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Linear k-arboricity of Complete
Multipartite Graphs

Student: Chih-Hung Yen Advisor: Professor Hung-Lin Fu

Department of Applied Mathematics Department of Applied Mathematics

National Chiao Tung University National Chiao Tung University
Abstract

A decomposition of a graph is a list of subgraphs such that each edge appears in
exactly one subgraph in the list. There are many interesting results and problems in
this area. In this thesis, we study a special case of graph decomposition, called the
linear k-arboricity problem.

A linear k-forest is a graph whose components are paths with lengths at most k.
The minimum number of linear k=forests neededto decompose a graph G is the linear
k-arboricity of G, denoted la,(G).. Thus, the linear k-arboricity problem is what the
value lag(G) should be when a graph.G-is given.

The notion of linear k-arboricity is a natural generalization of edge coloring and
also a refinement of the concept of linear arboricity in which the paths have no length
constraints.

In 1982, Habib and Peroche made the following conjecture:

Conjecture. If GG is a graph with maximum degree A(G) and k > 2, then

—gtwﬂ it A(G) = [V(G)] — 1 and

ww if A(G)<|V(G)|—1.

[

So far, in the literature, quite a few results on the verification of this conjecture
have been obtained. For example, when G is a cubic graph, tree, complete graph, or

balanced complete bipartite graph, and k is small or k > (@] -1
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In this thesis, we determine the linear 3-arboricity of balanced complete bipartite
graphs, complete graphs, and parts of balanced complete multipartite graphs. We
also give some substantial results about the linear 2-arboricity of complete bipartite
graphs, complete graphs, and balanced complete multipartite graphs. The results
obtained are coherent with the corresponding cases of the conjecture mentioned above.

Furthermore, in this thesis, we study a problem on the bit permutation network.
We prove that if N is an s-stage d-nary bit permutation network with d™ inputs
(outputs), then a new network L(N)T obtained from the line digraph of N is an
(s + 1)-stage d-nary bit permutation network with d"*! inputs (outputs). We also
give a simple (but not trivial) formula to determine the characteristic vector of L(N)"
from the characteristic vector of N. This formula can help us to obtain relations

between some well-studied bit permutation networks.
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Chapter 1

Fundamental Concepts

In this chapter, we shall list the basic notations, terminologies, and definitions
on graph theory and the mathematical theory of switching networks, which are the
excerpts from two textbooks, one by Douglas B. West [28] and the other by Frank K.

Hwang [16]. We also give an overview of this thesis.

1.1 Graphs

A graph G is a triple cousisting of a vertex set V(G), an edge set F(G), and
a relation that associates withieach.edge two-vertices (not necessarily distinct) called
its endpoints. We draw a graph on paper by placing each vertex at a point and
representing each edge by a curve joining the locations of its endpoints.

A loop is an edge whose endpoints are equal. Multiple edges are edges having
the same pair of endpoints. A simple graph is a graph having no loops or multiple
edges. In this case an edge is determined by its endpoints, so we can view an edge as
an unordered pair of vertices. Thus a simple graph can be specified by its vertex set
and edge set, treating the edge set as a set of unordered pairs of vertices and writing
e = uv (or e = vu) for an edge e with endpoints u and v.

The order of a graph G, written |V (G)], is the number of vertices in G. The size
of a graph G, written |E(G)], is the number of edges in G. A graph G is finite if its
vertex set and edge set are finite, i.e., |V(G)| and |E(G)| are well-defined nonnegative

integers. The null graph is the graph whose vertex set and edge set are empty.



Figure 1.1 is a drawing of a finite simple graph. The vertex set is {u, v, w, z,y},

and the edge set is {uv, uw, ux, v, vw, Tw, Ty}.

(% w
u T )

Figure 1.1: A drawing of a finite simple graph.

We adopt the convention that every graph mentioned in this thesis is finite
and simple. Besides, all statements should be considered only for graphs with a
nonempty set of vertices.

If vertex v is an endpoint of edge e, then v and e are incident. The degree of
vertex v in a loopless graph G, written dg(v), is the number of edges incident to v.
The maximum degree is A(G) and_the;minimum degree is §(G). A vertex is odd
(even) when its degree is odd (éven). An.isolated vertex is a vertex of degree 0.

When v and v are the endpoints of an edge, they are adjacent and are neighbors.
The neighborhood of v in &; written Ne(v), is the set of vertices adjacent to wv.
Furthermore, two edges are incident if they have one endpoint in common.

A matching in a graph G is a set of non-loop edges with no shared endpoints.
The vertices incident to the edges of a matching M are saturated by M the others
are unsaturated (we say M-saturated and M-unsaturated). A perfect matching
in a graph is a matching that saturates every vertex. A matching is a set of edges, so
its size is the number of edges.

A k-edge-coloring of a graph G is a labelling f : F(G) — S, where |S| = k.
The labels are colors; the edges of one color form a color class. A k-edge-coloring is
proper if incident edges have different labels; that is, if each color class is a matching.
A graph is k-edge-colorable if it has a proper k-edge-coloring. The chromatic
index \'(G) of a graph G is the least k such that G is k-edge-colorable.

A subgraph of a graph G is a graph H such that V(H) C V(G), E(H) C E(G),

and the assignment of endpoints to edges in H is the same as in G, written H C G.
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For example, the graph in Figure 1.2 is a subgraph of the graph in Figure 1.1.

(%
u T ()

Figure 1.2: A subgraph of the graph in Figure 1.1.

A path is a simple graph whose vertices can be ordered so that two vertices are
adjacent if and only if they are consecutive in the list. A cycle is a graph with an
equal number of vertices and edges whose vertices can be placed around a circle so
that two vertices are adjacent if and only if they appear consecutively along the circle.
The path and cycle with n vertices are denoted P, and C,,, respectively; an n-cycle
is a cycle with n vertices. A cycle C,, is odd (even) when n is odd (even). A path
in a graph G is a subgraph of G tliat is a path (similarly for cycles).

A walk is a list vg, €1, v1, . <+, ek, v of vertices:and edges such that, for 1 <i < k,
the edge e; has endpoints v;_y and v;. A ‘trail is a walk with no repeated edges. A
u, v-walk or u, v-trail has first vertex @ and last vertex v; these are its endpoints.
A u,v-path is a path whose vertices.of degree 1 (its endpoints) are u and v; the
others are internal vertices.

The length of a walk, trail, path, or cycle is its number of edges. In a simple
graph, a walk (or trail) is completely specified by its ordered list of vertices. We
usually name a path, cycle, trail, or walk in a simple graph by listing only its vertices
in order, even though it consists of both vertices and edges.

A graph G is connected if it has a u, v-path whenever u,v € V(G) (otherwise, G
is disconnected). If G has a u, v-path, then u is connected to v in G. A maximal
connected subgraph of GG is a subgraph that is connected and is not contained in any
other connected subgraph of G. The components of a graph G are its maximal
connected subgraphs. Components are pairwise disjoint; no two share a vertex. A

component (or a graph) is trivial if it has no edges; otherwise it is nontrivial.



We write G — e or G — M for the subgraph of G obtained by deleting an edge e
or a set of edges M. We write G — v or G — S for the subgraph obtained by deleting
a vertex v or a set of vertices S. Note that when we obtain a subgraph by deleting a
vertex, it must be a graph, so deleting the vertex also deletes all edges incident to it.

Suppose that V' C V(G) and E' C E(G). The subgraph of G induced by V”,
written G[V'], is the subgraph of G consists of V' as its vertex set and all edges in G
whose endpoints are contained in V’. Similarly, the subgraph of G induced by E’,
written G[E'], is the subgraph of G consists of E’ as its edge set and all vertices in G
which are the endpoints of edges in E’'. We say that G[V’] is an induced subgraph
of G and G[E'] is an edge-induced subgraph of G.

The union of graphs Gy, Gs, ..., Gy, written G; U Gy U --- U Gy, is the graph
with vertex set Ule V(G;) and edge set Ule E(G;). When a graph G is expressed
as the union of two or more subgraphs, an edge of G can belong to many of them. If
any edge in the union G of Gy, G, . . .G is contained only by one of G, Gs, ..., Gy,
then we say G is an edge-disjoint unien. df G-and H are two graphs with disjoint
vertex sets, then the graph obtained by taking the union of G and H is the disjoint

union or sum, written G + H.

1.2 Directed Graphs

In general, a relation on S can be any set of ordered pairs in S x S. For such
relations, we need a more general model.

A directed graph or digraph D is a triple consisting of a vertex set V' (D), an
edge set E(D), and a function assigning each edge an ordered pair of vertices. The
first vertex of the ordered pair is the tail of the edge, and the second is the head;
together, they are the endpoints. The terms “head” and “tail” come from the arrows
used to draw digraphs. As with graphs, we assign each vertex a point in the plane and
each edge a curve joining its endpoints. When drawing a digraph, we give the curve
a direction from the tail to the head. Figure 1.3 shows a digraph D with vertex set
V(D) ={a,b,c,d, e, f} and edge set E(D) = {(a,b), (b, c), (c,d),(d,e), (e,a),(f, a)}.



foa b

Figure 1.3: A digraph D.

When a digraph models a relation, each ordered pair is the (head, tail) pair for
at most one edge. In this setting as with simple graphs, we ignore the technicality of
a function assigning endpoints to edges and simply treat an edge as an ordered pair
of vertices.

In a digraph, a loop is an edge whose endpoints are equal. Multiple edges are
edges having the same ordered pair of endpoints. A digraph is simple if each ordered
pair is the head and tail of at mostene edge; one loop may be present at each vertex.

In a simple digraph, we write uv for an edge-with tail v and head v. If there is
an edge from u to v, then v is a“successor of u, and u is a predecessor of v. We
write u — v for “there is an edge from u to v’ .

A digraph is a path if it is a simple.digraph whose vertices can be linearly ordered
so that there is an edge with tail v and head v if and only if v immediately follows u
in the vertex ordering. A cycle is defined similarly using an ordering of the vertices
on a circle. We often use the same names for corresponding concepts in the graph and
digraph models. Also, a graph G can be modelled using a digraph D in which each
edge uwv € E(G) is replaced with uv,vu € E(D). In this way, results about digraphs
can be applied to graphs. Since the notion of “edge” in digraphs extends the notion
of “edge” in graphs, using the same name makes sense.

The underlying graph of a digraph D is the graph G obtained by treating the
edges of D as unordered pairs; the vertex set and edge set remain the same, and the
endpoints of an edge are the same in GG as in D, but in G they become an unordered

pair. Figure 1.4 shows a digraph D and its underlying graph G.



P> P>

D G
Figure 1.4: A digraph D and its underlying graph G.

The definitions of subgraph and union are the same for graphs and digraphs.
A digraph is weakly connected if its underlying graph is connected. A digraph
is strong connected or strong if for each ordered pair u,v of vertices, there is a
path from u to v. The strong components of a digraph are its maximal strong
subgraphs.

In a digraph, we use the same notation for number of vertices and number of edges
as in graphs. The notation for vertex degrees incorporates the distinction between
heads and tails of edges. Let v be a vertex in a digraph. The outdegree d*(v) is
the number of edges with tail v. Theindégree d~(v) is the number of edges with
head v. The out-neighborhoed or-suceessor set N*(v) is {z € V(G) : v — z}.
The in-neighborhood or predecessor set N7 (v) is {x € V(G) : x — v}. The
minimum and maximum indegree d7(G)rand:A~(&); for outdegree we use 67 (G) and
AT(G).

The definitions of trail and walk are the same in graphs and digraphs when we
list edges as ordered pairs of vertices. In a digraph, the successive edges must “follow
the arrows”. In a walk vy, ey, v1, ..., ex, vg, the edge e; has tail v;_; and head v;.

There are n? ordered pairs of elements that can be formed from a vertex set of
size n. A simple digraph allows loops but uses each ordered pair at most once as
an edge. Thus there are n? ordered pairs that may or may not be present as edges.
Hence, there are on’ simple digraphs with vertices vy, vq, ..., Up,.

Sometimes we want to forbid loops. An orientation of a graph G is a digraph
D obtained from G by choosing an orientation (z — y or y — z) for each edge
xy € E(G). An oriented graph is an orientation of a simple graph. The number of

oriented graphs with vertices vy, vs, . . ., vy, is 3.



1.3 Special Types of Graphs

A graph G is regular if A(G) = §(G). It is k-regular if the common degree is
k. A cubic graph is a graph that is regular of degree 3. An even graph is a graph
with vertex degrees all even.

An independent set in a graph is a set of pairwise nonadjacent vertices. A graph
G is bipartite if V(&) is the union of two disjoint (possibly empty) independent sets
called partite sets of G. A bipartition of G is a specification of two disjoint
independent sets in G whose union is V(G). The statement “let G be a bipartite
graph with bipartition X,Y” specifies one such partition. An X, Y-bigraph G,
written G(X,Y’), is a bipartite graph with bipartition X, Y.

A complete bipartite graph is a simple bipartite graph such that two vertices
are adjacent if and only if they are in different partite sets. When the partite sets have
sizes r and s, the complete bipartite graph is denoted K, ,. Such a graph is called a
balanced complete bipartite graph and denoted K, , if » = s = n. Figure 1.5
shows a balanced complete bipartite graph /s o.

1 Lo
Y1 Y2

Figure 1.5: A balanced complete bipartite graph K .

A graph G is m-partite if V(G) can be partitioned into m (possibly empty)
independent sets called partite sets of G. This generalizes the idea of bipartite
graphs, which are 2-partite.

The chromatic number of a graph G, written x(G), is the minimum number
of colors needed to label the vertices so that adjacent vertices receive different colors.
Vertices given the same color must form an independent set, so x(G) is the minimum
number of independent sets needed to partition V(G). A graph is m-partite if and

only if its chromatic number is at most m.



A complete m-partite graph G is an m-partite graph such that the edge uv €
E(G) if and only if v and v are in different partite sets. When m > 2, we write
77777 n,, for the complete m-partite graph with partite sets of sizes ny,ng, ..., ny,.
Moreover, if ny = ny = --- = n,, = n, then it is called a balanced complete
m-partite graph and denoted K, ).

A balanced complete multipartite graph is a balanced complete m-partite
graph with m > 2. A complete graph is a simple graph whose vertices are pairwise
adjacent; the complete graph with m vertices is denoted K,,. We can also view a
complete graph K, as a balanced complete m-partite graph K,,(,) with n = 1.

A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a
connected acyclic graph. A leaf is a vertex of degree 1. A spanning subgraph of G
is a subgraph with vertex set V(G). A spanning tree is a spanning subgraph that
is a tree. A tree is a connected forest, and every component of a forest is a tree. A
star is a tree consisting of one vertex.adjacent to all the others. The star of order n
is the complete bipartite graph J&7 ,,_1:

The line graph of a graph G, written L(G), is the graph whose vertices are
the edges of G, with ef € E(L(G)) when e = upy and f = vw in G. Substituting
“digraph” for “graph” in this $entence yields the definition of line digraph. For
graphs, e and f share a vertex; for ‘digraphs, the head of e must be the tail of f.
Figure 1.6 shows a graph G and its line digraph L(G); a digraph D and its line
digraph L(D).

™

Figure 1.6: G and its line graph L(G); D and its line digraph L(D).

Finally, for € R, the floor |z] is the greatest integer that is at most x. The

ceiling [x] is the smallest integer that is at least x.

8



1.4 Switching Networks

The need of a switching network came from the requirements to interconnect
pairs of telephones. At first, when there were not so many phones, a direct wire
was installed between every two phones. However, with the increase in the number
of phones, the transmission cost of these wires became overbearing and the notion
of switching was born. Every phone in a given locality was then connected to a
“switching” center where the wires from these phones were interconnected through
a network called switching networks. Later, it was reinvented for the parallel
computer to interconnect processors with memories. Currently, it is intended for
many other applications such as data transmission, video rental, conference calls, and
broadcast. It is safe to say that the need of switching networks is expanding fast.

A switching network can interconnect either one group of users, called a 1-sided
network, or two groups, called a 2-sided network. The dominant applications
and theory for switching networksrare 2-sideds. For many applications, the two sides
represent two different types of entities; so input « connecting to output y is not the
same as input y connecting to.output x.-Note that a 2-sided network can be used as
a 1-sided network by putting the same type of entities on both sides, although this is
less economical from the switching viewpeint:  In this thesis, we will only deal with
2-sided networks.

In the 2-sided case we assume that the network has a set of input terminals
and a set of output terminals, while the former generate requests to be connected
to the latter through the network. Theoretically, an input terminal can request to
be connected to any output terminal, just as one phone can call any other phone.
Therefore the network must provide access from any input terminal to every output
terminal. Furthermore, once a connection is established, it could last for a period
of time, while other input terminals may generate their own requests during this
period. What a switching network does is to simultaneously connect these requests,
the pattern constantly changing by some terminals hanging up and others making

new requests.



The basic components of a switching network are crossbar switches, or just
crossbars, and links which connect crossbars. A crossbar with n inlets and m
outlets, denoted X,,,, is said of size n x m. Inlets (outlets) on the same crossbar
are called co-inlets (co-outlets). Any one-to-one mapping between the inlets and
the outlets of a crossbar is considered routable, i.e., a crossbar is nonblocking.

Some crossbars are connected to the outside world. For a 2-sided network, one set
of such crossbars will be called input crossbars and the other set output crossbars.
The links on an input (output) crossbar linking to the outside world are called inputs
(outputs) of the network, and often drawn by open-ended lines. They are also
referred to as external links, while other links are internal links.

An (N, M)-network has N inputs and M outputs. If M = N, then it is called an
N-network. Although a request is originally generated by a pair of input-output, it
can be treated as if generated by a pair of input-output crossbars since the crossbar is
nonblocking. A request is connected byaspath in the network, while two connections
do not block each other if theirspaths are.dink-disjoint.

In an s-stage network, the crossbars are lined up into s columns, each called a
stage. Sometimes s is not specified and the network is called a multistage inter-
connection network (MIN). Cressbars in the'same stage have the same size. Links
exist only between crossbars in adjacent stages. A link between a crossbar in stage i
and a crossbar in stage ¢ + 1 connects an outlet of the former to an inlet of the latter.

Crossbars in the first (last) stage are the input (output) crossbars and its inlets
(outlets) are the input (output) terminals, sometimes just called inputs (outputs)
of the network connected to external lines. The notation for an s-stage network
is that stage i has r; crossbars of size n; x m;. Necessarily, r;m; = r; in;;, for
1=1,2,...,5s — 1. Figure 1.7 shows a 3-stage network with 8 inputs and 6 outputs,
where ri =ro =4, r3=2,n =2, m =3, n, =3, my=1,n3 =2, m3 =3, and a
crossbar is represented by a square.

A d-nary network (MIN) is simply a network (a MIN) using only crossbars of
size d X d. In a d-nary MIN of size N, a power of d, it is customary to use the notation

n = log,; N. Note that in a d-nary MIN every stage has the same number of crossbars.
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Figure 1.7: A 3-stage MIN.

By treating a crossbar as a vertex and a link as an edge, a switching network
is very much like a digraph except that each input (output) crossbar has external
links dangling without connecting to any vertex and hence cannot be considered
as edges. To remedy this irregularity, the graph theorist prefers to define a true
digraph, called a line digraph, from a network by converting each link as a vertex
including the inputs and the outputs, while a crosspoint connecting two links in the
network becomes an edge in this digraph. Note that a crossbar is represented by a
complete bipartite subgraph whose re¢ognizability. may depend on the drawing of the

line digraph. Figure 1.8 shows the line digraph of the network in Figure 1.7.

Figure 1.8: The line digraph of the network in Figure 1.7.
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1.5 Overview

The first purpose of this thesis is to determine the linear k-arboricity of a complete
multipartite graph. The second purpose of this thesis is to characterize a new network
obtained from the line digraph of a bit permutation network. We give an overview of
this thesis in the following:

In Chapter 1, we list the basic notations, terminologies, and definitions on graph
theory and the mathematical theory of switching networks.

Chapter 2 is an introduction of the linear k-arboricity problem. This problem
has been conjectured that it is NP-complete for any fixed k. However, it is solvable
for some classes of graphs, such as cubic graphs, trees, complete graphs, or balanced
complete bipartite graphs, and some values of k. Hence, we state the corresponding
results which have been determined.

In Chapter 3, we consider the linear 3-arboricity problem on balanced complete
bipartite graphs, complete graphg; and balaneed complete multipartite graphs. We
find the linear 3-arboricity of balanced complete bipartite graphs and complete graphs.
We also give some substantial results when G is a balanced complete multipartite
graph.

In Chapter 4, we discuss the‘linear 2-atboricity problem on complete bipartite
graphs, complete graphs, and balanced complete multipartite graphs. We give some
substantial results for each class of the graphs above. It is worthy of mentioning that
we point out that some computing errors happened in the proof of a result previously
[3] and we give a revised result.

In Chapter 5, we first introduce the concept of bit permutation networks. Then
we list some results about bit permutation networks which are equivalent. Finally, we
characterize the network obtained from the line digraph of a bit permutation network.

Chapter 6 makes a conclusion, besides stating the results obtained on the linear
k-arboricity problem and bit permutation networks, some unsolved questions that we

concern most are also mentioned.
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Chapter 2

The Linear k-arboricity Problem

A decomposition of a graph is a list of subgraphs such that each edge appears
in exactly one subgraph in the list. If a graph G has a decomposition Gy, Gs, ..., Gy,
then we say G can be decomposed into G1,Gs,...,Gg or Gy,Gs,...,Gy decompose
G. There are many interesting results and problems in this area. A good survey of
them is provided by Chung and Graham [8]. In this thesis, we will study a special

case of graph decomposition, called the linear-arboricity problem.

2.1 Introduction

A linear k-forest is a graphwhose components are paths with lengths at most k.
The linear k-arboricity of a graph G, denoted lag(G), is the minimum number of
linear k-forests needed to decompose G. Then, the linear k-arboricity problem is what
the value lax(G) should be when a graph G is given. For example, Figure 2.1 shows
that the graph K, can be decomposed into two linear 3-forests. Thus lag(K4) < 2.
In fact, lag(Ky4) = 2.

v w v w
u T u T

Figure 2.1: Two linear 3-forests in /.
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The notion of linear k-arboricity was defined by Habib and Peroche in [11]. It is a
natural generalization of edge coloring. Recall that the chromatic index of a graph G,
written x'(G), is the least k such that G is k-edge-colorable. Clearly, a linear 1-forest
is induced by a matching and la,(G) = x'(G).

Linear k-arboricity is also a refinement of the concept of linear arboricity,
which is the minimum number of linear forests needed to decompose a graph G and
denoted la(G). A linear forest is a graph in which every component is a path with
no length constraints. The idea of linear arboricity was introduced earlier by Harary
[14].

Next, we describe some properties of lag(G).

Lemma 2.1.1. If G is a graph of order n, then la(G) = la,—1(G) < la,—2(G) <
- <lag(G) < lay(G) = X'(G) < A(G) + 1.

Lemma 2.1.2. If H is a subgraph of G, .then lay(H) < lagx(G).

Lemma 2.1.3. If a graph G $ theedge-disjointunion of two subgraphs G, and G,
then lak(G) S lCLk(Gl) + lak(Gz)

Lemma 2.1.4. If a graph G s the*disjoint union of two graphs G, and Gs, then
lag(G) = max {lax(G1),lak(G2)}.

Lemma 2.1.5. lax(G) > max { [A;G)W ’ h;lﬁx((GG)) -‘ }

k+1

Lemmas 2.1.1 ~ 2.1.4 are evident by the definition of linear k-arboricity. In
particular, since edges sharing a vertex need different colors, x'(G) > A(G). Vizing
[27] proved that A(G) + 1 colors suffice when G is simple. Hence A(G) < la;(G) =
X'(G) < A(G) + 1 in Lemma 2.1.1. We shall use Lemmas 2.1.2 ~ 2.1.4 frequently

without an explicit reference. Since any vertex of a linear k-forest in a graph G has

EIV(G)

degree at most 2 and a linear k-forest in G has at most { st

J edges, we have

Lemma 2.1.5.

In the rest of this chapter, we will state some results which have been proved.
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2.2 The Known Results

In 1981, Holyer [15] obtained the result that determining x'(G) (or la;(G)) of a
graph G is NP-complete. Next year, Peroche [22] also proved the NP-completeness
of determining la(G). Further, in 1984, Bermond et al. [2] showed that determining
whether la3(G) = 2 is NP-complete for a cubic graph G with |V(G)| = 0 (mod 4)
and hence conjectured that it is NP-complete to determine la(G) for a graph G and
any fixed k. Therefore, the linear k-arboricity problem seems to be difficult.

In 1982, Habib and Peroche [12] made the following important conjecture:

Conjecture 2.2.1. If G is a graph with mazimum degree A(G) and k > 2, then

2] 7 AG = E) -1

[%@ﬂ if AG) <|V(G)|-1.

2|

This conjecture contains Akiyama’s eonjecture [1] that la(G) < [%1 and

gives an upper bound about the linear k-atboricity of a graph G. So far, quite a few
results on the verification of Conjéeture~2:2:1 have been obtained in the literature.
For example, when G is a cubicgraph, tree; complete graph, or balanced complete
bipartite graph, and the value £ is small or k > ['V(TG)'} — 1. In what follows, we will
state them in detail.

In 1984, Bermond et al. [2] proved that if G is a graph with maximum degree
A(G), then lax(G) < A(G) for any k£ > 2. By using this result and Lemma 2.1.5,
it is not difficult to know that the linear 2-arboricity of a cubic graph is equal to 3.

Moreover, in [2], Bermond et al. also showed that:
Theorem 2.2.2. If G is a cubic graph with las(G) = 2, then |V(G)| =0 (mod 4).

Hence, for each cubic graph G with |V (G)| = 2 (mod 4), la3(G) = 3. However,
it’s a pity that the determination of laz(G) is NP-complete for cubic graphs G with
[V(G)| = 0 (mod 4). Finally, Bermond et al. conjectured that la5(G) = 2 if G is a

cubic graph.
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In 1996, Jackson and Wormald [19] asked a relative question “is it true that
lay(G) = 2 for all cubic graphs G with at least eight vertices?” They also showed
that if G is a cubic graph and k > 18, then lax(G) = 2. In 1999, Thomassen [24]
proved lay(G) < 2 for a cubic graph G and k > 5. This result is best possible.

Next, we study the linear k-arboricity of trees from an algorithmic point of view.
Habib and Peroche [11] showed the first result along this line. They gave an algorithm
to prove that if T is a tree with exactly one vertex of maximum degree 26, then
lao(T) < 6. Using this as the induction basis, they then gave a characterization for a
tree 7" with maximum degree 26 to have lay(T") = 0. However, Chang [5] pointed out
that this characterization has a flaw. He then presented a linear-time algorithm for
determining whether a tree T satisfies las(T) < 6 and gave a new characterization
for a tree 7" with maximum degree 26 to have las(T) = 6. As for general k, Chang

[5] also proved:

Theorem 2.2.3. If T is a tree;with A(L) = 20— 1 then lay(T) =0 for k > 2. If T
is a tree with A(T) = 260 thenl <lag(T) <0+ 1 for k > 2.

So, it remains to determine whether={ag(7)-is 6 or 6 + 1 when A(T) = 26.
Latterly, in [6], Chang et al. gave a linear-time algorithm for answering whether a

tree T satisfies lay(T') < 0 for a fixed k.

Now, let’s focus on another class of graphs. In 1984, Bermond et al. [2] determined

the linear 2-arboricity of complete graphs. They had the following result:

Theorem 2.2.4. For m # 10,11 (mod 12), las(K,,) = P;(L?’:Jl)—‘
=

Bermond et al. also said that if lay(K,,) = P;(F;Jl)—‘ for m = 11 (mod 12), then
3
lay(K,,) = {“;(L’an)-‘ for m = 10 (mod 12). This statement can be proved by Lemmas
3
2.1.2 and 2.1.5. Let m = 12t + 11 for any ¢t > 0, then [”;(L@,;Jl)—‘ = 9t + 8. Since
3

K12t+10 Q K12t+11, if 1&2(K12t+11) = 9t -+ 8, then la2(K12t+10) S ot + 8 by Lemma

2.1.2. However, [";([;:Jl)—‘ is also equal to 9t + 8 when m = 12t + 10 for any ¢ > 0.
5
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Hence, las(K,,) < [%—‘ for m = 10 (mod 12) if lay(K,,)
3

“\s

for

{ 2] W

m = 11 (mod 12). On the other hand, by Lemma 2.1.5, las(K,,) > [ (Lﬂj —‘ for
3

m = 10 (mod 12).

In 1991, Chen et al. [3] derived a similar result about the linear 2-arboricity of a

complete graph K, by using the ideas from latin squares. They had:

Theorem 2.2.5. lCLQ(Kgu) = lrw-‘, l(lQ(Kgu_H) = ’Vw—‘ and l(lQ(Kgu+2) =

[%W except possibly if 3u+1 € {49,52,58}.

n [3], Chen et al. indicated the fact that lag(Ki9111) = 9t + 9 for any ¢ > 0.
However, some computing errors happened in its proof. In Chapter 4 of this thesis,
we will show that las(Ki2410) and lag(Kig411) are equal to 9t + 8 for any t # 4,

which provide the answers of the unsolved cases in Theorem 2.2.4.

In 1994, by using similar ideasfrom latin squares, Fu and Huang [10] also gave the
following result about the linear 2-arboricity of abalanced complete bipartite graph

Kin.
Theorem 2.2.6. lay(K,,) = (ﬁ_g—ﬂ
3
It is worthy of noting that most of the results mentioned above on lax(G) of a
graph G have the same property that k£ is small. Therefore, finally, we state the

following results obtained by Chen and Huang [4] on lay (k) for k > [%] — 1 and

on lag(K,,,) for k >n —1.

Theorem 2.2.7. Suppose m > i > 2 and let [%] —1 < k

IA
E
|

b
3
(9]
3

lag(Ky,) > (m(m U7 and the equality holds in case that i = 2.

Theorem 2.2.8. Suppose 2n > i > 2 and let [22] —1 < k < [2] — 2. Then
lag(Kpn) > (=27 and the equality holds in case that i = 2.

2n—1i
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Chapter 3

Linear 3-arboricity of Balanced
Complete Multipartite Graphs

In this chapter, we study the linear 3-arboricity problem on balanced complete
bipartite graphs, complete graphs, and balanced complete multipartite graphs. The

results obtained are coherent with the corresponding cases of Conjecture 2.2.1.

3.1 Preliminary Lemmas

Assume that G and H are graphs. “A spanning subgraph F' of G is called an
H-factor if each component -of F' s isomorphic to H. If G is expressible as an

edge-disjoint union of H-factors, then. this union is called an H-factorization of G.

Furthermore, we say that a 1-factor of a graph G is a spanning 1-regular subgraph
of G. A 1-factor and a perfect matching are almost the same thing. The precise
distinction is that “1-factor” is a spanning 1l-regular subgraph of G, while “perfect
matching” is the set of edges in such a subgraph. A decomposition of a regular
graph G into 1-factors is a 1-factorization of G. A graph with a 1-factorization is

1-factorable.

Let G(X,Y) be a bipartite graph with bipartition X = {z; | j =0,1,...,r — 1},
Y ={y; | 7=0,1,...,s =1}, and |Y| = s > r = |X|. We define the bipartite
difference of an edge z,y, in G(X,Y’) as the value ¢ — p (mod s). For example, the

bipartite differences of x1y2 and x3y, in a complete bipartite graph K, 7 are 1 and 4.

18



It is not difficult to see that an edge subset in G(X,Y’) containing the edges of
the same bipartite difference must be a matching. In particular, the edge subset
is also a perfect matching if G(X,Y’) is a balanced complete bipartite graph K.
Moreover, we can partition the edge set of G(X,Y) (or K,,) into s edge-disjoint
matchings such that each matching is consisting of edges with the same bipartite
difference ¢ € {0,1,...,s — 1} and the edges in different matchings have different

bipartite differences.

The following lemmas are essential to obtain our results.
Lemma 3.1.1. [23] K, has a Ks-factorization if and only if m =3 (mod 6).
Lemma 3.1.2. [13] K,, has a Ky-factorization if and only if m =4 (mod 12).

Lemma 3.1.3. A complete graph with even order Ko, has a 1-factorization in which

there are 2u — 1 1-factors.

Proof. We can obtain simply «the 1-factors éf K5, from a circle and u chords in
it. Let the 2u — 1 vertices be=placed equally spaced round a circle, and label them
0,1,...,2u — 2; also label the center 2u.— 1. The 1-factor with label 7 + 1 are then
induced by an edge joining vertices 4 and 2u — I, and by parallel edges joining the

other vertices in pairs. Figure 3.1 shows the ‘case of four vertices. m

) ) ©)

Figure 3.1: A 1-factorization of Kj.

Lemma 3.1.4. If a graph G has an H-factorization with r H-factors, then lay(G) <
r-lag(H).
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Proof. Since an H-factor of GG is a spanning subgraph of G whose components are
all isomorphic to H, the linear k-arboricity of every H-factor of GG is then equal to
lai(H) by Lemma 2.1.4. Since G has an H-factorization with r H-factors, therefore,
lag(G) < r-lag(H) by Lemma 2.1.3. O

3.2 Balanced Complete Bipartite Graphs

In this section, we study the linear 3-arboricity of a balanced complete bipartite

graph K, ,,. We start with the results of smaller orders.
Lemma 3.2.1. la3(Kg6) = 4.

Proof. Assume that the vertices of two partite sets in K¢ are g, x1,...,25 and
Yo, Y1, - - -, Y5. Then we observe that two edges with bipartite difference 0 (or bipartite
difference 2) and one edge with bipartite difference 1 can form a path of length 3, such
as YoZoy121 (or xoyar1ys). Thus, theredgeshwith bipartite differences 0, 1,2 in K¢ can
produce two linear 3-forests {yy&;yjadili) o= 0+2,4}, {z;yj 10011943 7 = 0,2, 4},

as shown in Figure 3.2. Note that the index of each vertex is modulo 6.

Figure 3.2: Two linear 3-forests in K.

Similarly, the edges with bipartite differences 3,4,5 in K also can produce

two other linear 3-forests {y;432;y;+a2j41| = 0,2,4}, {2;yj157;41Y46] 7 = 0,2, 4}.
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Hence, las(Kgp) < 4. We construct the array in Figure 3.3 to show this bound. The
entry w in row x., and column ys means that the edge x.,ys appears in the linear 3-forest

labelled by w. On the other hand, by Lemma 2.1.5, las(Ksg) > {%—‘ = 4. n

Yo Y1 Y2 Y3 Y4 Y5

Xol 11 1] 2]3]3]4

Figure 3.3: The array shows that lag(Kge) < 4.

Lemma 3.2.2. la3(K77) = 5.

Proof. Assume that the vertices of two partite sets in K77 are xg,21,...,2¢ and
Yo, Y1, - - -,Ys- Due to the obseryation mentionedin the proof of Lemma 3.2.1, then
the edges with bipartite differenceés 0,1,2/in K77 can produce two linear 3-forests
{zevet U{yizjyirizjial 5 = 0,2,4}, {zey1 } U{z;y5275419543] § = 0,2,4} except the
edge zgyo with bipartite difference 1 which is not being used, as shown in Figure 3.4.
We call the edges zgys and x4y, base edges because we can construct the whole
linear 3-forests from them. Similarly, the edges with bipartite differences 3,4,5 in
K7 7 also can produce two other linear 3-forests {51 } U{yj132,yj1az41| j = 6,1, 3},
{z5ys} U{x;yj45%41yj16] J = 6,1, 3} except the edge x5y, with bipartite difference 4
which is not being used. Note that the index of each vertex is modulo 7.

Now, let the edges xgy0, £5y2 which are not being used and all edges with bipartite
difference 6 in K77 7 form the last linear 3-forest. It is consisting of three isolated edges
and two paths of length 3. Thus, las(K77) < 5 and the array in Figure 3.5 shows this

bound. On the other hand, by Lemma 2.1.5, lag(K77) > [ﬁ—‘ = 5. O
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Figure 3.4: Two linear 3-forests and one isolated edge in K7 ;.

Yo Y1 Y2 Y3 Y4 Ys VYe

X2 | 4[5 1T 22| 3|4
x3| &l afisf1f2] 2|3
g |3 Valatst1fF1]2
xs | 24| 3fmrfa| 5] 1| 2

Figure 3.5: The array shows that lag(K77) < 5.

In what follows, we consider the general cases of n.
Proposition 3.2.3. lag(K,,) = 3 if n=0 (mod 6).

Proof. From the proof of Lemma 3.2.1, we observe that if n is even, then the
edges with bipartite differences €,e + 1,¢ + 2 in K,,,, for any e can produce two

linear 3-forests. Hence, the edges with bipartite differences from 0 to n — 1 in K,,,,

can generate (%) -2 = 2?" linear 3-forests. On the other hand, by Lemma 2.1.5,

las(K,,) > h"—ﬂ =20 if n =0 (mod 6). O

Proposition 3.2.4. laz(K,,) = [3*] if n=4 (mod 6).
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Proof. First, by using the method in the proof of Proposition 3.2.3, the edges with
bipartite differences from 0 to n — 2 in K, , can generate (an1) -2 = @ linear
3-forests. Next, the edges with bipartite difference n—1 in K, ,, can uniquely produce

a linear 3-forest. Thus lag(K,,) < @ +1= 2”3—“ = (%ﬂ if n =4 (mod 6). On
the other hand, by Lemma 2.1.5, lag(K,,,) > [ﬁ—‘ =[2]ifn=4 (mod 6). O

Proposition 3.2.5. lag(K,,) = [3*] if n=2 (mod 6).

Proof. The edges with bipartite differences from 0 to n — 3 in K, , can generate

(”T_Q) -2 = @ linear 3-forests. The edges with bipartite differences n — 2 and

n —1in K,, can produce different linear 3-forests respectively. Thus laz(K, ) <

22 49 = 42 — [20] if p = 2 (mod 6). On the other hand, by Lemma 2.1.5,

lag(K,,) > hn—ﬂ = [2] if n = 2 (mod 6). O

Proposition 3.2.6. laz(K,,) = [3*] if n=5 (mod 6).

Proof. By Proposition 3.2.3, lag(Hy ) < las(Kni1n11) = @ = % = P”W if
n =5 (mod 6). On the other hand, by Lemma 2.1.5, las(K,,,) > [ e -‘ = [2] if

n =5 (mod 6). O

Proposition 3.2.7. la3(K,,,) = (%W if*n =3 (mod 6).

Proof. By Proposition 3.2.4, lag(K,,) < las(Kpi1n41) = [2(";1)-‘ = [%] On

]
Proposition 3.2.8. lag(K,,) = [3*] if n=1 (mod 6).

the other hand, by Lemma 2.1.5, laz(K,,,) > h’f —‘ = [222] if n =3 (mod 6). O
2

Proof. Assume that the vertices of two partite sets X,Y in K,,,, are xg, 1, ..., Tp-1
and Yo, Y1, ..., Yn_1. First, from the proof of Lemma 3.2.2, we observe that if n is odd,
then the edges with bipartite differences €,e +1,¢ + 2 in K, ,, for any € can produce
two linear 3-forests except one edge with bipartite difference € + 1 which is not being
used. Thus, the edges with bipartite differences from 0 to n — 2 in K, ,, can generate

(”T_l) -2 = @ linear 3-forests except ”T_l edges which are not being used.

2(n—1)

3 linear 3-forests are

Next, without loss of generality, suppose that those

constructed from the base edges in {Z,—j¥n—j1+3(-1) Tn—j¥n—jt+3G-1)+2] 1 < J < "T_l},
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where the index of each vertex is modulo n. Then, the set of those "T_l edges which
are not being used is a matching {2, ;jyn—jir3-1)11] 1 < j < %51}, denoted M;.
Moreover, the set of edges with bipartite difference n—1in K, ,, is a perfect matching
{z;y;-1] 0 < j <n —1}, denoted M.

In what follows, we want to show that the edges of M; and Ms can produce a
linear 3-forest together. Since the endpoints u, v of an edge in M; are incident to two
other edges e, e, in My, it suffices to prove that the endpoints of e, ey except u,v
are not the endpoints of edges in M.

Since the endpoints in partite set X of edges in M; are x,_1,%,_2,... T2 g
they are adjacent to the endpoints v, _2, Yn_3, . . ., Y21 of edges in Ms. Similariy, the
endpoints in partite set Y of edges in M; are yg, s, . . - Y21y, which are adjacent to
the endpoints z1, z3, . .. (o) of edges in Ms. Note that the endpoints mentioned
above are distinct. Hence, each component of the subgraph induced by M; U M; is a

path of length at most 3 and then we have a linear 3-forest in K, .

Therefore, lasz(K,,) < @ +1 =200 =420 if n =1 (mod 6). On the other
hand, by Lemma 2.1.5, las(Kpp )= {I.’;?jﬂ = [2] if n =1 (mod 6). O

From the propositions given: above, we determine the linear 3-arboricity of K, ,

for any n and conclude the work of this.section with the following theorem.

Theorem 3.2.9.
2 (2] if n=0,1,2,4,5 (mod 6),
la3<Knn) = |7 “ =

{@w if n=3 (mod 6).

3.3 Complete Graphs

In this section, we study the linear 3-arboricity of a complete graph K,, and the

results on K, will give us great help. We start with the case m = 8 of K,,.

Lemma 3.3.1. las(Ks) = 5.
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Proof. Assume that the vertices of Ky are wvg,vy,...,v7. First, let the perfect
matching {vy;v9,41] 0 < i < 3} of Ky be denoted M. Then, for 0 < i < 3, we define
N; as the set of one edge v9;v9;11 and its endpoints vo;, v9;11. Thus Ky can be viewed
as Ky with nodes N; for 0 < ¢ < 3 and unordered pairs of nodes (N,, Ng) for
0 < o # B < 3. The notation (N,, Ng) also means the 4-cycle consisting of the edges
V20028, V20V2841, V2a+1V23, and Vsq41vU2841 in original K.

From the proof of Lemma 3.1.3, we know that K, has a 1-factorization, in which
there are three different 1-factors and each 1-factor owns two disjoint unordered pairs
of nodes. For example, the 1-factor with label 1 has unordered pairs of nodes (g, N3)
and (N7, Np). Then, from this 1-factor, we observe that the subgraph consisting of
two paths vgvgvzvy in (Ng, N3) and vev4v305 in (N7, No) is a linear 3-forest in original
Kg, labelled by 1. However, each of (Ny, N3) and (N, No) has an edge which is not
being used to construct the linear 3-forest with label 1, they are vgv; and vyvs.

Figure 3.6 shows the linear 3-forestyavith label 1 in original Kg. Similarly, the
other 1-factors of K, can produce twogether linear 3-forests in original Ky, labelled

by 2 and 3, except the edges watzs Vous, Yav7, and vyvs not being used.

Vo V. Vv v
No P P y N,

Ve V7 V4 Vs

Figure 3.6: A linear 3-forest in K.

Now, let G(X,Y) be a bipartite graph with bipartition X = {vg (= xg),v2 (=

21),v1 (= 22),v6 (= 23)} and Y = {v1 (= 90),v3 (= 1), 05 (= y2),v7 (= y3)}. Then
those edges which are not being used are exactly all of edges with bipartite difference

1 in G(X,Y) and half of edges with bipartite difference 2 in G(X,Y).
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We observe that the edges which are half of edges with bipartite difference 2 in
G(X,Y) and all edges of M can produce a linear 3-forest labelled by 4 in original K,
as shown in Figure 3.7(1). Moreover, the edges with bipartite difference 1 in G(X,Y)
also can produce a linear 3-forest labelled by 5 in original Kg because they form a

perfect matching, as shown in Figure 3.7(2). Therefore, laz(Ks) < 5. We construct

the array in Figure 3.8 to show this bound. On the other hand, by Lemma 2.1.5,
l(Lg(Kg) Z ’V|-32—88J-‘ = 5. ]

4

Vo \ Vs Ve

Vi V3 Vs A&

@ @

Figure:3.7: Two'linear 3-forests in Ky.

Vo Vi V2 V3 Vg Vs Vg V¢

Vo 411]5]2|4]|3]83
Vi| 4 11112]12]5]83
V2111 413]15]12]|4
V3| 5 (1|4 313]12]2
Vol 212 13]3 41115
Vs| 42 |5]|3]|4 111
Ve | 3|[5|12]2]1]1 4
V7133 |4)12]5]1]4

Figure 3.8: The array shows that laz(Kg) < 5.
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Lemma 3.3.2. lag(Ky) = 7.

Proof. Assume that the vertices of Ky are vy, vy,...,v9. First, let the matching
{vaiv9i41] 0 < i < 3} of Ky be denoted M. Then, for 0 < i < 3, we define N; as
the set {vg;, Vo;11, V2941 }. Thus Kjg can be viewed as Kg with nodes vg, vg, N; for
0 <7 < 3 and unordered pairs of nodes (vs, N, ), (ve, N3), (Na, Ng) for 0 < a # 5 < 3.

From the proof of Lemma 3.1.3 (by placing vg, Ny, ..., N3 equally spaced round
a circle and vy the center), Kg has a 1-factorization in which there are five different
1-factors and each 1-factor owns three disjoint unordered pairs of nodes. For example,
the 1-factor with label 1 has (vs,v9), (No, N3), and (N7, N2). From this 1-factor, we
can then construct a linear 3-forest labelled by 1 in original K, as shown in Figure

3.9. However, the edges vgvy in (No, V3) and vavs in (N7, Ny) are not being used.

Vo \ Vs Vs Vs

N, * » * N;
L J ® ®

N 3 Vs V; Vg A\ Vs N 2

Figure 3.9: A linear 3-forest in K.

Similarly, the other 1-factors of K¢ can produce four other linear 3-forests labelled
by 2,3,4,5 in original Ky except the edges v4v7, vovs, V2v7, and vyvs not being used.
Figure 3.10 shows the linear 3-forest with label 2 in original K.

Finally, from the proof of Lemma 3.3.1, the six edges above which are not being
used and all edges of M can produce two other linear 3-forests labelled by 6 and 7 in
original Kyo. Hence, la3(K7p) < 7. On the other hand, by Lemma 2.1.5, laz(Ky9) >

[ﬁw =T7. O

In what follows, we consider the general cases of m.
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X

Figure 3.10: Another linear 3-forest in K.

Ny

Se

Proposition 3.3.3. lag(K,,) = [#%2] if m =0,4,8 (mod 12).

Proof. Assume that the vertices of K,, are vg,v1,...,v,,—1. First, let the perfect
matching {UgiU2i+1| 0<i< % — 1} of K, be denoted M. Then, for 0 <14 < 3 — 1,
we define N; as the set {vo;, Vo; 11, U2;v2;41}. Thus K, can be viewed as K m with nodes
Nj for 0 <4 <% — 1 and unordered pairs of nodes (No, Ng) for 0 <a # 3<% — 1.

From the proof of Lemma 3:1.3, Ku_ can be decomposed into 3 — 1 different
1-factors and each 1-factor owns %t disjoint unordered pairs of nodes. Since each
unordered pair of nodes in K m is composed of a path with length 3 and one edge in

original Ky, then a 1-factor ot/ = “can produce one linear 3-forest in original K,

except 7 edges which are not being used."Hence, from the % —1 1-factors of K m, we

mo__

obtain 5

1 linear 3-forests in original K, except (% —1)- ¢ edges not being used.

Now, let G(X,Y’) be a bipartite graph with bipartition X = {vy; (= ;)] 0 <1i <
Z—1}and Y = {vgi11 (= %:)| 0 <4 < F —1}. Then those edges which are not being
used are exactly all of edges with bipartite differences 1,2,..., % —1in G(X,Y’) and
half of edges with bipartite difference 7' in G(X,Y).

m

We observe that the edges which are half of edges with bipartite difference 7 in
G(X,Y) and all edges of M can produce a linear 3-forest in original K,,. Moreover,
since the size of X (or Y) is even and |X| = |Y|, the edges with bipartite differences
e, e+ 1,e+2in G(X,Y) for any € can produce two linear 3-forests from the proof

of Proposition 3.2.3. Thus, the edges with bipartite differences 1,2,...,% — 1 in

G(X,Y) can generate [( %3_ 1) : 2-‘ = [2=4] other linear 3-forests in original K,,.
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Therefore, las(K, ) (2 —
Lemma 2.1.5, las(K,,)

1) + = [22=2]. On the other hand, by
—‘: — m = 0,4,8 (mod 12). O

ﬂ
4

Proposition 3.3.4. lag(K,,) = [%*] if m =2,6,10 (mod 12).

Proof. Assume that the vertices of K, are vy, v1,...,v,,_1. First, let the matching
{vgivgiﬂl 0<i< mT’2 — 1} of K,, be denoted M. Then, for 0 < i < msz — 1, we
define N; as the set {vq;, voi11,VeU2:41}. Thus K, can be viewed as K% with

nodes v,,_2, Uym_1, IN; for 0 < i < mT_2 — 1 and unordered pairs of nodes (v,,_2, N, ),

(Um—1,Ng), (No, Ng) for 0 < a # 8 < ™52 — 1.

Since m = 2,6,10 (mod 12), then mT*z = 0,2,4 (mod 6). From the proof of

Lemma 3.1.3 (by placing v,,_2, No, N1, . .. ,Nmszf1 equally spaced round a circle and

U1 the center), K mt2 has a 1-factorization in which there are mT*Q — 1 different

1-factors and each 1-factor owns mT“ disjoint unordered pairs of nodes. However,
an unordered pair of nodes (N,, Ng) in. K mi2 is composed of a path with length 3

and one edge in original K,,. Hence, each 1-factor of Kmi2 can produce one linear
2

m+2

3-forest in original K, and leaves 5

— 2'edges which are not being used except the

1-factor with label 1 which contains/the unordered pair of nodes (vy,—2, vp—1) leaves

m—+2 — 1 edges not being used.+Therefore, from the mT“ — 1 1-factors of K mi2, We

m+2

obtain 5

— 1 linear 3-forests in origmal K, except (252 —1) - (22 — 2) + 1 edges
not being used.

Now, let G(X,Y’) be a bipartite graph with bipartition X = {ve; (= ;)] 0 <17 <

2 — 1} and Y = {voi11 (= 4;)] 0 <4 < ™2 — 1}, Then those edges which are
not being used are exactly all of edges with bipartite differences 1,2,..., mT’Q —1in
G(X,Y) and half of edges with bipartite difference 2 in G(X,Y).

We observe that the edges which are half of edges with bipartite difference mT_2 in
G(X,Y) and all edges of M can produce a linear 3-forest in original K,,. Moreover,
since the size of X (or Y) is even and |X| = |V, the edges with bipartite differences
,e+1,e+2in G(X,Y) for any € can produce two linear 3-forests from the proof

of Proposition 3.2.3. Thus, the edges with bipartite differences 1,2,..., mT’Q —1in
1

G(X,Y) can generate [( mT_;_ ) - 2-‘ = [2=5] other linear 3-forests in original K.
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Therefore, laz(K,, ) )+ 1 —|— ] = [%mw On the other hand, by

Lemma 2.1.5, las(K,,) —‘ Znlif m = 2,6,10 (mod 12). O

3m

Ny

Proposition 3.3.5. lag(K,,) = [%*] if m =1,9 (mod 12).

Proof. Assume that the vertices of K, are vy, v1,...,v,,_1. First, let the matching
{vav9541] 0 <0 < 2L — 1} of Ky, be denoted M. Then, for 0 < i < 2 — 1,
we define N; as the set {vg;, Ug;11, V20941 Thus K, can be viewed as the union
of KLmTA and KmTfl. The star Kl’mTA has nodes v,,_1,N; for 0 < ¢ < mT_l —1
and unordered pairs of nodes (vy,—1, N;) for 0 < i < mT_l — 1; the complete graph
KmT—l has nodes N; for 0 < ¢ < mT’l — 1 and unordered pairs of nodes (V,, Ng) for
0<a#pg< -1

Since mT_l is even, from the proof of Lemma 3.1.3 (by placing Ny, Ny, .. ., NmTﬂ_Q

equally spaced round a circle and N mo1 the center), K m1 has a 1-factorization

in which there are mT_l — 1 different, 1-factors and each 1-factor owns mT_l disjoint

unordered pairs of nodes. It igsworthy of mentioning that each 1-factor of K mo1
has at most one unordered pair of nodes {N;; N;.y) for some ¢ € {0,1,..., mT’l -3}
Moreover, an unordered pair=of nodes (N, N; 1) in K mo is composed of a path
VgiVoi12V2;+1V2;+3 and one edge g5y 3 in original K,,.

Hence, as the proof of the propositions previously, each 1-factor of K m_1 can
m—1
T4

produce one linear 3-forest in original K, except edges which are not being

used. So, from the m—_l — 1 1-factors of KLA we obtain mT_l — 1 linear 3-forests in
original K,, except (— —1) - (™) edges not being used.

Next, for each linear 3-forest obtained from a 1-factor has (NNV;, N;y1) for some
ief{0,1,..., T — 3}, we replace the path vo;v9; 1909, 1102513 in (N, Niy1) by another
path vy 302010941 in (V;, Niy1) and (vy,—1, IV;). For example, consider the linear
3-forest in K3 obtained from the 1-factor has (Ny, N7), we replace the path vouavivs
in (Ng, N1) by v3vgviav1 in (Np, N1) and (v1a, Ny), as shown in Figure 3.11.

Then, let the replaced paths vo;v9;42V2;41V2;43 in (N;, Njyq) fori =0,2,.. ., mT_l—él
and another path v,,_2V,_5Um—_1Um—4 i (NmT—l_Q, NmT—l_1> and (vy,_1, NmT—l_Q) form

a linear 3-forest in original K,,.
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I
I

V1o Vi Vg Vg
N N,
N N,
Ve V7 V4 Vs
e ®
V1o Vi1 Vg Vy

Figure 3.11: The process of replacing the paths of length 3.

Also let the replaced paths ve;vg;40U9;11V9;4+3 in (IV;, Niyq) fori=1,3,..., mT’l -3

and another path v1v,,_3Um_1Vm—s in (N%—p No) and (vy,_1, NmTfl_l) form a linear
3-forest in original K,,. Thus, the edges appear in KLmTA and the edges appear in
(N1 g, No), (Niy Nisy) for 0 < < 5 — 2 of K are all being used.

Now, let G(X,Y’) be a bipartite graph with bipartition X = {vy; (= ;)] 0 <1i <
mel — 1} and YV o= {vgip1 (= 4i)] 0 < i < ™1 — 1}, Then those edges which are

not being used are exactly all of edges with bipartite differences 2,3,...,2= — 1 in

1
G(X,Y) and half of edges with bipartite difference = in G(X,Y).

We observe that the edges which are half of edges with bipartite difference mT_l in

G(X,Y) and all edges of M can produce a linear 3-forest in original K,,. Moreover,



since the size of X (or Y') is even and |X| = |Y|, from the proof of Proposition 3.2.3,
the edges with bipartite differences €,¢ + 1,¢ + 2 in G(X,Y") for any € can produce

two linear 3-forests. Hence, the edges with bipartite differences 2,3, ..., mT_l —1in

m—1
G(X,Y) can generate [( T72) 2} = [2=2] other linear 3-forests in original K.
Therefore, lag(K,,) < (%52 —1) +2+ 1+ [22] = [22]. On the other hand, by

Lemma 2.1.5, las(K,,) { ([;L Jl)—‘ Znlif m = 1,9 (mod 12). O

Proposition 3.3.6. laz(K,,) = [2] if m = 3,7 (mod 12).

F“

%\s

Proof. By Proposition 3.3.3, las(K,,) < laz(K;41) = [w—‘ = Pme On the

other hand, by Lemma 2.1.5, lag(K,,) > P;(ng)-‘ = [2] it m=3,7 (mod 12). O
4

Proposition 3.3.7. las(K,,) = [%*] if m =5 (mod 12).

Proof. By Proposition 3.3.4, lag(Ky) < lag(Kpy1) = | 2520 | = [222] — [22] if

m =5 (mod 12). On the other handy by Temma 2.1.5, lasz(K,,) > [m([?;j)—‘ = (2]
if m =5 (mod 12). O

Proposition 3.3.8. las(K,,)= [#2=2]4f m = 11 (mod 12).

Proof. Assume that the vertices of K,, are vgsvq, ..., v,_1. First, let the matching
{ngvgﬂ_ﬂ 0<i<mt 1} of K,, be denoted M. Then, for 0 < i < = — 1, we
define NV; as the set {vgi, V9i11, U2iU2i41 +- Thus K, can be viewed as K mt1 with nodes
Um—1, N; for 0 < i < =2 — 1 and unordered pairs of nodes (vy—1, Ny), (Na, Ng) for
0<a#p< 21

+1

Since ™ is even, from the proof of Lemma 3.1.3 (by placing Ny, Ny, ..., NmTflil

equally spaced round a circle and v,,_; the center), K mt1 has a 1-factorization in

m+1
2

m+1

which there are — 1 different 1-factors and each 1-factor owns disjoint un-

ordered pairs of nodes. It is worthy of mentioning that each 1-factor of K mt1 contains
exactly one unordered pair of nodes (vy,—1, N;) for some i € {0, ..., %~ — 1}.
Hence, as the proof of the propositions previously, a 1-factor of K mi1 can produce

m+1
t 4

one linear 3-forest in original K, excep — 1 edges which are not being used. So,
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— 1 1-factors of K mi1, We obtain mT“ — 1 linear 3-forests in original K,

m+41

from the =

except (4 — 1) - (2 — 1) edges not being used.

Now, let G(X,Y’) be a bipartite graph with bipartition X = {vy; (= ;)] 0 <i <
mT_l —1}and YV = {vyip1 (=) 0 <@ < mT_l — 1}. Then those edges which are
not being used and the edges of M are exactly all of edges with bipartite differences
0,1,...,[™*] in G(X,Y). Since the size of X (or V) is odd and |X| = |Y], from
the proof of Proposition 3.2.8, the edges with bipartite differences €¢,¢ + 1,¢ 4+ 2 in
G(X,Y) for any € can produce two linear 3-forests except one edge with bipartite
difference € + 1 which is not being used. Thus, the edges with bipartite differences
0,1,..., ™| in G(X,Y) can generate {(LmTiTIJH) : 2—‘ =[] other linear 3-forests
labelled by 1,2,..., (mTHW except [ml—;q edges which are still not being used.

For example, let’s consider K, with m = 23. Then the partite sets of G(X,Y") are
X = {vo,v2,...,090} and Y = {vy,v3,...,0v91}. Moreover, the edges with bipartite
differences 0, 1,...,5 in G(X,Y) can produce four linear 3-forests labelled by 1,2, 3,4

except two edges v15vs, v9ov; with bipaztite diffetences 4 and 1 respectively which are

still not being used, as shown=in Figure 3:12.

Vi Vs Vs V7.oVeiVizmViz Vis Viz Vi Va1

Vol 1|1 ]|243]|4]|4

V2 1(2|2]3]|3]|4

Va 1111213|4)|4

Ve 112|2]|3]|3]|4

Vg 111123 |4|4

V10 1122|334
V2| 4 111(2|3|4
vl 3 | 4 112|123
Vig| 3|4 |4 111]2
Vig| 2 | 3 4 1]2
V20 2(3|3]|4 1

Figure 3.12: The array shows four linear 3-forests in G(X,Y).
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m+1

D W edges which are still not being used into the

Next, we plan to put the (
linear 3-forest with label 1 and interchange its edges with the edges of another linear
3-forests such that no more linear 3-forests needed to decompose K,,. The linear 3-

m—1

forest with label 1 is consisting of the paths vo;;1v9;V9i 4 3v9i42 foralli = 0,2, ..., 5= —3

and the base edge vy, 3V, _2.

We start by putting the first edge v,,_3v; which is still not being used into the
linear 3-forest with label 1, then it produce a path P = v,,_sv,,_3v109v3v, Which can
not be a component of a linear 3-forest. So, we interchange the edge v, 30,2 in
P with another edge v,,_sv,,_1 in the linear 3-forest constructed from the 1-factor
contains (vy,_1, N mo _1). Again, we interchange the edge vov3 in P with another edge
U3U,—1 in the linear 3-forest constructed from the 1-factor contains (v,,_1, N1) and
move the edge v3v,,_1 into the linear 3-forest with label 2.

Since the linear 3-forest with label 2 is consisting of the paths vo;v9;4 5U2; 1 2U0;1 7
for all i = 0,2, ..., ’”T_l — 3 and the'base edge'v,, 3v3, that movement creates a path
Um—3U3Uy,—1 and we have a newslinear 3-forest with label 2. Moreover, the steps above
let the length of P become 3: Hence, we also have a new linear 3-forest with label

1, which is consisting of paths=with length-3 and one edge v,,_2v,,—1. Note that the

index of each vertex is modulo m:

Without loss of generality, for 2 < £ < (ml—glw, we assume that the /th edge
still not being used is vy,_5_4(s—2)Vs12(¢—2), abbreviated to v,_4r43v2¢+1. Then, for
2 <0< (ml—glw, we put the fth edge v,,_4s13v2011 still not being used sequentially
into the linear 3-forest with label 1 according to the following rules.

If 7 is even, then we interchange the edge v,,_4¢13V;m_4r+4 in the linear 3-forest
with label 1 with another edge v, _4¢13v,,_1 in the linear 3-forest constructed from
the 1-factor contains (vy,_1, N%) and move the edge v,,_4¢43V,—1 into the linear
3-forest with label 2¢—1. We also interchange the edge v 909443 in the linear 3-forest
with label 1 with another edge v y3v,,_1 in the linear 3-forest constructed from the

1-factor contains (v,,_1, N2cr2) and move the edge vopy 30,1 into the linear 3-forest
2

with label 2¢.

34



If 7 is odd, then we interchange the edge v9_ov9,_1 in the linear 3-forest with
label 1 with another edge vgy_1v,,_1 in the linear 3-forest constructed from the 1-
factor contains (v,,_1, N #) and move the edge voy_1v,,_1 into the linear 3-forest
with label 2¢ — 1. We also interchange the edge v,,_4¢13Vm_4r+4 in the linear 3-forest
with label 1 with another edge v, _4¢13v,,_1 in the linear 3-forest constructed from
the 1-factor contains (vy,_1, N%) and move the edge v,,_4¢43V,—1 into the linear
3-forest with label 2¢.

By using the above method recursively until all edges which are still not being
used have been putted completely into the linear 3-forest with label 1, we can find
that each component in the linear 3-forest with label 1 and the other linear 3-forests
is a path of length at most three. For example, Figure 3.13 shows the linear 3-forest

with label 1 in K,, with m = 35.

Vo V2 V4 Vg Vg Vio Vi2 Vg Ve Vig Voo V2o Vo4 Vo Vog V3o Va2

] [ ) [ ] [ ] L ]
/
T Va
——
¢ e L 9] [ [

Vi V3 Vs V7 Vo Vi1 Viz3+“Vis. Viz Vig V21 V23 Va5 Vo7 V29 V31 Va3

Figure 3.13: A linear 3-forest in Kjs.

Therefore, we have lag(K,,) < (2 — 1) + [2H] = [2221] = [2222] jf iy = 11
(mod 12). On the other hand, by Lemma 2.1.5, las(K,,) > [”;(fg_j)-‘ = [2m=2] if
m =11 (mod 12). O

From the propositions given above, we determine the linear 3-arboricity of K,

for any m and conclude the work of this section with the following theorem.

Theorem 3.3.9.

m(m — 1) 3

ot = [

4

w [22=2] if m =0,4,8,11 (mod 12),
2] if m=1,2,3,56,7,9,10 (mod 12).

3
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3.4 Balanced Complete Multipartite Graphs

In this section, we study the linear 3-arboricity of a balanced complete multipar-
tite graph K,y with mn = 0 (mod 4). Before we go any further, we need some more
lemmas.

Let P,() be an a-partite graph such that each partite set V; has 3 vertices for all
i€4{0,1,...,a — 1} and the edge uv € E(P,)) if and only if v € V,, and v € V14

where w € {0,1,...,a —2}.
Lemma 3.4.1. la(Pii1(s) = 5.

Proof. First, for all i € {0,1,...,k}, assume that the vertices of partite set V; in
Py11(s) are o}, Vif1), - - -, Vils—1]- Lhen, let the (th linear k-forest be the set of Pryi’s
{vo[j]vl[jﬂg,l)} o Ukake—1y]| 5 =0,1,..0,5 — 1} for all ¢ € {1,2,...,s}. Note that
the index y of each vertex v,, is modulo s. It is not difficult to check that the edges
in the linear k-forests above are distinet and'exactly all of the edges in Py (5). Thus

lak(PkH(s)) = S. ]
Lemma 3.4.2. lay(Kpsn)) <8 - lag(Bomm))-

Proof. We can obtain K, from.K,, ) byteplacing each edge of K, with K.
Hence, a path P, in a linear k-forest of K, corresponds to a A-partite subgraph
Pys) of Kpspy, where 2 < A < k + 1. Moreover, lag(Pyi)) < lag(Prii(s)) for all
2 < X < k+ 1. Therefore, lap(Kpsn)) < lag(Priis)) - lak(Kmm)) = 8 - lag(Knm)) by
Lemmas 3.1.4 and 3.4.1. [

Lemma 3.4.3. If n =0 (mod 27) where o > 1, then Kpn) has a K »_» -factorization

and there are 2°(m — 1) Ko n -factors in it.

Proof. We prove this lemma by using induction on the number o. Assume o = 1.

From Lemma 3.1.3 (by replacing each edge of Ks,, with K%,%), the graph K2m( ) has

n
2

a Kz »-factorization in which there are 2m—1 K= a-factors. Moreover, KQm(ﬂ) is the
2

union of K,,(,) and a K= »-factor of K, (2): Hence, K,,) has a K= »-factorization
2732 m( 3 2732

and there are 2m — 2 = 2(m — 1) K= n-factors in it. This provides the basis.
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For the induction step, suppose ¢ = h + 1 > 2. The induction hypothesis is
that Ko has a K s -factorization in which there are 2" (m — 1) K s -factors.
-factors, then Ky, has

Since a Kn n
hooh

h+1

-factorization and there are 2-2"(m—1) = 2h+1(m—1) K _n_ _n_-factors

akl _n
oh+179h+1

2h+1 h+

in it. Therefore, by mathematical induction, the assertion holds. O]
Now, we are ready to prove the main results on lag(K ) ).
Proposition 3.4.4. laz(K,,»n)) < M if m=0 (mod 2) and n =0 (mod 6).

Proof. From Lemma 3.1.3 (by replacing each edge of K,, with K, ,), K has
a K, ,-factorization and there are m — 1 K, ,-factors in it. Hence, lag(Kpm)) <

(m—1)-lag(Kppn) = (m—1)- % = 2(m U™ 1y Lemma 3.1.4 and Theorem 3.2.9. [

Proposition 3.4.5. lag(K,,n)) < 2(m;1)” if n=0 (mod 12).

Proof. From Lemma 3.4.3, K,,,).has a K" n,n—factorization in which there are 2m —2
Kn n-factors. Therefore, laz(Fue)) < (2m=2) laz(K» ») = (2m—2)'2(3%) = Z(mgl)"
by Lemma 3.1.4 and Theorent 3.2.9. [

Proposition 3.4.6. lag(K,m)) < 2(7”—1 if m=4 (mod 12).

Proof. From Lemma 3.1.2, K,, has a K -factorization and there are (||VE§<K”}|))‘ i = "= 1
K,-factors in it. Since laz(Ky) = 2, from Lemmas 3.1.4 and 3.4.2, lag(Km)) <
n-las(Ky) <n- 2L lag(Ky) = M O

Proposition 3.4.7. lag(Kyn)) < w if m=1 (mod 3) andn =0 (mod 4).

Proof. Since 4m = 4 (mod 12), from Lemma 3.1.2, Ky, has a K,-factorization

E(Kim _ . . .
B(Kam)l  _ 4m—1 K -factors in it. Moreover, Ky, is the union of
V) 3 o Bam

4

and there are
K1y and one Ky-factor of Ky,,. Hence, K,,4) has a Ky-factorization in which there
are % — 1 Ky-factors. By Lemmas 3.1.4 and 3.4.2, lag(Kpmy) < § - las(Kpa) <

n 4m—1 _n 8(m-1) _ 2(m—1)n
To(5 1) las(Ky) = - == = 2R -

Proposition 3.4.8. lag(K ) < 2(m—1 if m=0 (mod 4) and n =0 (mod 3).
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Proof. Dividing all m partite sets of K, into 7 disjoint collections of four partite
sets shows that K, () is the union of K m (4n) and one Kyn) -factor of K, (. Since 4n =

0 (mod 12), by Propositions 3.4.5 and 3.4.6, laz(Kn(n)) < laz(Kym)) +laz(Km ) <

24-1)n , 2(F-1)En)  2(m—1)n
3 3 - 3

O

+
Proposition 3.4.9. laz(Kgm) < 222 if m =10 (mod 12) and n =0 (mod 2).

Proof. From Lemma 3.1.3 (by replacing each edge of K,, with K5»,), K 2) has
a Ky o-factorization and there are m — 1 Ky o-factors in it. Moreover, since K is
consisting of a path P, and one isolated edge, then a linear 3-forest can be induced
by the set of P,’s in all Ky of any Kjo-factor in K, ). Therefore, we obtain m — 1
linear 3-forests from the m — 1 K s-factors of K, (2). Now, we want to show that the
isolated edges in those K35 of Kjs-factors in K, also produce linear 3-forests.

For all i € {0,1,...,m — 1}, let the vertices of partite set V; in K, be denoted
vijo] and v;;1). Without loss of generality, we assume that all isolated edges in those

K35 of Ky o-factors in K, (o) are the edges of 54 1 perfect matchings Uy, Us, . . ., Un_4

and a matching Mm in K, ()5 where Up.= {Uz Witen)] 1 =0,1,... — 1} for ¢ €
{1,...,% — 1} and Mm = {’UZ'[()]UZ'+m =0, 2% . . m—2}. Then, the edges of
U, Us,...,Un_y can generate (7; ) linear 3-forests from the proof of Proposition
3.2.3 and the edges of Um_y, M= also produce a linear 3-forest. Thus, lag(Kpm)) <
2 Jag(Kz) < 2-[(m—1) + @ +1] = 220" by Temma 3.4.2. O

Concluding the conditions of the pair (m,n) in the propositions given above, we
find that mn = 0 (mod 4) and (m — 1)n = 0 (mod 3) On the other hand, by
Lemma 2.1.5, it is easy to show that lag(Ky ) > =25 if mn = 0 (mod 4) and

(m —1)n =0 (mod 3). Therefore, we have the followmg:

Corollary 3.4.10. lag(Kp@m)) = Q(W%)” when mn = 0 (mod 4) and (m — 1)n =
0 (mod 3).

It is worthy of noting that, in 1999, Muthusamy and Paulraja [21] showed that:

Theorem 3.4.11. For k =p+1> 3 and p is a prime, K,y has a Py-factorization
if and only if mn =0 (mod k) and 2(k—1) | k(m — 1)n.
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From the definitions of the linear (k — 1)-arboricity and a Pj-factorization of a

graph, we know that if a graph G has a Py-factorization then laj,_1(G) is equal to

k| E(G)]

(CEIREIL which is the number of Py-factors required to decompose G. Therefore,

what we have proved gives an independent proof of the case k = 4 of Theorem 3.4.11.

Next, we consider the cases when K,,,) does not have a P;-factorization.

Proposition 3.4.12. laz(Km)) < {MW if m=0,4,6,8 (mod 12) and n =
4 (mod 6).

Proof. From Lemma 3.1.3 (by replacing each edge of K, with K, ), Kn) has a
K, ,-factorization in which there are m — 1 K, ,-factors. Hence, from the proof of
Proposition 3.2.3, the edges with bipartite differences 1,2,...,n — 1 in those K, , of
K, n-factors in K, can generate (m — 1) - (@) linear 3-forests.

Moreover, it is not difficult to see that the subgraph induced by the set of edges
with bipartite difference 0 in those K5, ,, of I, ,-factors in K, is exactly a K,,-
factor. Therefore, by Theoremi 3.3.9 and [2—’”-’ = [2222] if m = 6 (mod 12), we
have that lag(Kpgm) < (m —1) S8 Elay(Ky) = (m — 1) - (252 4 [22=2] =

3

2(m—1)n
|2t O

Proposition 3.4.13. laz(K,,n)) < {m-’ if m=2 (mod 6) andn =0 (mod 2).

Proof. Dividing all m partite sets of K, into % disjoint pairs of two partite
sets shows that K,,) is the union of K ™ (2n) and one K, ,-factor of K. Since
% =1 (mod 3) and 2n = 0 (mod 4), by Theorem 3.2.9 and Proposition 3.4.7,
lag(Komiy) < lag(Kpp) + lag(Komom) < [22] + 2(%—31)(271) _ "2(7”—1)”—‘. =

=173 3
Proposition 3.4.14. laz(K,n)) < P(m—l)ﬂ if m=0 (mod 6) andn =2 (mod 6).
Proof. From Lemma 3.1.3 (by replacing each edge of K, with K,,,), Ky) has a
K, ,-factorization in which there are m — 1 K, ,-factors. Hence, from the proof of

Proposition 3.2.3, the edges with bipartite differences 2,3,...,n — 1 in those K, , of

K, n-factors in K, can generate (m — 1) - (@) linear 3-forests.
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Moreover, the edges with bipartite differences 0, 1 in those K,, ,, of K, ,-factors in
K, (ny also can produce m — 1 linear 3-forests except half of the edges with bipartite
difference 1 in those K, of K, ,-factors in K,,(,) which are not being used. Thus, in
what follows, we want to show that those edges which are not being used also produce
linear 3-forests.

For all i € {0,1,...,m — 1}, let the vertices of partite set V; in K,¢,) be denoted
Vifo]> Vi[1], - - - » Vifn—1]- Without loss of generality, we assume that those edges which
are not being used are the edges of % — 1 perfect matchings Uy, Uy, . . ., Um_; and a

matching M% in Ky, (n), where
Up = {vijvicayen| i € {0,1,...,m —1},j € {1,3,...,n — 1}}
forall £ € {1,...,% — 1} and
My = {vgicpyinli € 0,1, 3 —1}j € {1,3,...,n—1}}.

Then, from the proof of Propgsition, 3:2:3sithe edges of Uy, Us, ..., Un_1, M=z can

generate % linear 3-forests il Kingn). Theérefore las(Kp,y)) < (m—1)- (@) +
2% 2(m—1)n+1 _ r2(m—1)
(m—=1)+ == 3 =E5k =

Proposition 3.4.15. lag(K,,n)) < ’Vw-‘ if m =3 (mod 6) andn =4 (mod 12).

Proof. By Lemma 3.4.3, K,,,(,) has a K%%-factorization in which there are 2m — 2
Kz n-factors. Hence, from the proof of Proposition 3.2.3, the edges with bipartite
differences 2,3, ..., 5 —1in those K» » of K n-factors in K, can generate (2m—2)

. (2(372)

-—) linear 3-forests.

Moreover, the edges with bipartite differences 0,1 in those Kz » of Kz »n-factors
in Kp,(n) also can produce 2m—2 linear 3-forests except half of the edges with bipartite
difference 1 in those K nn of K %7%—factors in K, which are not being used.

Therefore, in what follows, we want to show that those edges which are not being
used also produce linear 3-forests. Since sz(g) is the union of K, (,) and one K n -

factor of K, (2) for convenience, we consider this question on K, /ny.
m Qm(a)

N3

40



For all i € {0,1,...,2m — 1}, let the vertices of partite set V; in K2m(ﬂ) be
2
denoted v}, vify), - - - ,vi[ﬁ_l]. Without loss of generality, we assume that those edges
2
which are not being used are the edges of m — 2 perfect matchings U,,Us, ..., U,

and two matchings My, M, in KQm( ) where

n
2

My = {ogigeyl i € {1,3,....2m —1},j € {1,3,..., 2 — 1} },

Ug = {Ui[j]vi+€[j+1}‘ 1€ {0,1,...,2771— 1},] S {1,3,...,%— 1}}
for all £ € {2,3,...,m — 1} and
My, = {vigvigmysyl 1 € {0,2,....2m — 2}, 5 € {1,3,...,2 — 1}}.

Then (i) the edges of M; and U, can produce a linear 3-forest; (ii) the edges of

2

Us,Uy,..., Uy,_1 can generate %3) linear 3-forests from the proof of Proposition

3.2.3; (iii) the edges of M, can produce a linear 3-forest. Hence, lag(Kpm)) <
(2m —2) (@) + (2m = 2) + (2l ) — Amopni2 _ [2mcn ] O

Proposition 3.4.16. las(K,,@)) < [MW if 'm =5 (mod 6) andn = 4 (mod 12).

Proof. It is similar to the proof of Proposition 3:4.15 except the following: (i) The

edges of M; and M, can produce a linear 3-forest; (ii) the edges of Us,Us, ..., Up_1
2(m—2)

can generate linear 3-forests from the proof of Proposition 3.2.3. Therefore,

lag(Kmm) < (2m—2)- (—2(33_2)> +(2m—2)+ (1 + 2”’;”) = HmUntl F(m;””]
0

Proposition 3.4.17. lag(K,,n)) < {M-‘ if m =3 (mod 6) andn = 8 (mod 12).

Proof. By Lemma 3.4.3, K,,,(,) has a K%%-factorization in which there are 4m — 4
K n-factors. Hence, from the proof of Proposition 3.2.3, the edges with bipartite
differences 2,3, ..., 7 —1in those K» » of K n-factors in K, can generate (4m—4)

e

5—) linear 3-forests.

Moreover, the edges with bipartite differences 0,1 in those Kz » of Ku »n-factors
in Ky, (n) also can produce 4m—4 linear 3-forests except half of the edges with bipartite

difference 1 in those K nn of K %&—factors in K, which are not being used.
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Therefore, in what follows, we want to show that those edges which are not being
used also produce linear 3-forests. Since K 4m(n) is the union of K, and three
4
K= n-factors of K, .\, for convenience, we consider this question on K, ny.
4°4 m( 2 ) 4m( 4 )

For all i € {0,1,...,4m — 1}, let the vertices of partite set V; in K4m( ) be

n
4

L)

denoted vjjo}, vip1y, - . -, v [2-1]- Without loss of generality, we assume that those edges
4
which are not being used are the edges of 2m — 4 perfect matchings Uy, Us, ..., Usm_1

and four matchings My, My, M3, My, in K4m(ﬂ), where
4

M, = {Ui[j]vz‘+1[j+1}| i€{3,7,....4m—1}j€{1,3,..., 7 — 1}}7

My = {vgjvisapsy| i € {2,3,6,7,...,4m —1},j € {1,3,...,2 — 1} },

M; = {Ui[j]vi+3[j+l]| S {172a3a 5,6,7,...,4m — 1}7.] S {1737--'a%_ 1}}7

Us= {vijpvie+n| 1 € {0,1,...,4m —1},5 € {1,3,...,2 — 1}}
for all £ € {4,5,...,2m — 1} and
Mo, = {vipvisomj+] ¢ € {0, L5, 4m— 3},5 € {1,3,...,2 — 1} }.

Then (i) the edges of M, a subset {wijjvipsy+yl4 = 2,6,...,4m — 2,5 = 1,3,...,

n_

& — 1} of Ms, and Uy can produce 4 linear 3-forest; (ii) the edges of My, a subset
{vigvigsysyl i =1,3,...,4m — 1,7 =1,3,..., 2 — 1} of M3, and My, can produce a

@ linear 3-forests

linear 3-forest; (iii) the edges of Us, U, . . ., Usy—o can generate 2
from the proof of Proposition 3.2.3; (iv) the edges of Us,,_1 can produce a linear 3-

forest. Hence, lag(Knm)) < (4m —4) - <Q> + (4m —4) + (3 + —2(27;“6)> =

2(m—1n+1 _ ’72(m71)n—‘ . =

3 3

Proposition 3.4.18. lag(K,,n)) < {ww if m =5 (mod 6) andn = 8 (mod 12).

Proof. It is similar to the proof of Proposition 3.4.17 except the following: (i)
The edges of M; and Mj; can produce a linear 3-forest; (ii) the edges of My and
U, can produce a linear 3-forest; (iii) the edges of Us,Us, ..., Usn—1 and M, can

generate w linear 3-forests from the proof of Proposition 3.2.3. Hence, la3( Ky )

< (4m — 1) (@) T (4m—4) + (24 2om=t) _ 2mope 2]

3 3
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Proposition 3.4.19. laz(Kp@mn) < P(m;l)"-‘ if m = 0,8 (mod 12) and n =
1,5 (mod 6).

Proof. Dividing all m partite sets of K, into 7 disjoint collections of four partite
sets shows that K, is the union of K  (4n) and one Ky)-factor of K, (). Since

7 =0,2 (mod 3) and 4n = 4,8 (mod 12), from Propositions 3.4.6 and 3.4.12 ~ 3.4.18,

1n 2(m—1)(4n) m—T)n
lag(Kpmy) < lag(Kam) —i—lag(K%(zm)) < 2(431) + [ i 3) —‘ = {—2( 31) -‘ O
From the propositions given above, we have that lag(/ ) ) < Q(T”le if mn =
0 (mod 4). On the other hand, by Lemma 2.1.5, lag(Kmn { L 1)”—‘ if mn =0
(mod 4). Hence, we determine the linear 3-arboricity of K,y for mn = 0 (mod 4)

and conclude the work of this section with the following theorem.

Theorem 3.4.20.

lag (K p(m)) = [M

5 —‘ when mn =0 (mod 4).

Concluding Remark. By using the ideas in this section, we can also find lag(K )
for quite a few other cases when mm'=2-(mod 4). But, we are not able to finish the
whole part at this moment due to several stubborn subcases. As for the cases when
mn is odd, they are expected to be more difficult.

We remark finally that the work about the linear 3-arboricity of balanced complete

multipartite graphs presented in this section will appear in [29].
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Chapter 4

Linear 2-arboricity of Complete
Multipartite Graphs

In this chapter, we study the linear 2-arboricity problem on complete bipartite
graphs, complete graphs, and balanced complete multipartite graphs. The results

obtained are coherent with the corresponding cases of Conjecture 2.2.1.

4.1 Complete Bipartite Graphs

Let K, s denote a complete bipartite graph with partite sets of sizes r and s. If
r = s = n, then such a graph is calleda balanced complete bipartite graph and
denoted K, ,. Without loss of generality, we assume that s > r.

In Chapter 2, we had mentioned that the following result by Fu and Huang [10]
about the linear 2-arboricity of K,, ,,.

Theorem 4.1.1. lay(K,,) = [ﬁw
3

Naturally, we would like to determine the linear 2-arboricity of K, ; when s > r.

So, we begin with the case s > 2r of K, .
Theorem 4.1.2. If s> 2r, then lay(K, 5) = (%W

Proof. Assume that the partite sets of K, s are X = {zg,21,..., 2,1} and ¥ =
{yo,y1,.. . ys—1}. For 0 < j < [5] — 1, we define N; as the set {y;, yaj41} except
Npsio1 = {ys—1} when s is odd. Then K, ; can be viewed as K157 with nodes z;, V;

and unordered pairs of nodes (z;, Nj) for 0 <i<r—-1land0<j5<[5] -1
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Moreover, since each unordered pair of nodes (z;, N;) in K57 is composed of
a path yo;x;y2j11 in original K, ; except (w;, N[g]_ﬁ which is an edge x;ys_1 when
s is odd. Therefore, for £ = 0,1,...,[5] — 1, the unordered pairs of nodes with
bipartite difference ¢ in K, 57 can produce a linear 2-forest in original K, . Hence,
lag(Kys) < [5]. On the other hand, if s > 2r, then it is not difficult to see that a linear

2-forest in K, ; has at most 2r edges and then las(K, ) > [W} =[g]=1T13]. O

In what follows, we consider the cases when 2r > s > r. First, let P, be a path

with n vertices. An earlier work of Ushio [25] had shown the following:

Theorem 4.1.3. K, has a Ps-factorization if and only if (i) r +s = 0 (mod 3),

(i) 2s > r, (iii) 2r > s, and (iv) 2(3 25 is an integer.

k- |E(G)]

Recall that if a graph G has a Py-factorization then lay_1(G) is equal to (CEEEIR

Thus, by Theorem 4.1.3, we have the following corollary:

Corollary 4.1.4. Assume 2r > s 7. If 745 =0 (mod 3) and 5" is an integer,

2(r+s)
then las(K, ) = Q(i’fs).

Next, we assume that the graph - . does not have a Ps-factorization and let
s=2r—t. Thenr >t >0, ieim>1+1.

Proposition 4.1.5. If 3(+2>1t > 30 andr > Xt + 1, then lag(K,9,—) > 1 — L +

A(30+2) 22 1
[ 2X2(30+2)— L]

Proof. If 3¢ +2 >t > 3(, then LMJ = LMJ =[2r—2|=2r—t+%] =

2=t +(. By Lemma 215, lay(Kror) 2 [ ] = (55501 = =521 =
[r— 0+ (555 - 0] = r — £+ [5=55 - (], Since 3€+2 >t >3Cand r > M+ 1,
we have zrit;fe = 2&&127?& = ((QAA_—ll);tJﬁ;g = ((QAA__11))(§;22))TZ+12 = z(if?jﬁg)z—éz_zl Hence,
lag(Kyor—y) > 1 — L0+ (% L. O

Corollary 4.1.6. If 3(+2>t>30 andr >t +1, then las(K,o.—t) > 1 —{+ [fﬂ.

Proof. From Proposition 4.1.5 and let A = 1, then z(if?ﬁ:m%;zl = 4&111) = %1. O]

Finally, we conclude the work of this section with the following theorem.
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Theorem 4.1.7. If 5>t >0 andr > t+1, then lay(K,9,—¢) = 1.

=

Proof. From Corollary 4.1.6 and let ¢ = 0,1, then we have lag(K,2,—t) > 7. O
the other hand, by Theorem 4.1.2, we know that las (K, 2,) = 7. Thus, lag(K 2,—¢) <
ZGQ(KT’QT) =T.

U

4.2 Complete Graphs

In Chapter 2, we had mentioned the following result by Chen et al. [3] about the

linear 2-arboricity of a complete graph K,,.
Proposition 4.2.1. lay(Ki9111) = 9t +9 for any t > 0.

However, the answer 9t + 9 of las(Ki9411) is wrong, because some computing
errors happened in its proof. Hence, in this section, we will give a revised result that
lag(Ky2t410) = lag(Kigir11) = 9t + 8 for any t # 4. Moreover, this result also solve a
problem raised by Bermond et al. [2], almost completely.

Before we go any further, wé need-some. more definitions. Let S = {1,2,...,v}
be a set of v elements. A latin square of erder v is a v x v array in which each cell
contains a single element fromr'S, such“that each element occurs exactly once in each
row and exactly once in each column. If in adatin square L of order v the r? cells
defined by r rows and r columns form a'latin square of order r it is a latin subsquare
of L. A latin square L = [{;;] is said to be symmetricif ¢;; = (; forall 1 <4, j <w.

An incomplete latin square ILS(v; by, by, ..., b,) is a v x v array A with entries
from a set B of size v, where B; C B for 1 < i < k with |B;| = b;, and BN B; =
for 1 <1,5 < k. Moreover,

1. each cell of A is empty or contains an element of B;

2. the subarrays indexed by B; x B; are empty (these subarrays are holes); and

3. the elements in row or column b are exactly those of B — B; if b € B;, and of B
otherwise.

A partitioned complete latin square PILS(v; by, bs, ..., b,) is an incomplete
latin square with by + by + --- + b, = v. Figure 4.1 is an example of a symmetric

PILS(8;2,2,2,2).
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8l16|7|314]1]5

51714]8]3]|6
8|5 1171612
6|7 812]5]1
714(1]8 213
3(18|7]2 114
413|6]5]|2
5(6|]2]1|3]4

Figure 4.1: An example of a symmetric PILS(8;2,2, 2, 2).

It is worthy of noting that, in 1987, Fu [9] proved that:

Theorem 4.2.2. A symmetric partitioned complete latin square PILS(2k;2,2,...,2)

exists for each Kk > 3.

Next, we want to show some lemmas. For.convenience, the vertices in K, are

denoted v, v1, ..., Vm_1.
Lemma 4.2.3. lay(Kq;) = 8.

Proof. We construct the array in Figure 4:2.to show that lay(K71) < 8. The entry
w in row v, and column vs means that the edge v,vs appears in the linear 2-forest

labelled by w. On the other hand, by Lemma 2.1.5, las(K1;) > f%] = 8. O
3
Lemma 4.2.4. lay(K12 — M) = 8 where M is a matching of size 3 in K.

Proof. Without loss of generality, let the matching M be the set {vjvy, vgv19, V7V11 }
in Kj5. Then the array in Figure 4.3 shows that lag(K12 — M) < 8. On the other

hand, by Lemma 2.1.5, lay(K19 — M) > [%1 = 8. O
3

Lemma 4.2.5. lay(K35) = 26.

Proof. The array in Figure 4.4 shows that lag(K35) < 26. Since it is symmetric, we
omit the entries of half the array. On the other hand, by Lemma 2.1.5, las(K35) >
[ 2% = 26. O

[%5°]
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V4 Vs Ve V7 Vg Vg Vio
718|316 ]|5(6|4]|5
113|3]12|5]4|5| 6] 8

V3

Vo Vi1 V2

1
3

1

1
2

3

3

1

8l 7| 4| 5| 6

21413

11718 4|5|6

21114]16(8|8]|7

1

512|3|4|6| 7| 7|8

1

1

2

1

2

713]5

8|13|2]2

3123

654|478

5|4|6]16]|8|7]3

6 (57181414 ]11]2

416|7|8]5|5]2

5(8|8]7]6]6

Vo

Vi1

V2

V3

Vg4

Vs

Ve

V7

Vg

Vg

V1o

Figure 4.2: The awray shows that las(K7;) < 8.

Vo Vi Va V3 Va Vs'Ve~ V7

Vio Vi1

Vg Vo

2

2

1
1

3
3

2

1

4

114]6]18|5]|7]8

1{71814|17]6]5

8(7|14]18]|6]5

7| 95141 5]6]8]6

2

1

3084216 |5|6|a]|5]4

K,

21 31"3|4|6|7|5|8]7

2
1

I

1

2

1

3|13|2

2173

6(5|4|4| 7|8
5(4|6|6|8|7]|2
6(5|7|8|4]4]|1

416 |5|5|7]|8[3]|3]2

Vo

Vi

Vo

V3

Va

Vs

Ve

V7

Vs

Vo

Viol 58| 8| 7|6]|6

Vii| 4 | 6|1 7|1 8| 5| 5|2

Figure 4.3: The array shows that las (K79 — {viv4, 6010, v7011}) < 8.
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< < € < < << < < < <
® ~ o o & w N P o

< < < £ < < < < < < < < <
RR 8 58 55 6% & & B 5 o

Vi Viz Viz Vi Vis Vig Va7 Vig Vig Vo Va1 V2 Vs

Va4 Vo5 Vos Vor Vg Vg Vo Va1 Vo Vaz Vi

Vo Vi Va Vs Vg4 Vs Vg V7 Vg Vg Vi
213826 56 454
1 3107 5 45 686
233467587
21468578
1784765

8 74 865

21 3132

1 3 416

2 33

21

11 26 2514 1016 2320 17 22 19 13
20 17 1323 221914 11 26 10 16 24
10 19 1125 26 14 13 22 16 17 23 20
26 23 1011 1825 20 17 1416 13 22
22162013 1723 25 9 1926 1411
19 13 26 10 23 11 22 16 25 14 20 17
17 14 2220 16 1311 26 2319 25 10
14 11 16 17 2522 26 23 20 13 10 19
23 20 1926 131017 14 1125 21 16
1322 2319 202616 25 1011 17 14
16 25 1722 142010 19 1223 11 26
25 10 14 15 1117 19 13 22 20 26 23

15141211 9 242521 2218 19
252122181917 151412 11 9
17151412 11 9 24 2521 2218
19171514 1211 9 24252122
24 2521221819 17 1514 12 11
181917151412 11 9 242521
92425212218 191715 14 12
1211 9 242521221819 17 15
221819171514 12 11 9 2425
21 221819171514 1211 9 24
11 9 24 2521 2218 1917 15 14
14 1211 9 24 25212218 19 17

2138260564©54
1 31975 456 86
2334675287
21468578
"1:7 8 47 6 5

877 48 65

R e 3 22
=i L1 3 425
.2 33

N 2 1

1823212624 9 10 1213 15 16
21 26 24 9 1012 13 1516 20 18
2018 232126 24 9 1012 13 15
16 2018 2321 2624 9 10 12 13
23212624 9 1012 1315 16 20
1516 2018 23 2126 24 9 10 12
24 91012131516 2018 2321
10 1213 15 16 2018 23 21 26 24
131516 2018 232126 24 9 10
121315162018 2321 26 24 9
26 24 9 10 1213 15 16 20 18 23
9 1012 13 1516 20 18 23 21 26

217 836 56 45
13325456 8
52346778

2146887
17 8456
8 745 6
3122
21 4

3 3

1

Figure 4.4: The symmetric array shows that las(K35) < 26.

49




Lemma 4.2.6. lay(K1212) =9.

Proof. The array in Figure 4.5 shows that las(K1212) < 9. On the other hand, by

Lemma 2.1.5, las(Ki212) > [LQLTQ%J] =9. ]

Vo Vi V2 Vs Va4 Vs Ve V7 Vs Ve Vio Vi1
Xol 3198y 7]1|5|1)2|4(6]|2]3
X1|!6|1|6|17]18|9|4|5|3|2|4|5
X21811191914|5|6|7|3|2|7]|8
Xs| 2| 52131413611 8|]7|9]|1
Xa| 419|5|513|6|2|8|6|7|1]|4
Xs| 715171 8]3|8]l214|]9(9]|1|6
xelo|3|1]|1|8]2]7|4a]2|3]|5]|6
Xx71116(8|14]6]14]7)13|5|5[9] 2
Xg| 118416197193 [7]|8|5]|2
Xo| 512416219138 (1]|1|3|7
Xo| 9|4 |342/ 51|56 (8|4|6]|7
Xuf 57| 3|2 7}1]8|9|4|6|8]|9

Figure 4.5: The artay shows that lay(Ki212) < 9.

Lemma 4.2.7. lay(K1112 U G[M]) = 9 where M is a matching of size 3 in K.

Proof. Without loss of generality, let the matching M be the set {vivy, vgv19, v7V11 }

in Ky5. Then the array in Figure 4.6 shows that las(K1112 U G[M]) < 9. On the

other hand, by Lemma 2.1.5, lag(K1112 U G[M]) > [%} -0, ]
3

Now, we are ready to obtain the main results.
Proposition 4.2.8. lay(Kj9i111) = 9t + 8 for any t > 0 and t is odd.

Proof. First, we partition the vertex set of Kjo 11 into ¢ + 1 disjoint subsets
S0, 515 ..., S, where S; = {v, vipi]; - - -, vipy} for all @ = 0,1,...,t =1 and S; =
{zo,x1,...,210}. Hence, the subgraph of K911 induced by S; is a K5 or a K, for
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Figure 4.6: The array shows'that las( Ky U G[{v1v4, vev10, v7011}]) < 9.

all © = 0,1,...,t. More precisely, theedges of Kjs; .11 can be partitioned into two
classes, one is the edges in Ki5"0r K} and the other is the edges in Kj9 12 or K 12.

Next, we want to show that lay(Kjyni11) = 9t + 8. Since ¢t + 1 is even, from
Lemma 3.1.3, Kj2+11 can be decomposed into ¢ K9 12-factors in each of which there
exists one component is K; 12, and a Kjo-factor in which there exists one component
is K11. Then, for the Kjo-factor, the edges of Ko — {wip)vifa), vife)Vijio), Vi vipa) b for
0 <i<t—11in those K5 and the edges of K; can produce eight linear 2-forests from
Lemmas 4.2.3 and 4.2.4. Moreover, since the edges v;njvi), VifsVi10], Vif7vin1) in each
K15 of the Kjs-factor are not being used, then we unite them with the corresponding
component K; 12 of each Kjg9-factor. Hence, for each K jo-factor, the edges in
K11,12 UG[{vip)vijag; vife Vifio)» Vi vap ) and the edges in those Kig12 can produce nine
linear 2-forests from Lemmas 4.2.6 and 4.2.7. Therefore, from the ¢ K5 19-factors and
a Kyo-factor of K911, we have that lag(Ki411) < 9t + 8. On the other hand, by
Lemma 2.1.5, las(Kq2t411) > (w} = 9t + 8. This concludes the proof. [

= 2L2(12t3+11)J
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Proposition 4.2.9. lay(Ki9:11) = 9t + 8 for any t > 6 and t is even.

Proof. We prove this proposition by using the techniques on latin squares proposed
by Chen et al. [3]. First, let the 35 x 35 array in Figure 4.4 be partitioned into four
subarrays P, Q, QT, R as shown in Figure 4.7, where P, ), and R are 24 x 24, 24 x 11,
and 11 x 11 arrays respectively. Moreover, let the 12 x 12 array in Figure 4.5 also be

denoted W.

Q' R

Figure 4.7: Four subarrays of the array in Figure 4.4.

Next, since t > 6 and t is even, from Theorem 4.2.2, we can find a symmetric
PILS(2k;2,2,...,2) such that ¢t = 2sk-"We'use L = [(;;] to denote this symmetric
PILS(2k;2,2,...,2). Then, from L, we can eonstruct a (12¢ + 11) x (12¢ + 11)
symmetric array L’ as shown in Figure'4.8"to show that las(Kia411) < 9t + 8, where
1. B, is a 24 x 24 array, for 1 < z < k;

2. the entry B,(r,s) in B, equals P(r,s) in P if P(r,s) € {1,2,...,8}, for 1 <z < k;
3. By(r,s) = P(r,s)+ (x —1)-18 if P(r,s) & {1,2,...,8}, for 1 <z < k;
4. the 12 x 12 array C;; =W + 8+ ({;; — 1) - 9, for 1 <14,j < 2k;
5. the 24 x 11 array D, = Q + (x — 1) - 18, for 1 < x < k; and
6. the 11 x 11 array £ = R.
On the other hand, by Lemma 2.1.5, lag(K12:111) > f%} =9t+8. O

Theorem 4.2.10. lag(Kltho) = l&z(K12t+11) =9t+8 fOT' any t 7£ 4.

Proof. By Lemma 4.2.5 and Propositions 4.2.8 ~ 4.2.9, las(K12:411) = 9t + 8 for any
t # 4. Moreover, 9t + 8 = las(Kia¢411) > lag(Kia410) > (W} =9t+8 O

ZLQ(IQ?_IO)J
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B D
1 Cij 1
B, D,
Cij T
Bk Dy
DlT DZT ... DkT E

Figure 4.8: A (12¢ + 11) x (12t 4+ 11) symmetric array.

4.3 Balanced Complete Multipartite Graphs

In 1989, Ushio and Tsuruno [26] showed the following result on balanced complete
multipartite graphs K, ).

Theorem 4.3.1. K,y has d P3-factorization if-and only if mn = 0 (mod 3) and
(m—1)n =0 (mod 4).

k| E(G)]|

Recall that if a graph G has a Bg=factorization then la;_;(G) is equal to O

Thus, by Theorem 4.3.1, we have the following corollary:

Corollary 4.3.2. lay(Kpmy) = w when mn = 0 (mod 3) and (m — 1)n =
0 (mod 4).

In what follows, we consider the cases when K,,,) does not have a P;-factorization

and begin with the case m = 3 of K.
Lemma 4.3.3. lay(K3(,)) =[] if n=1 (mod 2).

Proof. Assume that the partite sets of K3,y are Vy = {vojg, vop), - - -, Vop—11}, Vi =
{vip, vapgs - - - Vip—11}s and Va = {vop], vap), - - -, Vapu—11}- First, forall 0 < a # 5 < 2,
let the balanced complete bipartite subgraph of K3,y induced by V,, and V3 be denoted
G(Va, Va).
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Then, for any ¢ € {0,1,...,n — 2}, we observe that the edges with bipartite
differences €,¢ + 1 in all of G(V1,V3), G(V3,V3), and G(V3,V;) can produce three
linear 2-forests. Hence, the edges with bipartite differences 1,2,...,n — 1 in all of
G(W,Va), G(V,,V3), and G(V3,V)) can generate (”T_l) - 3 linear 2-forests, which are
{Uo[j]vl[j+1+2r]Uz[j+2+4r} U =0,1,...,n— 1}, {U2[j]Uo[j+1+2r]v1[j+3+4r] |j =0,...,n— 1}7
and {v1jVaj+242r) V0444417 = 0,1,...,n—1} for all € {0,1,..., 2% — 1}. Note
that the index y of each vertex v,, is modulo n. For example, Figure 4.9 shows that

the edges with bipartite differences 1,2 in all of G(V1,V3), G(V,,V3), and G(V3, V))

can produce three linear 2-forests in K(7).

Voo

Figure 4.9: Three linear 2-forests in Kj).

Moreover, the disjoint 3-cycles induced by the edges with bipartite difference 0 in
all of G(V1,V3), G(V3,V3), and G(V3,V;) can be decomposed into two linear 2-forests
{'UO[j]Ul[j]UQ[j”j =0,1,...,n— 1} and {'UQ[]']UO[]']Lj =0,1,---,n— 1}. Thus, las(K30))

S@_FQ:%Q_H:(%"—‘ if n =1 (mod 2).
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On the other hand, from Lemma 2.1.5, laa(K3(,)) > [2#] if n =1 (mod 2). O
Proposition 4.3.4. las(K,u(m) = {M] if m=3 (mod 12) andn =1 (mod 2).

Proof. Assume that the partite sets of K,,(,) are denoted Vo, V,..., V1. First, for
all 0 < a # B < m—1, let the balanced complete bipartite subgraph of K,y induced
by V, and V3 be denoted G(V,, V). Moreover, from Lemma 3.1.1 (by replacing each

edge of K, with K, ,,), Ky (n) has a Kz,)-factorization in which there are (l‘f(g(ﬁl)‘

mT’l K3n)-factors.

Then, from the proof of Lemma 4.3.3, we know that the edges with bipartite
differences 1,2,...,n — 1 in all of G(V,,Vp) for 0 < a # 3 < m — 1 can generate
() - (@) linear 2-forests. Also, it is not difficult to see that the subgraph
induced by the set of edges with bipartite difference 0 in all of G(V,,Vjs) for 0 <
a # 3 < m—1is exactly a Kp-factor. Thus, by Theorem 2.2.4, las(Kpm)) <
<mT*1 : w> +lag(K,,) = 2=l o [ (m= 1)W = F’(mle On the other hand,
from Lemma 2.1.5, lag(Kpny) > F’(mTl-‘ ifme= 3 (mod 12) and n = 1 (mod 2). [

Proposition 4.3.5. lay(K,mp) = (M-‘ if »m-= 0 (mod 4) and n =0 (mod 6).

Proof. Dividing all m partite séts of /@) ihto 4 disjoint pairs of two partite
sets shows that K,,,) is the union.of K (o) and one K, ,-factor of K,,:,). Since
% = 0 (mod 2) and 2n = 0 (mod 12), from Theorem 4.1.1 and Corollary 4.3.2,

3(Z—-1)(2n m—1)n
lag(Kpmny) < lag(Kp ) +la2(Km(2n)) Pﬂ + (3 4>( ) = F’( 41) -‘

On the other hand, from Lemma 2.1.5, lag(Kp ) > {(mle if m =0 (mod 4)
and n =0 (mod 6). O

Proposition 4.3.6. lay(K,yn)) = F’(m—lw if m=2 (mod 4) and n =0 (mod 3).

Proof. Dividing all m partite sets of K, into % disjoint pairs of two partite

sets shows that Ky, is the union of Km @, and one K, p-factor of K. Since

% =1 (mod 2) and 2n = 0 (mod 6), from Theorem 4.1.1 and Corollary 4.3.2,
L)) < 1aa(Kp )+ las(Kop o) = [22] 4 2E70E0  [atmein],

On the other hand, from Lemma 2.1.5, lay(Kpn)) > {(mTl-‘ if m =2 (mod 4)
and n =0 (mod 3). O
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Proposition 4.3.7. lay(Kyn)) = {w-‘ if m=0 (mod 3) and n =0 (mod 2).

Proof. Dividing all m partite sets of Ky, into % disjoint collections of three partite
sets shows that K,(,) is the union of K%(gn) and one Kj,)-factor of K. Since
3n = 0 (mod 6), from Corollary 4.3.2 and Propositions 4.3.5 ~ 4.3.6, las(Kpm)) <

m_

lag(Ks(n)) + lag(Km (3,) = 3 + [w—‘ = {MW On the other hand, from
Lemma 2.1.5, lag(Kpm)) > [ww if m =0 (mod 3) and n =0 (mod 2). O
Concluding Remark. The main goal of this section is to determine las(Kpm))
when mn = 0 (mod 3). However, we are not able to finish the whole part at this

moment due to several stubborn subcases. We expect to settle the rest cases in the

near future.
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Chapter 5

Bit Permutation Networks

In this chapter, we will prove that if N is an s-stage d-nary bit permutation
network with d” inputs (outputs), then L(N)*, a new network obtained from the line
digraph of N, is an (s + 1)-stage d-nary bit permutation network with d"*! inputs
(outputs). Furthermore, we give a simple (but not trivial) formula to determine the
characteristic vector of L(N)* from N’s characteristic vector. Finally, we use this

formula to obtain relations between some well-studied bit permutation networks.

5.1 Introduction

In 1999, Chang et al. [7] proposed the nofion of a bit permutation network
which is an s-stage interconnection network composed of d"~! d x d crossbar switches
in each stage. This class of networks includes Benes network, Omega network, Banyan
network, Baseline network, and their extra-stage versions, namely, most of the multi-

stage interconnection networks.

Suppose that the d”~! crossbars in a stage are each labelled by a distinct d-nary
(n — 1)-bit vector. Chang et al. [7] showed that an s-stage d-nary bit permutation
network N with d" inputs (outputs) can be characterized by an (s — 1)-bit vector
(k1, k2, ... ks—1), where k, = j € {1,2,...,n — 1} means that N is topologically
equivalent to a network whose linking pattern between stage t and ¢ + 1 consists of
d"~2 disjoint complete bipartite graphs and each such graph connects all crossbars in

stage t and t 4+ 1 having the same d-nary (n — 1)-bit vectors except bit j.
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Figure 5.1 shows a bit permutation network with characteristic vector (3,1,2)

and is topologically equivalent to the network in Figure 5.2.

Stage 1 Stage 2 Stage 3 Stage 4
0000— 000D
0001—|ow 000 [m\ /[[D—I]I]EII
0010— 0010
0011— M| o0l 0oL 0Oll _ pp11
0100— 0100
01010 010 010 oo g101
0110— - uu/ \u:u 0110
0111—| 0111
L000— - - - 1000
1001 — \ 1001
10 10— yd 1010
1011—101 101 101 ML 45711
11 00— 1100
1101— 10 10 10 mwl 5101
1110— - m/ \m—lllu
1111 1111

Figure 5.1: A bit permutation network No(4;u, v, f1, fa, f3).

The line digraph L(N) of a‘multistage intereonnection network N is obtained by
taking the links in N (including the inputs‘and the outputs) as vertices in L(N), and
an edge directed from vertex u to vertex v exists in L(V) if link w is incident to and
precedes link v in N (see Figure 5.3). Note that vertices in the same stage of L(N)
are ordered according to the starting endpoints of their corresponding links in /N and
we omit the directions of edges in L(NN) because they are all from left to right.

Let L(N)" be obtained from L(N) by adding d inlets (outlets) to each of those
vertices which are inputs (outputs) in N. By interpreting vertices as crossbars, then
L(N)™ can also be viewed as a multistage interconnection network as shown in Figure
5.4. It is well-known that being crosstalk-free (each crossbar carries at most one path)
is an essential property for photonic switching, which uses optical fiber instead of
electric wire as the transmission media. Lea [20] also observed that if two paths are

link-disjoint in N, then their corresponding paths are vertex-disjoint in L(N).
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Stage Stafz Stage 3 Stage 4

0000—— ¢ o0
E\ /
I\
=,

0001—

001 0—
0011

It

0100—
0101——

=]
E

0110—
0111

1000—
1001

AE

1010—

1011 101 /M\\:
ol [\

1110—
1111

E
|

m m
—

Figure 5.2: A bit permutation network No(4; I3, I1, I5).

Moreover, Hwang and Lin [17}gave formulas relating the nonblocking properties
of N to the crosstalk-free nonblockingproperties 6f L(N)*. Therefore, it is of interest
to know that if N is a bit permutation network, what kind of network L(N)T is.

5.2 Preliminary Lemmas

Consider a multistage interconnection network with s stages of d"~! crossbars of
size dx d. Foralli € {0,1,...,d" ' —1}, let the ith crossbar in each stage be labelled
by i in the d-nary (n — 1)-bit vector. We define a bit-j group as the set of crossbars in
a stage with identical labels except the jth bit. Such a group will also be labelled by
a d-nary (n — 1)-bit vector which is identical to any member in the group except that
bit j is replaced by the symbol xg, which stands for the set {0,1,...,d — 1}. Then
Chang et al. [7] called an s-stage d-nary interconnection network a bit permutation
network if the links between stage t and ¢ + 1 are always from a bit-u; group Z to a
bit-v; group Z’, where Z’ is a permutation of Z, for t =1,2,...,s5 — 1.

In what follows, for our purpose, we will restate the main results proved by Chang

et al. [7] in a slightly different way (and provide proofs for justification).
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Figure 5.3: The line digraph L(/N) obtained from the network in Figure 5.1.

First, assume that N is an s=stage d-nary bit.permutation network with d" inputs
(outputs). Let f;, t =1,2,...,s — 1, denote the group linking function which shows
that the links between stage ¢t and ¢ + 1 of N are from a bit-u; group to a bit-v;
group. We also define two functions w and v from {1,2,...,s—1} to {1,2,...,n—1}
to include the values u; and v; for all 1 < ¢ < s — 1. Then, N can be represented
by Ng(n;u,v, f1, fa, - -, fs—1). It is worthy of mentioning that f; is a permutation of
{1,2,...,n—1} and (f;) "' (us) = vy

For example, Figure 5.1 shows a bit permutation network with 16 inputs (out-
puts) and crossbar i in stage ¢ is labelled by ¢ in the binary 3-bit vector (xy, 29, x3),
where 1 <t < 4 and xy, 29,23 € {0,1}. Moreover, the links are from a bit-3 group
(x1,22,0) in stage 1 to a bit-1 group (zg,z1,x2) in stage 2, from a bit-2 group
(21, zo,x3) in stage 2 to a bit-3 group (x1, 3, o) in stage 3, and from a bit-2 group

(21, To, x3) in stage 3 to a bit-2 group (x1, zg, x3) in stage 4, where x stands for {0, 1}.
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Stagel Stage 2 Stage 3 Stage 4 Stage 5

—_— —_— —_—
0000 o000 o000 o000 o000

oo 11 | 0011 \ -H"ﬁi‘ o011 |
TR a/)\Wam
o110 o110 :@ﬂ/m"ﬁJ\m

< e

1000 1000 f\i‘w‘" 1000 [1000] 1000
) TN TNy o

%

/
ol A\ fron]
1100 ] 1100 {7§m;{tzz‘ﬁ}<2%m
% 1101 .\”ﬂ,‘,&?ﬂt\m
1110 1110 ’ 1110 " (1110

1111 1111

1
| L I Mkt | Mkl |

Figure 5.4: The network L(NN)" obtained from the network in Figure 5.1.

Thus,
up =30 =1 f1(1) =3, 1(2) = 1, 1L(3) = 2,
uy = 2,09 =3, fo(1) = 1, f2(2) = 3, fo(3) = 2,
uz = 2,03 =2, f3(1) = 1, f3(2) = 2, f3(3) = 3.

In this paper, we shall use the cycle notation for permutations, that is, the cycle
(11,19, ... ,1,) represents the permutation f with f(iy) = i, f(iz) = i3,..., flin_1) =
in, f(in) = i1, and the cycle (i) represents f with f(i7) = 7. Then, f; can be represented
by (1,3,2); f2, by (1)(2,3); and f3, by (1)(2)(3).
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Note that an s-stage d-nary network is completely determined by the linking
patterns between adjacent stages. Two such networks are called equivalent if the

linking patterns between adjacent stages of the two networks are identical.

Theorem 5.2.1. If there exist permutations ¢i,gs,...,g9s on {1,2,...,n — 1} such

that u, = (g¢) " Huy), vy = (gt+1) H(vy), and fi= (g¢) tofiogir fort=1,2,...,s—1,

then two bit permutation networks Ny(n;u,v, fi, fo, ..., fs—1) and Ng(n;u',v'; f1, f5

, :
sy fi)) are equivalent.

Proof. For all © = 1,2,...,s, we define the bijection ¢; from the set of cross-
bars in stage i of Ny(n;u,v, fi, fo,..., fs—1) to another set of crossbars in stage i
of Na(n;u',v', fi, fo, ..., fi_1) as @i((x1, 22, ..., Zn—1)) = (Tg(1), Tga(2)s - - > Tgs(n—1))-
In other words, ¢;((z1, 22, ..., 2n1)) = (21,24, ...,2,,_,), where 2 = x4, for all

j=12....,n—1

To see Ny(n;u, v, f1, fo, ..., fs—1) and Na(n; ', o', f1, f5 ..., fi_,) are equivalent,
we need to check that 1, s, .57, s are link-preserving. Suppose that the links
between stage ¢t and t + 1 of Ny(n;u, v, f1; fas-=., fs—1) are from a bit-u, group

(1,22, ..., Tuyy - - - Tn—1) to ahit-v, GLOUP (Y, Y2, = -, Yu,s - - - » Yn—1), Where y; = x4, ;)

forall 7 =1,2,...,n— 1. Theny
Pr((T1, T, oy Ty, Tn1)) = (2, T, T gty -5 Tr1)s

@t-s—l((?h; Y2, -y Yuyy - - - Jyn—l)) = (yia yé7 st 7y£gt+1)_l(’l}t)’ s 7y;1,71)7
where 2y = x4,y and y; = yg,,, () forall j =1,2,...,n — 1.

Since ¥; = Ygi1(j) = Thiogrsr(j) = Tgrofl(G) = x’fé(j) forall j =1,2,...,n—1, then

/ / / / _ / / / /
WV Vg1 Unt) = By Ty T 1wy Pynon) 20d
there exist indeed links from a bit-(g;) ™ (u;) group (], 2}, . .. ST~ 1(u)r - s Tne1) 1O
/ /

a bit-(gi11) " (v¢) group (37},{(1)’ x/f{@)’ T ()= () ,xft,(n_l)) between stage t
and t + 1 of Ny(n;u/, v, f1, f5, ..., fi_1).

yJs—1

Therefore, through the comparisons by those bijections @1, o, ..., ps, the linking

patterns between adjacent stages of the two networks are identical. Il
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Let I denote the identity permutation (1)(2)---(n — 1) and Ng(n; Ix,, ..., Ix, )
denote the bit permutation network Ny(n;u, v, f1,..., fs—1) with f; = I and u; = v, =
k; for all t. While Chang et al. [7] proved that Ny(n;u,v, fi1,..., fs—1) is equivalent
to Na(n; Iy, ..., Iy, _,) for some (ki, ..., ks_1), we give an explicit formula to compute

ki forallt =1,2,...,s — 1.

Theorem 5.2.2. A bit permutation network Ny(n;u,v, f1,..., fs—1) is equivalent to

Nag(n; I,y ..o Iy, ), where ky =uy and ky = (fio- o fi_1)(w) fort =2,...,s — 1.

Proof. First, by setting go = (f1) ' and gs = [ for all t = 1,3,4,...,5 — 1, we
have that Ng(n;u,v, f1, fa, ..., fs—1) is equivalent to Ny(n;u',v', It,, f5, ..., fi_y) from
Theorem 5.2.1, where ub = f1(ug), vh = vg = (f3)"H(uh), f = f10 fa, u) = uy, v) = vy,
and fj = f; forallt =3,4,...,s — L.

Next, assume Ng(n;u,v, fi,..., fs—1) and Ng(n;u', 0", Teys oo Dy fy -5 fig)
are equivalent, where u} = (fyo---o f;_1)(u;), vj = v; = (f}) 7' (uf), fj = fro---0 f},
uy = ug, v; = vy, and f] = fy fort = j+ L j4 2,...,s — 1. Similarly, by setting
ge = I except gj11 = (f})~ 1 then Ng(n;uliv" Ikl,.. A, _ys fis -, feoy) 1s equivalent
to Nag(n;u” 0" I, ... Ix,

oo Iy, [l ey fU)) from Theorem 5.2.1, where uj,, =

(fio---ofi)(ujy1), U§I+1 =VUj+1 = (fj+1)"1(U§-'+1), ]l/—‘,-l = fro- -0 fiy1, uf = up, v = vy,
and f]' = fyfort = j+2,7+3,... si= 10 Thus, Ny(n;u,v, fi1,..., fs_1) is equivalent
to Nd(n;u",v”, Ikw .. Ik] 19 ija ;/Jrla DI 5/,,,1) where uj+1 - (fl ©---0 fj)(uj—l-l);
vf v =i = (ff ) W), fl = fio o fi, uf = uy, vf = v, and ff' = f, for

t=j+2,j+3,...,s—1 O

For convenience, we shall use (ky,...,ks_1) as a short notation for the network
Ng(n; Iy, ..., Iy, ). By Theorem 5.2.2, we say that a bit permutation network
Na(n;u,v, fi1,..., fs—1) can be characterized by an (s — 1)-bit vector (ki,..., ks 1).

Theorem 5.2.3. If g is a permutation on {1,...,n— 1}, then Ny(n; Iy, ..., I, )

is equivalent to Ng(n; Loy, - - Lok, 1))

Proof. Choose all ¢ as (g)~" in Theorem 5.2.1. Since g o I, o (9)~" = Iyw,), the

assertion holds. O

63



5.3 The Main Results

Let N be an s-stage d-nary bit permutation network with d” inputs (outputs).
It is not difficult to see that L(N)™ is an (s 4 1)-stage d-nary crossbar network with
d" inputs (outputs). We show that L(N)* is also a bit permutation network and

how the group linking functions of N determine those of L(N)*.

Theorem 5.3.1. If a bit permutation network N is represented by Ny(n;u,v, fi,...,
fs—1), then L(N)" is a bit permutation network represented by Ng(n+1;u*, v* hq, .. .,
hs), where uf = v{ = n, hy is the identity permutation (1)---(n), u; = w_1, vy =n,

and hy is the same as f;_1 except hy(n) = w1 and hy(vy_1) =n fort =2,3,...,s.

Proof. First, for all j = 1,2,...,d" — 1 and any ¢t € {1,2,...,s}, let the jth link
which is incident to some crossbar in stage ¢ of N be labelled by j in the d-nary
n-bit vector (z1,...,z,). Note that the links are ordered according to the starting
endpoints of them. Then, through the constiuiction rules of L(N)", we find that the
relation between links which are incident to e¢rossbars in stage t of N is equal to the
group linking function h; between stage t-and ¢+ Lof L(N)* for any ¢t € {1,2,...,s}.

In stage 1 of N, since the links (2977715 @;, i, x0) are incident to and precede the
links (x1,...,Zn_1, %), where g € {0,1,...5d= 1}, then u} = v} = n and hy is equal

to (1)---(n). For t = 2,... s, if the permutation f; ; of N is from a bit-u;_; group

(T4, .oy Ty —1, X0y Tuy_ 141, s Tn—1) O & bit-vy_q group (s, (1), Tf_ i (wi1-1)> Lo
Tf  (vr141)s - -+ Tfi_ (n—1)), then in stage t of N, the links (21, ..., Ty, ,—1, 0, Tu,_,+1,
Ty, 42, - - Ty) Mmust be incident to and precede the links (24, 1), .-, Tf,_1 (v 1—1)s Tns

Tf (po141)s - - > Tfs_1(n—1), Lo), Where zg € {0,1,...,d—1}. Hence, forallt =2,..., s,
uf = w1, vf =n, and h; is the same as f;_; except hy(n) = u;—1 and hy(v_1) = n.

Moreover, the above statements show that L(N)" is a bit permutation network. [J

Theorem 5.3.2. If the characteristic vector of a bit permutation network N with
d" inputs (outputs) is (ki,...,ks_1), then L(N)T’s characteristic vector is (l1,. .., 1),
where ly =n and l; = k1 if ke oy & {k1,... kot orly=1; if k1 €{k1,... kia}
forallt=2,3,...,s, where i =max{j | kj = ki_1,1 < j <t—2}.
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Proof. Without loss of generality, let N be represented by Ny(n;u,v, f1,..., fs_1).
Since the characteristic vector of Ny(n;u,v, fi1,..., fs—1) is (k1,...,ks_1), where k; €
{1,...,n—1}forallt =1,2,...,s—1, by Theorems 5.2.2 and 5.3.1, we can prove that
the characteristic vector of L(Ng(n; Ii,, ..., Iy, ., fj,- .., fs—1))" is equal to the char-
acteristic vector of L(Ng(n; Ly, -, I,y Iys fiaqs -+ fooq)) T forall j=1,... s —1.
Hence, the two characteristic vectors of L(Ny(n;u,v, f1,..., fs—1))t (= L(N)") and
L(Ny(n; Iy, ..., Ix,_,))" are identical.

By Theorem 5.3.1, L(Ng(n; Ix,, ..., Ix. ,))T is a bit permutation network and can
be represented by Ny(n+1; u*, v*, hy, ..., hy), where u] = vi =n,hy = (1)--- (n),uf =
ki—1,vf =n,and hy = (1) -+ (kg — 1)(keey + 1) -+ (n — 1)(ky—q,n) for t =2,...s.
Note that hi(c) = cif ¢ ¢ {ki—1,n} for c = 1,...,n and t = 1,...,s. Therefore,
by Theorem 5.2.2, the characteristic vector of L(Ng(n; Iy, ..., Ix. )" is (o, ..., 1),
where Iy =nand l; = (hyo---ohy_1)(ki—q) for t =2,... 5. f ky_y & {k1,... kia},
then l; = ky—q. If kyy € {k1,..., ki_atythen i, = (hyo---oh_1)(ki—1) = (hyo---0
hiy1)(ki—1) = (hyo---ohip1)(k) = (Aw©ya 0h)(n) = (hyo---0hi1)(ki-1) = 1,
where ¢ = max{j | k; = ki1, <4 < 6= 2} O

For example, if the characteristi¢ wector-of a'bit permutation network N with d*
inputs (outputs) is (1,3,3,2,2,371;3,1,1,2:3,2,2 1), then the characteristic vector
of L(N)™ is (4,1,3,1,2,1,3,4,1,3,1,2,4,1,4,3). Here, Iy = n =4, 1o = k = 1,
I3 =ky =3, and Iy =l = 1 since k3 = 3 = ky. The formula obtained from Theorem

5.3.2 is useful for some well-studied bit permutation networks.

Let us consider the network obtained by adding k extra stages to Banyan network
with 2" inputs (outputs) and by specifying that the extra k stages should be identical
to the first k stages (denote this way of adding extra stages by F'). Represent the
above network by BYr(k,n). If the extra k stages are identical to the mirror image
of the first k stages, then denote such network by BYp-1(k,n). Figure 5.5 shows the
network BYr(1,4).

Theorem 5.3.3. The network L(BYr(k,n))", 0 < k < n, is equivalent to another
network BYp(k,n + 1), where F can be replaced by F~!.

65



Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

{000 000 000 000 000 [
>N\ >

___lom 001 / 001 \ 001 oo1 [

—o10 010 ><>< 010 010 ol0[—
N >

__lon >< 011 / 011 011 o

100 100 100 1100 100[——
N\ >

—]1m >< 101 / 101 / \‘ 101 01—

— 10 110 10| / \\1 110 no[——
N <

—lm >< 111 / 111 1111 ITE

Figure:5.5; The metwork-BYr(1,4).

Proof. Since BYr(k,n) can be représentediby No(n; I, 1, In—o, ..., 11, Ln—1, Lh—o, ...,
I,,—), from Theorem 5.3.2, the charaeteristiewvector of L(BYr(k,n))" is (n,n—1,n—2,

., Lnn—1,....n—k+1). This means that L(BYx(k,n))" is equivalent to the
network No(n+1; I, In_1, In_2, ..., 1, In, Iy, . .., In_g11). Hence, L(BYg(k,n))" is
equivalent to BYp(k,n+1). Similarly, we have the result if F is replaced by F~1. [

Let W~1 denote the inverse network of W, i.e., the network obtained from W by

reversing the order of the stages. Then it is not difficult to have the following result.

Theorem 5.3.4. The network L(BY;'(k,n))*, 0 < k < n, is equivalent to another

network BY ;' (k,n + 1), where F can be replaced by F~ .

Proof. Since BY,'(k,n) is represented by No(n; I, Iy, ..., I, 1, 11, Iy, ..., I},), from
Theorem 5.3.2, the characteristic vector of L(BY'(k,n))" is (n,1,2,...,n — 1,n,
1. k—1).
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Then, by Theorem 5.2.3, we find that the permutation ¢ = (1,2,...,n) can
let No(n + 1;1,, 01, Is,..., Iy 1,1, I1,...,I_1) be equivalent to No(n + 1; 1, I,
Is,.... L, 1, I5,....I). Hence, L(BY;'(k,n))" is equivalent to BY,'(k,n + 1).

Moreover, if F is replaced by F'~!, then we can also obtain the similar result. O]

Theorem 5.3.4 was crucially used in [17] to prove the crosstalk-free property of

BY !, (k,n) essential to photonic switching.

Concluding Remark. The work on bit permutation networks presented in this
chapter has been published in [18] which is a joint work with Professor Frank K.
Hwang.
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Chapter 6

Conclusion

This thesis studies the linear k-arboricity problem on complete bipartite graphs,

complete graphs, and balanced complete multipartite graphs.

For complete bipartite graphs K, s, we first determine the linear 3-arboricity of
K, for any n. Then, we show that if s > 27 then lay(K,,) = [5] and if 5 > ¢ > 0
and r >t + 1 then lay (K, 9,—¢) = Is

For complete graphs K,,, we first-determine the linear 3-arboricity of K, for any
m. Then, we give a result that las(Kieri0) = lag(Ki2i+11) = 9t + 8 for any ¢ # 4,
which solve a problem raised m antearlier-paper 2] almost completely.

For balance complete multipartite graphs ./, ), we first determine the linear
3-arboricity of K,y for mn = 0 (mod 4). Then, we give some substantial results

about the linear 2-arboricity of K, ().

However, there are still many questions remain unsolved. We describe below some

of them that we concern most.
(1) Prove las(Ksg) = 44.
(2) Find the answer of lag(K ) for any m and n.
(3) Find the answer of las(K ) for any m and n.

(4) Find the answer of lay( K, s) for any 2r > s > r.
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Furthermore, in this thesis, we study a problem on the bit permutation network.
We prove that if N is an s-stage d-nary bit permutation network with d™ inputs
(outputs), then a new network L(N)* obtained from the line digraph of N is an
(s + 1)-stage d-nary bit permutation network with d"™! inputs (outputs). We also
give a simple (but not trivial) formula to determine the characteristic vector of L(N)*
from the characteristic vector of N. This formula can help us to obtain relations

between some well-studied bit permutation networks.
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