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Degree Program of Electrical Engineering and Computer Science
National Chiao Tung University

ABSTRACT

Due to the trends of IP re-use-and the -SOC integration, mixed-size designs are very
common now, and the quality of mixed-size placement becomes a critical step in the VLSI
physical design. However, because “the algorithms of; macro placement and standard-cell
placement are fundamentally distinct, placing the mixed=size design in a single flow is actually a
challenging problem. In this thesis, we formulate'the general placement problem as a nonlinear
constrained optimization problem and solve it by the analytical approach incorporating with a
multi-level scheme. The experimental results clearly show that our model can be employed as a
global placer. By applying the augmented L agrangian method to perform nonlinear programming,
the result of the total half-perimeter wire length is comparable to current state-of-the-art placers.
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Chapter 1

Overview

1.1 Introduction

The complexity of circuit designicontinues toinerease as the deep sub-micron
IC technology keeps scaling down the feature size. This trend makes IP reuse
become a necessary strategy=to tame the design complexity and ensure time-
to-market. Current SOC designs ustallyicontain:hundreds of thousands of
standard cells, mixed with a number of IP,.analog blocks, embedded memo-
ries, and pre-designed legacy blocks. To place so many different cells simul-
taneously is actually a great challenges. An obvious issue is the design scale.
The placement algorithm must be very efficient so that it can handle huge
amount of placement instances within an acceptable runtime and memory
size. In addition, the variation in cell dimensions introduces significant dis-

continuity in the solution space of the placement.

As indicated in [1], the cell size of the hard blocks may ranges from 1x
to 10000x or more, comparing with that of a standard cell. That is the

root cause why traditional standard-cell placers usually either fail to process



these mixed-size designs or produce results with unsatisfied quality. Although
floorplanners are suitable to place the cells with arbitrary sizes, the design
scale makes the use of traditional floorplanners impractical. In existing com-
mercial tools, placing the hard macros of a modern SOC design still requires
helps from human engineers and is a time-consuming task during the design
floorplanning phase. Since placement plays a critical role in determining the
circuit performance and layout resources, an efficient and effective algorithm
which focuses on such mixed-size large-scale design would be very helpful
to SOC developments. This thesis presents a new algorithm to tackle the

large-scale mixed-size placement problem.

1.2 Owur Contribution

A new formulation is proposedsto model the placement problem. Our
formulation focuses on-wire length minimization and ensures an even
cell distribution. Becatse ofiits*universal forin, the formulation can be

applied on general desighs and is suitablé for mixed-size problem.

e We introduce the augmented Lagrangian method to implement the
optimization solver and describe the programming details of the whole

multi-level engine.

e The experimental results show that our algorithm is comparable to

current state-of-the-art placers.

A novel floorplanning technique is studied as the macro legalization.



1.3 Organization

The remaining part of this paper is organized as follows. Chapter 2 describes
the background of the placement problem and our problem formulation. The
details of our method is discussed in Chapter 3, and the experimental results

are summarized in Chapter 4. We conclude the paper in Chapter 5.



Chapter 2

Preliminaries

2.1 Placer Classification

Cell placement is the process toarrange the cireuit components onto a layout
surface. A placer that performs cell placement:is usualy required to minimize
the interconnects of the whole design as well as other objectives, depending
on the design requirements. = According to-the (design style, the placement
problem can be classified as block placement or macro placement, standard-

cell placement or row-based placement, and mixed-size placement.

Generally, block placement focuses on full-custom design, in which the circuit
components can be arbitrary sizes and shapes. Due to its high complexity,
it can only deal with the design that contains a small number of placement
objects. Most algorithms employs the floorplanning techniques to solve the

block placement problem.

Standard-cell placement targets the digital design which is synthesized based

on standard cells or gate array cells. Such design has the characteristics that



the cell heights are unique and the cell sizes are relatively similar. The diffi-
culty of standard-cell placement is the extremely large problem size. Current
advanced designs which contain million of cells are very common. To ensure
a reasonable runtime can be achieved for such large designs, the heuristic al-
gorithms of most standard-cell placers often exploit the design characteristic
of equal cell height. After decades of work, now the state-of-the-art standard-
cell placers are able to deliver very optimized results with excellent efficiency
for the pure standard-cell designs. These placers apply various heurstics
such as recursive partitioning (Capo[2], FengShui[3]), recursive clustering
(mPG[4]), analytical techniques (Kraftwerk[5], fastPlace[6]), and the hybrid
algorithms that combine partitioning and analytical methods (GORDIANS],
GORDIAN-L[9]). However, for those designs that the required design char-
acteristic does not exist, most standard-cell'placers either cannot function
normally or produce unacceptable-results. Unfortunately, pure standard-cell
designs are rarely seen in the 'SOC era.“Most SOC designs often consists
of a number of hard macrosy andithey-must be fixed first in order to make
standard-cell placement work. “An.obvious drawback of such flow is the loss
of optimality when placing hard macros without considering the effect of

standard cells.

Recently the concept of mixed-size placement is proposed to solve the chal-
lenges from these SOC designs. It emphasizes that large macro cells and

standard cells can be handled in a single flow without human efforts.



2.2 Previous Work of Mixed-size Placer

Some of the standard-cell placers mentioned above also propose sophisti-
cated approaches to handle large-scale mixed-size designs. A three-stage
placement-floorplanning-placement flow that incorporates Capo and the Par-
quet floorplanner was demostrated in [10]. Khatkhate et al. improved the
placer FengShui and introduced a special fractional cut bisection that allows
off-row alignment for horizontal cuts[11]. mPG-MS[1], the new version of
mPG, clusters the standard cells to form big blocks and eventually clusters
with big macros which have similar sizes. With multi-level simulated an-
nealing scheme and careful treatment of macros in the legalization stage,
mPG-MS can provide results with comparable quality as Capo. On the
other hand, the analytical placer EDR[12} shich is based on the method of
Kraftwerk, minimizes the quadratic wice length ebjective and spreads cells by
adjusting the extra spreading force. Another-analytical placer, APlace, turns
to a log-sum-exp wire length model and utilizes nmonlinear programming to
obtain outstanding wire length results for-mixed-size designs. Among these
mixed-size placers, the analytical placers exhibit their inherent flexibilities
on handling the various design constraints in [5, 14, 15]. In this thesis, we
propose a new analytical placement algorithm based on the augmented La-
grangian method to perform the global placement for large-scale mixed-size

designs.

Among various analytical placement algorithms, the force-directed method
attracted the most attention in recent years. The force-directed method sim-
ulates the design netlist as an spring system and solves the classic mechanics
problem to determine the cell locations that minimize the total wire length.

Such model is proved to be very efficient for large-scale problems. However,
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by reason that it does not take the cell dimension into consideration, the solu-
tion usually contains a large amount of cell overlaps. How to eliminate those
cell overlaps without much impact on wire length is actually the key point
in force-directed methods. In Kraftwerk[5], additional forces are applied on
cells to pull them away from dense regions. The new cell locations are ob-
tained by solving the Poisson’s equation. Viswanathan et al.[6] proposed a
simple cell shifting technique which determines the magnitude and direction
of the new forces by expanding the bins with high utilization and shrinking
those with low utilization. This method exhibits outstanding performance
due to the fact that only the unconstrained minimization is needed in each
iteration. In APlace[7], though a log-sum-exp wire length model is used to
substitute the quadratic force model, a similar bin structure is constructed
to represent the local information-of cell distribution within the placement
area. The regions with eithet too-high or too low bin utilization would be
penalized in the quadratic penalty function. By performing nonlinear op-
timization with increasing penalty-weight_an even cell distribution can be

achieved eventually.

2.3 Problem Formulation

2.3.1 Concept

In order to simplify the problem complexity, we only target the wire length
minimization as our objective in this thesis. The classic quadratic wire length
is chosen as our wire length model for the sake of its simplicity. We also
adopt the bin structure to represent rough cell distribution. The utiliza-
tion of each bin stands for the cell density of this local region. In a global

manner, if we can generate a placement which the bin utilizations are all
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close to the chip density, an even cell distribution is obtained. Hence, we
formulate the constraints based on the differences between the chip density
and the exact utilizations of the bins. By combining the objective and the
constraints, finding a placement with minimized wire length is modeled as
a constrained optimization problem. Such constrained optimization can be
solved effectively through the augmented Lagrangian method. The details of

our problem formulation are described as below.

2.3.2 Quadratic Objective

Given a netlist with n cells and m nets, the placement problem is to find
the locations and orientations of all cells so that the total wire length is
minimized. Since we do not need to_consider the data flow, the netlist can
be modeled as a non-directive graph G = (V, &) where each vertex v; € V
corresponding to a cell with=the cell area as the vertex weight. Each edge
e;j € I/ represents the connéctivity between cach pair of cells. In this thesis,
we model a net as a clique which:follows the formula proposed in [13], and
thus the edge weight of e;; can"be determined by summing up the weights
of all the clique edges between v; and v;. By constructing this connectivity
graph we can calculate the quadratic objective which is actually the sum of
the weighted squares of the Euclidean distances between two cells:

cil( — 25)* + (i — ;)] (2.1)

1
2 &

(2

flo,y) =

n
:1]

n

The objective function can be rewritten in matrix notation as illustrated in
[18]:
- - 1 )~ = U 1 /o~ =/
fXy) = 5% CxX + dy X+§y Cy +dy y+const. (2.2)
The vectors X and ¥ denote the coordinates of the movable cells, and the

prime denotes vector transposition. The matrix C represents the connec-
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tivity of movable cells. The vectors d, and d_;, are contributed by the con-
nectivity between the movable cells and the fixed cells, and the constant
term is contributed by the connectivity between the fixed cells. Solving this
unconstrained minimization problem is equivalent to solving the two linear
equations:

Cx+d =0 (2.3)
Cy+d, =0 (2.4)

Such equivalence relationship requires that the connectivity matrix C is pos-
itive definite. Fortunately, this property is always true for general circuits
because none of the connectivity would be negative. Hence, the quadratic
objective can be easily minimized by any linear equation solvers. In this
thesis, we solve Equation (2.3) ands(2#4) by conjugate gradient method in
order to obtain the initial placement.Note.that the fixed cells such as the
I/O pads must be provided.to _guarantee non-zero vectors for both d, and
d_;,. Otherwise, a trivial solution thatXx'= 0(y = @) will be obtained, which

is not what we desire.

2.3.3 Nonlinear Constraints Based on Bin Utilization

The major issue of the quadratic objective function in Equation (2.2) and
(2.3) is that it would generate a placement with a large amount of cell over-
laps. The reason is evident since there is no information about cell dimension
at all in the equation. Due to that the number of internal connections is usu-
ally larger than that of the connections to fixed I/O pads, in most cases,
the unconstrained optimization would result in the placement which the cell
density at the center of is much higher than that at the chip boundary. Fig-

ure 2.1 demostrates such result for a 100-block circuit and compares it with

13
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Figure 2.1: The comparison of unconstrained and constrained optimization

for a simple case

another more even solution generated by : istrained optimization. In order
to eliminate the cell overlaps .I .
us how to push cells towar:
to measure the cell distribu o . is the E ructire. Let the chip area be
divided by K bins, and all the bir "
The bin utilization of bin b; is denoted as u;, which is defined as the total
cell areas within b; over the bin area wy, x hy. Given a placement, the local
cell density can be measured by the utilizations of the k bins. If one bin
has the utilization over 100%, it is impossible to find a feasible placement
inside this bin, and thus some of the cells must be removed to decrease the
bin utilization. Since our goal is to generate the placement which every bin
utilization is close to the average chip density, we can define the constraints

as

uj—U=0forj=1...k (2.5)
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Figure 2.2: The three types of x-dimension overlap for small cells

w2 W2 w2
w2 /2 /2
(a) No overlap (b) Partial overlap (c) Complete overlap

Figure 2.3: The three types of'x-diménsion overlap for large cells

, where U is the average chip-density, that is;-the total cell area over the chip
area. In this thesis, we adopt & unified model to calculate the exact area that
a cell contributes to each binyno matter the-cell size is larger or smaller than

the bin size. The model is described: as follows.

Consider a cell ¢; with width w; and height h;, and a bin b; with width
w; and height h;. Also assume that the cell width is smaller than the bin
width. Let d, and d, denote the center-to-center distance between ¢; and b; in
x-dimension and y-dimension, respectively. The overlapping in x-dimension
can be classified into three cases as illustrated in Figure 2.2. If d, is larger
than or equal to (w; + w;)/2, there is no overlapping. As d, is decreased to
be less than (w; + w;)/2, ¢; starts to overlap with b; in x-dimension, and the
length of overlapping is (w; +w;)/2 — d,, which grows as d, decreases. When
d, is further decreased to be less than or equal to (w; — w;)/2, the length

15



of overlapping will saturate at its maximum value, that is, min(w;, w;). An-
other scenario is that the cell width is larger than the bin width, which may
happens while dealing with the big macro cells. As shown in Figure 2.3, the
overlapping is similar with that of the former scenario, except (w; — w;)/2
substitutes with (w; — w;)/2 and min(w;,w;) changes to w;. The overlap-
ping in y-dimension can also be calculated in the similar manner. Combine
the two scenarios of different cell sizes and consider the x-dimension and
the y-dimension together, the exact overlap area of cell ¢; and bin b; can be

generalized as below :
a;; = wshs M, (d,) M, (d,) (2.6)

, where wy = min(w;,w;), hy = min(h;, h;), M, and M, are actually two

piecewise-linear functions of d, and'd,, respectively.

1, ifdy <95,

M, (d,) — W if 5. <d, < 5, +w, (2.7)
0, s otherwise
1, if d, <,

M,(dy) = w, i£5, < d, <5, +h, (2.8)
0, é otherwise

,where 8, denotes |w; — w;|/2, and &, denotes |h; — h;|/2. With this unified
model, the exact overlap between cells and bins can be easily computed. Now

the bin utilization of each bin can be rephrased as follows :

Uj:

1 n
— ) ai,forj=1...k 2.9
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Combine the quadratic objective and the nonlinear constraints, the place-
ment problem is restated in the following form :
Minimize f(X, ¥) = 1®'C% + dy %+15'Cy + dy 'y
(2.10)

—

subject to ¢;(X,¥) =u;(X,¥) —U =0,for j=1...k

Here we describe the notations again. C denotes the matrix of the connec-
tivities between any two movable cells. Each element in d; denotes the sum
of product of the connectivity between the movable cell to each fixed cell and
the X coordinate of the fixed cell. Similarly, d; is a vector composed of the
sum of product of the connectivity between the movable cell to each fixed
cell and the Y coordinate of the fixed cell. u; denotes the utilization of bin

b;, and U denotes the average chip,densitys For the chip area divided into &

bins, there are k£ constraints.

In Equation (2.10), the objeetive to bé minimized-is quadratic, but the con-
straints are nonlinear to X and ¥. This equationsimplies that any solver can
solve this nonlinear constrained optimization problem effectively can be used
as a global placer for mixed-size placement. The details of our approach is

discussed in the next chapter.
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Chapter 3

Algorithm and Implementation

3.1 Main Flow

The constrained optimization is usually attacked by solving a sequence of
unconstrained problems. In éach unconstrained problem, the merit function,
which is composed of the original objective function and the constaints, is to
be minimized. Since our formulation/econtains a quadratic objective function
and nonlinear constraints, the merit function-is nonlinear. In our work, a
nonlinear minimizer based on the conjugate gradient method is implemented
as the fundation of the solver. The merit function is formulated following
the augmented Lagrangian (ALAG) method[19], which can be viewed as a
combination of the quadratic penalty function and the ordinary Lagrangian
method. Unlike the quadratic penalty function, the ALAG method usually
generates a solution without an extremely large penalty, and thus avoids ill-
conditioning effects. It also provides better convergence rate than ordinary
Lagrangian method. Although the ALAG method has such advantages over
other constrained optimization methods, it still does not guarantee to obtain

the minimum from any starting point in the solution space. In order to make

18
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Figure 3.1: The main flow of our algorithm
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a good choice of the starting point, the multi-level scheme is approached,
as the procedure shown in Figure 3.1. Our algorithm begins with a multi-
level graph coarsening, which is followed by a unconstrained minimization
to determine the initial point for the coarsest graph. Then a sequence of
constrained minimizations and graph uncoarsenings are performed. In each
level, first the ALAG method is executed, and the solution is used as the
starting point for the next finer level. Such process repeats until the finest
graph is uncoarsened, and a solution of the global placement is finally ob-

tained. For the purpose of improving the efficiency, an extra decision branch



is added to skip the ALAG method when the number of vertices is not suff-
ciently larger than that in last coarser level in which the ALAG method was
performed. We set the vertex ratio as 1.4. In other words, every time the
ALAG method is performed, the graph size is at least 1.4x larger than that of

last run. The implementation details are described in the following sections.

3.2 Augmented Lagrangian Method

The augmented Lagrangian method introduces one penalty parameter p for
the quadratic penalty term and explicit Lagrange multiplier estimate A; for
each constraint ¢;(X,y). By relaxing the constraints ¢;(X, ¥) into the original
objective f(X,¥), the constrained problem in Equation (2.10) is transformed

into a sequence of unconstrained, ptoblems shown in the following equation:
- — - — - = 1 — — -
L(X,¥) = f(X¥) — D \ig(Xiy) + 5 YoeEy) forj=1...k (3.1)

At the n-th iteration, the ALAG meéthod fixes the penalty parameter p”
and all the Lagrange multipliet estimates A#.and performs unconstrained
minimization with respect to X and ¥." ‘After an approximate minimizer is
found, we check the convergence of the merit value. If the convergence crite-
rion is satisfied, the ALAG method is terminated with approximate solution
(X", y"). Otherwise, we update the Lagrange multiplier estimates and the

penalty parameter for the next iteration. The algorithm is shown in Figure

3.2.
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given initial solution (x*,y*)
repeat
find (x*,y") that minimizes L (xy) from (x" ,yk“‘ )
if (Hc(xk ,y" )H < the tolerence 7, )
if (no obvious reduction on L, (X,y))
break with solution (x*,y")
foreach Lagrange multiplier
A =2+, (x",y“ )i
else
My = 0.5,
xhy ) = (v

Figure 3.2: The algorithm of AEAG method

3.3 Nonlinear Conjugate Gradient Minimiza-
tion

The subproblem stated in Equation (3.1) indicates that a nonlinear uncon-
strained minimization is required within every ALAG iteration. While choos-
ing the minimizer, its performance is the major concern since it is located in
the loop and will be called many times. Here we choose the conjugate gradi-
ent method[19]. The conjugate gradient method is an iterative method and
is very popular in large-scale problems due to its efficiency. In each iteration,
only several vector operations are needed to determine the search direction,
and a one-dimensional minimization is performed along the search direction
to find the suitable step size. With successive line searchs, this algorithm

can gradually reach the local minimum.
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At the k-th iteration, the search direction py is a linear combination of the
negative gradient —gj and the previous search direction py_;. When k£ =0,
the negative gradient at the initial solution xq is an intuitive choice for the
initial search direction, since the previous search direction does not exist. In

general, the search direction can be expressed in the following form :

—8k, if k =0
Pk = (3.2)
—gr + BxPr_1, otherwise

where [ is a scalar such that py is conjugate to pr_;. There are several

variants in the choice of 3, and here we follows the Polak-Ribiere formula[20]

_ gi(gr —gr1)
Br = awiiEEs.
8r—18k=1
After the search direction py.is obtainmedythe step size «y is determined by

(3.3)

finding the approximate one=dimensional minimizer along the direction, and

thus the new solution for next iteration'is given by :

Xpha = Xy + Pk (3.4)

Our one-dimensional minimization combines the line searach method follow-
ing the Armijo’s rule and the Fibonacci search method. Both details can be
found in [20]. The Armijo’s rule is also known as the Wolfe condition, which
uses the first-order approximation to decide whether a step makes enough
cost reduction in the merit function. If the step makes enough reduction,
we accept it and further expand the step size to examine the Armijo’s rule
again. On the contrary, if the reduction is not satisfied, we repeatly con-
tract the step size until either the Armijo’s rule is satisfied or the step size
becomes too small. In each line search, first we determine the interval that

contains the minimum by examining the Armijo’s rule, and then we perform

22



the Fibonacci search within the interval to find the most suitable step size.

The stopping criteria of our conjugate gradient method are : (1) the gradi-
ent is too small, (2) the merit value cannot be further improved after several

iterations, or (3) a maximum number of iterations is reached.

3.4 Negative Gradient Evaluation

An important factor in the conjugate gradient method is how to compute
the negative gradient for the complex merit function presented in Equation
(3.1). In our work, we develop a special approximation of the negative gra-
dient. Let (X*,¥*) denotes the current design point of the k-th iteration of
the conjugate gradient method, (@ y¥) denotes the i-th element of (X*, y*),
and ¢ denotes a unit distance. In-the evaluation of the negative gradient
at the k-th iteration, for each element (zF;4¥) eight different directions are
examined with moving a ¢ stepsizes“More specifically, (z%, y¥) is replaced
by (af +6,y7), (2 + 0, yf + (o, yi + o)y la — 6,57 + ), (2 — 0, yf),
(aF — 6, yF —0), (¥, yF —§), and (zF 46, yF — §), respectively, and thus eight
different design points are evaluated to obtain the difference of the merit
value, comparing with the original design point. The difference actually rep-
resents the local information that how the merit value is affected if the cell
moves along this direction. Obviously, the movement that causes the most
decrease in the merit value should be chosen, and the corresponding element
of the negative gradient can be determined by the definition of the gradient,
that is, the difference of the merit value over the distance. If this move only
causes the change in the X-direction, for example, then the Y-component of

the element of the negative gradient is 0, and vice versa.
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Original circuit

time then that of the merit value.

-

Multi-level scheme is widely adopted in the domain of physical design. A
typical implementation consists of the coarsening phase and the uncoarsen-
ing phase, as shown in Figure 3.3. In the beginning the problem is recursively
coarsened to reduce the problem size. The optimization is performed at the
coarsest level, and then in each of the following finer levels the local refine-
ment is performed during the uncoarsening phase. The mult-level scheme
is very attractive in the runtime reduction without too much quality loss.

Placers with such scheme can be found in [1, 7, 13].
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In this thesis, the implementation of a multi-level framework is mainly due
to the lack of a good initial design point for the ALAG method. It is well-
known that the inital design point significantly affects the result and the
performance in nonlinear constrained optimization[21]. But how to decide a
reasonable initial design point? We think that the optimization result of the
coarser level should be a proper choice. During the uncoarsening phase, the
solution obtained in the coarser level is inherited as the initial solution of
the ALAG method in the current level. The only exception is at the coarest
level, where a unconstrained optimization is first performed to obtained the
required initial solution. By testing a simple case which contains 107 cells
and 151 nets, we confirmed that such multi-level framework is superior to the
direction optimization with the initial design point given by random guess.
The row 2 to row 9 in Table 3.1lsshow the placement results with 8 random
initial design points, and theif average-results aré.shown in the row 10. The
row 11 shows the placement: result with-the same” optimization parameters
except for the initial design point.obtained-by a 7-level optimization. It is
clear that both the half-perimeter.wire length and the amount of cell over-
lapping obtained by the multi-level scheme are better than those obtained in

the random cases.

Our coarsening/uncoarsening approach follows the algorithms proposed by
metis and hMetis[16, 17]. The randomized ”First-Choice” matching is per-
formed to cluster the adjacent vertices based on the connectivity and vertex
weights. Here the vertex weight is the cell area. When two vertices are clus-
tered together, their weights are summed up to form the new vertex. We
recursively coarsen the graph until (1) the graph size is small enough that

the number of vertices is less than a given lower bound, saying 10. (2) there
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Table 3.1: The placement results with different initial design points

H HPWL ‘ Cell overlap

random 1 242.00 388.88
random 2 376.00 183.13
random 3 444.00 156.63
random 4 453.00 155.38
random 5 423.00 182.38
random 6 390.00 167.50
random 7 378.00 167.38
random 8 413.00 177.63

avg. 389.88 197.36
multi-level || 344.00 157.50

exists some vertex whose weight exceeds a given maximum weight.

3.6 Legalization

3.6.1 Legalization Flow

After the ALAG method is performed at the finest level, we can obtain a
placement solution that every bin has similar cell utilization. It is obvious
that such result doesn’t guarantee overlap-free, and thus an extra legaliza-
tion step is necessary. This step can be further divided into three stages:

(1)macro legalization, (2)row legalization, and (3)detailed placement.

In the first stage, only the macro cells are legalized without considering the
standard cells. After a solution can be obtained that none of the macro cells
overlaps with each other, these macro cells are set fixed, and we go to next
stage to legalize the standard cells. The key point of the stage 1 and stage

2 is that the legalization must honor the solution of our global placement
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and only moves cells locally. After stage 2, the placement is a legal solution,
but the total wire length may increase. Hence, the final stage is to refine
the standard cells locally to further reduce the wire length as well as to meet
other design constraints without cell overlaps. In our work, we evaluate a
new macro packing algorithm to perform macro legalization, but we do not

cover the row-based legalization and detailed placement.

3.6.2 Implementation of Macro Legalization

Our macro legalization is based on the block packing technique which is
widely used in design floorplanning. The fundation of block packing is a floor-
plan representation, with which the geometric relationship of the blocks can
be well-defined. By disturbing the representation sequentially, we can evalu-
ate different packings and chooge the one with'the best cost. We developed
a representation which is actually a medification of B*-Tree[23]. B*-Tree is
an ordered binary tree in which anode stands for a block to be packed. The
root node is initially placed as the bottomi-left block, and the leaf nodes are

placed by the rules as follows.

e If node n; is the left child of node n;, module b; must be located on

the right-hand side and adjacent to module b;.

e If node n; is the right child of node n;, module b; must be located

above and adjacent to module b;.

After traversing the whole tree, all the blocks are placed, and a nonslicing
floorplan is constructed. However, the packing along the bottom-left direc-
tion is not what we desired. In most commercial ICs, the macro cells are
often placed around the chip boundary, and the chip center can forms a com-

plete region for standard cell placement. To ensure the macro cells can be
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packed in such style, a four-B*-Tree stretegy is employed. We pack the four
trees from the four chip corners. The bottom-left tree is actuall a B*-tree,
and the top-left tree is a clockwise 90-degree rotation of B*-Tree. Similarily,

the top-right tree and the bottom-right tree are also rotated B*-Trees.

In the beginning the legalization, the macro cells are assigned to the four
trees by their locations which are determined by the global placement. For
each tree, the sortings along the X-direction and Y-direction are performed
to decide the geometric relationships of these cells. Thus, the trees can be
constructed following the B*-Tree definition. Then we start the SA process
to disturb the trees. In each iteration, only one tree is selected, and one
of the three possible operations is applied on the node which is chosen by

random.
e ROTATE - Rotate the=cell by 90-degree;. 180-degree or 270-degree.

e MOVE - Insert a node™n; togbe'the child of another node n;. The child

trees of both n; and n; may be affected recursively.
e SWAP - Switch two nodes n; and n; in the tree.

The cost function of our SA process is composed of two terms. The first term
is the sum of the distance from the block to the chip corner of the tree. The
second is the related HPWL of the blocks. We also make the weight of the
first term larger than that of the HPWL term to ensure a compact packing.

The result of macro legalization is discussed in Section 4.2.
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Chapter 4

Experimental Results

We implemented our placer in C/C++ and compiled it using g++ on cygwin,
which emulates Linux environment on Windows XP. We ran the program on
a 1.5GHz PC with 512MB memeoty, and used the IBM ICCAD’04 benchmark
set in LEF/DEF format as testcases, which can'be downloaded from [21].

Table 4.1: Séme ICCAD!04 benchmark cases

‘ H # of inst(core/macro/pad)-|=# of mets | # of masters ‘

ibm01 | 12752 ( 12260 / 246 /-246) 14111 2846
ibm02 | 19601 ( 19071 / 271 / 259) 19584 3057
ibm03 || 23136 (22563 / 290 / 283) 27401 3757
ibm04 || 27507 (26925 / 295 / 287) 31970 4587
ibm05 39347 (28146 / 0 / 1201) 28446 4911
ibm06 || 32498 ( 32154 / 178 / 166) 34826 4598
ibm07 || 45926 ( 45348 / 291 / 287) 48117 5748
ibm08 | 51309 ( 50722 / 301 / 286) 50513 4235
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4.1 Some IBM ICCAD’04 Results

We compared our placement results with other academic placers by applying
the ICCAD’04 benchmark set. This benchmark set contains 18 large-scale
designs and most of them include large movable macros. These macros are
all hard blocks with fixed aspect ratios and pin locations. In addition, the
locations of I/O pads are fixed around the chip boundary. Such characteris-
tic is a must for force-directed methods such as our placer, because the fixed
cells provides the external energy to expand the movable cells. Due to the
short of resources, we only ran the first 8 cases. The design chararcteristics
of the cases we tested are listed in Table 4.1, and the comparison results are
shown in Table 4.2.

Table 4.2: The comparisenrof the placement results

APlace | APlace | FengShui |7ICapos. [ MPG-MS | Ours Ours
gpWL | dpWL dpWL dpWiL dpWL gpWL | runtime

ibm01 2.17 2.14 2.56 2.67 3.01 2.74 12.35
ibm02 4.83 4.61 6.05 5.54 7.42 5.60 26.50
ibm03 6.94 6.72 81T 8.67 11.20 8.13 34.00
ibm04 7.70 7.60 8.38 9.79 10.50 9.83 46.58
ibm05 9.82 9.70 9.94 10.82 10.90 10.01 36.46
ibm06 6.31 5.99 6.99 7.35 9.21 8.79 65.25

ibm07 10.04 10.02 11.37 11.23 13.70 11.96 72.78
ibm08 12.65 12.34 13.51 16.02 16.40 15.52 91.93

The first two columns show the HPWL of APlace global placement and
APlace detailed placement. By normalizing the gpWL to 1, we found that
dpWL is 0.975 smaller than gpWL in average. It indicates that with a strong

correlation between global placement and detailed placement, the wirelength
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Figure 4.1: The normalized HPWL comparison

could be further reduced after legalization and detailed placement, and the
HPWL of global placement and detailed placement should be very close. The
3th, 4th, and 5th column are the detéiled placement results of FengShui v2.6,
Capo v9.0, and MPG-MS, respectively. The.data of the first four columns
were reported in [22], and the ‘data of ‘the“‘5th coljumn was reported in [1].
The last two column show thé global-placement HPWL and the runtime of
our placer. We also normalized our HPWL.as+1 to see the differences with
the other placers, as depicted in Figure 4.1. The last set is the average from
ibm01 to ibmO08, and the values are 0.81, 0.94, 0.99, 1.15 and 1, respectively.

Our results for the eight cases are depicted in Figure 4.2 to Figure 4.9.

4.2 Macro Legalization

We implemented the block packing that mentioned above in our multi-level
framework. Every time a finer level begins, we check whether there exists
any macro cell as a single node in the current graph. If it does, the SA-based

block packing is performed before the ALAG method. The parameters of our

31



Figure 4.4: IBMO3 result Figure 4.5: IBM04 result
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SA process are described as follows. We set the temperature-decreasing rate
as 0.85 and the stopping temperature Ty, as 5.07* of the initial temperature
Ty. At each temperature, the number of moves is set as 300xthenumo fblocks.
And the uphill probability is 0.85 at the initialization. Following such pa-
rameter setting to test the ibmO1 case, the experimental result is shown in
the 2nd column of Table 4.3. Comparing with the original result which we
list again in the first column, it clearly indicates that such block packing
impacts the HPWL greatly. The 3rd column shows the result when we fur-
ther decrease Ty to 1.57%. The HPWL is improved slightly at the cost of
runtime. The corresponding placements for the two packings are depicted in
Figure 4.10. We can see that the cell distribution is quite uneven. This is
because the block packing disturbs the solution too much. Even we try to
maintain the geometic relationships-between blocks at the tree construction,
the following SA process would destroy the relationships eventually. Since
the solution for the macro eells becomes very different, it also affects the
standard cells and escapes the result-which-we obtained through the multi-

level scheme.

From the experimental results, we realize that the SA-based block packing is
not suitable to incorperate with our algorithm. We should seek for a legal-
izer which can honor the global placement solution with minimum movement

toward the chip boundary.

Table 4.3: The HPWL of ibm01 with different legalization

‘ H No Packing ‘ SA with T,p =T * 5.0°% ‘ SA with T, = Tp * 1.574 ‘

‘ HPWL H 2.74 ‘ 3.79 ‘ 3.54 ‘
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Chapter 5

Conclusion

A new multi-level mixed-size placer is proposed in this thesis. It is based on a
unified model of the placement problem and utilizes the augmented Lagragian
method to optimize the HPWL. ‘The multi-level:sscheme not only improves the
performance but also helps decide good initial poemts for nonlinear program-
ming. The experimental results show that our placer generates good global

placements, and the quality is comparahlestorcurrent state-of-the-art placers.

Many features are necessary to form a complete placement framework. The
future works include a robust legalizer for both macro cells and standard
cells, and an effective algorithm for detailed placement. The performance
of our placer can be further improved. And more design constraints such as

congestion and power should be supported to make our placer more practical.
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