into the real space representation by
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replacing iq into the spatial differential operator v/
D" = —Dv* + RE" =T 4+ Rz, + (M® + M) liq- (3.37)

Form Eq. (3.24) and Eq. (3.37), one can rewrite the diffusion equation in terms of diffusion

propagator
DYD;— D) =0 (3.38)

in the dc limit w = 0. By using S; = D;/2, the diffusion equations for the case of Rashba

SOI are given by

DZ58, — T8, + 28,5, = 0

DZAS, + R 2S, —TWAS, — 28,8, =0 (3.39)

DZ;S. + RWEAS, —T*8, —2B,S, + 2B,AS, =0
where AS; =5, — S;’ and S]Z-’ = —27aNpeE);, is the bulk solution of the spin density in
the j-component. It is noticeable that only Sg survives for Rashba SOI due to applying
a homogeneous electric field E in x direction. The spin precession term R*Y = —RY*Y =
27h,,vp and the DP relaxation term I'y, =Ty, =T',,/2 = 27’h%3F can be calculated from
the definition in Eq. (3.27) and Eq. (3.29). Since the bulk solution of the spin density
is spatial-independent, one can drops the derivative terms respecting to coordinate y.
The majority of electrons are driven by E with the drift velocity vq toward —z direction
and the effective SOI field hg, is lying in y direction normal to vq for Rashba SOI case.
Such that the bulk is naturally revealed y-polarized spin density Sz in Rashba SOI case.
The magnetic field appearing in diffusion equations doesn’t change the solutions of spin
densities. It is easily to solve the spin densities S, = S, = 0 and S, = Sz. Even in the
presence of external magnetic field, there is no spin accumulation in diffusive regime for

the case of Rashba SOI.
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For the case of Dresselhaus SOI, the diffusion equations with the external magnetic

field are given by

DZS, + R™2S, — TS, +2B,5, — C1 = 0

92 ~ o
Da_yZSy — IS, —2B,5, =0 (3.40)
D(.??SZ TS, + szya%Sx - 2B,S,; +2B,5,

—B,Cy =0

where R**Y = —R**¥ = [7(2p%k* — p3/2)/m* and T, = T, = T,./2 = B*r(p%/4 —
prk? + 2p%kt). The spin-charge coupling terms C; = M*°DJ/2 is related to M™® and
Cy = 7(0hz/0p,)(0DY/0x) is related to ME. DS = —2NgeEx (e>0) is related to the
electric field. The DP relaxation terms have the relation I'** = I'¥Y = I'** /2. The bulk

solutions of spin densities are given by

St=A, (—3Co+ =)/ (1+ 242 4 2A2)

z I"K$
Sh— —2A,8" (3.41)
C1
S =2A,80 — &

where the ratio parameter is defined by A; = EZ /T All bulk spin densities S? are
the function of the electric field £ and A;. When the in-plane magnetic field is turn off
(A; = 0), these bulk spin densities become SZ(O) = S0 = 0 and S2? = —¢4 JARER T
finite value, independent of the external magnetic field.[42] All bulk spin densities are
coming from the spin-charge coupling terms in Eq. (3.35) and they vanish as E = 0.
For Dresselhaus SOI, the electric field EZ produces the bulk spin density SO in the
zero magnetic field case and Sz, SP are induced by S%(0) through B. In the semiclassical
picture and diffusion region of Iy, > l,,can, the external magnetic field B can make Sz(o)
flipping to contribute the bulk spin densities S? and SS. For S’(E), the electric field terms
produce the x-component bulk spin density and the y-component external magnetic field

can make S flipping to contribute S(E). For S)(E), it is coming from the flip of S? — S?
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via the x-component external magnetic field. For S2(E), the first term describes the flip
of S® — Sb via the y-component external magnetic field and the second term is the
contribution coming from the driving electric field. It is clear that the bulk spin densities

without the external magnetic field would be modified by B in Dresselhaus SOI case.

3.4 Theory of the spin current in the diffusion regime

The spin current operator are defined by

and each spin unit i/2 is not included here. The velocity operator is given by

m Ohy-o
m* Ipi

(3.43)

where m* denotes the effective mass of electron. The first term in right-hand side of
Eq. (4.3) is classical kinetic term and the second term is spin-dependent velocity due to
SOI. The spin current J; stands for the electron moving with the velocity v; = (p;/m*)

and spin state o;. After some algebra, one can obtain the expression for spin current

densities
P dw dN.
I q7 wa 27 dwFX
§,<<vlaz+8p )G’T(p+ Ip+3wtd) (3.44)

xmIG (p' = §,p — 5,w))®; (q,w)

where the spin indices i = x, y and z; 7 = 0, x, y and z. In the dc limit (w = 0) and at

zero temperature (w' = Ef), the spin current densities can be simplified in the form of

. 1 - . ., .
Ii=— [Xz” Dy — X[°Dy +Y” Dy — YDy (3.45)
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where the index 7' = x, y and z. The operators are defined by

= () S e (o G0t B) 70 o 55)) (o0
and
o |
Yi = (%NJ Z ;pTr GO (p+ 5w+ Br) 76" (p- L Ep)l (347)

For the SHE, it is most important to study spin currents flowing along y direction when
a static electric field is applied along x axis. To obtain the spin current densities I has

to calculate Xzi/j and Yyij

y — oh,, Ohi,
X;] =—-m" (quD(SU = iRwy(éiz + 5jz)) _— 2iqu*T2UF7y (hp X ) 51,25]0 (5]0

ok Ok,
(3.48)
and
Ohi
Yy” = 8kp5]0 (3.49)

The detailed calculation is shown in Appendix E.It is found that the last term of Xéj is
exactly cancelled out the contribution of Y7. Eqs. (22), (25) and (26) are allowed to

write down the correct spin current density expressions

0S;
dy

I(r) = V(S; — S2) + 2Ly, (3.50)
which are associated with spin densities S;. The first term of ]zi/ describes the normal
diffusion process of 5; along y direction and the second term is contributed from spin
precession due to SOI. The total spin-Hall current is defined by fs g = Iy + 15,. The

first term I,y is the spin-Hall current term in the absence of external magnetic field. The
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additional term I%, is totally contributed from the external magnetic field. Naturally,
these two terms are proportional to the linear electric field E because the origin of SHE

is coming from spin-charge coupling by SOI. Their expressions are given by

Iy = — Ry SO 4 472e ENgvp, (aﬁ x h >
j Y \ Ok, p). (3.51)

B, = —Rv(St — 527,

J J

The explicit boundary conditions of the spin current for the case of Rashba SOI are

expressed as

(

-DZ5, =0
Y T ly=+d/2
0 RY*Y i
—Dg.S, * A B8, =0 (3.52)
d R7VY 2 dh _
\ _DG_ySZ o _TSy|y:id/2 = 2N06E7' /UF,y (hp X 3_k:>z =0.

Another boundary conditions of the spin current for the case of Dresselhaus SOI are

expressed as

)
0 Tz _
—2D238 =0 3.53
Oy Y] —taso (3.53)
0 2T ohp _
| 2085, RS s~ ANoe B (bp x 52) =o0.

For Rashba SOI case, it is easily to check that I,y vanishes without an external magnetic
field §||. Furthermore, the bulk spin density Sg is equal to SZ(O) such that the total
spin-Hall current sz is still zero even in the presence of external magnetic field. For
Dresselhau SOI case, I,y is finite even without EII' However, I5, is dependent on EH and
can modulate fs g by tuning either the strength or the direction of EII'

In the cases of a 2D strip, the hard-wall boundary conditions ];(y = £d/2) = 0 are
imposed. The boundary conditions indicate that both of the spin and charge current

cannot penetrate the edges. The solutions of spin densities can be obtained by solving
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Eq. (3.37), Eq. (3.39) with the imposed boundary conditions. For Rashba SOI case, the
spin densities S, . = 0 and S, = SS(O) are analytically solved for both cases of the zero
and finite in-plane magnetic field. For Dresselhaus SOI case, the spin density has form of
S; = Zj A;;eY for indices j = 1 ~ 6, i = x,y, and 2. One can solve A;; and \; by using
the Eq. (3.40) and boundary conditions.

Furthermore, the SHE is associated with the spin polarization flow, or the spin density
accumulation on the strip edges, in response to the electric field. In the other word, the
SHE can show up in the electric conductance as well. In Eq. (3.44), i = 0 and | = x
indicate the charge flowing along x axis with the velocity operator V, = p,/m* + oh,, -

o /0p,. One can obtain the electric current density

0S.
dy

where op is the Drude conductivity and

e oh . (Oh
A= T% [21}%’, (819: X hp>z + V% <WQ: X hp)j : (3.55)

The detailed calculation is shown in Appendix F. The total current is obtained by inte-

grating Eq. (3.54) over y. Therefore, the spin-Hall correlation to the strip conductance is

given by
A A
AG = I (S, (d/2) — S, (—d/2)] = 2ESZ (d/2) . (3.56)

It is the evidence that the spin accumulations feedback to modify the traditional electric

current in z direction due to the intrinsic SHE.
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3.5 Summary

In summary, we have derived the diffusion equations for spin densities S; with or without
an in-plane magnetic field in the case of either Rashba or Dresselhaus SOI. It is emphasized
that the electron spin relaxation length [, is much larger than the electron mean free path
Imean in the diffusive regime. In the weak magnetic field limit, the diffusion equation is
proportional to linear magnetic field. In the case of zero magnetic field, the spin there
is no spin accumulation occurring near a 2D strip edges for Rashba SOI. However, the
spin densities S, and S, accumulate near a 2D strip edges for cubic Dresselhaus SOI.
The conventional electric current is also modified by the spin-charge coupling due to the
intrinsic SHE.

The case of intrinsic SHE without the external magnetic field will be studied in
Chapterd. Another case of intrinsic SHE with the in-plane magnetic field will be studied
in Chapter5. Both cases are described by the diffusion equations which are obtained in

this chapter.
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Chapter 4

The intrinsic spin-Hall effect without
the magnetic field on a

two-dimensional strip

In this chapter, the intrinsic spin Hall effect (SHE) on spin accumulation and electric
conductance in a diffusive regime has been studied for a 2D strip with a finite width d,
shown in Fig. 4.1. It is found that the spin polarization near the edges of the strip exhibits
damped oscillations as a function of the width and strength of the Dresselhaus spin-orbit
interaction (SOI) while an electric current is applied in the longitudinal direction. Cubic
terms of Dresselhaus SOI are crucial for spin accumulation near the edges. As expected,
no effect on the spin accumulation and electric conductance have been found in the case
of Rashba SOI. At the same time, the conventional electric current can be correlated by
the SHE. This correlation is associated with the magnitude of the spin accumulations on

the edges.
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4.1 Introduction

Starting from 1990, Datta and Das first proposed a quantum device to manipulate the
electron spins through the spin-orbit interaction (SOI) produced by a tunable-biased gates
atop the semiconductor [5]. The field of spintronics becomes attractive and emerging in
the solid state physics. The SOI plays an important role of coupling the electron orbital
motion and the spin degree of freedom in the semiconductor through a driving electric
field. It is because the strength of SOI is much larger in the semiconductor than in the
vacuum [13].

The spin densities can accumulate near the transverse boundaries y = £d/2 in a semi-
conductor with SOI by applying a longitudinal electric field due to SHE. The SHE can
be understood that an electron spin encounters a transverse force which is induced by a
longitudinal driving electric field [77]. It is different from the extrinsic SHE induced by
impurities scattering, however, the intrinsic SHE is owe to either Rashba [12] or Dressel-
haus SOI [11] coupling the electric field and the electron spin. For linear Rashba SOI,
the spin accumulation near the sample boundaries due to the intrinsic SHE can produce
a universal spin Hall conductivity e/(87h) in the ballistic regime [33]. However, the in-
trinsic SHE vanishes [37-40] at the arbitrary weak disorder in dc limit for isotropic as
well as anisotropic [78] impurity scattering while the sample is in presence of the linear
Rashba SOI in the asymmetric quantum well. However, the spin accumulation can occur
for cubic Rashba SOI in the hole system [41]. At the same time, the cubic Dresselhaus
SOI gives rise a finite spin Hall conductivity in the symmetric quantum well [40].

In our study, we consider the diffusion equation for spin densities S; (for i = x, y,
and z). Instead of Boltzmann equation, the Green’s functions are used in the diffusion
approach, in which the spin relaxation length [, is larger than the mean free path [,,cqn.
We treat this disorder system by taking averaging over all impurity positions. The spin
densities and spin currents are computed in linear response of the electric field E. The bulk

spin densities SO and SS(O) are finite in Dresselhaus and Rashba SOI cases, respectively.
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y= d/2 y= —d/2

Figure 4.1: The 2D strip of the width d is applied a electric field along x axis. The
transverse boundaries at y = +d/2.

Furthermore, the spin Hall current vanishes leading to zero spin accumulation in the
case of Rashba SOI. On the other hand, the spin Hall current is finite resulting in spin
accumulation at edges y = +d/2. The spatial distributions of S, and S, are shown the
symmetric and anti-symmetric properties, respectively, in Dresselhaus SOI case. However,
the spatial distribution of Sy is zero in this case. It is remarkable that the spin polarization
of S, can be changed sign at the same time, by changing either the electron density n
or the quantum well thickness w. Several boundary effects are considered for SHE with
interfaces [42, 79-81]. In a 2D strip, spin currents have to be zero for hard-wall boundaries
[42]. Based on the boundary conditions, the spin accumulation near edges can be obtained
in a 2D strip.

It is also addressed that the conventional electric current is correlated by the intrinsic
SHE. Because the spin-charge mixing induces the transverse spin Hall current resulting
in spin accumulation at y = +d/2, the correlation of the electric current is proportional

to the magnitude of the spin accumulation S, at the boundary.
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4.2 The diffusion equations of the spin densities for

intrinsic SHE

The diffusion equations of spin densities can be calculated by Eq. (3.37) in Chapter4.
Because there is no external magnetic field, these terms RE™ and M%) associated with

the magnetic field become zero. Thus the diffusion propagator is expressed as

Dil _ _DVQ . Fil + Rzlmvm al Mio|iq—>v: (41)

where the diffusion constant is D = v47/2. The spin precession term is R"™ = 475" emprom

n

and the spin relaxation term is I' = 47h; (6% — nyiny!) due to SOI The spin-charge cou-

pling term is M® = 47'32qh3 descrlbmg the spin coupling to charge through the SOI.
In general, the SOI Hamiltonian is hg, - & and hg, is the effective magnetic field of SOI.
First, we consider the case of Rashba SOI and the spin-orbit field is specifically referred
to (hi, hy) = (aky, —ak,), where « is the Rashba spin-coupling constant. In the absence

of the external magnetic field, diffusion equations from Eq. (3.39) become

DZ3S, — TG, =0

D82 AS,+ R 2S, —TWAS, =0 (4.2)
02 z 0 2z _

DZ5S. + RWEAS, —T*5, =0

where the AS; = 5, -5 ](-O)b and S ](O)b is the bulk spin density in the absence of the external

magnetic field. More generally, the bulk spin densities can be expressed by

= 472 NyeE Z L a9 a"k (4.3)

i %ok,

where the unit vector is ny = hy /h; and I'7 is spin relaxation energy.
Next, we consider the diffusion equations for the case of Dresselhaus SOI. In a suf-

ficiently narrow quantum well grown along the [001] direction, and at sufficiently low
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temperatures, one can approximate the operators k, and k2 by their expectation val-
ues < k, >= 0 and x? =< k2 >. The Dresselhaus spin-orbit field becomes (h},hy) =
(Bko(k; — K?), Bky(k* — k7). We can write down diffusion equations without the external

magnetic field in the form of

02 zzy O T —
DL S, + R 2 S, T8, — Cy =0
2
DZ;S, — TS, =0 (44)

2

0 2z zzy O _
DWSZ—F S.+ R ya—ySw =0
where the constant is given by

1 1 3 1 3
:_MxOD0:_4N E 2 3]{:8 _ -6 4 2 Y 4.
Ch 5 3 0eET B%ky 2C’ = 80 + 160 198 (4.5)

with C' = k/kp and D) = —2NyeE (e > 0). It is convenient to define R** = 2D/I,, and

['** = Da/I?,, where the spin relaxation length is

S0

hY Y
lso =4 ";}Fz - (4.6)

F

and the constant is given by a = 1+ 1/(16C? — 4). The dimensionless diffusion equations

of spin densities from Eq. (4.4) are expressed by

P NS, + Z%ASZ —aAS, =0

22
A8, — aAS, =0 (4.7)
2
5"—E2ASZ — Q%ASQC —2aAS, =0

0% by dropping all

where £ = y/ls,. Then we can calculate the bulk spin density Si(
spatial derivative terms. It turns out to obtain bulk solutions Syso)b = SO = 0 and
SO = oy /T, Tt is easily to check that AS,(§) are corresponding to the odd parity

and AS,(§) is corresponding to the even parity.
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4.3 The spin currents for the intrinsic SHE

The spin currents for either Rashba or Dresselhaus SOI are calculated in this section.
First, we consider the spin currents for the case of Rashba SOI. The expressions of spin
currents are determined by the spin densities and the spin densities are a realistic physical
quantity to measure. Under this framework, the spin current can be avoided to discuss
the exact definition of spin currents. At the same time, the boundary conditions are
determined by spin currents in a 2D strip. The spin current cannot penetrate the hard-
wall boundaries such that one requires all spin currents to be zero at boundaries y = +d/2.

The spin currents at boundaries y = +d/2 are read as

.

DEAS, =0
Y y==+d/2
o RY?Y =
e W +EAS g, =0 (4.8)
o R?YY lues
\ DgAS, ... +EEASy|yp —Tsu =0.
where spin-Hall current
2 8hp zyy Q(0)b
]SH = —2N0€ET VFy hp X 07 —R Sy /2 (49)

In this case, the bulk spin density is only SZ(,O)b = —2NyeFEart proportional to the driving
electric field £ and Rashba spin-coipling constant «. This bulk spin density Séo)b can
be simply interpreted that a shifted Fermi sphere driven by an electric field produces
a nonzero spin polarization SZ(,O)b in a 2D system. This nature implies that there is a
effective magnetic field in y axis leading to spins aligning this field, when an electric field
Et is applied. Agreeing with many papers [37-40], the spin-Hall current Isy = 0 for the
case of Rashba SOI in the disorder system. Therefore, there is no spin accumulation near
edges, S, = 0. The solutions of Eq. (4.2) are easily obtained that S,(y) = S.(y) = 0 and
Sy(y) = Séo)b by imposing the boundary conditions in Eq. (4.8).

For the case of Dresselhaus SOI, the spin currents at edges y = +d/2 are expressed
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by

0

— 2D-S,| — R™S.[:=0
ay yi
0

— 2D—S8 =0
ay Y yE
0 Ohy

— 2D—S,| —R*™S,| . —4NyeET*Y% [ h =0 4.10
9y "« ‘yi e UF( k ak%)z (410

with y* = +d/2. The dimensionless expressions of spin currents from Eq. (4.10) are

expressed by

2 AS,lex + AS.|ex + 5P =0
ZAS,Jex =0 (4.11)
DAS.|ex — AS,|ex — Isg =0

where £+ = y*/I,, and the spin-Hall current is defined by

~ ® oh
Isn = — 54T Noe Evy, ( ak: x hk)z —S0®, (4.12)

These boundary conditions are also satisfied with odd parity of :S'\; and even parity of :5’:

4.4 The solutions of spin densities in the case of Dres-

selhaus SOI

We can use the standard formula to solve the spatial distribution of spin densities. In

general, the spin density is assumed 5‘1 = ¢ and is substituted into Eq. (4.7) to obtain

A —a 0 2\
det 0 A —qa 0 =0. (4.13)

—2) 0 A2 —2a
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Thus these eigenvalues are A\ = \/a, —/a, A3, A4, A5, A\¢ and spin densities are
AS@ = ai+€\/a§ + ai_e_\/ag + bi_|_€)\35 + bi_6>\4£ + Ci+6>\5£ + Ci_6>\6£, (414)

where A\3" = Ay and A\s* = A\ and ¢ = x, y, 2. These coefficients are given by (a4, ays, a.+) =

2
a a>\j

—\2
(O, ayia O), (bxiy byia bzi) = <bxi7 O, T;bmi> and (Cxi; Cyi; Czi) = (Cmia 07 chxi) and

index 7 = 3,4,5,6. Therefore one can express spin densities in terms of

AS, = by e + b, e 4 ¢, e 4 ¢, et (4.15)

AS, = a, eV (4.16)
a— N\ =% I, e a— N\

AS, = 3p, e’ —4p M 3 e 6.t 4.17

S et 4 N At s Oy o e Cp€ (4.17)

To solve above coefficients is to substitute spin densities AS; into boundary conditions
Eq. (4.11). Immediately, one obtains the spin density AS, = 0 everywhere by substitut-
ing Eq. (4.16) into Eq. (4.7). At the same time, AS, = 0 also satisfies Eq. (4.11) at
boundaries £ = £%. The coupled equations of AS, and AS, in Eq. (4.11) have to be

solved numerically. These numerical results are shown in next section.

4.5 Numerical results and discussions

In this section, the intrinsic SHE give rise the spatial distribution of the spin density S;
(i = z,y, z) exhibits significant symmetry properties on the 2D semiconductor strip in
the absence of an in-plane magnetic field. The spin accumulation strongly depends on the
specific SOI form. For the case of Rashba SOI, there is no spin density S, accumulating
near the edges because the spin-Hall current is exactly cancelled by arbitrary weak disorder
in the diffusive regime. Only the bulk spin density SS = —27alNyeF is induced by
Rashba SOI through a driving electric field E2. However, the spin density S.(,) shows

the anti-symmetric (symmetric) accumulation behavior on the 2D strip for the case of
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Dresselhaus SOI. Below, our numerical results demonstrate the spin density behavior for
the Dresselhaus SOI.

In our numerical result, the effective mass of GaAs is 0.067my and my is the free
electron mass. We choose the electric field £ = 25mV/um. Now, it is convenient to
define the electron density ng = 10'°(1/m?) such that the units of the Fermi wave vector
and the Fermi velocity are krg = /27ng = 7.92 x 10" (1/m) and vpe =1.36 x 10 (m/s),
respectively. The typical mean free path is l,eqn = 1 pm so that the unit scattering
time 79 = 7.3 x 107'2(s) is given by lnean = vroTo- The Dresselhaus SOI constant is
3 =27.5eVA° [13] and the DP relaxation energy is given by I'*® = 0.0042(C*—C?/2+1/8)
(meV). The unit of quantum well thickness is wo = 1 x 107® m such that the nth subband
energy are € = h*(nw/wg)?/2m*. By above definition, we can study the variation of spin
densities in various parameters.

The electron density is n = n*ng and quantum well thickness is w = w*wg, where n*,
w* are dimensionless numbers. The total electron energy is restricted to be lower than the
second subband energy of quantum well leading to h*k%/2m* + el > €2 in a 2D system.
The Fermi wave vector is kg = kpov/n* and the parameter denotes C' = C / VX , where
X = nw? and Cy = ko/kro. This restriction of energy gives us X < 3C2. Secondly, the
spin relaxation length [, in Eq. (4.6) is larger than the electron mean free path l,cqp in the
diffusive regime. Therefore we have the another restriction for X > [4002 —13.16w?%, 0] ,naz-
The Fig. 4.2 shows that spin accumulation ST respecting to y = 4=d/2 are plotted as a
function of X in various quantum well thickness (a) w = 2 x 107®m, (b) 2.5 x 10~°m,
and (c) 3 x 107®m with an electric field £ = 25mV/um. This criterion in Fig. 4.2 shows
that SF can be changed the polarization direction by increasing X cross a critical value
X.. Because the spin-Hall current depends on parameter X and X. = 34.15 is fixed for
various thickness w. The spin-Hall current in Eq. (4.12) vanishes at the critical point
X,.. This result implies that the magnitude of the spin accumulation S depends on the
electron density n for a fixed w.

For the case of Dresselhaus SOI, spin density AS; = S; — S? depends on not only X
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Figure 4.2: Spin densities S (1/um?) and spin-Hall current Iy in unit of
TBk%NoeED/(hl,,) are plotted as a function of X = nw? for various quantum well
thickness: (a) w = 2 x 1078m, (b) 2.5 x 1078m, and (c) 3 x 10"8m. SZ is the spin
accumulations for y = d/2 and y = —d/2, respectively. These bold(red) arrows indicate
the allowed ranges of parameter X: (a) 10.4 < X < 47.28, (b) 0 < X < 47.28, and (c)
0 < X < 47.28. The corresponding electron density is given by n = X/w?
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but also the 2D strip width d for a fixed w. It is clear that AS, vanishes in the absence
of an in-plane magnetic field for the case of Dresselhaus SOI. The bulk solution of spin
density S ——c) /T** is given by Eq. (4.3)for the zero magnetic field case. Both of bulk
spin densities S’; and S° are equal to zero due the characteristics of a cubic Dresselhaus
SOI. The dependence of spin densities AS,(y = d/2) at left-hand side edge y = d/2, is
represented as a function of the strip width d in the Fig. 4.3 for a fixed quantum well
thickness w = 3wy, where wo = 1 x 107®m. The spin density at y = d/2 is shown in the
unit of 1/pum?. All the length scales of the width d and the transverse coordinate y normal
to the electric field EZ are in the unit of a spin relaxation length lgo. The blue (solid),
red (dashed), and green (dotted) curves are plotted for different parameters X =22
30, and 40, respectively. The relation x/kp = Cy/v/X gives us the ratio of r/kp =
0.84, 0.72, and 0.63 corresponding to X =22, 30, and 40, respectively. These curves
are effectively corresponded to the variation of electron densities (a)n = 2.4ng, 3.3ng,
and 4.4ng in Fig. 4.3 with ng = 1 x 10'%(1/m?). The spin density AS, is symmetric in
transverse coordinate y to indicate AS,(—d/2) = AS,(—d/2). It is shown that magnitude
of AS,(d/2) saturate for a fixed X when the strip width d is beyond several lgo.

The dependence of spin densities AS.(y = d/2) at left-hand side edge y = d/2, is
represented as a function of the strip width d in the Fig. 4.4. The spin density is shown
in the unit of 1/um?. The blue (solid), red (dashed), and green (dotted) curves are
plotted for different parameters X =22, 30, and 40, respectively. It is different from AS,
because the spin density AS, is anti-symmetric in transverse coordinate y to indicate
AS.(y =d/2) = =AS,(y = —d/2). In cases of X = 22 and 30, the spin accumulations
AS,(y = d/2) show the same polarization direction due to X < X.. However, in case of
X =40, AS.(y = d/2) show the opposite polarization direction to cases of X = 22 and 30
due to X > X.. The general features also show that magnitude of AS,(y = d/2) saturate
for a fixed X when the strip width d is beyond several lso. This result is similar with
Fig. 4.3. Because the spin relaxation dominates a large contribution to AS;(y = d/2) as

the strip width is comparable to the [go. When the strip width d is much larger than /g0,

76



CHAPTER 4. THE INTRINSIC SPIN-HALL EFFECT WITHOUT THE MAGNETIC
FIELD ON A TWO-DIMENSIONAL STRIP

............ X=40 (K/ kF:O63)
= = -X=30 (k/k =0.72)
— X=22 (k/k =0.84)

d/2) (1/um?)

(y=

X

AS

---------------------------------------------------------------------------------
oo®
.
o®

Figure 4.3: Spin densities AS,(y = d/2) are plotted as a function of the strip width d in
unit of g for various values of X (k/kr) in a fixed w = 3wy, where the unit of thickness
denotes wo = 1 x 107%m. The blue (solid), red (dashed), and green (dotted) curves are
represented for X =22, 30, and 40, respectively. The spin densities AS,(y = —d/2) have
the same values with respect to AS,(y = d/2) due to even parity property of AS,(y).
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Figure 4.4: Spin densities AS,(y = d/2) are plotted as a function of the strip width d in
unit of lgo for various values of X (k/kr) in a fixed w = 3w, where the unit of thickness
denotes wo = 1 x 107%m. The blue (solid), red (dashed), and green (dotted) curves are
represented for X =22, 30, and 40, respectively. The spin densities AS,(y = —d/2)
have the same values but opposite sign with respect to AS,(y = d/2) due to odd parity
property of AS,(y).
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the spin coming far from the edge is completely relaxed. Thus the accumulation of spin
densities AS;(y = d/2) is dominated by the electron spin in the region within the several
lso-

The Fig. 4.5 and Fig. 4.6 present that the total spin densities S; (i = z,z) which
include the bulk spin densities Sf © " According to the Eq. (4.7) and Eq. (4.11), the total
spin density S, (y) exhibits the symmetric property to the transverse coordinate y. On the
other hand, the spin density S,(y) exhibits the anti-symmetric property to the transverse
coordinate y. The blue (solid), red (dashed), and green (dotted) curves are plotted in a
fixed w = 3wy for various parameters X = 22, 30, and 40, respectively. The S,(y) are
shift by the bulk values S2 which are related to different values of X. It is easily found
that the polarization direction of S, (y) near two edges is reversed for X = 40 respecting

to cases of X = 22, and X = 30.

4.6 Summary

In summary, we have studied the spatial distribution of the spin density S; without an
in-plane magnetic field for the case of either Rashba or Dresselhaus SOI. In the case of
zero magnetic field, the spin there is no spin accumulation occurring near a 2D strip edges
for Rashba SOI. However, the spin densities S, and S, accumulate near a 2D strip edges
for cubic Dresselhaus SOI. We also find that spatial distribution of S, demonstrates the
symmetric property in y axis. On the other hand, spatial distribution of S, demonstrates

the anti-symmetric property in y axis, corresponding to the intrinsic SHE.
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Figure 4.5: Total spin densities S,(y) are plotted as a function of transverse coordinate y
in unit of ls,. The blue (solid), red (dashed), and green (dotted) curves are represented
for X = 22, 30, and 40, respectively. The total spin densities S, (y) exhibit the symmetric

behavior. The bulk values of 52(0) depend on the values of X.
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Figure 4.6: Total spin densities S, (y) are plotted as a function of transverse coordinate y
in unit of ls,. The blue (solid), red (dashed), and green (dotted) curves are represented
for X = 22, 30, and 40, respectively. The total spin densities S,({) exhibit the anti-
symmetric behavior. The bulk values of S — 0 in the absence of an in-plane magnetic
field.
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Chapter 5

The intrinsic spin-Hall effect with an
in-plane magnetic field on a

two-dimensional strip

In this chapter, we studied the intrinsic spin-Hall effect (SHE) induced by a driving electric
field £'Z, in the presence of an in-plane magnetic field By = B,# + B,y on a 2D strip. In
the diffusive regime, the spatial distribution of the spin density S; (i = z, vy, 2) is calculated
from a spin diffusion equation derived from the nonequilibrium Green’s function. In the
presence of the in-plane magnetic field, the z-component spin density .S, normal to the 2D
strip remains zero with or without By field for the case of Rashba spin-orbit interaction
(SOI). For the case of Dresselhaus SOI, the spatial distribution of spin density show
either symmetric or asymmetric features which depend on the direction of the in-plane
magnetic field. By applying the longitudinal magnetic field B,, the spatial distributions
of spin densities S; and S, show the even parity in B, but S, shows the odd parity in B,.
The asymmetric property of S, versus B, is demonstrated for the intrinsic SHE in case
of Dresselhaus SOI. The extrinsic SHE experimentally performed the symmetric behavior
of S, at boundaries by applying in-plane magnetic field B,. These robust features of spin

densities provide a possible diagnostic tool to identify the intrinsic and extrinsic SHE by

82



CHAPTER 5. THE INTRINSIC SPIN-HALL EFFECT WITH AN IN-PLANE
MAGNETIC FIELD ON A TWO-DIMENSIONAL STRIP

applying an in-plane magnetic field.

5.1 Introduction

More recently, the most important issue is to generate and control the spin-polarized
electrons in the achievement of spin-based semiconductor devices [1, 44]. Among the
different methods, spin-orbit coupling, which couples the electron spin to its momentum
is attracted a lot of remarkable interest. Because the energy gap Ej in a semiconductor is
much larger than the effective energy gap moc? in the vacuum (my is the free electron mass
and c is the light speed) such that the ratio of the SOI is proportional to Ey/mgc* ~ 10°.
In conclusion, the strength of SOI is much larger in a semiconductor than in the vacuum
[13].

In the spin-orbit coupling system, a nonzero spin current is predicted in the direction
perpendicular to the applied electric field due to the intrinsic SOI or extrinsic impurities
scattering, referring to the intrinsic and the extrinsic SHE, respectively. The intrinsic
SHE is involved with either Rashba SOI [12] or Dresselhaus SOI [11], or both, and the
behavior of spin accumulations sensitively depends on the different type of SOI. In contrast
to intrinsic SHE, the extrinsic SHE is contributed by skew-scattering processes, which
induce the spin-dependent transport perpendicular to the electric field [31, 58]. Recently,
the several experiments succeed to measure the SHE by either electronic [82] or optical
detections. So far, the intrinsic SHE was demonstrated for the p-doped 2D electron gas
[35]. Most experiments demonstrated the extrinsic SHE [36, 59].

The 2D strip with two edges at y = +d/2 is sketched in Fig. 5.1. The in-plane
magnetic field By with a angle 6 respecting to the electric field E. The intrinsic SHE
vanishes [37-40] for the disorder approach in the dc limit with Rashba SOI. At the same
time, the Dresselhaus SOI gives a finite spin Hall conductivity due to the crystalline
inversion asymmetry [40]. Instead of detecting spin current, one realistic way to detect

the SHE is measure the spin accumulations in a semiconductor [36]. It is important to
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study the behavior of the spin accumulations near the boundary due to Dresselhaus SOL.
The symmetric accumulation of .S, is demonstrated and S, is shown the anti-symmetric
accumulation versus y-coordinate in the absence of the external magnetic field.

We have studied that the spin accumulations are induced by the intrinsic SHE with an
applied in-plane magnetic field in this chapter. The spin transport and relaxation of the
intrinsic SHE with a perpendicular magnetic field have been studied in the diffusion ap-
proximation for Rashba SOI [83, 84]. Recently, Rashba et al. studied the time-dependent
electric field with a static in-plane magnetic field to produce a z-component spin accumu-
lation via either non-parabolic band or the anisotropic scatterer [85]. Lin et al. studied
the spin current and spin-Hall conductivity for short-range and remote impurities in the
case of the intrinsic SHE with an in-plane magnetic field [86]. As known, the spin cur-
rent is not conserved and its definition still remains an issue [54]. However, the spin
accumulations can be realistically measured in the recent experiment[36]. Therefore, it is
interesting to study the the behavior of the spin accumulation versus an in-plane mag-
netic field near the boundaries. The symmetric property of spin accumulations have been
observed experimentally when an in-plane magnetic field normal to the electric field is
applied with the same magnitude but in the opposite direction [36, 59, 76]. This sym-
metric spin accumulation is explained as the extrinsic SHE in the presence of an in-plane
magnetic field [76]. As know, the extrinsic SHE produces the zero bulk spin density S,
which is perpendicular to 2DEG due to the spin-dependent distribution being propor-
tional to linear electron momentum [87]. Therefore, the lowest-order spin accumulation
S, is expected up to the second order of the in-plane magnetic field resulting in symmetric
S.(y) to the in-plane magnetic field [36, 59]. In Sec. 5.2, the diffusion equations of spin
densities are studied for the intrinsic SHE in the presence of an in-plane magnetic field. In
Sec. 5.3, the spin currents are calculated to satisfy the boundary conditions. The solution
for spin densities with boundary conditions are shown in Sec. 5.4. The numerical results

are shown in Sec. 5.5 and the summary is in the Sec. 5.6.
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B y

y=d/2 y=-0/2

Figure 5.1: Top-view schematic illustration of the 2D strip with a width d. The longitu-
dinal driving electric field is applied in the x-axis. The tunable in-plane magnetic field B,
can be applied in this 2D strip. The angle 0 is between the in-plane magnetic field and
the electric field.

5.2 The diffusion equations for the intrinsic SHE with
an in-plane magnetic field

The effect of the in-plane magnetic field for the spatial distribution of spin densities
can be calculated by the diffusion equations with the spin-orbit coupling. The diffusive

propagator with an external magnetic field in Eq. (3.37) of Chapter3. is given by

where the diffusion constant is D = v%7/2. The spin precession term R?™sy, . spin
relaxation term I') and spin-charge coupling M™|;,_o are as the same as the results
without a magnetic field. In the presence of an in-plane magnetic field, there are two
additional terms R%™ and M#|,q_ participating into diffusive equations. The first term
R%™ is associated with the spin precession due to the in-plane magnetic field. The second

term M?%|;q is associated with spin-charge coupling via the in-plane magnetic field.
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Below, we study the diffusion equations derived in Chapter3 for Rashba SOI and
Dresselhaus SOI with an in-plane magnetic field. First, for the case of Rashba SOI, the

diffusion equations in the presence of an in-plane magnetic field are given by

5> rx R
Dg S, —T*S, +2B,S, =0
D(,??AS?J—FRW?/@%SZ—FWAS@,—QBzSz:0 (5.2)

2

Daa?sz + RzyyaﬁyASy —TI**S, — 2§y5{]; + QExASy =0

from Eq. (3.37) of Chapter3. The notation is AS; = S; — S? and S? is the bulk spin
density for the case of Rashba SOI. It is surprisingly found that bulk spin density SJ’? =
—27aNyeld;, coincides with the bulk spin density SZ(,O)b without the magnetic field in
Chapterd. The density of state at Fermi energy is Ny, 7 is the scattering time due to
impurities, and driving electric field is Ez. Obviously, the bulk spin density vanishes while
the driving electric field E is turn off. The magnetic field energy Ex(y) is contributed from
the in-plane magnetic field B,,). For Rashba SOI, the spin precession terms have specific
forms of R*Y = —RY*Y = 27hy,vp and the DP relaxation terms are 'y, =T, =1T,,/2 =
27'hiF7 where kr is the Fermi wave vector and Fermi velocity is vpr. When an in-plane
magnetic field is applied, electron spin densities can be flip by the magnetic field. The first
equation of Eq. (5.2) shows that magnetic field B, flip the spin density S, contributing to
Sz. The second equation of Eq. (5.2) shows that magnetic field B, flip the spin density
S. contributing to S,. The last equation of Eq. (5.2) shows that magnetic field B, flip
the spin density Sy, contributing to S..

Next, we consider the case of Dresselhaus SOI from Eq. (3.40) of C'hapter3 such that

the diffusion equations are expressed as

2

DS, + RLS, — 178, +2B,S. — C; =0
Dg)?sy —Iws, —2B,5. =0 (5:3)
DZ;S. — %8, + R LS, — 28,5, + 28,8, — B,Cy = 0
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where the spin precession term R*Y = —R™ = (7(2k%k? — k}/2)/mx* is due to the
SOI and the spin relaxation term is 'y, = Ty, = I'../2 = 27(k%/4 — kEr* 4 2kE67).

The Fermi wave vector is kr and the expectation value 2

=< k? > is in the crystal
growth direction [001]. The spin-charge coupling terms C; = M*°DJ/2 is contributed
from the spin-charge coupling M® of zero magnetic filed with D} = —2NgeE (e > 0).
Cy = 7(0ht [0k,)(0DY/dz) is coming from spin-charge coupling M% through an in-plane

magnetic field. The dimensionless forms of Eq. (5.3) can be written by

22 AS, + 25 AS, — aAS, +2aA,AS, =0

0¢2
A, — aAS, —2aA,AS, =0 (5.4)
ZAS. —22AS, — 2aA,AS, + 2aA,AS, — 2aAS. =0

where dimensionless length & = y/ls, and a = 1 + 1/(16C? — 4). The ratio parameter
A = E/ ['** denotes the strength of the magnetic field in the unit of ['**. Then we can
calculate the bulk spin density S? by dropping all spatial derivative terms in Eq. (5.3). It

turns out to obtain bulk solutions

—SL (14 2A2) — CoA?

Sh=
* 1+2A2 +2A2
i
o _ A (29
Y 1+2A2 +2A2
Ay (L0 + &
S: _ y( 22 F) (5.5)
1 +2A2 +2A2
where these constants are given by
1 1 3 1 3
:_MIODO:_4N E238 -6 “ 4 2 Y .
oh% 0 Oh% 1
CQ = Tak: %Dg = _2€ETNOak: = —2N06ET6]€% (5 — 02) (57)

with C' = k/kr. When the magnetic field turns off, the bulk spin densities are recovered

the results of zero magnetic field Sz(z) = Sé?il; =0and S° = S0P in Eq. (4.3) of Chapter4.
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5.3 Theory of the spin current in the diffusion regime

The spin currents with the external magnetic field for either Rashba or Dresselhaus SOI
are calculated in this section. The linear order correlation to spin currents vanishes in
Appendix E due to the parity properties. We can neglect the higher order correlations
B? contributing to spin currents. From the Sec. 3.4 of C'hapter3, the spin currents with
magnetic field are totally the same with the spin currents without magnetic field. The
expressions of spin currents are determined by the spin densities and the spin densities are
a realistic physical quantity to measure. The spin current cannot penetrate the hard-wall
boundaries such that one requires all spin currents to be zero at boundaries y = +d/2.
First, we consider the spin currents for the case of Rashba SOI. The spin currents at

boundaries y = £d/2 are read as

(
DS, =0
Y Tly=+d/2
0 RY?Y -
Dé?_yASy yetd/2 2 Zly:id/2 =0 (5.8)
b RZYY L oy
L Da_ySZ’yid/z JrTASyly:ﬂEd/Q 25 &
where spin-Hall current
2 ahp z b
ISH = —2N0€E7' VFy hp X ok —R nyy/Q' (59)

Combining the diffusion equations Eq. (5.2) and boundary conditions Eq. (5.8), one can

easily to solve the spin densities in the presence of an in-plane magnetic field given by

Sy (y) = Sy = —2NpeEar, (5.10)
S:(y) =0

For Rashba SOI, the magnetic field is expanded up to the first order and one can conclude

that the effect of the magnetic field does not change the spin densities S;(y). The solutions
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of spin densities in the presence of EII are as the same as results of the zero magnetic field.
Of course, the results should be changed when the higher order correlations of magnetic
field is included.

For the case of Dresselhaus SOI, the spin currents at edges y = £d/2 can be expressed

by

0

— 2D—S,| — R*¥S,| .=0
8y yi Y
0

— 2D—8 =0
ay Y yE
0 Ohy,

— 2D—S,| —R*™S,| . —A4NyeET*% (h =0 5.11
oy s |yi a TUF( e 8kfc>z ( )

with y* = £d/2.The dimensionless expressions of spin currents from Eq. (4.10) are ex-

pressed by

C%ASA&:I: + ASZ|5i + Sgo)b = O
(;%Asyki =) (5.12)
%Aszk:t = ASxkﬂ: .- IEH =0

where ¢+ = y*/I,,. The spin-Hall current with an in-plane magnetic field is defined by

78k NoeE (142A2) g1 +2A2 (L — C?)

']VB
SH 7 {g2 1+ 2A2 + 2A2 b

(5.13)

where these constants are given by

—64C% +48C* +8C?* -3
g1 = (5.14)
64C4 — 32C2 + 8

and

sCt—4c? -1
P27 7gce—g

(5.15)
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In order to solve the spin densities with an in-plane magnetic field, we have to solve the

Eq. (5.4) by imposing the boundary conditions in Eq. (5.12).

5.4 The solutions of spin densities with the in-plane
magnetic field for the case of Dresselhaus SOI

We can use the standard formula to solve the spatial distribution of spin densities. In

general, the spin density is assumed 5‘1 = ¢ and is substituted into Eq. (5.4) to obtain

A —a 0 2al\, + 2\
det 0 N g —2CLAm =" (516)
—2X —2aA, 2al, yy -

Thus these eigenvalues are A\ = y/a, —/a, \3, A4, A5, \¢ and spin densities are
ASZ = Cli.;.e\/a5 + ai_e_\/ag g bi_;JS)\?’5 i bi_e)‘45 == CH_G)%5 + ci_e’\ﬁg, (517)

where A\ = Ay and A} = A\g and 7 = z,y, 2. These coefficients satisfy the relations

al

(Qpa, Ay, Qrp) = (m,ayiﬂ); (5.18)
—al\ a— \?

ba: 7b 7bz = ba; ) - b:va - b:c ’ 5.19

(bos, by b ( T 2(ahy + N) T 2 (ahy, + A;) i) (5.19)

—al\, a— N\
Tt s Cz = Tt Tt ‘ T s 5.20
(Cos, ye, C22) (Ci 2 (ah, + N) 2(aAy+/\i)Ci) (5.20)

and index j = 3,4,5,6. Therefore one can express spin densities in terms of
AS, = f+aay+e\/aé + foay_e Vo £ by e b eME oy e et (5.21)
AS, = ay+e‘/55 + f,ay,e"/ag 4 13bpy €3¢ 4 ryby_ M+ r5c,y e+ rge,_e (5.22)
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and

AS, = p3byi e + pyby_ e + prcy e + peey_ e, (5.23)

where 7, = —al;/(a\y, + N;), pi = a—A?/2(a\,+ Ni), and fr = al,/(al, £ V/a).
To solve above coefficients is to substitute spin densities AS; into boundary conditions
Eq. (5.12). These diffusion equations of AS,, AS, and AS, are coupled through the
in-plane magnetic field in Eq. (5.4) and they have to be solved numerically. The total
spin densities can be obtained by S; = AS; + S?. These numerical results are shown in

next section.

5.5 Numerical results and discussions

The spin accumulations due to intrinsic SHE has been investigated for the 2D strip in
the presence of an in-plane magnetic. The driving electric field Fz is applied on a 2D
strip and the transverse direction is in the y axis with boundaries at y = +d/2. For
the case of Rashba SOI, there is no spin accumulations in the diffusion region with the
in-plane magnetic field on the 2D strip. The diffusion equation and boundary conditions
of the spin density on a 2D strip with the in-plane magnetic field have been calculated in
Sec. 5.3. According to Eq. (5.2) and Eq. (5.8), it is easily to obtain zero spin accumulation
corresponding to the case of Rashba SOI in the presence of By.

For the case of Dresselhaus SOI on the 2D strip, the spin-Hall current [73 survives
after averaging over all impurities without the external magnetic field. Furthermore, it
is remarkable the behavior of the spin accumulation due to the in-plane magnetic. As
following, we will focus on the case of Dresselhaus SOI because there is no accumulation
for the case of Rashba SOI with the in-plane magnetic field or without the magnetic field.
It is known that the spin density S, is exhibited the anti-symmetric behavior but S, is
exhibited the symmetric behavior in the case of B = 0. For B # 0 case, the symmetric

properties of spin accumulations are determined by not only the magnitude but also the
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direction of Bj. The hard-wall boundary conditions requires spin-Hall current I; =0
at the boundaries. The nonzero spin-Hall currents are compensated by the spin density
accumulations near the boundaries to achieving ]; = 0 in Dresselhaus SOI case.

In our numerical result, the effective mass of GaAs is 0.067my and mg is the free
electron mass. We choose the electric field E = 25mV/um. Now, it is convenient to
define the electron density ng = 10'°(1/m?) such that the units of the Fermi wave vector
and the Fermi velocity are krg = /271 = 7.92 x 107 (1/m) and vpy =1.36 x 10° (m/s),
respectively. The typical mean free path is l,eqn = 1 pm so that the unit scattering
time 79 = 7.3 x 1071%(s) is given by lnean = vroTo. The Dresselhaus SOI constant is
3 = 27.5¢VA” [13] and the DP relaxation energy is given by I'®* = 0.0042(C*—C2/2+1/8)
(meV). The unit of quantum well thickness is wg = 1 x 107 m such that the nth subband
energy are €7 = h%(nmw/wgy)?/2m*. By above definition, we can study the variation of
spin densities in various parameters. The effective g-factor g* = 0.44 is used in GaAs
and the magnetic field energy EII is equal to 0.013 meV corresponding to B = 1 Tesla.
The electron density is n = n*ng and quantum well thickness is w = w*w,, where n*, w*
are dimensionless numbers. The Fermi wave vector is kp = kpov/n* and the parameter
denotes C' = Cy/v/' X, where X = nw? and Cy = ko /kpo.

The y-direction distribution of spin densities reveals the symmetric and anti-symmetric
characteristics on the 2D strip due to the longitudinal magnetic field B,. When the lon-
gitudinal magnetic field B, is applied, the spin densities can be calculated from Eq. (5.4)
with boundary conditions in Eq. (5.12). The spin densities S, and S, turn out to be
the odd function of y, but S, results in the even function of y. The Fig. 5.2 (a)-(c)
show that spin densities are plotted as a function of y for the parameter X = 22 with
a fixed quantum well thickness w = 3 x 107®m. The Spin density S; in unit of 1/um?
are plotted for B, = —300mT in triangle (black) curve, B = 0 in solid (blue) curve,
and B, = 300mT in dashed (red) curve for each panel. The spin densities S, and
S, are symmetric and anti-symmetric respecting to y, and S, = 0 in the case of zero

magnetic field [42]. Furthermore, one can be examine Eq. (5.4) to analyze behavior of

92



CHAPTER 5. THE INTRINSIC SPIN-HALL EFFECT WITH AN IN-PLANE
MAGNETIC FIELD ON A TWO-DIMENSIONAL STRIP

~ A B=-300mT
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3 30 ----B =300mT
n

Figure 5.2: Spin densities S; are plotted as a function of y in the unit of [, for a fixed
w = 3 x 1078m in various B,. Other parameters are X = 22 and the electron density n =
2.4 x 10'°(1/m?). Each panel shows the different curves with parameters B, = —300mT
(black-triangle), B = 0 (blue-solid) and B, = 300mT" (red-dashed). Spin densities S,, S,
and S, in the unit of 1/um? are shown in (a), (b) and (c), respectively.
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Figure 5.3: Spin densities S; are plotted as a function of y in the unit of [, for a fixed
w = 3 x 107®m in various B,. Other parameters are X = 22 and the electron density n =
2.4 x 10'%(1/m?). Each panel shows the different curves with parameters B, = —300mT
(black-triangle), B = 0 (blue-solid) and B, = 300mT (red-dashed). Spin densities S, and
S, in the unit of 1/um? are shown in (a) and (b), respectively.
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spin densities for B, # 0 case. By applying B,, S;, and S, satisfy the symmetry and
anti-symmetry respecting to y in Eq. (5.4). At the same time, S, also satisfy the anti-
symmetry of y in Eq. (5.4). Fig. 5.2 also presents that S, and S, are the even parity in
B,. In summary, the spin densities correspond to relations of S, (.)(y, By) = Su(2)(y, —Bs)
and Sy(y, B;) = —9S,(y, —B,) as reversing the direction of B,. The spin densities also
correspond to relations of Sy..)(y, By) = —Sy)(—y, By) and S,(y, By) = Sa(—y, B,) as
reversing the direction of y.

Next, we consider that the in-plane magnetic field B, perpendicular to £'% is applied
on the 2D strip. The Fig. 5.3 (a)-(b) show that spin densities are plotted as a function
of y for the parameter X = 22 with a fixed quantum well thickness w = 3 x 10~%m.
The Spin density S; in unit of 1/um? are plotted for B, = —300mT in triangle (black)
curve, B = 0 in solid (blue) curve, and B, = 300mT in dashed (red) curve for each panel.
Immediately, S, = 0 is straightforward obtained from the second equation of Eq. (5.4),
where S, is decoupled with S; and S,. S, and S, present the asymmetric properties in y
by applying B, on the 2D strip. In summary, the spin densities correspond to relations of
Sz(y, By) = Sz(—y, —By) and S,(y, By) = —S5.(—y, —B,). The experimental data showed
the symmetric behavior of S, versus B, and it is explained by the extrinsic SHE [36, 76].

Next, we focus on the parity properties of spin densities S5 at edges y = +d/2 for the
case of y — —y with a fixed in-plane magnetic field and another case of B,(,) — —Byy)
at a fixed edge y = d/2 or y = —d/2. The edge spin densities S are plotted in Fig. 5.4
for ¢ = z, y and z. In the case of y — —y, a fixed magnetic field B, is applied, it
can be found out the S and S} satisfying the same parity as y — —y in the second
equation of Eq. (5.4). Therefore, ST have to satisfy the opposite parity to S;[(Z) such that
three equations become consistent in Eq. (5.4) corresponding to boundary conditions.
These parities obey the S;(z) (y) = =S, ,)(—y) and S7(y) = S; (—y) and are shown in
Figs. 4 (a) and (b). For the case of B, — —B,, Eq. (5.4) reveal the characteristics of
Sy (Bz) = =S}, (=B,) and S (B;) = =S} (~B,) at the edge y = d/2. With the same

argument, the characteristics of S, _(B;) = =5, (=B;) and S (B;) = =5, (=B,) is

Y
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also satisfied at the edge y = —d/2. These features are plotted in Fig. 5.4 (a) and (b). In
the case of y — —y, a fixed magnetic field B, is applied, the Syi = 0 is easily to calculated
from the second equation of Eq. (5.4) but Si[(z) become asymmetric. In this case, S;E(Z)
also show asymmetric behavior for B, — —B, at y = ®d/2. These features are shown
in Fig. 5.4 (¢) and (d). If the B, and coordinate y are reversed at the same time, it is
found out that S,(B,,y) = —5.(—By, —y) and S,(By,y) = Sz(—B,, —y) are agreed with
the Eq. (5.4). It is important that those signature of spin densities can characterize the
intrinsic SHE in the presence of the in-plane magnetic field.

More clearly, Fig. 5.5 (a) and (b) present the contour plot of spin densities S, versus
y with varying B, and B, respectively. The quantum well thickness w = 3 x 107%m is
fixed for X = 22 and the electron density is n = 2.4 x 10'°(1/m?). In Fig. 5.5 (a), spin
S, demonstrate the anti-symmetric accumulations in transverse coordinate y by varying
B, from 400 mT to —400 mT'. It also shows that the accumulation of S, decreases near
the edges as the B, increasing. However, the Fig. 5.5 (b) demonstrates the asymmetric
behavior of S, in transverse coordinate § by varying B,. It is because the bulk solution
of S, is proportional to linear B, and the spin accumulation S, is also affected by the

boundary conditions leading to asymmetry characteristic.

5.6 Summary

In summary, we have studied the spatial distribution of the spin density .S; with an in-plane
magnetic field for the case of either Rashba or Dresselhaus SOI. In the weak magnetic
field limit, the diffusion equation is proportional to linear magnetic field. For Rashba
SOI case, the in-plane magnetic field doesn’t affect the spatial distribution of the spin
density in space. For Dresselhau SOI case, the spatial distribution of spin density shows
symmetric or asymmetric properties depending on the direction of the in-plane magnetic
field. This result provide a possible way to identify the intrinsic SHE and extrinsic SHE

via an in-plane magnetic field.
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Figure 5.4: The spin densities S is plotted as a function of the magnetic field B, and
B, for i = z, y, and z. The quantum well thickness w = 3 x 107%m is fixed for X = 22.
The notation SijE denotes the spin density S; at y = £d/2.
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Figure 5.5: The contour feature of the spin density S, is plotted as a function of y versus

the (a) longitudinal magnetic field B, and (b) transverse magnetic field B,. The 2D strip
edges are from y = —5 to y = 5.
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Chapter 6

Spin-Hall interface resistance in

terms of Landauer-type spin dipoles

The nonequilibrium spin dipoles which are induced around spin-independent elastic scat-
terers by the intrinsic spin-Hall effect in the two-dimensional electron gas (2DEG) subject
to the Rashba spin-orbit interaction. The spin polarization normal to the 2DEG can be
calculated in the diffusive regime around the elastic scatterer. It is found that there is
the finite spin polarization around each impurity. However, the macroscopic spin density
turns out to vanish by averaging of individual spin dipole distribution over impurities for
a hard wall boundary. At the same time, the spin density is finite near the boundary of

2DEG for a soft-wall boundary.

6.1 Introduction

The recent intensive studies on the spin-Hall effect (SHE), it has attracted a lot of interest
because the SHE provides a method to manipulate electron spins by applying an driving
electric field Ez. The electric field leads to spin flow in the transverse direction such that
the spin accumulation at lateral edges and spin polarization in the bulk, [33, 35, 36, 42]

demonstrate great potential in the generation of spin transport and accumulation in the
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semiconductor.

For the SHE, one can calculate the spin current, [89] which carries the spin polarization
to buildup the spin density near the sample boundaries. This is one of significant features
for the SHE. However, the spin accumulation is not the only special feature belonged to
the SHE. There is an analogical phenomena to the charge transport. Landauer charge
dipoles can be produced by a dc electric current around impurities [90, 91] and observed
experimentally [92]. The Landauer dipoles can been calculated from the asymptotic form
of the electron waves scattered elastically by an isotropic scatterer. Naturally, the spin-
Hall current can induce the nonequilibrium spin dipoles around impurities as well. The
spin dipole (or spin cloud) is expected to appear not only for a spin-dependent scatterer
in the case of the extrinsic SHE, but also for a spin-independent scatterer in the case of
the intrinsic SHE. The spin-dependent local chemical potential difference ps = puy —
is a response of the dc electric current. For the 2DEG, the spin-dependent potential
difference is related to z-polarized (perpendicular to 2DEG) spin density following the
relation S, = Nyous, where Ny is the density of state near the Fermi energy. Therefore,
the spin-Hall resistivity is associated with the accumulation of S, near the boundaries. So
far, to measure the spin polarization is the realistic way to detect the SHE [35, 36]. The
conventional Hall effect induces the electric potential difference due to the imbalance of the
charge density accumulating on the different edges of a 2D strip. Thus the conventional
Hall voltage depends on the 2Dstrip width d. However, the spin-Hall chemical potential
does not depend on the width d as d — oo because the spin relaxation mechanism
suppresses the long-range contribution to spin-polarization nearby boundaries of a 2D
trip.

We will start from the microscopic point of view to introduce the spin-Hall resistance.
Similar to Landauer’s concept that each impurity is surrounded by a nonequilibrium
charge cloud forming a charge dipole for a given electric current. Following Landauer’s
framework, the spin cloud can be induced by the spin-Hall current. The Green’s function

method is employed with the linear response theory. In the 2DEG with Rashba SOI, the
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spin polarization perpendicular to the 2DEG has been calculated in the ballistic regime
[93]. Recently, the resonance spin dipoles can also be induced by an in-plane potential
gradient SOI [94] in the ballistic regime. In order to study the spin polarization and
spin-Hall resistance in the macroscopic scale, one has to consider that the spin density

distribution is restricted to the scale much larger than the electron mean free path [,,cqn.

6.2 Spin cloud induced by a single impurity

It is well-known that a spin polarization S, is induced in the bulk by applying an electric
field EZ to a homogeneous 2DEG in zy-plane with the Rashba SOT [95]. However, the
z-polarized spin density is equal to zero due to the SHE in this case. This result can be
understood via averaging over impurity positions in a homogeneous electron gas. When
the scale of the system is down to microscopic scale, the system becomes non-uniform due
to the impurity breaking the homogeneity. Such that the influence of each impurity upon
spin polarization can be handled through calculating one single impurity (target impurity)
at a fixed position. Under this consideration, other background impurities should be taken
average over their positions. Based on this concept, the Landauer electric dipole has been
calculated [90, 91]. The target impurity is treated as an elastic scatterer and the electron
density can be expressed in terms of the asymptotic expansion of the scattered wave
functions of the electron. The wave vectors of an incident electron was weighted with the
nonequilibrium part of the Boltzmann distribution function. In this chapter, instead of
the Boltzmann equation, the nonequilibrium Green’s function formalism is employed to
derive the spin dipole [96]. According to the standard Kubo formula, the response of the
spin density is proportional to the linear term of the driving electric field E. The scattering
potential of the target impurity should be taken into account in the retarded (advanced)
Green’s function G"(®. Then, assuming a homogeneous electric field is applied to 2DEG.
The electric field can be represented by the vector potential A, where E = iwA/c, as

w — 0 in the dc limit. The spin polarization can be derived similarly to Appendix
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D. Here, the interaction Hamiltonian H' can be equivalently represented in the vector
potential form of eA - v/c in Eq. (D.2) of Appendix D. At the same time, the velocity
operator v is consist of spin-dependent part due to SOI and spin-independent part due

to the kinetic term. The velocity operator is obtained by

 Ohy -
LA S

- 1
UJ m* apj (6 )

The spin-orbit field hy depends on the electron wave vector k such that the spin-orbit

interaction can be written as
Hsozhk'd, (62)

where o = (0,,0y,0.). In the case of Rashba SOI, the spin-orbit field is expressed in the

form of
( gkczv h%) = (Ozk‘y, —Ozk‘x) (6.3)

with the Rashba spin-orbit coupling constant «.. The n-component of the stationary spin

polarization is given by

/ i / ;l‘; ”ZW r "G (5,1, w) (v - B)GO (¢, 1, ), (6.4)

where the angular brackets denotes the averaging over impurity positions and np(w)
is the Fermi distribution function, with the trace running over all spin variables. The
charge e > 0 such that an electron carries charge —e with its effective mass m™* in the
semiconductor. The angular momentum is given by hS,(r)/2. The electric field E is
homogeneous on the 2DEG. At very low temperature, the dnp(w)/dw ~ —6(w — EY)
is valid and the Fermi energy is Fr ~ w. Within this approximation, the frequency

argument can be replaced by a fixed Fermi energy Er in Green’s functions.
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The spin cloud induced by a single impurity can be induced by a single impurity,
namely, target impurity. The target impurity is located at r; with a potential Vi, (r —
r;)respecting to an electron position r. We only take into account the Green’s functions
in Eq. (6.4) up to the second order of Vj,. Therefore the retarded (advanced) Green’s
functions can be expanded in the form of

G™@ (r,1') = G"O (v, 1) + [ds?G"@0 (r,8) Vi, (s — 13) G"@ (5, 1)

(6.5)
+ [ ds?ds?G"@0 (r,8) Vi (s — 13) G0 (5,8") Viy (8" — 13) GT@0 (8 1) .

Here, G"(®0 is the unperturbed Green’s function depending on the scattering of back-
ground impurities. The background impurity with potential V.(r) is assumed to be
delta potential in the short-range correlations. We have calculated the pair correlation
< Vie(r)Vie(r') >= T'é(r — r') /7Ny in Chapter3d, where I' = 1/27 is the scattering rate
associated with scattering time 7 and the density of state is Ny at Fermi energy FEp.
Actually, the target impurity can be different from background impurities. It could be
a special impurity doped into the 2DEG. However, the target impurity and background
ones should become identical when all spin dipoles contribute to the spin accumulation
near the interface.

One can substitute Eq. (6.5) into Eq. (6.4) to compute the background impurity av-
erages in the products of several Green’s functions. If the semiclassical limit Ep7 > 1 is
valid, the perturbation theory can be employed [97]. The building blocks are the ladder

perturbation series expressed by the unperturbed averaging Green’s functions
G — / @ (r — 1) G, 1) (6.6)
in the momentum space. This Green’s functions are given in the 2x2 matrix form of

G\ = (Bp — Bx —hy -0 +il)7}, (6.7)
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Figure 6.1: Examples of diagrams for the spin density S,. Scattering of electrons by
the target impurity is shown in the solid circles. Dashed lines denote the ladder series
of particles scattered by the background random impurities. p, k, and k’ represent the
electron momenta.

where signs £ denote the retarded Green’s function in the upper sign and the advanced
Green’s function in the lower sign for Fy = k?/(2m*). For the ladder approximation, the
pairs of retarded and advanced Green’s functions carrying close enough momenta should
be chosen to form elements of of the ladder series. We can decouple the mean products
of Green’s function into the ladder series and the Fourier transformation of Eq. (6.4) can
become the diagrams in Fig. 6.1.

In these diagrams, the left-hand side vertex ¥.(q) and the right-hand side vertex

T(p) represent the renormalization of ladder series. For example, we can represent the
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Figure 6.2: The constructions of diagram (a) of Fig. 6.1 are decomposed into ladder series.

diagram (a) of Fig. 6.1 by decomposing all ladder series with a target impurity scattering
processes in Fig. 6.2 and similar processes can be done for Fig. 6.1 (b)-(e). The vertex
¥.(q) is related to the qth Fourier component of the induced spin density S.(r) with the
wave vector . Accordingly, r < [,,cqn is valid for ballistic regime and r > 04, is valid
for diffusive regime. On the other hand, the vertex T'(p) is related to the homogeneous
electric field E represented by the ladder at the zeroth wave vector. The vertex ¥.(q)
also contributes to the ballistic results, in which ¥,(q) has been taken unrenormalized
corresponding to q > 1/(veT) in the ballistic regime [60]. Fig. 6.1 (e) and (f) show some
diagrams where the diffusion propagator separates two scattering events of the target
impurity. These two diagrams give rise to small correlations to the spin density and can
be neglected. Therefore, the spin density S, has to be calculated from contributions of

diagrams in Fig. 6.1 (a)-(d). Hence, the spin polarization can be rewritten by

5. (a) = 5= 3T (G545 (a) Gy T (0)]. (69
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The retarded (advanced) Green’s functions Gﬁ(,alz are expressed in the Fourier expansion of
Eq. (6.5) respecting to r and r’ by substituting average vale GO(r, r'), instead of G°(r, r’).
To calculate Eq. (6.8) corresponding to the diffusion regime, we only need to calculate up
to the second order of the scattering potential V.

The vertex ¥,(q) was calculated in Chapter3 and it can be expressed in terms of

propagator
S.(@) =Y DV j=0,2,yz (6.9)
J
where the 2x2 matrices are 7° = 1 and 7° = ¢¢, with i = z,v,2. The matrix ele-

ment D (q) of the diffusion propagator satisfying the diffusion equation in Eq. (3.38) of
Chapter3. The element D®° of the spin-charge mixing vanishes for the case of Rashba
SOI [37-40].

The vertex T(q) can be calculated due to the cancellation of diagrams for the case of

Rashba SOI , shown in Appendix F. Finally, one obtain the vertex

Tp)=_—p-E (6.10)

where the momenta is p = m*v. We substitute 7'(p) and ¥,(q) into Eq. (6.8) to obtain

the spin density in the Fourier q—space

S.(q)= > D™(q)I"(q), (6.11)

n=x,y,z

where the source function is

I"@) = > (p-E)Tr [G210" Crpan) - (6.12)

2mm*
p;k

This source function I"=*¥#(q) can be interpreted the source contributed from the spin-

polarized particle scattered by the target impurity. This source term feature is concep-

106



CHAPTER 6. SPIN-HALL INTERFACE RESISTANCE IN TERMS OF
LANDAUER-TYPE SPIN DIPOLES

tually similar, though different in its context, to the original charge cloud consideration

when SOI is not present and the Boltzmann equation is used to describe the subsequent

-1

mean <& kr, the source can be expanded in powers of

background scattering. For ¢ < [
q. Therefore, the wave-vector-independent terms represent the delta source located at rj,
while the terms linear in q are associated with the gradient of the delta function. Below,
we will keep only the constant and linear terms for each nth component I"(q) and as-
sume, for simplicity, the short-range scattering potential V;y(r), such that the kth Fourier

transformation is simply V;,exp(—ik-r;), where V;, is a constant. Furthermore, the source

can be written by

I"(q) = I{'(q) + I5(a), (6.13)

where I and I} are the source contributed from the first order and the second order of
Vig- These source terms can be calculated by substituting Eq. (6.5) into Eq. (6.12). The
source terms I can be interpreted by Fig. 6.1 (a) and (b) in the form

=~ " (p-E)Tr GGl (oG,

p+q

+ Gy 0] (6.14)

p
Another source term I can be interpreted by Fig. 6.1 (c¢) and (d) in the form of

eV2
I3 (q) = -2 N (p - B) T [G1GS (Gio" Gy — 10" Gy +7GE_0™)], (6.15)

y— p+a
pk
where v = ilm (Z G%) = i1 Np.

We assume thkat the electric field is applied along = axis and z axis is perpendicu-
lar to the 2DEG. From Rashba-SOI Hamiltonian a(k,o, — k,0,), there are some use-
ful symmetric properties o; — o,0’c, by changing momentum (k,, k,) — (k;, —k,) in
Rashba-SOI Hamiltonian. Connecting to Eq. (6.12), we have relations of I**)(q,,q,) =

—Ix(z)(qx,—qy) and 1Y(qs,qy) = 1Y(qs, —qy). Also, we can obtain another symmetric
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properties 0; — 0,00, by changing (k., k,) — (—ks, —k,) in Rashba-SOI Hamiltonian.
It is worth to notice the momentum change of p, — —p, in Eq. (6.12) to give rise to
' (g, q,) = I*'Y(—qy, —q,) and I*(q.,q,) = —I1*(—qs, —¢q,). From above arguments,
one can easily to see the leading term of expansion of [* proportional to linear q. The
leading term of 1Y is a constant and the next order is proportional to quadratic q, which
can be neglected. However, the leading term of I* implies that it is proportional to ¢,q,
and this source term is too small correlation to be neglected.

Because of energy Er > I' > hy,, the small correlations to band effects hy, /Ep
and I'/Ep can be ignored. At the same time, ¢ < [} is valid in the diffusive regime.
Another important length scale is spin-relaxation length [, which is the distance of spin
relaxation due to D’yakonov-Perel” (DP) mechanism [88]. The spin relaxation length is
determined by ly, = v/DTs = vp/hg,, where the diffusion constant is D = v%7/2 and
the spin-relaxation time is 75, = 4(th7)’1. In the diffusion approximation, the condition

[ > hy, indicates ¢ ~ I} < I}

o mean’

Hence, we can calculate I by keeping the leading
term hy,. /T" < 1 in the diffusive regime. From Eq. (6.3), Eq. (6.7) and Eq. (6.14), we can
calculate all components of I in appendix G. Finally, we found the contribution /7" = 0.

From appendix G, we can evaluate I3’ to obtain the total contribution I” in the forms of

P=1+13=0

IV =1 + Ij = vuNom*ahi, 5 (6.16)
[T = I + I§ = —iguaNom*h} 4=

where IV = 7 NoV;2 and vy = eET/m* is the electron drift velocity. If the target impurity

2
9
is represented by one of the random scatterers, we get [ = I'/n;, where n; is the density
of impurities.

In the above calculation, we did not take into account the diagrams shown in Fig. 6.1
(e) and (f) and those similar to them. It can be easily seen that such diagrams contain

I as a factor. For example, the sum of the diagrams in Fig. 6.1 (e) and (f) contains

as a multiplier the sum of the diagrams shown in Fig. 6.1 (a) and (b). Therefore, such
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diagrams are small by the same reason as I are, at least, in the most important range
of f < Il . where f is the small momentum transfer in Fig. 6.1 (e) and (f).
Now, one can combine the source In with the diffusion propagator to find from

Eq. (6.11) the shape of the spin cloud around a single scatterer. Taking into account

Eq. (6.16), Eq. (6.11) is transformed into

/

F N zZz * z
S.(q) = —UdNothﬁ (ig,D** (q) — 2m*aD* (q)) . (6.17)

The matrix elements D% satisfy the spin-diffusion equation [42]
2 (—6”Dq2 - 4 +iZR“mqm> DY (g) = —2roY, (6.18)
l m

where the DP relaxation term is given by
I =47 (8"hi, — hj, i) (6.19)

with the angular brackets denoting averaging over the Fermi surface. For the case of
Rashba SOI, substituting Eq. (6.3) into Eq. (6.19) give us I'** = I'" = 4h; 7 and

> = ZhiFT. The spin precession term associated with SOI field is given by

R'™ =47 "™ (B (6.20)

P
and nonzero results are 1y R*™q,, = —i Y R*™q,, = 4iDm*agq; for the case of Rashba
SOI. We ignored the spin-charge mixing term in 7diffEQ due to the small correlation. This
mixing is already taken into account in the source term because I" for n = x,y, z describes

the source of the spin polarization in response to the electric field. From Eq. (6.18),
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Eq. (6.19), and Eq. (6.20), we can obtain

D 1 P+1
20, T2 (P+2) (P + 1) — 4
1 2iq
_ D% = DY* = _ _ Y _
23 T2 (G* +2) (¢* + 1) — 442
1 72+ 2
Dw = il (6.21)

2hi, 7 (@ +2) (@° + 1) — 4¢%

where the dimensionless wave vector is defined by ¢ = ¢l,,/2. By substituting Eq. (6.21)

into Eq. (6.17), we have spin polarizations

o omra IV dy, (¢ +3)
S, = — vy No=— v 6.22
MR T @+ 2) (@ + 1) — 48 (6:22)
and
‘q I 362 + 2
S, = 204t Ny— (84" +2) (6.23)

h ' (@#+2)(+1)—4¢*

We have restored the physical unit by putting A in the above expressions. The z-
component of the spin density in real space is shown in Fig. 6.3. As our expecting,
it has the shape of a dipole oriented in y direction perpendicular to the electric field E'z.
Its spatial behavior is determined by the single parameter [,,, which gives the range of
exponential decay of the spin polarization with increasing distance from an impurity. The
S, component averaged over impurity positions gives the uniform bulk polarization. It is
interesting to note that when the target impurities are identical to the background ones
(I" = T'), the so obtained uniform polarization S|, coincides with the electric spin
2vgm*aNg

orientation S, = =472~ agree with the result in Eq. (4.3) of Chapter4.
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(uiun -gre u) Alisuaq uids

Figure 6.3: Spatial distribution of S, component of the spin density around a single

scatterer. The unit of length is .
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6.3 Spin accumulation in the semi-infinite system with
a boundary at y=0

we will consider a semi-infinite electron gas y > 0 bounded at y = 0 by a boundary
parallel to the electric field. Our goal is to calculate a combined effect of spin clouds from
random impurities. It is important to note that the summation of spin dipoles from many
scatterers does not result in a magnetic potential gradient in the bulk of the sample. This
is principally different from the Landauer charge dipoles, which are associated with the
macroscopic electric field. The origin of such a distinction can be immediately seen from
Eq. (6.22). The magnetic potential us is proportional to S,. By taking its gradient, one
gets q,S,. After averaging over impurity positions ¢ — 0, ¢,S. — 0. It happens due to
spin relaxation, which provides at ¢ = 0 a finite value of the denominator in Eq. (6.22).
For the case of the charge cloud, the denominator of the particle diffusion propagator is
proportional to ¢?. Hence, the corresponding gradient of the electrochemical potential
(electric field) is finite at ¢ = 0. Although the bulk magnetic potential is zero, one cannot
expect that it will also be zero near an interface. In order to calculate the spin polarization
near the boundary, Eq. (6.18), with ¢ = —iV and 2I'§(r)d” in the right-hand side, has
to be solved using appropriate boundary conditions. With the so obtained D%(r), the

resultant spin density induced by impurities placed at points r; is given by Eq. (6.9)

Si(r)= > / &' D" (r — 1) I, ('), (6.24)

n=x,y,z

where the source term is obtained by the inverse Fourier transform of Eq. (6.16):

1
IV, (r) = vgNom*ah? Z d(r—ry)

kr FQTLi :
; 1 0
I, (r) = vaNoh,,. 5T a—yé (r—r;)
Loy (r) =0, (6.25)
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where the relation IV = I'/n; is used because we assumed that the target impurities are
identical to the random ones. The macroscopic polarization is obtained by averaging
of Eq. (6.24) and Eq. (6.25) over impurity positions. After averaging over x; and the

semi-infinite region y; > 0, the spin-polarization source Eq. (6.25) transforms to I, (y):

o1
B = vaNem'ald, &
1
I, (y) = —valNohi, o (y —07) ore (6.26)

It follows from Eq. (6.25) that the corresponding mean value of the spin polarization,
Sav(y), satisfies the diffusion equation Eq. (6.18) with the source 2I'1? (y) in its right-hand
side. However, this diffusion equation is not complete. We should take into account that
the boundary itself can create the interface spin polarization. Most easily, it can be done
in the framework of the Boltzmann approach. In terms of the Boltzmann function, the
spin density is defined as Sq,(y) = > gk. The equation for the Boltzmann function can
be written in the form Ref.[24] ,

og® 1

vy Vg + 2 (gk X hy) + eEZ@T = [Se (y) — 4, (6.27)

where Sg (y) = 6 (E — EFr) S%gy) and gx® = —hyd (E — Er) is the equilibrium Boltz-
mann function. The terms proportional to the charge component of the Boltzmann func-
tion have been omitted in Eq. (6.27) due to the system local electroneutrality, at least
in the scale of the mean free path, which is the smallest characteristic scale of gy spa-
tial variations. The scattering part of Eq. (6.27) is written in the simple relaxation time
approximation. Such a scattering term follows from the Keldysh formalism assuming
isotropic scattering from impurities, as has been adopted in this work.

The spin-polarization source associated with the boundary is given by a direct interac-
tion of the electric field, without taking into account secondary scattering from impurities.
Hence, the term with Sg,(y) in the right-hand side of Eq. (6.27) can be ignored. Also,

the boundary independent bulk part of gy has to be subtracted from the general solution
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of Eq. (6.27). The so obtained interface Boltzmann function will be denoted as gy;s. The

corresponding spin density is S;;(y) = > 8kis. In order to calculate gy;r, the boundary
K

condition has to add to Eq. (6.27). For a hard wall specularly reflecting boundary, the

condition is simply

8k ky ly=0 = ko~ ly=0 - (6.28)

This condition means that the spin orientation does not change after specular reflection
from the interface. The solution of Eq. (6.27) satisfying Eq. (6.30) can be easily found.

By expanding up to the order of o, we obtain

Sip(y) = Si(y) =0

i (y) = Svga’tm* Z kyo (Ex — Er)exp <—m y)- (6.29)

k,T
ky>0 Y

Within the diffusion approximation, the second of these equations represents a delta

source of the spin polarization with intensity

1 [~ 1
* [ Sy ) = vaVol, (630
0

T

This source is exactly of the same magnitude, but opposite in sign to the spin polarization
emerging from impurities, which is represented by the integral of 2I'IZ (y), with I7Z (y)
given by Eq. (6.26). Taking into account that both sources are located at the interface,
so that they cancel each other out, one sees that only the y-component of the source

originating from impurity scattering retains in the diffusion equation which acquires the

form
82551) * a‘s’gv *2 2 Qz
Iy —4 By 8m*a”S:, =0
aQng * asév *2 2 2F
8—3/2 + 4dm Oéa—y —4Am™ o ng = —Blgv. (631)
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The bulk solutions of this equation are S?, = 0 and S, = S® = 2reE Ny, which coincide
with the polarization obtained from Eq. (6.22) and Eq. (6.22) by setting ¢ — 0.

In order to calculate the spin polarization near the boundary (y=0), we employ the
hard wall boundary conditions for Eq. (6.31). Such boundary conditions can be easily
obtained from Eq. (6.27) by performing its summation over k and integrating from y = 0
to some point ¥y, placed at a distance much larger than 1 but still small compared to I,.
A simple analysis of Eq. (6.27) shows that up to the order of a?, the sum over k of the
vector product in the left-hand side of Eq. (6.27) can be neglected, while the right-hand

side and the term containing the electric field turn to zero identically. As a result, we get

1 1
Z Ky8s ke, |y=yo [ — Z Ky8h. k, |y=0 (6.32)

m* m*
k k

According to Eq. (6.30), the above sum is zero at y=0. Hence, it is also zero at y=yO0.
The latter sum coincides with the spin current within its conventional definition,26 where
a contribution associated with the charge density due to the second term of the velocity
operator Eq. (6.1) is ignored in an electroneutral system. Using the gradient expansion
of Eq. (6.27), this current can easily be expressed through S? |, = 0, its y derivative, and
the last term in the left-hand side of Eq. (6.27). In this way, one arrives at the boundary
conditions from Refs. [42, 81]. We generalize these conditions by adding possible surface
spin relaxation (see also Ref. [98]). These additional terms are characterized by the two
phenomenological parameters rho, and p.. Finally, we obtain
LA
-D

|y=0 + 2Dm*a [ng (0) - Sb] - _pzsi'u (O)

Yy
Pial)) \ —aDmas, (0) = —p, % (0 (6.:33)

One can easily see from Eq. (6.31) and Eq. (6.33) for p, = p, = 0, the homogeneous

bulk solutions S?, = 0 and S¥, = S turn out to be the solutions of the diffusion equation

everywhere at y > 0. Therefore, the z-components of spin clouds from many impurities
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completely cancel each other out and there is no spin accumulation near the interface
y = 0. This result, as well as boundary conditions Eq. (6.33) for the hard wall case,
agrees with Refs. [42, 81].

When p; # 0 for the soft-wall boundary, the spin density S?, is not zero. In the case of
weak surface relaxation, p; < D/l,,, Eq. (6.31) and Eq. (6.33) give the finite out-of-plane
spin density:

; 1
Sav(()) = O.35pyT€Em, (634)

where h is restored the conventional units. It is notable that in such a regime of small

enough p;, the surface polarization does not depend on the spin-orbit constant.

6.4 Spin-Hall resistance and energy dissipation

According the above discussions, the finite spin accumulation SZ,(0) can survive for soft-
wall boundary (p; # 0) and we can introduce the spin-Hall resistance due to this spin
accumulation. Considering the magnetic potential difference SZ,(0) = Nyus near the

interface y = 0, the spin-Hall resistance is computed by

ps _ Sau(0)

Rey = 7 = jTo’ (6.35)
where the current density j = o F, with the Drude conductivity o = ne?r/m*. This spin
accumulation is due to the spin-relaxation mechanism and the spin-relaxation mechanism
produces the energy dissipation near the interface. We have shown that spin accumulation
is associated with the correlation of the electric conductivity of a dc current flowing in
the x-direction [42]. For Rashba SOI, the correlation of a current density is given by

e a’k%0S?,
dm* T2 09y

Ajly) = — (6.36)
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The above result is finite within the distance of [,, from the interface. After integration

over y, the correlated current has the form of

e o’k%
= ~(0).
Am* T2 av( )

AJ (6.37)

The interface dissipation per unit of the interface length can be calculated from Eq. (6.35)

and Eq. (6.37)

*

m
eh?

AW = EAI = — TR, j>. (6.38)

6.5 Summary

We found out that the intrinsic spin-Hall effect induces in 2DEG a nonequilibrium spin
density around a spin-independent isotropic elastic scatterer. The z-component of this
density has the shape of a dipole directed perpendicular to the external electric field,
while the polarization parallel to 2DEG is isotropic. Due to the DP spin relaxation,
the spin density decays exponentially at a distance larger than the spin-orbit precession
length. It is noteworthy that such a cloud exists even in the case of the Rashba spin-
orbit interaction when the macroscopic spin current is absent. We also calculated the
macroscopic spin density near an interface by taking the sum of clouds due to many
scatterers and independently averaging over their positions. Surprisingly, in the case of
the hard wall boundary, the so calculated spin polarization exactly coincides with that
found from the drift diffusion or Boltzmann equations. In this case, the out-of-plane spin
polarization S7, is zero, while the parallel polarization is a constant determined by the
electric spin orientation. The spin-Hall resistance of the interface can be calculated by

the finite spin accumulation AS?, (0) for the case of soft boundary.

117



Chapter 7

Conclusion and future work

7.1 Conclusion

In Chapter 2, we studied the characteristics of a spin-dependent pumping in the Rashba-
type quantum channel (RQC) via a ac-biased finger-gate (FG). This ac-biased finger
gate gives rise to a time variation in the Rashba coupling parameter, which causes spin-
resolved RIS and, subsequently, contributes to the dc spin current. The resonant inelastic
scattering (RIS) plays an important role in dc spin current generation. The spin current
depends on both the static and the dynamic parts in the Rashba coupling parameter,
ap and ay, respectively, and is proportional to apa?. The proposed gate configuration
has the added advantage that no dc charge current is generated. Our study also shows
that the spin current generation can be enhanced significantly in a double finger-gate
configuration. In a double finger-gate with a finite phase difference ¢, it is also show that
the spin current and the charge current are generated by a double ac-biased finger-gate
with a finite phase difference ¢. We also studied the dc spin current (SC) generation in
the presence of either a full-barrier or a partial-barrier in a RQC. In general, a barrier
inside the time-modulated region causes a stronger suppression to the SC than it is outside
the region. Interestingly, we .nd that an attractive partial-barrier induces inter-subband

processes, gives rise to additional quasi-bound state dip structures in the transmission
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coef.cients, and can lead to the enhancement of the SC.

In Chapter3, the diffusion equation is derived based on the nonequilibrium Green’s
function by using the standard perturbation theory. The external electric field is treated
in Kubo formula up to linear order. The spin-orbit interaction (SOI) and an in-plane
magnetic field are also included in our calculation. This diffusion equation includes spin
precession due to the SOI field and magnetic field, spin relaxation due to Dyakonov-Perel
mechanism, and the spin-charge mixing can be induced by SOI and magnetic field through
the driving electric field. The spin current expressions associated with the spin densities
are also derived to give us the boundary conditions.

In Chapter4, we studied the spatial distribution of the spin density S; with or without
an in-plane magnetic field for the case of either Rashba or Dresselhaus SOIL. In the case of
zero magnetic field, the spin there is no spin accumulation occurring near a 2D strip edges
for Rashba SOI. However, the spin densities .S, and S, accumulate near a 2D strip edges
for cubic Dresselhaus SOI. We also find that spatial distribution of S, demonstrates the
symmetric property in y axis. On the other hand, spatial distribution of S, demonstrates
the anti-symmetric property in y axis, corresponding to the intrinsic SHE.

In Chapter 5, we studied the spatial distribution of the spin density .S; in the presence
an in-plane magnetic field for the case of either Rashba or Dresselhaus SOI. In the weak
magnetic field limit, the diffusion equation is proportional to linear magnetic field. For
Rashba SOI case, the in-plane magnetic field doesn’t affect the spatial distribution of the
spin density in space. For Dresselhau SOI case, the spatial distribution of spin density
shows symmetric or asymmetric properties depending on the direction of the in-plane
magnetic field. This result provide a possible way to identify the intrinsic SHE and
extrinsic SHE via an in-plane magnetic field.

In Chapter 6, we found out that the intrinsic spin-Hall effect induces in 2DEG a
nonequilibrium spin density around a spin-independent isotropic elastic scatterer. The z-
component of this density has the shape of a dipole directed perpendicular to the external

electric field, while the polarization parallel to 2DEG is isotropic. We also calculated the
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macroscopic spin density near an interface by taking the sum of clouds due to many
scatterers and independently averaging over their positions. Surprisingly, in the case of
the hard wall boundary, the so calculated spin polarization exactly coincides with that
found from the drift diffusion or Boltzmann equations. In this case, the out-of-plane spin
polarization S7, is zero, while the parallel polarization is a constant determined by the

electric spin orientation.

7.2 Future works

It is more realistically to consider the intersubband mixing in Chapter 2 by keep the term
—iapyo, in a RQC. Furthermore, we can calculate the behavior of the spin-dependent
transport in the presence of subband mixing by applying the time-modulation field. The
time-dependent magnetic field can be applied in a spin-orbit semiconductor to change
the spin-resolved bands. When the oscillating magnetic field energy is comparing with
the energy splitting due to the intrinsic SOI, one can expect the interesting transport
behavior appearing. Our goal is to enhance the strength of the spin-orbit coupling via a
resonance mechanism.

We can extend the two-dimensional diffusion equation to three-dimensional diffu-
sion equation in a realistic semiconductor material. The boundary conditions for spin-
dependent particles have to be treated carefully. One can start from the microscopic
quantum mechanics represented by wave functions to determine the wave function near
the boundary and the asymptotic wave function can address the distribution far away
the boundary. As such, the Green’s function can be presented in the real space such that
we can connect the boundary in real space. One can explicitly determine the boundary
conditions. Also, we can consider the scatterer to be anisotropic. Therefore, we can study
the finite thickness thin film by diffusion equation with a suitable boundary condition.

Furthermore, one can consider the intrinsic spin-Hall effect in the presence of the strain

effect included in a semiconductor. The effect of strain can modify the spin-orbit field in
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a semiconductor. We are also interested in the influence of intrinsic spin-Hall effect due
to magnetic impurities.

In the future, we will also study the magnetic impurities doped in a semiconductor
with spin-Hall effect. The spin-spin interaction has to be considered due to the magnetic

impurities. The more interesting spin-dependent behavior can be investigated.
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Appendix A

Transformation of the wave function

in region (II)

The Hamiltonian in the ac-biased region, given by Eq. (2.2), can have its time-modulated
term transformed away by the use of a transformation: W, (z,t) = exp(n, = sin(Qt)%)wa(m, t)

in the region (II) (Fig. 2.2) and substitute it into the Schrodinger equation

<—%2 + 2'7700408% + in,04 cos (2t) a%) en“%sm(m)%lbo(% t)

=i ena%sin(ﬂt)a%wg(x, t) (A.1)

ot

= iny,aq cos (2t) 5%?/}0 + e_"”%sm(m)%i%@%(% t).

Obviously, the equation simply becomes

02 0 0
(—@ + Zﬁaao%) Ve = Zalba = e (A.2)

such that it is easily to obtain the solution

VY, (x,t) = /da{flg(e)e"kg(g)x + B, (e)e*rET et (A.3)
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Finally, the scattering wave function can be expressed as

W, (2,1) = &' s f ds{A £)eMHOT 1 B, (e)eht D7}t

| (A4)
= de{A ) ine k%L smﬂt k7 (e)x +B ( ) ino kg L sin Q1 PLAC) .t}e—zat

We use the identity relation of the Bessel’s function e« = 37 (—n, )" J, (z) e~
and match at all time via ' (¢) = 3. F (m') § (€ — (yn + m'w)) to calculate the scattering

wave function in the region (II) as

oD (2,4) =i ng P{As (m') e*5E76 (e — p, — m'w) J, (GRG(e))

+B0— (m ) elk’L E)x(s (5 _ Nn _ m/CU) Jp (%kz(a))}efipthAist
= ) A, () Mg, (ke

+ B, (m') PL AT S (%1 k;nLU) Je~tHn't

where the nations k:z;%‘&) = +(u™)"? + n,00/2, with upper (lower) sign corresponds to
the right-(left-) moving electron in the nth subband, m’th sideband, and with kinetic
energy . The incident wave is at a fixed energy g, and the reflection (transmission)
wave is the linear combination of wave functions at all possible energy p due to the
inelastic scattering processes of the ac-biased FG. The right-going x-direction scattering

wave functions are

( o . .3 Mm,o .
\IJE,I) (.I, t) _ elk”vaQOn <y) ewot + 27’0— (m)ezknyL Iel,um,t; T < —l/2

WD (0,8) = 3 ()" LA T (22075
R (A.6)
B il (al K 0)}e—wmt; 12 <z <l/2

w 7LL

gD (x,t) =5 tgeikxgzei“mt; x>1/2

in the different regions.
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Numerical method to solve the
transmission and reflection

amplitudes

According to Eq. (2.4), the wave functions are continuous for matching the mth sideband

—ik? oL m,o —ik™o L
e n’RQCSm,O + rn,LL (m) e n,L 2

/ /
ak, ) (B.1)
= (o)™ AT T B <%k;jf}g’> + BT e i 2 <%k§g">}
ml
togr (M) ehnits
o (B.2)

i
. m—m’ m,o k™0 L ag .m0 m,o ik L oy .m0
=> (") (AR 2 T (Ukn,R + Bype 2 (k) )
m/

at x = £1/2. The dynamic Rashba spin-orbit coupling constant induced by the ac-biased

FG is expressed by a;cos(Qt)0(1/2 — |z|). The slope of wave functions continuity can be
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computed by integrating across the boundaries x = +1/2:

_é_l'_é ,
lf {—% + 2'7700406%}\110 (z,t) dz
Ll
-1+

b morcos0 (5 =) (1) + (1) o cos 918 (5 = a0, (2,00 e (B3)

In result, the slope continuity of wave functions is satisfied with

—8%\1/5,1) % + a%\llffm e + %ngalcosﬂt\lfgm . 0
E =72 ' =2 ) (B.4)
—6%\11((7]1) W + 8%\1,((7111) =3 %%mcoth\DSH) s 0
=2 = 939

According to Eq. (2.4), the above equations can be rearranged in the elegant form of

Lo Reikz’R(_lﬂ)émO +km,cr m,o zk;”L‘T(—l/Z)
n, )

n,L Tn,LLE
I

_ m,o ik 57 (—1/2) m—m' oy .m0 m',c | (m—m)w
- Z{An7RLe §iA (_770') Jm—m’ ﬁkjn,R X kn,R + 2km/,o (B5)

m' n,R

/

m,o ik 27 (=1/2) m—m/ ag .m0 m',o (m—m)w

+B, et (=) Jm—m | Ghni ) X [knr T e }
n,L

and

m,o m,o ik e (—1/2)
knrtnrre ™"

m,o k™o (1 m—m/’ ay Lm0 m/,o m—m’)w
- Z {AL rre e 2 (—70) S <ﬁlkn,R ) % [kn,R + W] (B.6)
By D () T (SRE) X [kn’",f + ﬁTm)} }-

For solving the transmission and reflection amplitudes, we should solve the coefficients

A and B first. The matrices form of these equations Eq. (B.1), Eq. (B.2), Eq. (B.5)
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and Eq. (B.6) can be rewritten as

My Mo AZ,RL B K, (B.7)

It is important that each electron can make transition |m|€2 above or below the incident
energy u,. For exactly numerical sense, we should cut off the largest number of sideband
up to a certain positive integer my,; for the stable numerical solution. The sideband
index m(m’) = —mMyot, ..., Muer 1S the integer number. Each square sub-matrix M;; has

(Mo X Myer) dimensions and the (4, j) element corresponds to the relations

/
N m—m' _—ik" 271/2 a1 .m0 m',o m',o (m—m")w
Mll(%]) = <_7]0) om— Jm—m (ﬁkn,R kn,L = kn,R o gl
n,R
/
N m—m' —ik" 71/2 a1 .m0 m/ o m',o (m—m/)w
Miai,5) = (=)™ €02 e (TS ) (R = T — (e
an,L (B 8)
Mo (i, 1) = m—m/ ik;n;{’l/2j a1 km/,a km’,o km/,cr (m—m")w .
21(6,7) = (=) G m=m’ \ "q "n,R nR T "nR T Tymlo
n,R
!
N m—m' ik 71/2 a1 .m0 m',o m',o (m—m)w
Man(iy ) = (=no)™ ™ €M™ 1 () (M = iy — e
n,L

where i = m + my,; + 1 and j = m' + my; + 1 are row and column indexes, respectively.
The vectors of A7 p; and By, are (m' x 1) column vectors. The dimension of K is
(myer X 1) column vector with the element Ki(7,1) = [k:;”LU — k:?}g] e~ Y25 On the

other hand, the reflection and transmission amplitudes satisfy the matrix equation

re P, P A? C
| 11 172 ,RL I 1 (B.9)
LR Por Py Bl 0
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via Eq. (B.1), Eq. (B.2), Eq. (B.5) and Eq. (B.6). The dimension of the square matrix

P is as the same as M;; and they have relations

—i(KT T R )(1/2)

Py (i,j) = (—ng)m_m -~ (%k:}f) e "Wn R
Py (i) = (=10)"™ ™™ e (ﬂkfj/"’) oKL —R ) 0/2)
/ ? ’/L om! o m,o (Blo)
Por (4, 5) = (=)™ ™" T (%k:zéa) ik k) (U/2)
(i.3) = (=) (

’
aq km’,a i(kzll’/d—k;n’}g)(l/2)
n,L € ’ ’

The column vector C (i,1) = ek R~k )/ 25,0 has (myor X 1) dimension. Finally,

the total reflection and transmission amplitudes can be calculated by

—1

"o LL . Py P My Mo K 0 Cy ‘ (B.11)

to LR Py Poy My, My 0 0
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One-side band approximation in the

weak pumping regime

In the weak-pumping (WP) regime, we can obtain analytic results. The WP regime refers
to the case when the Rashba coupling parameter oscillates with a small amplitude a;.
Keeping only up to the lowest nonvanishing contribution of ay, it is simpler to calculate
the reflection amplitudes than the transmission coefficients. The reflection amplitudes
to m = £1 sidebands are first order in oy and are the major objects of our calculation
here. The reflection amplitudes to m = 0 sideband, however, is second order in «; and is
neglected. When the Rashba coupling parameter oscillates in time within a spatial region

—1/2 < x < 1/2, the longitudinal Hamiltonian is given by
J? .0 ay .0
H, = (—@ + Ozol£0y) + ~ cos (Q) i5-0y

x {9(5/2_ |$|)i%+i%9(l/2— 1z)) (C.1)

where 6(z) is the step function. For an electron incident from terminal L with wave vector
ky r(E), the reflection coefficients consist of contributions from reflections at the left and

the right edges of the time-modulated region. We first calculate the reflection amplitudes
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due to reflection at © = —1/2. The wave function is given by
\I};TL (x < _l/2) 6 "R(E)$ ikt + Z m062knL e (E+mQ) (02)
m==+1
(m#£0)
\I}Z (_l/2 << Z/Q) — Z tm crez]g;”é‘xefz(EerQ)
m==+1
(m#0)
+ P14 ks o (B) (69— e )] .(C.3)

Here, 77 and 77" denote, respectively, the transmission and reflection coefficients at the
left edge of the time-modulated region. We have not included, in Eq. (C.3), corrections to
the wave functions associated with the coefficients t7"?, for m = %1, that arise from the
time-modulation of the Rashba spin-orbit interaction (SOI). It is because the coefficients
77, are already first order in ;. These coefficients are solved from the wave-function
continuous condition and the boundary condition in Eq. (2.11). The reflection coefficients
are calculated, and the expression is presented in Eq. (2.12). It is worth noting that
t%” =1, up to first order in a;. Following a similar procedure, the reflection at the right

edge of the time-modulated region can be obtained from the following wave function:

\Ifz (_l/2 <z < l/2) = eikZ,R(E)weiEt [1 4 o1 Z,R (E) (eiQt . efmt)}

20
m,o zknL i(E+mQ)t [1 NoCr 1km0' 1947 —q }1
+ rp € e + 20 —e f@)
m=0,£1
\I’U l’ > l/2 Z tm oezkn Rxe—z(E-i-mQ)t' (05)
m==%1
(m#0)

Again, t?, and ry"?, denote the transmission and the reflection coefficients, respectively,
at the right edge of the time-modulated region. It is noted that in Eq. (C.4), only one
incident wave needs to be considered. The incident waves associated with coefficients

t7°7 in Eq. (C.3), for m = +£1, is neglected because these coefficients are, themselves, first
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order in ay. Invoking the wave-function continuous condition and the boundary condition

0 0 v
——U, — U, —Ny Q) U, . =0, C.6
5rle| Lt arTe| g cos () W,y (C.6)
(3) r=(3)
we obtain
P _ei(kgﬂ—k:ff)lrg,o’ (C.7)

and the total reflection coefficient, up to the first order in o is given by "7, = 17" +rp"°,

for m = £1, which explicit expression is presented in Eq. (2.13).
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Appendix D

Fourier transformation of the four

density

The unperturbed Hamiltonian is written in the form of Hy = p?/2m + H,,. The spin-
orbit coupling term is hy, = hp - 0 where hy, denotes the momentum-dependent effective
magnetic field due to SOI and o=(¢", 0¥, 0*) is Pauli matrix vector. The external po-
tential Hamiltonian can be expressed in the general potential ®; (r,¢) in the form of
H = Z ®; (r,t) 7; with 7° = 1 and 7%%* = ¢®¥%%. The density operator is expressed in

the second quantization form D; = W, (r, t)7., %, (r,t) such that the four-density is given

Di(r,t) = (TD: (r,#)Si(~00s, ~00-)])
= (0 (.0) 7, B, (1,) Sy (—004, —00.)])

= —ir,, G F (r,r,tt). (D.1)

For simplicity of notations, the repeated indices have to be summed over and W,;(r,t) is
the field operator. The lower indices of —oo. denote that the time loop ordering is from

—-branch to +-branch in the Fig. D.1.
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We now consider the linear response of D;(r,t) to H' such that we have
G, (r,r,t,t) = —i <Tl W, (r,t_) U (r,ty) (—i) / H' (r)dr > : (D.2)

The angular brackets denote the average over random distribution of impurities. The

second quantization form of H' is given by H' (7 fdr”\IJ+ v’ 1) ®; (v, 1) Ug (r",7)

substituting into Eq. (D.2) to obtain

_ / ar” / dr (T3 [, (0. 1) B (x, 1) UL (07, 7) B, (07, 7) 72,85 (07, 7)] ) (D)
loop

The four field operators can be constructed by using Wick’s theorem to rewrite Eq. (D.3)

as

G, (r,r,t,t)

s / dr” / drd; (v, 7) [@V@,t,)@z (r,t+)]><Tl [@L (r",T)%(r”,r)D

loop

—7l4 / dr” / drd; (r", 1) <Tl [\If (r,t_) Ot (r”,m}

loop

\/
/\
fan!
| —
(S

=
—~
H\
3
SN—
(=B
"Y; —t
—~
\"'5
9
S~—
| I
\/
—~
)
I~
S~—

The second line of the Eq. (D.4) is equal to zero due to the equal-time construction.

Finally, the Keldysh Green’s function can be obtained in the form of

G i(r,r,tt) = -, ﬂfdr” [ drd; (e, 1)iG (v, T)iGy +(r r,t,7)
| toor (D.5)
~Thg S A" [ dr®;(x",T)iGo S (r,x" 8, T)iGE, (2 x 7).

loop
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+ branch

- branch

Figure D.1: The time loop ordering is shown in this figure. The state evolves from
—-branch to +-branch.

Now, we can express f(t) in the form of

F(t) = / i =1 (D.6)

dw dw dw' .
_ / dT/ w1 uul(t T)gl (Wl)/2 zw‘rv( )/gezw (7'—t)g2 (w/)

oo d ~
- /dm/d‘”/d‘” NG TG ()T (w) G (!

%
_ /°° d“’l /dw/dw'em NGy (1) V(@) Ga ()6 (w4 = w1)
/

~—

Oodw

S /dw’e“”tfh (w4 W)V (W) §a ()

-/ Z (2{:‘; [ s @+ )V @) )

such that f(w) is the Fourier transformation of f(t)

fw)= /Cé—:i/gl (W4 W)V (W) G (W) (D.8)
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Such that the time-dependent variables in Eq. (D.5) can be transformed into w space

G, (rr,w)
= [dr" [ drG,; (v.r",w+ ) ®; (1, w) T2,Go ¢ (¢ 1, W) (D.9)

loop

— [dv" [ drG,} (r,x" ,w+ W) D; (r",w) TiﬁG;: (" r,u)
loop

by using the Eq. (D.8).
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Appendix E

Detailed calculation for the spin-Hall

current and the charge current

E.1 Spin-Hall current

According to Eq. (3.42), the current density can be calculated by non-equilibrium Green’s

function in the form of
Izl (I',(,d), t) = <7} |:le (I‘, t) Sl <_oodown7 _Ooup):|> (El)

with the spin current operator

1 19 .. . OR!
Jh== N4 -~ 15" hyol =0 P E.2
; Z{UZ’U}+23pl{O’ PO} =0 + apr (E.2)

where i is the spin indces and v; = p;/m* is the electron velocity along the [ direction.

We note that the spin unit //2 has not been included yet. Similar processes with the spin
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density, Eq. (E.1) can be rewritten as

IHNqw) =iw [ 229 5~ < JIGT, (p, P w + W) T25G%, (P — a,p — q, ') > P (q,w)
p;p’
. dw’ dN
= wa 21 dwFX
Z/<<n}? l+akl>Gr ( ,p+—w+w) iﬁG“gM(p’—%,p—%,w’))(bj(q,w)

p,p

via the Fourier transformation. The index j = 0 is denoted the electric potential energy
Po(q,w) and ®;(q,w) = 0 for j # 0. It is easily to see that there are two parts Lo,

i

% contributing to the spin current in Eq. (E.3). Such that the total spin current is

Il = Ii(l)l + 11(2)1, where [Z-(l)l is coming from the first part and IZ-(Q)Z is coming from the
second part. Immediately, the z-polarized spin-Hall current /Y flowing along y axis, the
second part vanishes due to h;:’z = 0 in our 2D system. The first part can be expanded

in the series form of

Z,pz <G, (P+2pP+2w+w)Gs (-2 p— %) >

vy (0% E4
= X[+ X035+ . (E.4)

—Xl”zﬂ 14+ U4+ 02+ . ]VQ—X””H{[ o) 5

where the notation Xl’jlﬂ = (7No/T') X/ )5 by the definition

XIVZB - <7TNO> ZPZGOT (p Ty —i—w) GRZ (p B g,d) ’ (E-5)

and the other notation

VA= ZG“”’" (p+gwt+)e (p-5.w) (E.6)
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Q{q(p+%,p’,w+w’) Gb(o)r(p"' ,W+w')

i - i

a ¢ 1 ' (O)a -q
GBp(p_q1p_glw) G (p

(or q ,
G, (p+2,w+w) GO (P +w)

GRM(P-.0)  G%(p -qw)

Figure E.1: The diagram of [ Z-(l)l shows that average retarded (advanced) Green’s function
G" (G*) can be expanded by summing over all unperturbed Green’s function GO (G(©2)
in ladder series. The dashed lines denote the interaction of impurities.

is just like before. It is easily to illustrate these processes in Fig. E.1. Therefore, we can

obtain the spin current as

1M (q,w)

= o [ddNe Sy < Tr[ofGT (p+ 4, w + ) TG (p' —q,p — $.0')] > @, (q,w)
p.p’

=2 (30) 2 (F) {01 - 9] (q,w) -

(E.7)

By setting the Fermi energy Er = /', the first part contributing to the spin current

]Z-(l)l is constructed from the operator

mn — I m r q n~(0)a q

for m,n = 0,x,y, and z. Next, it is very important to express the spin current by the
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spin density in the form of

e _ —iwNg im 7ymO0
m:(]:fl?,yyz

S PR G AR

m*T
| m=0,z,y,z (Eg)
o= D DRED G L AT R § R
m=0,z,y,z
=L 5 X (Dp — DY) — Lo X0,
m/'=x,y,z
where [...]7! is denoted the matrix inversion and the relation
—1w N, _1\m
(D — D%) = 220 (w1 — 9] )™ @, (E.10)

r

has been used in Eq. (E.9).

In general, the second part spin-Hall current I,L-(z)y has to be considered for i = x,y.
The second part can be estimated in the following

8h2 T j a
> (Lrt G (p+ $.0+ 0+ ) G, (B~ 30— 3.4/) )5 (a,)
p.p’

= (WTNO) TBVTiB Z (wLNQ> Z—}IEG,(,(QT (p + %,w + w’) G(ﬁ(ga (p _ %7w/)5pp/
P

_ (E.11)
j oh; 7 a
+7%,725 5 (%) TG (o + Giw+u) G (b — 3,0) X
P.p
G (p+ 3 w+uw) Gg))?a (P—2,w)+ .
and the illustration is shown in Fig. E.2.
By defining the notation

, r \ on q q

Lvy __ P ~Or / Oa I
Yl”u,/\ - g (77'_]\70) 8]{,’l Gya <p + 570) +w ) Gﬁl‘ <p - §7W >5pp/; (E12)
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P © , O
Q. Ep+§'p’m+wa GOr E|p+ w+(.oH

oh, , j oh!
I " pv T0(|3 —_ Pr©
ak akl Hv
a D ’ ’ I|:| a
Gou EP —q,p—g,wa GiY Hp —g
r O q , g d,.4d 4
S Pty erey G g ete
oh,
i
+ ak' L T T +

G<o>a -a  H o, - .0
Pl e f-def

Figure E.2: The diagram of | Z-(z)l shows that average retarded (advanced) Green’s function
G" (G*) can be expanded by summing over all unperturbed Green’s function GO (G(02)
in ladder series. The dashed lines denote the interaction of impurities.

the Eq. (E.11) can be expressed by

5 (SEr8,Gla (p+ 0 + 10+ 0) 7,65, (0 - $,0= .¢/))
PP | -~ (E.13)
- () 2 vp (-

n=0,x,y,z

In the dc limit (w = 0), the second part of the spin current is given by

1L S (vD; - v°Dp), (B.14)

J=,y,2

where the constructing operator

yin = < 2 ) Z ah;Tr [ 0GO)r (p n g,w n EF) GO (p _4d EF)} (E.15)

27TNO (9 2’
with D§ = —2NyeEx. In summary, the total spin current expression is given by
1 | 1 @-
Ii=— > (X/D; =X °Dp) + — > (¥,"D; —¥;°Dp) (E.16)
j:$)y7z J:x7y7z
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in the dc limit (w = 0).
The main purpose is to obtain spin-Hall currents I} which flow alonf the y axis with

all spin-polarized states i. First, we calculate the z-polarized spin-Hall current by the

relation
Y 1 2J 1 20 N0
IN=— Y X7D;- — X;"Df. (E.17)
j:a:,y,z

The most important tasks is to calculate the the constructing operators X;j and X;O.

The operator XZO is given by

X5 = (o) gpyTr{az<

Ep—¢ Jrq-i-’L]._‘)

— (=L L (th )
= <7TNO> Zpy (Ep—ep+il)? (Ep—ep—il')? T} (E.18)

hiai Bigi z Bigt hfoo]
+ <27rN0> ZpyTr{a —ep+zr) (Ep—ep—il')? T (Ep—ep+il')? (EF—sp—iF)Q}

e (h x ghﬂ> ¢"py + 0 = —i2m x7° (hp % 3,%) 7ty
z

and the operator X7=*¥ is given by

. Rt ol :
zy—x,y| — r z P j 1
X770 = (55) S0 Gt b

. hl l
+O.Z( 1

J
Br—eptiD) 0 (Ep— ap—zrz}

= (27rN ) fdgNopyhyTT{Uzalaﬂ}{ - EF e (5—15;+ir) (E.19)

_ 1 }
(E—EF—HF) (e— EF il)

— z Y — * Dzj
= —27e"WhYpp, = —im* R,

where RY™ = 47'5”’[hl V). The other operator is obtained from

r)+H 2o (Br—g,_ /Q—il")—l—H 2°0
XZZ| = ( ) Tr ( F—Ep+q/2tHt +a/ p—q —q
¥ lw=0 27N Zpy {U (EF spﬂ/zﬂr) —H2, o (EF—gp,q/rir) —H2_ q/2}

- (2’TN0) Zpr{ <8p Ep— ip+lr)> (Epfip—ir) (E.20)

1 el o
+(EF_5p+iF) <_%8_p(EF —egp—1l >} _Dm (qu)
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where the diffusion constant is D = %U%T and 7 is the scattering time of the electron.

Substituting Eq. (E.18), Eq. (E.19), and Eq. (E.20) into Eq. (E.17) to obtain the z-

component spin-Hall current in real space as the form of

P oh
]g — 2D>S, — R*S, — Rznyy — 4N06E7_2UF,y (hp X p) , (E.Ql)

dy Opa

where the spin density S; = D, /2.

Next, we will calculate x-polarized spin-Hall current

m*

1 zj 0 M0 1 0 M0 1 Tx 1 Tz
I} = < Y. XD - X; Do) +— (ZY)"Dp) = — X[ Do+ —X[°D. (E.22)

J=T,Y,2

because the operators satisty X;¥ = X;O = nyo = 0. According to Eq. (E.8), one can

calculate

ii _ (T 1 0 1 1 ) 1
Xy - (F) fdgpy{_%y(EF75+iF)@(EF757iF) + %J(Epfsfil“)@(EFferiF)} (E.23)
= —Dm™ig,
and
iz _ (T l l = Ly 1 -1
Xy = (3) [ depy (W + BY) Tr [o'0'o* | { = ey
—1 1
" (e—Ep—il) (E—EF+iF)2} (E'24)
= —2T€iZlh%m*VF7y = —%m*R”y.
Therefore, the x-polarized spin-Hall current is given by
8 XTZ
1Y =-2D—S5, — R™S, (E.25)
dy

in the real space.
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Next, we will calculate y-polarized spin-Hall current

1 ; 1 1 1 ..

Iy = ( > XVD; - X50D8> +— (=¥°Df) = — XD, + — XD, (E.26)
j:x7y7z

because the operators satisfy XJ* = Xgo = Yyyo = 0. According to Eq. (E.34) and

Eq. (E.24), one can seasily to obtain the y-polarized spin-Hall current

0 :
I} = =2D5_5, = R*S, (E.27)

in the real space.

In the 2D strip, the requirements of the hard-boundary conditions are

—2DLS, =0
Y Tly==+d/2
0 z
—2D3,5 y==+d/2 — RS, ytapp =0 (E.28)
2 ohp\ _
2GS ) RS gy — WNoeBru, (b, x 52) =0

for the case of Rashba SOI. The requirements of the hard-boundary conditions are

0 Tz _
—2D £, pary BES,| 0 =0
—92D2g =0 E.29
oy~Y y==+d/2 ( )
_) —_
2GS, RSy — AN BT} (> 52) =0

for the case of Dresselhaus SOI.

E.2 Charge current along the x axis

In this section, we derive the expression of the charge current which is corrected by the

SHE along the x axis. From Eq. (E.1) and Eq. (E.2), one can calculate the charge current
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Ji by setting 7 = 0 and [ = z. The charge current operator becomes

| 10 . On
Jiss = Slvs, o} + 20p, {o% hyo} = v,0" + a—pz (E.30)
and the current density is read as
1 ; 1 /~.. ~
"= — (XYD; - XDY) + — (YD, - V:°D}) . E.31
j;z m* ( T J T 0) + m* T J T 0 ( )

with the new operator

= (s S B0 e [0 (o o) e (o= o)) e

The operator X%* is calculated in the below

0z __ r (hp+q/2+B)iUi z(hp*q/2+B)jgj
X:v - (271’N0) fd&fNoprT{ (EF*E“,”L’F)Q 4 (E'Fffff’iF)Q } (E33)

. h
= —i27%m* (hp X —gpfj) Q"
z

and

00 _ (T E 1 d 1 2 1 ) 1
Xy - (?) fdgpm{_%(EpferiF)%(EFfsfiF) L %(Epfsfil‘)a_pz(EpferiI‘)} (E 34)

= —Dm*iq,.
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The another operator is calculated in the below

_dy

Vij=2 Oh; | b
YiT= 2 (35) [ degTrloto®o’] <2(57E1:271T)2 (ngFpHr)?)
l?J:X7y
(i#])
r ohy, 1 j iz g 1 o -1
A (71') fd€<_%) Vﬁihngr [U o OJ] ((ngpfiF)zg(steriF))
(i#))
Ohi , i i s i1 —omi E.35
= ¥ () (-9 vahTrio'oiel] ks (-2) (E.35)
17J:X7y
(i#))

= Fqv app hpTr [o%0%0Y] + Fqvy - ah” LheTr [o¥o%0”]

. oh, T oh,
™ P s )
= fziqv (apm X hp) = 51=21QV < e hp> .
z z

In summary, we obtain the charge current in the form of

; = ! )
. e oh ==1 oh — 05,
I* = O'DE - W 2UF,y (a—pz X hp> = VR z (5’_])5 X hp> a—y, (E36)

where op is the Drude conductivity.
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Appendix F

Derivation of the vertex T(p)

According to Eq. (6.8), we will calculate the part of vertex T'(p) associated with the
velocity operator Eq. (6.1). It is convenient to divide vertex T'(p) into the spin-independent
and the spin-dependent diagrams. The spin-indenpendent diagrams include operator
k'/m* and the spin-dependent include the operator N = d(h - ¢)/0k". Both of them are
illustrated in Fig. F.

Our goal is to show that the diagram of Fig. F (b) can be cancelled by Fig. F (c) and
the Fig. F (d) can be cancelled by Fig. F (e), and so on. The first order expansion of
ladder series associated with k%/m* is cancelled by the zeroth order expansion of ladder
series associated with N shown in Fig. F (b) and (c). Furthermore, the second order
expansion of ladder series associated with k*/m* is cancelled by the first order expansion
of ladder series associated with N shown in Fig. F (d) and (e). First, we calculate the
contribution of ¢ inside the square in Fig. F (c¢) to obtain

> Tr [aiG;Gg i ]E (F.1)
k

m*

145



APPENDIX F. DERIVATION OF THE VERTEX T(P)

where F; is electric field. According to the Green’s function of Eq. (6.7), one can calculate

ki
m*

V2 Tr[o'GLGLi | E
k

ki il 1 1
=V? ; meE[Tr{o'; <(w—ek—hk+z‘1") + (w_sk+hk+ir))

1 _ 1 ) }
(w7€k+hk7ﬂ_‘) (wfakfhkfiF)

il 1 1
+TT{‘7 2 ((wfskfthriI‘) + (w—sk+hk+iF)>
on 1 1
X 2 « <(w75k+hk7iI‘) - (wfskfhkfil“))}

_ 1 2 7

k; r B i
m* \ (w—ep—hg) +T2 (w—egp+he)’+T2

_ mis2 i 90(e—w) _  myr2x Ohy _

=tV > hy, o =1V 8ki5(€ w)
k 2

_ mNoV? ohi _E)h}C

= r ok ok

where V' is the impurity scattering potential and unit vector ny = hy/hy. Here, the density
of state at Fermi energy is given by > 4 (¢ — w) = Ny and scattering rate is I' = m Ny V2.
As aresult, the contribution of the diaz;ram (¢) becomes the same as diagram (b) but in the
opposite sign. Next, we can see the contribution of the diagram (e) inside the square part
leading to the same result in Eq. (F.2). As such, the diagram (e) can be cancelled by the
diagram (d). Consequently, all the spin-dependent diagram are cancelled by expanding

the spin-independent diagram up to all orders. Only the diagram (a) survives after these

vertex cancellation. Finally, we can obtain the vertex form 7'(p) = %p - E.

m*
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@)
O

Kim +

Kim' 1

@ D

Figure F.1: The diagram of T'(p) can be decomposed into several diagrams connecting to
ki/m* and N, where N = 0(h - o)/0k".
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Appendix G

Detailed calculation for source terms

I"(q)

In this section, we will calculate the source function I™ shown in Eq. (6.12). First, we
can calculate Eq. (6.14) for n = z,y,z at ¢ = 0 case. One can divide Eq. (6.7) into the

spin-independent part and the spin-dependent part as following

r/a 1 r/a r/a— ng-o r/a— r/a
= [y (s 5 (=) ©

and ggi =

iong g F = —— 1 N S i i
where the notations g, = o Fr T Assuming the electric

2 r(a) 2 r(a)t
field E is along x axis. By using the relations (Gg‘”) = _8aGTkF and (g;(a)i) — _agakEF ’

one can combine Fig. G.1 (a) and (b) to obtain

m*

1Py = 52V ; Tr{o"[(G})* G¢ + G} (G3)*)k. B}
= — 5 Vig ; 75=Tr{o" GG lk. E}

= g Vig 2 ae=Tr{o"s (gt ot +oi g ) + -0 (g 98 —aiToit)] ke E}.
(G.2)
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b r
Gr (b) G,
n
n kE 0 kE
a a
G, G,
Figure G.1: The diagram of I7" is plotted in case of ¢ = 0.

The cross symbol denotes the scattering potential V;, due to the target impurity. For
n = z, the result I7(¢ = 0) turns out to be zero. For n = z,y, IYY(¢ = 0) can be

calculated by

e 0 1 1
Y = ——2V, e — k. E.,
1,ab 27Tm* tg Z aE |: k (( ok h/k-)Q + F2 ((JJ — & + hk)z ‘I‘ FZ):|
= th(‘)EF [nk T (W—ék—hk)—5(w—6k+hk))] ko E,

w0
= 27Tm 4Vm* E fE/dﬁNg

oY
Ok,

5(EF—€>, (GB)

where the relation ﬁ = 70 (z) is used. For the case of Rashba SOI, W is the constant

to give us 17, (¢ = 0) = 0. In a brief summary, above results give us I;**(¢ = 0) = 0.

Next, we expand I up to the small ¢ for Fig. G.2 (a):

17, (q) = 55 Vig ZTT‘{UZ[ A EHE
= gr 2 (Oni/ Ok} x (g —a") (9798 —gr i) ku (G.4)

= Zeme 1 VigEeNogy {W - F2+hip}
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and Fig. G.2 (b):

2rm*

134 (9) = zemw Vi ;TT{UZ[GZGZGZ—A%E}

= ol % (Ony/OK)—q x me (g5~ — g¢") (97 98 —9itgi") kB (G.5)

— __e m 1 1
= — e 1 VgL Nogy |:F2 F2+h§F] ’

From Eq. (G.4) and Eq. (G.5), they are cancelled to each other so that we can obtain
I$(q) = 0 for the expansion of small q.

The contribution of I§ can be represented in Fig. G.3 for the case of ¢ = 0. By using
the relation

GiGr=s (gt + g 90 )+ -0 (9, 98 —agr 9i7)] (G.6)

DN | —

one can calculate Fig. G.3 (a) in the form of

I3,(q=0) = 72V zk;Tr{anGg,GgGgGg,kxE}

= gra 5 Vig Zk: Trioy (9u" + 90 ) meo (91 gn —9n 9i") (9o + g5 ) kaEat
(G.7)

oy (9" + a0 )me-o (g g — g i) nwo (g — gi) ko But

oo (gp — g )me- o (gp g —gi av ) (9it + 95 ) kaEut

oo (gy — gu') Mo (g g5 — gy o) nwo (g5 — g ko Eo

For the case of n = z, at the right-hand side of Eq. (G.7), the first term is off-diagonal
and the second, third terms involve angular averaging of W and the forth term involves
m. As aresult, the contribution of I3 (¢ = 0) is equal to zero because n}, is proportional
to the momentum A7 in the case of Rashba SOI. Similarly, for n = z, the contribution of
I5(q¢ = 0) is also equal to zero. For n = y, the second and third terms are the off-diagonal

terms and they have no contribution to I3,(q = 0) after taking trace. Therefore, the first
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" kE

Figure G.2: The diagram of I7 is plotted in case of small g.

and forth terms give rise to

I (q=0) = 3% % Tr [0,Grango (g1 g¢ — g git) Guka By

= e g § Tr{oy (95" + 95 ) (ndoy) (97 98 — gk ov™) (9w + 95 ) +

xT T— 'S r— a— T a G8
oy (N0, +nj0y) (gk’ B gij) (nyoy) (gk 9 — gk+gk+) X (G-8)

(nf.o, +njoy) (g5 — g5 ) Yo E
= 72 (2VEm* ENZaL — V2m* ENZaZ:h? ).

2mm*

From Fig. G.3 (c), one can sum over the contribution of the second order V;, to obtain

VEY Gl = VS [§ (o + i) + 5 (g — )]
k.// k/l (G'g)
= Vi3> () = —inVisNo,

k//

and Fig. G.3 (d) give us iwV;2Ny. The useful relations are

(G’ G =L () g + (9p7) 9™

(
cr Gy =1 (
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So the contribution of Fig. G.3 (c¢) and (d) can be expressed by

ol = 0) = 5 5 Tr{on Loprioe 20 () (<git) + (o1 ) o] +

g [<gz+> (~ak") + <gk‘>29k‘ﬁ’%E}-

For n = 2z, the contribution of this term becomes zero. For n = z,y, we have to expand

the Green’s function up to linear hj to obtain

I (g =0) = - Wk, x

(G.12)

4h 1 4h 1
fdgNO{ |:(€—EF—iF)3 (e—Ep+il)  (e—Ep+il)® (e—Ep—il) |*

For the case of Rashba SOI, we have nik, = 0 leading to I3(¢ = 0) = 0. At the same

time, I , expanded up to hy to give us

(&

2
o T
B0 = O)li, = 5 (~20m" VANIE) (G13)

and it is exactly cancelled by the first term of Eq. (G.8). Furthermore, one can expand
1§ /(g = 0) up to orders of hi and hj but all terms associated with hi are cancelled.

Hence, we can obtain

y _ VL. 13 1 4 1
Iy eald = 03 = 57mm fdankk hi NOE{[ (e—w— 7,F) C—Ertit) T —Bp—il) (—Ep il

8 1 . 8 1 ]}
(e—Ep—il')® (e—Ep+il') (e—w—il') (e—Ep+il)?

= - (2Vi*m* ENZaZ:h2 ).
(G.14)

Combining with Eq. (G.8), Eq. (G.13) and Eq. (G.14), the total source terms are given

!/

r
[y(q:()) = ’UdNOm*OéhiFﬁ

["(g=0) = 0, (G.15)
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g KE

n KE o KE

Ga k k

k

Figure G.3: The diagram of [} is plotted in case of ¢ = 0.

where the drift velocity vy = eE7/m*, and I = Noﬂ/;j This results are corresponding
to Eq. (6.16).
Next, we have to calculate the contribution I5(q) for small ¢ and the diagrams is

plotted in Fig. G.4. First, the Fig. G.4 (a) can be expressed by

e

]g,a(q) = 27Tm*

> VRTr{o.Gy,, (GiGY) Gak, B} (G.16)
k,p

and the part of G.Gf can be calculated by

GiGr =[5 (9" +917) + 57 (6 — ")) x
[5 (00" + a0 ) + 5% (90 —ai")] (G.17)

=5 (G o o)+ (e o)

Because Eq. (G.19) contains the matrix o, the nonzero contribution of Eq. (G.19)

need include two components 0,0, coming from G;Gy and G}, G}. Thus, we just need
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to calculated the second part of Eq. (G.17) and give us

rYa ngostnjoy 1 _ 1
Gka = de k 5 k <(EF—ak—hk)2+F2 (EF—Ek'f‘hk)z-i-FQ) kxE (Glg)
= aNgrm*Eo,/T.
Substituting Eq. (G.18) into Eq. (G.19), one can obtain
Iéz,a(Q) = 27571* Vé > TT{O_ZG;H-Q (aNO@%) GZ}
p
e 2“/;52:; m* T U1 r a a—
= () 7 (aNO FE) > {ng (gp—i-q a gpiq) (gp+ + 9 )
p (G.19)
—n; (g;jrrq + 9;;1) (g;_ o g;Jr)}
= ~(55)iV2 (aNZh, 32 ) 0y E P,
where the expansion of
i L agr:l:

is used for small ¢ with velocity v = de/0p.

For Fig. G.4 (b), one can calculate as following

(=inV2No)Tr{0.G} GGk, E}
= §Tr{0o: (n140) (- @) (15, — 90ty) (200 9% — 205" 0" ka B}

: ) a r+)2 r+ r— a— r—\2 T4 r—
= (—WVt?;NO)iEka: k_12 (kokyqe — k2qy) [9k+ <<gk’+) — 9 9r ) + 9 <(9k ) ~ 9k 9k )}

. h?
= (imV;2 No) g, ENo(££)

(G.21)

where ¢ can be neglected in (g7, — g;iq). Similarly, we can obtain Fig. G.4 (c¢) in the

result of

(imVieNo)Tr{o. GGG _ ko E} (@.22)
. h3 '
= (m‘/tho)%quNo(%).
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ptq Gk
o’ kE
Gp Gk Grk
(b) G G (©)
k+ k
O_Z kE GZ E
Ga Gk q Gk

Figure G.4: The diagram of [} is plotted in case of small q.
Combining with Eq. (G.21) and Eq. (G.22), we can obtain the source function

z Zﬂ_NOhi
Lpeld) = —~ 15 WE.

(G.23)

Finally, the total source function /* can be obtained from Eq. (G.23) and Eq. (G.19) to

give us

/

I* = —igyuaNy (G.24)

2

corresponding to Eq. (6.16).
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