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Abstract—In this brief, the trap-related characteristics of
high-breakdown AlGaN/GaN high-electron-mobility transistors
(HEMTs) were investigated. Compared with a conventional mul-
tifinger layout, the square-gate design presented reduced the
current collapse from 19% to 6% and almost eliminated the
gate lag. The flicker noise density and the gate leakage de-
creased from 1.16 × 10−10 to 1.17 × 10−11 1/Hz (f = 100 Hz)
and from 7.36 × 10−5 to 1.80 × 10−6 A/mm (VGS = −4 V and
VDS = 100 V), respectively. The breakdown voltage was also
improved from 350 to 650 V. With the channel area away from
the defects generated by the mesa etching process, the square-gate
AlGaN/GaN HEMTs demonstrated excellent performance with
much less trapping effects.

Index Terms—High-electron-mobility transistor (HEMT), lay-
out, power semiconductor devices.

I. INTRODUCTION

H IGH-PERFORMANCE AlGaN/GaN high-electron-
mobility transistors (HEMTs) have been successfully

demonstrated for high-power applications owing to the
excellent material properties of GaN [1], [2]. However,
the degradation and reliability problems of GaN HEMTs,
caused by the trap-related effects, have been a critical issue
that is widely discussed in recent years [3]–[6]. These
defects may result from surface states, dislocations in the
buffer layer, and plasma etch damage [7]–[11], which act as
trapping–detrapping centers to affect device characteristics.
The well-known phenomena are the current collapse [3], [4],
[6], and gate-lag effects [3], [5], [6], which degrade the device
transconductance and current density. The traps existing in the
transistor were also reported to be closely related to the flicker
noise characteristics [12], [13]. In addition, the defect charges
around the gate finger not only cause barrier narrowing in the
AlGaN cap layer, leading to increased gate leakage current
[14], but also bring out a higher electric field density at the gate
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Fig. 1. AlGaN/GaN HEMTs: (a) Two-finger and (b) square-gate layouts.

electrode edge, resulting in enhanced impact ionization and
reduced breakdown voltage.

Many previous studies of GaN HEMTs focused on the
origins of the surface states and technologies, such as various
passivation methods and surface treatments, for trapping effect
reduction [5], [15]–[22]. Excellent results for the transistors
with small current collapse have been reported [14]–[19], [21],
[22]. However, these works only investigated typical multi-
finger configurations with a small gate-to-drain distance Lgd

(typically, 1–3 μm), which were not suitable for applications
up to several hundred volts. In this study, we found that the
trapping effect is severe for conventional multifinger transistors
with a large Lgd (12 μm in this case), even with careful
passivation, because of the traps located around the RIE-etched
mesa edge. Compared with GaAs, GaN has a higher bonding
energy and is more chemically inert [7]. Therefore, the RIE
process for GaN etching is more difficult and requires higher
ion energy and plasma flux, which often generate ion-induced
damages and unsmoothed sidewalls [7]. Previous studies re-
ported that the etching process for mesa isolation in GaN-based
devices produced deep level traps, causing increased leakage
current [7]–[11]. In this brief, the square-gate layout approach
is proposed to reduce the effects of traps at the mesa edge on the
transistor characteristics. The trap-related characteristics such
as current collapse, gate lag, flicker noise, gate leakage, and
breakdown voltage are investigated to verify this viewpoint.
The square-gate GaN HEMTs were reported, and an excellent
breakdown voltage up to 8300 V was achieved [2]. However,
the advantage of improved trap-related characteristics of using
the square-gate design has not been discussed, which is the
main scope of this study.
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Fig. 2. Layer structure of the AlGaN/GaN HEMTs.

II. DEVICE DESIGN AND FABRICATION

Fig. 1 shows the layouts of both the two-finger device and
the square-gate topology. The mesa edges are highlighted by
diagonal strips in both layouts. For the two-finger design in
Fig. 1(a), the gate fingers are extended beyond the mesa edge
to ensure that the channel is fully depleted under the OFF state,
and the boundary of the channel is defined by the mesa. Note
that the mesa process is essential for electrical isolation of
individual transistors. With the identical layer structure and
process steps, the reduced trapping effects, as will be carried
out later, can mainly be ascribed to the square-gate design
with eliminated mesa edge effect. As indicated in Fig. 1(b), the
critical channel area (between the source and the drain) is fully
surrounded by the source region rather than that exposed to the
mesa edge [encircled by the dotted line, see Fig. 1(a)] in the
conventional two-finger layout.

The cross section of the modulation-doped AlGaN/GaN het-
erostructure is shown in Fig. 2. The device structure was grown
on a c-plane sapphire substrate by metal–organic chemical
vapor deposition. The epitaxial structure consisted of a GaN
buffer layer, a 3-μm undoped GaN layer, a 3-nm undoped
AlGaN layer, a 20-nm n-doped AlGaN barrier layer, and,
finally, a 5-nm undoped AlGaN cap layer. The Al mole fraction
in the AlGaN layer was 0.25. Device isolation was achieved by
dry etching using a Cl2/Ar gas mixture, and a silicon nitride
layer, 1.2 μm thick, was deposited for surface passivation.
It is worth mentioning that the etching process and surface
passivation were carefully optimized for the current collapse
effect. Using a similar process, the maximum drain current
reduction was recovered from 37.5% to only 6.9% for the
Cl2/Ar-recessed GaN HEMTs (Lgd = 2 μm) [22].

In this study, the gate length Lg and the gate-to-source spac-
ing Lgs are both 2 μm for the two designs, while a large gate-to-
drain spacing Lgd of 12 μm is used as the drift extension region.
The overall channel widths of both devices are 400 μm. Fig. 3
compares the typical ID–VDS characteristics of the two designs.
As can be seen, the curves are almost identical, and well-
defined pinchoff characteristics can be observed. The typical
threshold voltage Vth is ∼ −4 V. The maximum current density
and transconductance are ∼250 mA/mm (VGS = 1 V, VDS =
10 V) and ∼75 mS/mm (VGS = −1 V, VDS = 10 V), respec-
tively. It should be mentioned that the gate electrode in the
square-gate design can be connected in a repeatable manner by

Fig. 3. Measured ID–VDS characteristics for both two-finger and square-gate
devices.

Fig. 4. Current collapse characteristics for both two-finger and square-gate
devices.

a Ti/Au top metal layer above the SiN passivation layer through
a via hole. In this way, a multifinger transistor can be realized
for high-power applications.

III. RESULTS AND DISCUSSION

The current collapse measurement of the device was per-
formed under the sweep of a 60-Hz rectified sine wave using
a Tektronix 370 curve tracer. Note that the drain voltage is
supplied as a rectified sine wave of 60 Hz, while a pulse signal
is applied to the gate with a duration of 250 μs, which is suitable
for observing the collapse effect [22], [23]. The current collapse
effect in GaN-based devices has been investigated, which can
be explained by the electron injection into the surface states
[24]–[26]. With the surface states existing between the gate
and drain area, the captured electrons in the slow traps cannot
respond fast enough to the applied pulse signal. The trapped
electrons induce a negative voltage to deplete the channel,
causing a reduced drain current. Therefore, the current collapse
effect closely depends on the trap density and can be used to
test the traps in a transistor.

The impact of the trapping effects can be observed by
comparing the dc I–V characteristics (measured by an Agilent
semiconductor analyzer) with the swept signal as shown in
Fig. 4 (VGS = 1 V). As can be seen, the traditional two-finger
device shows a clear degradation when compared with the dc
results, whereas the square-gate design has a much less current
collapse effect. The hysteresis characteristic observed in the
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Fig. 5. Measured gate-lag characteristics for both two-finger and square-gate
devices.

two-finger device also indicates that the trapped carriers have
very large time constants. The current collapse factor ΔImax,
defined as (Idc_peak − Iac_peak)/Idc_peak at VGS = 1 V, was
reduced from ∼19% to only ∼6% for the square-gate design,
where Idc_peak is the maximum dc drain current within the
applied drain voltage range and Iac_peak has a similar definition
but with the swept ac signal. The results suggest that a severely
damaged mesa edge may not be fully recovered even when
carefully passivated by SiN. For the two-finger design, the
remaining traps along the mesa edge are in the vicinity of the
active area, which can still affect the channel carriers. This
may not be obvious for devices with a small Lgd (typically,
1–3 μm), but it becomes a dominant factor in power devices
with a relatively large Lgd. In this case, the overall length along
the sensitive channel area exposed to the mesa edge is around
48 μm [4 × 12 μm as indicated in Fig. 1(a)]. In contrast, even
with large Lgd in the square-gate devices, the critical channel
area is surrounded by the source and is far away from the mesa
edge. As a result, the square-gate design presents a significantly
reduced current collapse effect.

The gate-lag measurements use a pulse voltage biased from
−5 to 0 V at the gate terminal by the Agilent 8114 pulse
generator [22]. The period and the duty cycle of the gate pulse
voltage used were 0.1 s and 60%, respectively. Fig. 5 shows
the results with the drain bias fixed at 5 V. For the two-finger
device, an obvious drain current lag can be observed, where
the lag is longer than 10 ms. On the other hand, the gate-lag
effect is almost eliminated in the square-gate device. Similar to
the current collapse effect, the lag of the drain current is also
due to the fact that the captured electrons in the traps cannot
respond fast enough to the gate pulse signal. As can be seen, the
observation in the gate-lag measurements presents a consistent
trend with the current collapse results. Note that the trapping
effect can mainly be observed under the applied ac pulse signal,
and, thus, similar dc I–V characteristics and threshold voltages
are obtained in both designs as shown in Fig. 3.

Fig. 6 shows the normalized flicker noise current spectral
densities Sid/I2 of both designs (VGS = 0 V and VDS = 1 V).
Compared with the traditional two-finger device, the noise level
of the square-gate transistor improves about one order of mag-
nitude from 1.16 × 10−10 to 1.17 × 10−11 1/Hz (at 100 Hz).
The result shown in Fig. 7 is the measured OFF-state gate
leakage current. The square-gate device presents a significantly

Fig. 6. Measured flicker noise characteristics for both two-finger and square-
gate devices.

Fig. 7. Gate leakage characteristics for both two-finger and square-gate
devices.

Fig. 8. Measured breakdown voltages for both two-finger and square-gate
devices.

lowered leakage current by almost two orders of magnitude in
the range of ∼10−6 A/mm. As mentioned earlier, the flicker
noise characteristic and gate leakage current level are both
closely related to the defects in the transistor. The square-gate
design eliminates the mesa edge trapping effect, leading to
reduced flicker noise and gate leakage current.

Finally, the improved OFF-state blocking capability was also
confirmed. The breakdown voltage VBK of the device with the
square-gate layout shown in Fig. 8 can reach 650 V, whereas
the two-finger device can reach only about 350 V. The contri-
bution of the square-gate design for the significantly enhanced
breakdown characteristic could be twofold. First, the rounded
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corners can reduce the high electric field at the gate finger tips in
the two-finger design. In addition, the trap charges underlying
the gate finger, which can lower VBK, are avoided in the square-
gate design. Compared with the state of the art [2], the square-
gate GaN HEMTs using a field-plate (FP) structure show a VBK

of ∼500 V (Lgd = 10 μm) and a VBK of ∼1000 V (Lgd =
20 μm). Our device, without the additional FP structure, has
a VBK of up to 650 V (Lgd = 12 μm), which demonstrates
excellent quality of the transistors studied here regarding both
technology and design. All the measurement results show that
the square-gate design is effective in eliminating the effects of
traps associated with the mesa edge.

IV. CONCLUSION

In this brief, the square-gate design has been proposed to
alleviate the trap-related effects associated with plasma etch
damage along the mesa edge in AlGaN/GaN HEMTs. Com-
pared with the conventional multifinger layout, the square-
gate device presented a significantly improved current collapse
and gate-lag effect. The flicker noise level and the OFF-state
gate leakage current were both reduced by more than one
order of magnitude. A much higher breakdown voltage up to
650 V was also obtained. The results suggest that the defects
around the mesa edge generated by the RIE process are critical,
particularly for the high-power devices with a large gate-to-
drain extension distance.
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