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ABSTRACT 

Due to the trends of IP re-use and the SOC integration, mixed-size designs are very 
common now, and the quality of mixed-size placement becomes a critical step in the VLSI 
physical design. However, because the algorithms of macro placement and standard-cell 
placement are fundamentally distinct, placing the mixed-size design in a single flow is actually a 
challenging problem. In this thesis, we formulate the general placement problem as a nonlinear 
constrained optimization problem and solve it by the analytical approach incorporating with a 
multi-level scheme. The experimental results clearly show that our model can be employed as a 
global placer. By applying the augmented Lagrangian method to perform nonlinear programming, 
the result of the total half-perimeter wire length is comparable to current state-of-the-art placers. 
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Chapter 1

O v erv iew

1.1 In tro d u c tio n

The complexity of circuit design continues to increase as the deep sub-micron

IC technology keeps scaling down the feature size. This trend makes IP reuse

become a necessary strategy to tame the design complexity and ensure time-

to-market. Current SOC designs usually contain hundreds of thousands of

standard cells, mixed with a number of IP, analog blocks, embedded memo-

ries, and pre-designed legacy blocks. To place so many different cells simul-

taneously is actually a great challenges. An obvious issue is the design scale.

The placement algorithm must be very effi cient so that it can handle huge

amount of placement instances within an acceptable runtime and memory

size. In addition, the variation in cell dimensions introduces significant dis-

continuity in the solution space of the placement.

As indicated in [1], the cell size of the hard blocks may ranges from 1x

to 10000x or more, comparing with that of a standard cell. That is the

root cause why traditional standard-cell placers usually either fail to process
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these mixed-size designs or produce results with unsatisfied q uality. Although

floorplanners are suitable to place the cells with arbitrary sizes, the design

scale makes the use of traditional floorplanners impractical. In existing com-

mercial tools, placing the hard macros of a modern SOC design still req uires

helps from human engineers and is a time-consuming task during the design

floorplanning phase. Since placement plays a critical role in determining the

circuit performance and layout resources, an efficient and effective algorithm

which focuses on such mixed-size large-scale design would be very helpful

to SOC developments. This thesis presents a new algorithm to tackle the

large-scale mixed-size placement problem.

1.2 O ur C ontrib ution

A new formulation is proposed to model the placement problem. Our

formulation focuses on wire length minimization and ensures an even

cell distribution. Because of its universal form, the formulation can be

applied on general designs and is suitable for mixed-size problem.

We introduce the augmented Lagrangian method to implement the

optimization solver and describe the programming details of the whole

multi-level engine.

The experimental results show that our algorithm is comparable to

current state-of-the-art placers.

A novel floorplanning techniq ue is studied as the macro legalization.
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1.3 Org a niz a tion

The remaining part of this paper is organized as follows. Chapter 2 describes

the background of the placement problem and our problem formulation. The

details of our method is discussed in Chapter 3, and the experimental results

are summarized in Chapter 4. We conclude the paper in Chapter 5.
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Chapter 2

P relim inaries

2.1 P lace r Classifi cation

Cell placement is the process to arrange the circuit components onto a layout

surface. A placer that performs cell placement is usualy required to minimize

the interconnects of the whole design as well as other objectives, depending

on the design requirements. According to the design style, the placement

problem can be classified as block placement or macro placement, standard-

cell placement or row-based placement, and mixed-size placement.

Generally, block placement focuses on full-custom design, in which the circuit

components can be arbitrary sizes and shapes. Due to its high complexity,

it can only deal with the design that contains a small number of placement

objects. Most algorithms employs the floorplanning techniques to solve the

block placement problem.

Standard-cell placement targets the digital design which is synthesized based

on standard cells or gate array cells. Such design has the characteristics that
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the cell heights are unique and the cell sizes are relatively similar. The diffi-

culty of standard-cell placement is the extremely large problem size. Current

advanced designs which contain million of cells are very common. To ensure

a reasonable runtime can be achieved for such large designs, the heuristic al-

gorithms of most standard-cell placers often exploit the design characteristic

of equal cell height. After decades of work, now the state-of-the-art standard-

cell placers are able to deliver very optimized results with excellent efficiency

for the pure standard-cell designs. These placers apply various heurstics

such as recursive partitioning (Capo[2], FengShui[3]), recursive clustering

(mPG[4]), analytical techniques (K raftwerk[5], fastPlace[6]), and the hybrid

algorithms that combine partitioning and analytical methods (GORDIAN[8],

GORDIAN-L[9]). However, for those designs that the required design char-

acteristic does not exist, most standard-cell placers either cannot function

normally or produce unacceptable results. Unfortunately, pure standard-cell

designs are rarely seen in the SOC era. Most SOC designs often consists

of a number of hard macros, and they must be fixed first in order to make

standard-cell placement work. An obvious drawback of such flow is the loss

of optimality when placing hard macros without considering the effect of

standard cells.

Recently the concept of mixed-size placement is proposed to solve the chal-

lenges from these SOC designs. It emphasizes that large macro cells and

standard cells can be handled in a single flow without human efforts.
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2.2 Prev ious Work of M ix ed-size Placer

Some of the standard-cell placers mentioned above also propose sophisti-

cated approaches to handle large-scale mixed-size designs. A three-stage

placement-floorplanning-placement flow that incorporates Capo and the Par-

quet floorplanner was demostrated in [10]. Khatkhate et al. improved the

placer FengShui and introduced a special fractional cut bisection that allows

off-row alignment for horizontal cuts[11]. mPG-MS[1], the new version of

mPG, clusters the standard cells to form big blocks and eventually clusters

with big macros which have similar sizes. With multi-level simulated an-

nealing scheme and careful treatment of macros in the legalization stage,

mPG-MS can provide results with comparable quality as Capo. On the

other hand, the analytical placer FDP[12] which is based on the method of

Kraftwerk, minimizes the quadratic wire length objective and spreads cells by

adjusting the extra spreading force. Another analytical placer, APlace, turns

to a log-sum-exp wire length model and utilizes nonlinear programming to

obtain outstanding wire length results for mixed-size designs. Among these

mixed-size placers, the analytical placers exhibit their inherent flexibilities

on handling the various design constraints in [5, 14, 15]. In this thesis, we

propose a new analytical placement algorithm based on the augmented La-

grangian method to perform the global placement for large-scale mixed-size

designs.

Among various analytical placement algorithms, the force-directed method

attracted the most attention in recent years. The force-directed method sim-

ulates the design netlist as an spring system and solves the classic mechanics

problem to determine the cell locations that minimize the total wire length.

Such model is proved to be very efficient for large-scale problems. However,
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by reason that it does not take the cell dimension into consideration, the solu-

tion usually contains a large amount of cell overlaps. How to eliminate those

cell overlaps without much impact on wire length is actually the key point

in force-directed methods. In Kraftwerk[5], additional forces are applied on

cells to pull them away from dense regions. The new cell locations are ob-

tained by solving the Poisson’s equation. V iswanathan et al.[6] proposed a

simple cell shifting technique which determines the magnitude and direction

of the new forces by expanding the bins with high utilization and shrinking

those with low utilization. This method exhibits outstanding performance

due to the fact that only the unconstrained minimization is needed in each

iteration. In APlace[7], though a log-sum-exp wire length model is used to

substitute the quadratic force model, a similar bin structure is constructed

to represent the local information of cell distribution within the placement

area. The regions with either too high or too low bin utilization would be

penalized in the quadratic penalty function. By performing nonlinear op-

timization with increasing penalty weight an even cell distribution can be

achieved eventually.

2.3 Problem Form ulation

2.3.1 C o n c e p t

In order to simplify the problem complexity, we only target the wire length

minimization as our objective in this thesis. The classic quadratic wire length

is chosen as our wire length model for the sake of its simplicity. We also

adopt the bin structure to represent rough cell distribution. The utiliza-

tion of each bin stands for the cell density of this local region. In a global

manner, if we can generate a placement which the bin utilizations are all
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close to the chip density, an even cell distribution is obtained. Hence, we

formulate the constraints based on the differences between the chip density

and the exact utilizations of the bins. By combining the objective and the

constraints, finding a placement with minimized wire length is modeled as

a constrained optimization problem. Such constrained optimization can be

solved effectively through the augmented Lagrangian method. The details of

our problem formulation are described as below.

2.3.2 Q u a d ra tic O b jectiv e

Given a netlist with n cells and m nets, the placement problem is to find

the locations and orientations of all cells so that the total wire length is

minimized. Since we do not need to consider the data flow, the netlist can

be modeled as a non-directive graph G = (V, E) where each vertex vi ∈ V

corresponding to a cell with the cell area as the vertex weight. Each edge

eij ∈ E represents the connectivity between each pair of cells. In this thesis,

we model a net as a clique which follows the formula proposed in [13], and

thus the edge weight of eij can be determined by summing up the weights

of all the clique edges between vi and vj . By constructing this connectivity

graph we can calculate the quadratic objective which is actually the sum of

the weighted squares of the Euclidean distances between two cells:

f(x, y) =
1

2

n∑

i=1

n∑

j=1

cij[(xi − xj)
2 + (yi − yj)

2] (2.1)

The objective function can be rewritten in matrix notation as illustrated in

[18]:

f(~x, ~y) =
1

2
~x′C~x + ~dx

′

~x+
1

2
~y′C~y + ~dy

′

~y+cons t. (2.2)

The vectors ~x and ~y denote the coordinates of the movable cells, and the

prime denotes vector transposition. The matrix C represents the connec-
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tivity of movable cells. The vectors ~dx and ~dy are contributed by the con-

nectivity between the movable cells and the fixed cells, and the constant

term is contributed by the connectivity between the fixed cells. Solving this

unconstrained minimization problem is equivalent to solving the two linear

equations:

C~x + ~dx = 0 (2.3)

C~y + ~dy = 0 (2.4)

Such equivalence relationship requires that the connectivity matrix C is pos-

itive definite. Fortunately, this property is always true for general circuits

because none of the connectivity would be negative. Hence, the quadratic

objective can be easily minimized by any linear equation solvers. In this

thesis, we solve Equation (2.3) and (2.4) by conjugate gradient method in

order to obtain the initial placement. Note that the fixed cells such as the

I/O pads must be provided to guarantee non-zero vectors for both ~dx and

~dy. Otherwise, a trivial solution that ~x = 0(~y = 0) will be obtained, which

is not what we desire.

2.3.3 N onlinear Constraints B ased on B in U tilization

The major issue of the quadratic objective function in Equation (2.2) and

(2.3) is that it would generate a placement with a large amount of cell over-

laps. The reason is evident since there is no information about cell dimension

at all in the equation. Due to that the number of internal connections is usu-

ally larger than that of the connections to fixed I/O pads, in most cases,

the unconstrained optimization would result in the placement which the cell

density at the center of is much higher than that at the chip boundary. Fig-

ure 2.1 demostrates such result for a 100-block circuit and compares it with
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Figure 2.1: The comparison of unconstrained and constrained optimization

for a simple case

another more even solution generated by constrained optimization. In order

to eliminate the cell overlaps, we must evaluate the cell distribution to guide

us how to push cells toward the vacant region. A straightforward model

to measure the cell distribution is the bin structure. Let the chip area be

divided by k bins, and all the bins have the same width wb and height hb.

The bin utilization of bin bj is denoted as uj, which is defined as the total

cell areas within bj over the bin area wb × hb. Given a placement, the local

cell density can be measured by the utilizations of the k bins. If one bin

has the utilization over 100% , it is impossible to find a feasible placement

inside this bin, and thus some of the cells must be removed to decrease the

bin utilization. Since our goal is to generate the placement which every bin

utilization is close to the average chip density, we can define the constraints

as

uj − U = 0, for j = 1 . . . k (2.5)
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Figure 2.2: The three types of x-dimension overlap for small cells

Figure 2.3: The three types of x-dimension overlap for large cells

, where U is the average chip density, that is, the total cell area over the chip

area. In this thesis, we adopt a unified model to calculate the exact area that

a cell contributes to each bin, no matter the cell size is larger or smaller than

the bin size. The model is described as follows.

Consider a cell ci with width wi and height hi, and a bin bj with width

wj and height hj. Also assume that the cell width is smaller than the bin

width. Let dx and dy denote the center-to-center distance between ci and bj in

x-dimension and y-dimension, respectively. The overlapping in x-dimension

can be classified into three cases as illustrated in Figure 2.2. If dx is larger

than or equal to (wj + wi)/2, there is no overlapping. As dx is decreased to

be less than (wj + wi)/2, ci starts to overlap with bj in x-dimension, and the

length of overlapping is (wj +wi)/2−dx, which grows as dx decreases. When

dx is further decreased to be less than or equal to (wj − wi)/2, the length

15



of overlapping will saturate at its maximum value, that is, min(wj , wi). An-

other scenario is that the cell width is larger than the bin width, which may

happens while dealing with the big macro cells. As shown in Figure 2.3, the

overlapping is similar with that of the former scenario, except (wi − wj)/2

substitutes with (wj − wi)/2 and min(wj , wi) changes to wj. The overlap-

ping in y-dimension can also be calculated in the similar manner. Combine

the two scenarios of different cell sizes and consider the x-dimension and

the y-dimension together, the exact overlap area of cell ci and bin bj can be

generalized as below :

aij = wshsMx(dx)My(dy) (2.6)

, where ws = min(wi, wj), hs = min(hi, hj), Mx and My are actually two

piecewise-linear functions of dx and dy, respectively.

Mx(dx) =



























1, if dx ≤ δx

−dx + δx + ws

ws

, if δx < dx < δx + ws

0, otherwise

(2.7)

My(dy) =



























1, if dy ≤ δy

−dy + δy + hs

hs

, if δy < dy < δy + hs

0, otherwise

(2.8)

,where δx denotes |wi − wj|/2, and δy denotes |hi − hj |/2. With this unified

model, the exact overlap between cells and bins can be easily computed. Now

the bin utilization of each bin can be rephrased as follows :

uj =
1

wbhb

n
∑

i=1

aij, for j = 1 . . . k (2.9)
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Combine the quadratic objective and the nonlinear constraints, the place-

ment problem is restated in the following form :

Minimize f(~x, ~y) = 1

2
~x′C~x + ~dx

′

~x+1

2
~y′C~y + ~dy

′

~y

subject to cj(~x, ~y) = uj(~x, ~y) − U = 0, for j = 1 . . . k

(2.10)

Here we describe the notations again. C denotes the matrix of the connec-

tivities between any two movable cells. Each element in ~dx denotes the sum

of product of the connectivity between the movable cell to each fixed cell and

the X coordinate of the fixed cell. Similarly, ~dy is a vector composed of the

sum of product of the connectivity between the movable cell to each fixed

cell and the Y coordinate of the fixed cell. uj denotes the utilization of bin

bj , and U denotes the average chip density. For the chip area divided into k

bins, there are k constraints.

In Equation (2.10), the objective to be minimized is quadratic, but the con-

straints are nonlinear to ~x and ~y. This equation implies that any solver can

solve this nonlinear constrained optimization problem effectively can be used

as a global placer for mixed-size placement. The details of our approach is

discussed in the next chapter.
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Chapter 3

A lgorithm and Implementation

3.1 Main Flow

The constrained optimization is usually attacked by solving a sequence of

unconstrained problems. In each unconstrained problem, the merit function,

which is composed of the original objective function and the constaints, is to

be minimized. Since our formulation contains a quadratic objective function

and nonlinear constraints, the merit function is nonlinear. In our work, a

nonlinear minimizer based on the conjugate gradient method is implemented

as the fundation of the solver. The merit function is formulated following

the augmented Lagrangian (ALAG) method[19], which can be viewed as a

combination of the quadratic penalty function and the ordinary Lagrangian

method. Unlike the quadratic penalty function, the ALAG method usually

generates a solution without an extremely large penalty, and thus avoids ill-

conditioning effects. It also provides better convergence rate than ordinary

Lagrangian method. Although the ALAG method has such advantages over

other constrained optimization methods, it still does not guarantee to obtain

the minimum from any starting point in the solution space. In order to make

18



Figure 3.1: The main flow of our algorithm

a good choice of the starting point, the multi-level scheme is approached,

as the procedure shown in Figure 3.1. Our algorithm begins with a multi-

level graph coarsening, which is followed by a unconstrained minimization

to determine the initial point for the coarsest graph. Then a sequence of

constrained minimizations and graph uncoarsenings are performed. In each

level, first the ALAG method is executed, and the solution is used as the

starting point for the next finer level. Such process repeats until the finest

graph is uncoarsened, and a solution of the global placement is finally ob-

tained. For the purpose of improving the efficiency, an extra decision branch

19



is added to skip the ALAG method when the number of vertices is not suff-

ciently larger than that in last coarser level in which the ALAG method was

performed. We set the vertex ratio as 1.4. In other words, every time the

ALAG method is performed, the graph size is at least 1.4x larger than that of

last run. The implementation details are described in the following sections.

3.2 A ugmented L agrangian Meth od

The augmented Lagrangian method introduces one penalty parameter µ for

the quadratic penalty term and explicit Lagrange multiplier estimate λj for

each constraint cj(~x, ~y). By relaxing the constraints cj(~x, ~y) into the original

objective f(~x, ~y), the constrained problem in Equation (2.10) is transformed

into a sequence of unconstrained problems shown in the following equation:

L(~x, ~y) = f(~x, ~y) −
∑

λjcj(~x, ~y) +
1

2µ

∑

c2

j (~x, ~y), for j = 1 . . . k (3.1)

At the n-th iteration, the ALAG method fixes the penalty parameter µn

and all the Lagrange multiplier estimates λn
j , and performs unconstrained

minimization with respect to ~x and ~y. After an approximate minimizer is

found, we check the convergence of the merit value. If the convergence crite-

rion is satisfied, the ALAG method is terminated with approximate solution

(~xn, ~yn). Otherwise, we update the Lagrange multiplier estimates and the

penalty parameter for the next iteration. The algorithm is shown in Figure

3.2.
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Figure 3.2: The algorithm of ALAG method

3.3 N onlinear Conjugate G radient Minimiza-

tion

The subproblem stated in Equation (3.1) indicates that a nonlinear uncon-

strained minimization is required within every ALAG iteration. While choos-

ing the minimizer, its performance is the major concern since it is located in

the loop and will be called many times. Here we choose the conjugate gradi-

ent method[19]. The conjugate gradient method is an iterative method and

is very popular in large-scale problems due to its efficiency. In each iteration,

only several vector operations are needed to determine the search direction,

and a one-dimensional minimization is performed along the search direction

to find the suitable step size. With successive line searchs, this algorithm

can gradually reach the local minimum.
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At the k-th iteration, the search direction pk is a linear combination of the

negative gradient −gk and the previous search direction pk−1. When k = 0,

the negative gradient at the initial solution x0 is an intuitive choice for the

initial search direction, since the previous search direction does not exist. In

general, the search direction can be expressed in the following form :

pk =











−gk, if k = 0

−gk + βkpk−1, otherwise
(3.2)

where βk is a scalar such that pk is conjugate to pk−1. There are several

variants in the choice of βk, and here we follows the Polak-Ribiere formula[20]

:

βk =
g′

k(gk − gk−1)

g′

k−1gk−1

(3.3)

After the search direction pk is obtained, the step size αk is determined by

finding the approximate one-dimensional minimizer along the direction, and

thus the new solution for next iteration is given by :

xk+ 1 = xk + αkpk (3.4)

Our one-dimensional minimization combines the line searach method follow-

ing the Armijo’s rule and the Fibonacci search method. Both details can be

found in [20]. The Armijo’s rule is also known as the Wolfe condition, which

uses the first-order approximation to decide whether a step makes enough

cost reduction in the merit function. If the step makes enough reduction,

we accept it and further expand the step size to examine the Armijo’s rule

again. On the contrary, if the reduction is not satisfied, we repeatly con-

tract the step size until either the Armijo’s rule is satisfied or the step size

becomes too small. In each line search, first we determine the interval that

contains the minimum by examining the Armijo’s rule, and then we perform

22



the Fibonacci search within the interval to find the most suitable step size.

The stopping criteria of our conjugate gradient method are : (1) the gradi-

ent is too small, (2) the merit value cannot be further improved after several

iterations, or (3) a maximum number of iterations is reached.

3.4 Negative Gradient E valuation

An important factor in the conjugate gradient method is how to compute

the negative gradient for the complex merit function presented in Equation

(3.1). In our work, we develop a special approximation of the negative gra-

dient. Let (~xk, ~yk) denotes the current design point of the k-th iteration of

the conjugate gradient method, (xk
i , y

k
i ) denotes the i-th element of (~xk, ~yk),

and δ denotes a unit distance. In the evaluation of the negative gradient

at the k-th iteration, for each element (xk
i , y

k
i ) eight different directions are

examined with moving a δ stepsize. More specifically, (xk
i , y

k
i ) is replaced

by (xk
i + δ, yk

i ), (xk
i + δ, yk

i + δ), (xk
i , y

k
i + δ), (xk

i − δ, yk
i + δ), (xk

i − δ, yk
i ),

(xk
i − δ, yk

i − δ), (xk
i , y

k
i − δ), and (xk

i + δ, yk
i − δ), respectively, and thus eight

different design points are evaluated to obtain the difference of the merit

value, comparing with the original design point. The difference actually rep-

resents the local information that how the merit value is affected if the cell

moves along this direction. Obviously, the movement that causes the most

decrease in the merit value should be chosen, and the corresponding element

of the negative gradient can be determined by the definition of the gradient,

that is, the difference of the merit value over the distance. If this move only

causes the change in the X-direction, for example, then the Y-component of

the element of the negative gradient is 0, and vice versa.
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Figure 3 .3 : T he coa rsen in g/ un coa rsen in g fl ow

It is c lea r tha t the eva lua tion of the n ega tive gra d ien t would ta k e much more

time then tha t of the merit va lue. H owever, with ca reful implemen ta tion ,

the time spen t on on e eva lua tion of the n ega tive gra d ien t c a n be less tha n

eight times of tha t spen t on on e eva lua tion of the merit va lue.

3.5 M u lti-L e v e l S ch e m e

M ulti-level scheme is wid ely a d opted in the d oma in of physic a l d esign . A

typic a l implemen ta tion con sists of the coa rsen in g pha se a n d the un coa rsen -

in g pha se, a s shown in Figure 3 .3 . In the begin n in g the problem is recursively

coa rsen ed to red uce the problem size. T he optimiza tion is performed a t the

coa rsest level, a n d then in ea ch of the followin g fi n er levels the loca l refi n e-

men t is performed d urin g the un coa rsen in g pha se. T he mult-level scheme

is very a ttra ctive in the run time red uction without too much q ua lity loss.

P la cers with such scheme ca n be foun d in [1 , 7 , 1 3 ].
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In this thesis, the implementation of a multi-level framework is mainly due

to the lack of a good initial design point for the AL AG method. It is well-

known that the inital design point significantly aff ects the result and the

performance in nonlinear constrained optimization[21]. B ut how to decide a

reasonable initial design point? We think that the optimization result of the

coarser level should be a proper choice. D uring the uncoarsening phase, the

solution obtained in the coarser level is inherited as the initial solution of

the AL AG method in the current level. The only ex ception is at the coarest

level, where a unconstrained optimization is first performed to obtained the

required initial solution. B y testing a simple case which contains 10 7 cells

and 15 1 nets, we confirmed that such multi-level framework is superior to the

direction optimization with the initial design point given by random guess.

The row 2 to row 9 in Table 3.1 show the placement results with 8 random

initial design points, and their average results are shown in the row 10 . The

row 11 shows the placement result with the same optimization parameters

ex cept for the initial design point obtained by a 7-level optimization. It is

clear that both the half-perimeter wire length and the amount of cell over-

lapping obtained by the multi-level scheme are better than those obtained in

the random cases.

O ur coarsening/uncoarsening approach follows the algorithms proposed by

metis and hMetis[16 , 17]. The randomized ” First-C hoice” matching is per-

formed to cluster the adjacent vertices based on the connectivity and vertex

weights. Here the vertex weight is the cell area. When two vertices are clus-

tered together, their weights are summed up to form the new vertex . We

recursively coarsen the graph until (1) the graph size is small enough that

the number of vertices is less than a given lower bound, saying 10 . (2) there
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Table 3.1: The placement results with different initial design points

HPWL C e ll ove rla p

random 1 242.0 0 388.88

random 2 376.0 0 183.13

random 3 444.0 0 156.63

random 4 453.0 0 155.38

random 5 423.0 0 182.38

random 6 39 0 .0 0 167.50

random 7 378.0 0 167.38

random 8 413.0 0 177.63

av g . 389 .88 19 7.36

mu lti-le v e l 344.0 0 157.50

exists some vertex whose weight exceeds a given maximum weight.

3.6 Leg a liz a tio n

3.6.1 L e g a liz a tio n F low

After the ALAG method is performed at the finest level, we can obtain a

placement solution that every bin has similar cell utilization. It is obvious

that such result doesn’t guarantee overlap-free, and thus an extra legaliza-

tion step is necessary. This step can be further divided into three stages:

(1)macro legalization, (2)row legalization, and (3)detailed placement.

In the first stage, only the macro cells are legalized without considering the

standard cells. After a solution can be obtained that none of the macro cells

overlaps with each other, these macro cells are set fixed, and we go to next

stage to legalize the standard cells. The key point of the stage 1 and stage

2 is that the legalization must honor the solution of our global placement
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and only moves cells locally. After stage 2, the placement is a legal solution,

but the total wire length may increase. Hence, the final stage is to refine

the standard cells locally to further reduce the wire length as well as to meet

other design constraints without cell overlaps. In our work, we evaluate a

new macro packing algorithm to perform macro legalization, but we do not

cover the row-based legalization and detailed placement.

3.6.2 Im p lem entation of M ac ro Legalization

Our macro legalization is based on the block packing technique which is

widely used in design floorplanning. The fundation of block packing is a floor-

plan representation, with which the geometric relationship of the blocks can

be well-defined. By disturbing the representation sequentially, we can evalu-

ate different packings and choose the one with the best cost. We developed

a representation which is actually a modification of B* -Tree[23]. B* -Tree is

an ordered binary tree in which a node stands for a block to be packed. The

root node is initially placed as the bottom-left block, and the leaf nodes are

placed by the rules as follows.

If node nj is the left child of node ni, module bj must be located on

the right-hand side and adjacent to module bi.

If node nj is the right child of node nj , module bj must be located

above and adjacent to module bi.

After traversing the whole tree, all the blocks are placed, and a nonslicing

floorplan is constructed. However, the packing along the bottom-left direc-

tion is not what we desired. In most commercial ICs, the macro cells are

often placed around the chip boundary, and the chip center can forms a com-

plete region for standard cell placement. To ensure the macro cells can be
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packed in such style, a four-B*-Tree stretegy is employed. We pack the four

trees from the four chip corners. The bottom-left tree is actuall a B*-tree,

and the top-left tree is a clockwise 90-degree rotation of B*-Tree. S imilarily,

the top-right tree and the bottom-right tree are also rotated B*-Trees.

In the beginning the legalization, the macro cells are assigned to the four

trees by their locations which are determined by the global placement. For

each tree, the sortings along the X -direction and Y -direction are performed

to decide the geometric relationships of these cells. Thus, the trees can be

constructed following the B*-Tree definition. Then we start the S A process

to disturb the trees. In each iteration, only one tree is selected, and one

of the three possible operations is applied on the node which is chosen by

random.

ROTATE - Rotate the cell by 90-degree, 180-degree or 270-degree.

MOV E - Insert a node ni to be the child of another node nj . The child

trees of both ni and nj may be affected recursively.

S WAP - S witch two nodes ni and nj in the tree.

The cost function of our S A process is composed of two terms. The first term

is the sum of the distance from the block to the chip corner of the tree. The

second is the related HPWL of the blocks. We also make the weight of the

first term larger than that of the HPWL term to ensure a compact packing.

The result of macro legalization is discussed in S ection 4.2.
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Chapter 4

E x perim en tal R esu lts

We implemented our placer in C/C+ + and compiled it using g+ + on cygwin,

which emulates Linux environment on Windows XP. We ran the program on

a 1.5GHz PC with 512MB memory, and used the IBM ICCAD’04 benchmark

set in LEF/DEF format as testcases, which can be downloaded from [21].

Table 4.1: Some ICCAD’04 benchmark cases

# of in st(core/ m acro/ pad ) # of n ets # of m asters

ibm01 12752 ( 12260 / 246 / 246) 14111 2846

ibm02 19601 ( 19071 / 271 / 259) 19584 3057

ibm03 23136 ( 22563 / 290 / 283) 27401 3757

ibm04 27507 ( 26925 / 295 / 287) 31970 4587

ibm05 39347 ( 28146 / 0 / 1201) 28446 4911

ibm06 32498 ( 32154 / 178 / 166) 34826 4598

ibm07 45926 ( 45348 / 291 / 287) 48117 5748

ibm08 51309 ( 50722 / 301 / 286) 50513 4235
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4.1 Some IB M IC C A D ’0 4 R esults

We compared our placement results with other academic placers by applying

the ICCAD’04 benchmark set. This benchmark set contains 18 large-scale

designs and most of them include large movable macros. These macros are

all hard blocks with fixed aspect ratios and pin locations. In addition, the

locations of I/O pads are fixed around the chip boundary. Such characteris-

tic is a must for force-directed methods such as our placer, because the fixed

cells provides the external energy to expand the movable cells. Due to the

short of resources, we only ran the first 8 cases. The design chararcteristics

of the cases we tested are listed in Table 4.1, and the comparison results are

shown in Table 4.2.

Table 4.2: The comparison of the placement results

APlace APlace FengS h ui C ap o M PG -M S O urs O urs

gp W L dp W L dp W L dp W L dp W L gp W L runtime

ibm01 2.17 2.14 2.56 2.67 3.01 2.74 12.35

ibm02 4.83 4.61 6.05 5.54 7.42 5.60 26.50

ibm03 6.94 6.72 8.77 8.67 11.20 8.13 34.00

ibm04 7.70 7.60 8.38 9.79 10.50 9.83 46.58

ibm05 9.82 9.70 9.94 10.82 10.90 10.01 36.46

ibm06 6.31 5.99 6.99 7.35 9.21 8.79 65.25

ibm07 10.04 10.02 11.37 11.23 13.70 11.96 72.78

ibm08 12.65 12.34 13.51 16.02 16.40 15.52 91.93

The first two columns show the HPWL of APlace global placement and

APlace detailed placement. By normalizing the gpWL to 1, we found that

dpWL is 0.975 smaller than gpWL in average. It indicates that with a strong

correlation between global placement and detailed placement, the wirelength

30



ibm01 ibm02 ibm03 ibm04 ibm05 ibm06 ibm07 ibm08 avg.

APlace dpWL

FengShui dpWL

Capo dpWL

MPG-MS dpWL

Our gpWL

Figure 4.1: The normalized HPWL comparison

could be further reduced after legalization and detailed placement, and the

HPWL of global placement and detailed placement should be very close. The

3th, 4th, and 5th column are the detailed placement results of FengShui v2.6,

Capo v9.0, and MPG-MS, respectively. The data of the first four columns

were reported in [22], and the data of the 5th column was reported in [1].

The last two column show the global placement HPWL and the runtime of

our placer. We also normalized our HPWL as 1 to see the differences with

the other placers, as depicted in Figure 4.1. The last set is the average from

ibm01 to ibm08, and the values are 0.81, 0.94, 0.99, 1.15 and 1, respectively.

Our results for the eight cases are depicted in Figure 4.2 to Figure 4.9.

4.2 Macro Legalization

We implemented the block packing that mentioned above in our multi-level

framework. Every time a finer level begins, we check whether there exists

any macro cell as a single node in the current graph. If it does, the SA-based

block packing is performed before the ALAG method. The parameters of our
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Figure 4.2: IBM01 result
Figure 4.3: IBM02 result

Figure 4.4: IBM03 result Figure 4.5: IBM04 result
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Figure 4.6: IBM05 result Figure 4.7: IBM06 result

Figure 4.8: IBM07 result Figure 4.9: IBM08 result
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SA process are described as follows. We set the temperature-decreasing rate

as 0.85 and the stopping temperature Tstop as 5.0−4 of the initial temperature

T0. At each temperature, the number of moves is set as 300∗th enu m o f blo ck s.

And the uphill probability is 0.85 at the initialization. Following such pa-

rameter setting to test the ibm01 case, the experimental result is shown in

the 2nd column of Table 4.3. Comparing with the original result which we

list again in the first column, it clearly indicates that such block packing

impacts the HPWL greatly. The 3rd column shows the result when we fur-

ther decrease Tstop to 1.5−4. The HPWL is improved slightly at the cost of

runtime. The corresponding placements for the two packings are depicted in

Figure 4.10. We can see that the cell distribution is quite uneven. This is

because the block packing disturbs the solution too much. Even we try to

maintain the geometic relationships between blocks at the tree construction,

the following SA process would destroy the relationships eventually. Since

the solution for the macro cells becomes very different, it also affects the

standard cells and escapes the result which we obtained through the multi-

level scheme.

From the experimental results, we realize that the SA-based block packing is

not suitable to incorperate with our algorithm. We should seek for a legal-

izer which can honor the global placement solution with minimum movement

toward the chip boundary.

Table 4.3: The HPWL of ibm01 with different legalization

No Pack ing S A w ith Tstop = T0 ∗ 5.0−4 S A w ith Tstop = T0 ∗ 1.5−4

H PWL 2.74 3.79 3.54
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(a) Tstop = 5.0-4T0 (b) Tstop = 1.5-4T0

Figure 4 .1 0 : IB M 0 1 p la cem en t a fter m a cro lega liz a tio n

3 5



Chapter 5

Co n c lu sio n

A new multi-level mix ed-size placer is proposed in this thesis. It is based on a

unifi ed model of the placement problem and utilizes the augmented L agragian

method to optimize the H P W L . T he multi-level scheme not only improves the

performance but also helps decide good initial points for nonlinear program-

ming. T he ex perimental results show that our placer generates good global

placements, and the q uality is comparable to current state-of-the-art placers.

Many features are necessary to form a complete placement framework . T he

future work s include a robust legalizer for both macro cells and standard

cells, and an eff ective algorithm for detailed placement. T he performance

of our placer can be further improved. And more design constraints such as

congestion and power should be supported to mak e our placer more practical.

36



Bibliography

[1] C .-C . C hang, J . C ong, and X . Yuan, Multi-level Placement for Large-

S cale Mixed-S ize IC D esigns , In Proc. Asia S ou th Pa cifi c D esign Au -

tom a tion C on feren ce, pp. 32 5-330, 2 003.

[2 ] A. E . C aldwell, A. B. K ahng, and I. L. Markov, C an R ecursive Bisection

Alone Produce R outable Placements? , In Proc. D esign Au tom a tion

C on feren ce, pp. 47 7 -48 2 , 2 000.

[3] A. Agnihotri, M. C . Yildiz, A. K hatkhate, A. Mathur, S . O no, and P.

H. Madden, Fractional cut: Improved recursive bisection placement , In

Proc. In tern a tion a l C on feren ce on C om p u ter-Aided D esign , pp. 307 -310,

2 003.

[4] C .-C . C hang, J . C ong, D . Pan and X . Yuan, Physical hierarchy genera-

tion with routing congestion control, In Proc. In tern a tion a l S y m posiu m

on Ph y sica l D esign , pp. 36-41, 2 002

[5] H. E isenmann and F. M. J ohannes, G eneric G lobal Placement and

Floorplanning , In Proc. D esign Au tom a tion C on feren ce, pp. 2 69 -2 7 4,

19 9 8

[6] N . V iswanathan and C hris C .-N . C hu, FastPlace: E ffi cient Analytical

Placement using C ell S hifting, Iterative Local R efinement and a Hybrid

37



Net Model, In Proc. International Symposium on Physical Design, pp.

26-33, 2004

[7] Andrew B. Kahng and Q . Wang, Implementation and Extensibility of an

Analytic Placer, In Proc. International Symposium on Physical Design,

pp. 18-25, 2004

[8] J. M. Kleinhans, Georg Sigl, F. M. Johannes and K. J. Antreich, GOR-

DIAN: VLSI Placement by Q uadratic Programming and Slicing Opti-

mization, IE E E Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol.10, No.3, Mar 1991

[9] Georg Sigl, K. Doll and F. M. Johannes, Analytical Placement: A Lin-

ear or a Q uadratic Objective Function? , In Proc. ACM / IE E E Design

Automation Conference, pp. 427-431, 1991

[10] S. N. Adya and I. L. Markov, Consistent Placement of Macro-Blocks U s-

ing Floorplanning and Standard-Cell Placement , In Proc. International

Symposium on Physical Design, pp. 12-17, 2002

[11] A. Khatkhate, Chen Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh

and P. H. Madden, Recursive Bisection Based Mixed Block Placement ,

In Proc. International Symposium on Physical Design, pp. 84-89, 2004

[12] K. Vorwerk, A. Kennings and A. Vannelli, Engineering Details of a Sta-

ble Force-Directed Placer, In Proc. IE E E /ACM International Confer-

ence on Computer-Aided Design, pp. 573-580, 2004

[13] B. Hu and M. Marek-Sadowska, Fine Granularity Clustering-Based

Placement, IE E E Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol.23, No.4, Apr 2004

38



[14] A. B. Kahng and Q. Wang, An Analytical Placer for Mixed-Size Place-

ment and Timing-Driven Placement, In Proc. IEEE/ACM International

Conference on Computer-Aided Design, pp. 565-572, 2004.

[15] Y.-C. Chou and Y.-L. Lin, A Performance-Driven Standard Cell Placer

Based on a Modified Force-Directed Algorithm, In Proc. International

Symposium on Physical Design, pp. 24-29, 2001.

[16] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for

partitioning irregular graphs, In SIMA J ournal on Scientific Computing,

Vol.20, No.1, pp. 359-392, 1999

[17] G. Karypis, V. Kumar and S. Shekhar, Multilevel Hypergraph Parti-

tioning: Application in VLSI DomainIn Proc. ACM/IEEE Design Au-

tomation Conference, pp. 526-529, 1997

[18] K. M. Hall, A r-dimensional quadratic placement algorithm, In Man-

agement Science, pp. 219-229, 1970

[19] D. P. Bertsekas, Constrained O ptimization and Lagrange Multiplier

Methods, Academic Press, 1982

[20] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, N onlinear Programming

- Theory and Algorithms, 2 nd Edition, John Wiley & Sons, 1993

[21] S. N. Adya, S. Chaturvedi, A. Roy, D. Papa and I. L. Markov, Unifica-

tion of Partitioning, Floorplanning and Placement, In Proc. IEEE/ACM

International Conference on Computer-Aided Design, pp. 550-557, 2004

(URL: http:/ / vlsicad.eecs.umich.edu/ BK/ ICCAD04bench/ )

39



[22] A. B. Kahng, S. Reda and Qinke Wang, Architecture and Details of a

High Quality, Large-Scale Analytical Placer, In Proc. IEEE/ACM In-

ternational Conference on Computer-Aided Design, pp. 890-897, 2005

[23] Y.-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, B* -Trees: A New

Representation for Non-Slicing Floorplans, In Proc. IEEE/ACM Design

Automation Conference, pp.458-463, 2000

40


