
ORIGINAL ARTICLE

A particle swarm optimization for multi-objective
flowshop scheduling

D. Y. Sha & Hsing-Hung Lin

Received: 5 September 2008 /Accepted: 6 February 2009 /Published online: 24 February 2009
Springer-Verlag London Limited 2009

Abstract The academic approach of single-objective flow-
shop scheduling has been extended to multiple objectives to
meet the requirements of realistic manufacturing systems.
Many algorithms have been developed to search for optimal
or near-optimal solutions due to the computational cost of
determining exact solutions. This paper provides a particle
swarm optimization-based multi-objective algorithm for
flowshop scheduling. The proposed evolutionary algorithm
searches the Pareto optimal solution for objectives by
considering the makespan, mean flow time, and machine
idle time. The algorithm was tested on benchmark problems
to evaluate its performance. The results show that the
modified particle swarm optimization algorithm performed
better in terms of searching quality and efficiency than
other traditional heuristics.

Keywords PSO .Multi-objective . Flowshop scheduling .

Pareto optimal

1 Introduction

Production scheduling in real environments has become a
significant challenge in enterprises maintaining their com-
petitive positions in rapidly changing markets. Flowshop

scheduling problems have attracted much attention in
academic circles in the last five decades since Johnson’s
initial research. Most of these studies have focused on
finding the exact optimal solution. A brief overview of the
evolution of flowshop scheduling problems and possible
approaches to their solution over the last 50 years has been
provided by Gupta and Stafford [5]. That survey indicated
that most research on flowshop scheduling has focused on
single-objective problems, such as minimizing completion
time, total flow time, or total tardiness. Numerous heuristic
techniques have been developed for obtaining the approx-
imate optimal solution to NP-hard scheduling problems. A
complete survey of flowshop scheduling problems with
makespan criterion and contributions, including exact
methods, constructive heuristics, improved heuristics, and
evolutionary approaches from 1954 to 2004, was offered by
Hejazi et al. [7]. Ruiz et al. [24] also presented a review and
comparative evaluation of heuristics and meta-heuristics for
permutation flowshop problems with the makespan criteri-
on. The NEH algorithm [17] has been shown to be the best
constructive heuristic for Taillard’s benchmarks [28] while
the iterated local search [27] method and the genetic
algorithm (GA) [23] are better than other meta-heuristic
algorithms.

Most studies of flowshop scheduling have focused on a
single objective that could be optimized independently.
However, empirical scheduling decisions might not only
involve the consideration of more than one objective, but
also require minimizing the conflict between two or more
objectives. In addition, finding the exact solution to
scheduling problems is computationally expensive because
such problems are NP-hard. Solving a scheduling problem
with multiple objectives is even more complicated than
solving a single-objective problem. Approaches including
meta-heuristics and memetics have been developed to
reduce the complexity and improve the efficiency of
solutions.

Int J Adv Manuf Technol (2009) 45:749–758
DOI 10.1007/s00170-009-1970-6

The English in this document has been checked by at least two
professional editors, both native speakers of English. For a certificate,
see: http://www.textcheck.com/cgi-bin/certificate.cgi?id=emRe2r

D. Y. Sha
Department of Industrial Engineering and System Management,
Chung Hua University,
Hsinchu, Taiwan, Republic of China

H.-H. Lin (*)
Department of Industrial Engineering and Management,
National Chiao Tung University,
Hsinchu, Taiwan, Republic of China
e-mail: hsinhung@gmail.com

http://www.textcheck.com/cgi-bin/certificate.cgi?id=emRe2r

Hybrid heuristics combining the features of different
methods in a complementary fashion have been a hot issue
in the fields of computer science and operational research
[15]. Ponnambalam et al. [19] considered a weighted sum
of multiple objectives, including minimizing the makespan,
mean flow time, and machine idle time as a performance
measurement, and proposed a multi-objective algorithm
using a traveling salesman algorithm and the GA for the
flowshop scheduling problem. Rajendran et al. [21]
approached the problem of scheduling in permutation
flowshop using two ant colony optimization (ACO)
approaches, first to minimize the makespan, and then to
minimize the sum of the total flow time. Yagmahan [30]
was the first to apply ACO meta-heuristics to flowshop
scheduling with the multiple objectives of makespan, total
flow time, and total machine idle time.

The literature on multi-objective flowshop scheduling
problems can divided into two groups: a priori approaches
with assigned weights of each objective, and a posteriori
approaches involving a set of non-dominated solutions
[18]. There is also a multi-objective GA (MOGA) called
PGA-ALS, designed to search non-dominated sequences
with the objectives of minimizing makespan and total flow
time. The multi-objective solutions are called non-
dominated solutions (or Pareto optimal solutions in the
case of Pareto optimality). Eren et al. [4] tackled a multi-
criteria two-machine flowshop scheduling problem with
minimization of the weighted sum of total completion time,
total tardiness, and makespan.

Particle swarm optimization (PSO) is an evolutionary
technique for unconstrained continuous optimization prob-
lems proposed by Kennedy et al. [10] The PSO concept is
based on observations of the social behavior of animals
such as birds in flocks, fish in schools, and swarm theory.
To minimize the objective of maximum completion time (i.
e., the makespan), Liu et al. [15] invented an effective PSO-
based memetic algorithm for the permutation flowshop
scheduling problem. Jarboui et al. [9] developed a PSO
algorithm for solving the permutation flowshop scheduling
problem; this was an improved procedure based on
simulated annealing. PSO was recommended by Tasgetiren
et al. [29] to solve the permutation flowshop scheduling
problem with the objectives of minimizing makespan and
the total flow time of jobs. Rahimi-Vahed et al. [22] tackled
a bi-criteria permutation flowshop scheduling problem
where the weighted mean completion time and the
weighted mean tardiness were minimized simultaneously.
They exploited a new concept called the ideal point and a
new approach to specifying the superior particle’s position
vector in the swarm that is designed and used for finding
the locally Pareto optimal frontier of the problem. Due to
the discrete nature of the flowshop scheduling problem,
Lian et al. [14] addressed permutation flowshop scheduling

with a minimized makespan using a novel PSO. All these
approaches have demonstrated the advantages of the PSO
method: simple structure, immediate applicability to prac-
tical problems, ease of implementation, quick solution, and
robustness.

The aim of this paper is to explore the development of
PSO for elaborate multi-objective flowshop scheduling
problems. The original PSO was used to solve continuous
optimization problems. Due to the discrete solution spaces
of scheduling optimization problems, we modified the
particle position representation, particle movement, and
particle velocity in this study.

The remainder of this paper is organized as follows.
Section 2 contains a formulation of the flowshop schedul-
ing problem with two objectives. Section 3 describes the
algorithm of the proposed PSO approach. Section 4 con-
tains the simulated results of benchmark problems. Sec-
tion 5 provides some conclusions and future directions.

2 Problem formulation

The problem of scheduling in flowshops has been the
subject of much investigation. The primary elements of
flowshop scheduling include a set of m machines and a
collection of n jobs to be scheduled on the set of machines.
Each job follows the same process of machines and passes
through each machine only once. Each job can be
processed on one and only one machine at a time, whereas
each machine can process only one job at a time. The
processing time of each job on each machine is fixed and
known in advance. We formulate the multi-objective flow-
shop scheduling problem using the following notation:

& n is the total number of jobs to be scheduled,
& m is the total number of machines in the process,
& t(i, j) is the processing time for job i on machine j (i=1,

2,…n) and (j=1,2,…m), and
& {π1, π2, …, πn} is the permutation of jobs.

The objectives considered in this paper can be calculated
as follows:

& Completion time (makespan) C p; jð Þ:
C p1; 1ð Þ ¼ t p1; 1ð Þ
C pi; 1ð Þ ¼ C pi�1; 1ð Þ þ t pi; 1ð Þi ¼ 2; . . . ; n

C p1; jð Þ ¼ C p1; j� 1ð Þ þ t p; jð Þj ¼ 2; . . . ;m

C pi; jð Þ ¼ max C pi�1; jð Þ;C pi; j� 1ð Þf g þ t pi; jð Þ
i ¼ 2; . . . ; n; j ¼ 2; . . . ;m

& Makespan, fCmax ¼ C pn;mð Þ,
& Mean flow time, fMFT ¼

Pn
i¼1

C pi;mð Þ
� ��

n,

750 Int J Adv Manuf Technol (2009) 45:749–758

& Machine idle time, and
& fMIT ¼ fC p1; j� 1ð Þ þPn

i¼2
max C pi; j� 1ð Þ � C pi�1;ðff

jÞ; 0ggjj ¼ 2:::mg

3 Basic PSO concept

PSO is an evolutionary technique (Kennedy et al. [10]) for
solving unconstrained continuous optimization problems.
The PSO concept is based on observations of the social
behavior of animals. The population consisting of individ-
uals (particles) is assigned a randomized initial velocity
according each individual’s own movement experience and
that of the rest of the population. The relationship between
the swarm and the particles in PSO is similar to the
relationship between the population and the chromosomes
in the GA.

The PSO problem solution space is formulated as a
search space. Each position of the particles in the search
space is a correlated solution of the problem. Particles
cooperate to determine the best position (solution) in the
search space (solution space).

Suppose that the search space is D-dimensional and there
are m particles in the swarm. Each particle is located at
position Xi={xi1, xi2, …, xiD} with velocity Vi={vi1, vi2, …,
viD}, where i=1, 2,…, m. In the PSO algorithm, each particle
moves toward its own best position (pbest) denoted as
Pbesti={pbesti1, pbesti2,…, pbestin}. The best position of the
whole swarm (gbest) denoted as Gbest={gbest1, gbest2, …,
gbestn} with each iteration. Each particle changes its position
according to its velocity, which is randomly generated toward
the pbest and gbest positions. For each particle r and
dimension s, the new velocity vrs and position xrs of particles
can be calculated by the following equations:

vtrs ¼ w� vt�1rs þ c1 � rand1 � pbestt�1rs � xt�1rs

� �þ c2

� rand2 � gbestt�1s � xt�1rs

� � ð1Þ

xtrs ¼ xt�1rs þ vt�1rs ð2Þ

where t is the iteration number. The inertial weight w is
used to control exploration and exploitation. A large value
of w keeps particles at high velocity and prevents them
from becoming trapped in local optima. A small value of
w maintains particles at low velocity and encourages them
to exploit the same search area. The constants c1 and c2 are
acceleration coefficients that determine whether particles
prefer to move closer to the pbest or gbest positions. The
rand1 and rand2 are independent random numbers uni-
formly distributed between 0 and 1. The termination

criterion of the PSO algorithm includes the maximum
number of generations, the designated value of pbest, and
no further improvement in pbest. The standard PSO process
outline is as follows.

Step 1: initialize a population of particles with random
positions and velocities on D dimensions in the
search space.

Step 2: update the velocity of each particle according to
Eq. (1).

Step 3: update the position of each particle according to
Eq. (2).

Step 4: map the position of each particle into the solution
space and evaluate its fitness value according to
the desired optimization fitness function. Simulta-
neously update the pbest and gbest positions if
necessary.

Step 5: loop to Step 2 until an exit criterion is met, usually
a sufficient goodness of fitness or a maximum
number of iterations.

The original PSO was designed for a continuous solution
space. We modified the PSO position representation,
particle velocity, and particle movement as described in
the next section to make PSO suitable for combinational
optimization problems.

4 Formation of the proposed PSO

There are two different representations of particle position
associated with a schedule. Zhang [31] demonstrated that
permutation-based position representation outperforms
priority-based representation. While we have chosen to
implement permutation-based position representation, we
must also adjust the particle velocity and particle movement
as described in Sections 4.2 and 4.3. We have also included
the maintenance of Pareto optima and local search
procedures to achieve better performance.

4.1 Position representation

In this study, we randomly generated a group of particles
(solutions) represented by a permutation sequence that is an
ordered list of operations. The following example is a
permutation sequence for a six-job permutation flowshop
scheduling problem, where jn is the operation of job n.

Index : 1 2 3 4 5 6
Permutation : j4 j3 j1 j6 j2 j5

An operation earlier in the list has a higher priority of
being placed into the schedule. We used a list with a length

Int J Adv Manuf Technol (2009) 45:749–758 751

of n for an n-job problem in our algorithm to represent the
position of particle k, i.e.,

X k ¼ xk1x
k
2 . . . x

k
n

� �
;

xki is the priority of ji in particle k:

Then, we convert the permutation list to a priority list.
Thexki is a value randomly initialized to some value between
(p–0.5) and (p + 0.5). This means xki pþ rand� 0:5,
where p is the location (index) of ji in the permutation list,
and rand is a random number between 0 and 1. Conse-
quently, the operation with smaller xki has a higher priority
for scheduling. The permutation list mentioned above can
be converted to

X k ¼ 2:7 5:2 1:8 0:6 6:3 3:9½ �

4.2 Particle velocity

The original PSO velocity concept is that each particle
moves according to the velocity determined by the distance
between the previous position of the particle and the gbest
(pbest) solution. The two major purposes of the particle
velocity are to move the particle toward the gbest and pbest
solutions, and to maintain the inertia to prevent particles
from becoming trapped in local optima.

In the proposed PSO, we concentrated on preventing
particles from becoming trapped in local optima rather than
moving them toward the gbest (pbest) solution. If the
priority value increases or decreases with the present
velocity in this iteration, we maintain the priority value
increasing or decreasing at the beginning of the next
iteration with probability w, which is the PSO inertial
weight. The larger the value of w is, the greater the number
of iterations over which the priority value keeps increasing
or decreasing, and the greater the difficulty the particle has
returning to the current position. For an n-job problem, the
velocity of particle k can be represented as

Vk ¼ vk1 v
k
2 . . . v

k
n

� �
; vki 2 �1; 0; 1f g

where vki is the velocity of ji of particle k:

The initial particle velocities are generated randomly.
Instead of considering the distance from xki to pbestki ðgbestiÞ,
our PSO considers whether the value of xki is larger or
smaller than pbestki ðgbestiÞ If xki has decreased in the present
iteration, this means that pbestki ðgbestiÞ is smaller than xki ,
and xki is set moving toward pbestki ðgbestiÞ by letting
vki �1. Therefore, in the next iteration, xki is kept
decreasing by one (i.e., xki xki � 1) with probability w.
Conversely, if xki has increased in this iteration, this means
that pbestki ðgbestiÞ is larger than xki , and xki is set moving
toward pbestki ðgbestiÞ by letting vki 1. Therefore, in the

next iteration, xki is kept increasing by one (i.e. xki xki þ 1)
with probability w.

The inertial weight w influences the velocity of particles
in PSO. We randomly update velocities at the beginning of
each iteration. For each particle k and operation ji, if vki is
not equal to 0, vki is set to 0 with probability (1–w). This
ensures that xki stops increasing or decreasing continuously
in this iteration with probability (1–w).

4.3 Particle movement

The particle movement is based on the insertion operator
proposed by Sha et al. [25, 26]. The insertion operator is
introduced to the priority list to reduce computational
complexity. We illustrate the effect of the insertion operator
using the permutation list example described above. If we
wish to insert j4 into the third location of the permutation
list, we must move j6 to the sixth location, move j1 to the
fifth location, move j2 to the fourth location, and then insert
j4 in the third location. The insertion operation comprising
these actions costs O(n/2) on average. However, the
insertion operator used in this study need only set xki
3þ rand� 0:5 when we want to insert j5 in the third
location of the permutation. This requires only one step for
each insertion. If the random number rand equals 0.1, for
example, after j4 is inserted into the third location, then
X kbecomes X k ¼ 2:7 5:2 1:8 0:6 2:6 3:9½ �.

If we wish to insert ji into the pth location in the
permutation list, we could set xki pþ rand� 0:5. The
location of operation ji in the permutation sequence of the
kth pbest and gbest solutions are pbestki and gbesti,
respectively. As particle k moves, if vki equals 0 for all ji,
then xki is set to pbestki þ rand� 0:5 with probability c1 and
set to gbesti + rand −0.5 with probability c2, where rand is
a random number between 0 and 1, c1 and c2 are constants
between 0 and 1, and c1 þ c2 � 1. We explain this concept
by assuming specific values for Vk, Xk, pbestk, gbest, c1,
and c2.

Vk ¼ �1 0 0 1 0 0½ �;
X k ¼ 2:7 5:2 1:8 0:6 6:3 3:9½ �;
pbestk ¼ 5 1 4 6 3 2½ �;
gbest ¼ 6 3 4 5 1 2½ �; c1 ¼ 0:8; c2 ¼ 0:1:

– For j1, since vk1 6¼ 0 and xk1 xk1 þ vk1, then xk1 ¼ 1:7.
– For j2, since vk2 ¼ 0, the generated random number

rand1=0.6. Since rand1 � c1, then the generated ran-
dom number rand2=0.3. Since pbestk2 � xk2, set v

k
2

�1 and xk2 pbestk2 þ rand2 � 0:5, i.e., xk2 ¼ 0:8.
– For j3, since vk3 ¼ 0, the generated random number

rand1=0.93. Since rand1 > c1 þ c2, xk3 and vk3 do not
need to be changed.

752 Int J Adv Manuf Technol (2009) 45:749–758

– For j4, since vk4 ¼ 1, then xk4 xk4 þ vk4, i.e., x
k
4 ¼ 1:6.

– For j5, since vk5 ¼ 0, the generated random number
rand1=0.85. Since c1 < rand1 � c1 þ c2, the generat-
ed random number rand2=0.7. Since gbest5 � xk5,
set vk5 �1. Then xk5 gbest5 þ rand2 � 0:5, i.e.,
xk5 ¼ 1:2.

– For j6, since vk6 ¼ 0, the generated random number
rand1=0.95. Since rand1 > c1 þ c2, xk6 and vk6 do not
need to be changed.

Therefore, after particle k moves, the Vk and Xk are

Vk ¼ ½�1 �1 0 1 �1 0�
X k ¼ ½1:6 0:8 1:8 1:7 1:2 3:9�
In addition, we use a mutation operator in our PSO

algorithm. After moving a particle to a new position, we
randomly choose an operation and then mutate its priority
value xki in accordance with vki . If x

k
i � ðn=2Þ, we randomly

set xki to a value between (n/2) and n, and set vki 1. If
xki > ðn=2Þ, we randomly set xki to a value between 0 and
(n/2), and set vki �1.

4.4 Pareto optimal set maintenance

Real empirical scheduling decisions often involve not only
the consideration of more than one objective at a time, but
also must prevent the conflict of two or more objectives.
The solution set of the multi-objective optimization
problem with conflicting objective functions consistent
with the solutions so that no other solution is better than
all other objective functions is called Pareto optimal. A
multi-objective minimization problem with m decision
variables and n objectives is given below to describe the
concept of Pareto optimality.

Minimize F xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fn xð Þð Þ
where; x 2 <m;F xð Þ 2 <n

A solution p is said to dominate solution q if and only if

fk pð Þ � fk qð Þ 8k 2 1; 2; . . . ; nf g
fk pð Þ < fk qð Þ 9k 2 1; 2; . . . ; nf g
Non-dominated solutions are defined as solutions that

dominate the others but do not dominate themselves.
Solution p is said to be a Pareto optimal solution if there
exists no other solution q in the feasible space that could
dominate p. The set including all Pareto optimal solutions is
referred to as the Pareto optimal or Pareto optimalPareto
optimal set. A graph plotted using collected Pareto optimal
solutions in feasible space is referred to as the Pareto front.

The external Pareto optimal set is used to produce a
limited size of non-dominated solutions (Knowles et al.,
[11]; Zitzler et al. [32]). The maximum size of the archive

set is specified in advance. This method is used to avoid
missing fragments of the non-dominated front during the
search process. The Pareto optimal front is formed as the
archive is updated iteratively. When the archive set is
sufficiently empty and a new non-dominated solution is
detected, the new solution enters the archive set. As the
new solution enters the archive set, any solution already
there that is dominated by this solution will be removed.
When the maximum archive size reaches its preset value,
the archive set must decide which solution should be
replaced. In this study, we propose a novel Pareto archive
set update process to preclude losing non-dominated
solutions when the Pareto archive set is full. When a new
non-dominated solution is discovered, the archive set is
updated when one of the following situations occurs: either
the number of solutions in the archive set is less than the
maximum value, or if the number of solutions in the
archive set is equal to or greater than the maximum value,
then the one solution in the archive set that is most
dissimilar to the new solution is replaced by the new
solution. We measure the dissimilarity by the Euclidean
distance. A longer distance implies a higher dissimilarity.
The non-dominated solution in the Pareto archive set with
the longest distance to the newly found solution is replaced.
For example, the distance (dij) between X1 and X2 is
calculated as

X 1 ¼ 2:7 5:2 1:8 0:6 6:3 3:9½ �
X 2 ¼ 1:6 0:8 1:8 1:7 1:2 3:9½ �
dij ¼

ffi
2:7� 1:6ð Þ2þ 5:2� 0:8ð Þ2þ 0:6� 1:7ð Þ2þ 6:3� 1:2ð Þ2

q
¼ 6:91

The Pareto archive set is updated at the end of each
iteration in the proposed PSO.

4.5 Diversification strategy

If all the particles have the same non-dominated solutions,
they will be trapped in the local optimal. To prevent this, a
diversification strategy is proposed to keep the non-
dominated solutions different. Once any new solution is
generated by the particles, the non-dominated solution set is
updated according to one of three situations.

1. If the solution of the particle is dominated by the gbest
solution, assign the particle solution to gbest.

2. If the solution of the particle equals any solution in the
non-dominated solution set, replace the non-dominated
solution with the particle solution.

3. If the solution of the particle is dominated by the worst
non-dominated solution and not equal to any non-
dominated solution, set the worst non-dominated
solution equal to the particle solution.

Int J Adv Manuf Technol (2009) 45:749–758 753

5 Computational results

The proposed PSO algorithm was verified by benchmark
problems obtained from the OR-Library that were contrib-
uted by Carlier [2], Heller [8], and Reeves [23]. The test
program was coded in Visual C++ and run 20 times on each
problem using an Intel Pentium 4 3.0-GHz processor with
1 GB of RAM running Windows XP. We used four swarm
sizes N (10, 20, 60, and 80) to test the algorithm during a
pilot experiment. A value of N=80 was best, so it was used
in all subsequent tests. The algorithm parameters were set
as follows: c1 and c2 were tested over the range 0.1–0.7 in
increments of 0.2, and the inertial weight w was reduced
from wmax to wmin during the iterations. Parameter wmax

was set to 0.5, 0.7, and 0.9 corresponding to wmin values of
0.1, 0.3, and 0.5. Settings of c1=0.7, c2=0.1, wmax=0.7,
and wmin=0.3 worked best.

The proposed PSO algorithm was compared with five
heuristic algorithms: CDS[1], NEH[17], RAJ[20], GAN-
RAJ[6] and Laha[13]. We also coded these methods in
Visual C++. The CDS heuristic [1] takes its name from its
three authors and is a heuristic generalization of Johnson’s
algorithm. The process generates a set of m−1 artificial
two-machine problems, each of which is then solved by
Johnson’s rule. In this study, we modified the original CDS
and compared the makespan, mean flow time, and machine
idle time of all m−1 generated problems. The non-
dominated solution was selected to compare with the
solutions obtained from our PSO algorithm. The other
comparison was based on solutions determined by the NEH
algorithm introduced by Nawaz et al. [17]. The NEH
investigates n(n+1)/2 permutations to find near-optimal
solutions. As we did for CDS, we modified the original
NEH and compared the three objectives of all n(n+1)/2

sequences. We compared the non-dominated solution from
these sequences with the solutions from our PSO.

The following two performance measures are used in
this study: average-relative percentage deviation (ARPD)
and maximum percentage deviation (MPD) where MS
stands for makespan, TFT represents total flow time, MIT
stands for machine idle time, H is the heuristic.

ARPDMS ¼ 100

10

X10
i¼1

MSH ;i � BestMSi
BestMSi

	

ð3Þ

MPDMS ¼ MAXi¼1::10
MSH ;i � BestMSi

BestMSi

	

� 100 ð4Þ

ARPDTFT ¼ 100

10

X10
i¼1

TFTH ;i � BestTFTi

BestTFTi

	

ð5Þ

MPDTFT ¼ MAXi¼1::10
TFTH ;i � BestTFTi

BestTFTi

	

� 100 ð6Þ

ARPDMIT ¼ 100

10

X10
i¼1

MITH ;i � BestMITi

BestMITi

	

ð7Þ

MPDMIT ¼ MAXi¼1::10
MITH ;i � BestMITi

BestMITi

	

� 100 ð8Þ

We tested our PSO on nine different problem sizes (n=
20, 50, 100 and m=5, 10, 20) from Taillard’s [28]
benchmarks. Table 1 compares the six methods using the

Table 1 Comparison of makespan(MS) for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 1.84 0.25 0.76 0.15 0.44 0.12 0.63 0.14 1.55 0.2 0.00 0.00

10 1.78 0.23 0.71 0.12 0.85 0.17 0.83 0.14 1.50 0.20 0.00 0.00

20 1.27 0.17 0.44 0.06 0.88 0.14 0.82 0.12 1.06 0.15 0.00 0.00

50 5 1.24 0.17 0.83 0.14 0.26 0.05 0.37 0.08 1.29 0.22 0.02 0.02

10 1.28 0.19 0.59 0.08 0.48 0.09 0.53 0.10 1.29 0.18 0.01 0.01

20 1.08 0.17 0.07 0.02 0.35 0.07 0.39 0.07 1.02 0.16 0.06 0.03

100 5 1.04 0.19 0.46 0.12 0.36 0.07 0.23 0.07 1.05 0.16 0.07 0.07

10 0.28 0.06 0.47 0.07 0.29 0.06 0.24 0.04 0.89 0.13 0.01 0.01

20 0.65 0.11 0.16 0.04 0.21 0.05 0.18 0.04 0.72 0.10 0.01 0.01

NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

754 Int J Adv Manuf Technol (2009) 45:749–758

Table 2 Comparison of total flow time (TFT) for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 0.65 0.17 1.71 0.27 1.70 0.31 1.88 0.34 4.43 0.61 1.28 0.20

10 0.70 0.10 1.43 0.18 1.29 0.19 1.47 0.23 3.43 0.51 0.95 0.12

20 0.59 0.14 1.23 0.18 1.27 0.21 1.31 0.24 2.29 0.30 0.82 0.12

50 5 0.11 0.07 2.48 0.56 2.56 0.51 2.58 0.53 5.86 0.94 2.48 0.44

10 7.87 7.53 11.33 9.62 10.91 9.24 11.27 9.50 14.49 10.87 10.78 9.19

20 0.39 0.09 1.55 0.20 1.58 0.20 1.60 0.19 3.18 0.40 1.44 0.17

100 5 0.27 0.27 2.24 2.24 3.59 3.59 3.00 3.00 5.56 5.56 2.60 2.60

10 0.87 0.87 1.86 1.86 1.91 1.91 1.80 1.80 4.02 4.02 1.93 1.93

20 1.39 1.39 1.65 1.65 1.73 1.73 1.65 1.65 2.83 2.83 1.59 1.59

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Table 3 Comparison of machine idle time (MIT) for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 4.54 2.94 43.56 20.33 3.20 1.03 5.04 1.38 10.79 4.70 1.50 0.43

10 3.87 0.83 15.03 1.94 8.07 1.48 7.93 1.42 9.92 1.76 0.00 0.00

20 11.37 1.55 19.19 2.40 14.88 2.01 14.46 1.85 15.29 2.10 0.00 0.00

50 5 67.77 26.95 208.65 108.95 17.11 11.76 17.08 11.76 52.70 23.48 2.95 2.82

10 1.92 0.56 10.59 1.74 4.74 0.68 4.91 0.70 6.92 1.24 0.26 0.18

20 2.26 0.36 8.02 0.97 5.75 0.83 5.80 0.87 7.47 0.96 0.00 0.00

100 5 18.18 4.94 40.24 7.65 4.41 1.40 2.00 0.76 15.47 3.34 3.51 1.69

10 1.96 0.43 9.54 1.38 1.92 0.38 1.65 0.41 5.47 0.98 0.15 0.09

20 1.03 0.26 4.26 0.52 2.79 0.40 2.64 0.35 3.77 0.45 0.00 0.00

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Table 4 Summation of MS, TFT and MIT for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 7.04 3.35 46.03 20.75 5.34 1.46 7.56 1.86 16.77 5.52 2.78 0.63

10 6.36 1.16 17.18 2.25 10.21 1.83 10.23 1.79 14.85 2.46 0.95 0.12

20 13.23 1.86 20.86 2.64 17.03 2.36 16.60 2.22 18.63 2.54 0.82 0.12

50 5 69.12 27.19 211.96 109.65 19.93 12.33 20.03 12.37 59.84 24.64 5.45 3.28

10 11.08 8.28 22.51 11.44 16.13 10.00 16.71 10.30 22.70 12.29 11.04 9.38

20 3.72 0.62 9.64 1.19 7.68 1.10 7.79 1.13 11.68 1.52 1.50 0.20

100 5 19.49 5.41 42.93 10.01 8.37 5.06 5.23 3.82 22.08 9.06 6.18 4.35

10 3.11 1.36 11.87 3.32 4.12 2.35 3.69 2.25 10.38 5.13 2.08 2.02

20 3.08 1.77 6.07 2.21 4.73 2.19 4.47 2.04 7.33 3.38 1.60 1.60

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Int J Adv Manuf Technol (2009) 45:749–758 755

Table 5 Average CPU time (in seconds)

n m NEH CDS RAJ GANRAJ Laha [12] PSO

20 5 0.0016 0.0031 0.0047 0.0014 0.0012 1.6641

10 0.0015 0.0093 0.0094 0.0015 0.0015 2.0547

20 0.0047 0.0109 0.0094 0.0031 0.0047 2.8078

50 5 0.0140 0.0016 0.0156 0.0047 0.0047 4.4906

10 0.0234 0.0032 0.0297 0.0047 0.0063 5.3047

20 0.0500 0.0078 0.0539 0.0078 0.0062 7.1593

100 5 0.0860 0.0016 0.0844 0.0047 0.0047 11.9094

10 0.1750 0.0046 0.1750 0.0047 0.0078 13.4906

20 0.3750 0.0078 0.3656 0.0079 0.0141 17.0079

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Table 6 Comparison of total flow time (TFT) for different heuristics in ARPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO

20 5 0.65 1.71 1.70 1.88 4.43 0.24 1.17 0.16 0.20 1.28

10 0.70 1.43 1.29 1.47 3.43 0.09 0.72 0.01 0.01 0.95

20 0.59 1.23 1.27 1.31 2.29 0.15 0.66 0.12 0.07 0.82

50 5 0.11 2.48 2.56 2.58 5.86 0.56 1.78 0.55 0.54 2.48

10 7.87 11.33 10.91 11.27 14.49 8.06 1.24 7.97 7.89 10.78

20 0.39 1.55 1.58 1.60 3.18 0.15 1.10 0.08 0.09 1.44

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60

10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93

20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

NEH Nawaz et al. [17], CDS Campbell et al [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan R, Rajendran C [6], Laha Laha and Chakraborty
[12, 13], LR Liu J, Reeves CR [16], SA Chakravarthy K, Rajendran C [3], H-1 and H-2 Laha D, Chakraborty UK [12, 13], PSO proposed PSO)

Table 7 Comparison of total flow time (TFT) for different heuristics in MPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO

20 5 0.17 0.27 0.31 0.34 0.61 0.12 0.21 0.11 0.12 0.20

10 0.10 0.18 0.19 0.23 0.51 0.01 0.12 0.00 0.01 0.12

20 0.14 0.18 0.21 0.24 0.30 0.05 0.12 0.05 0.05 0.12

50 5 0.07 0.56 0.51 0.53 0.94 0.25 0.38 0.25 0.25 0.44

10 7.53 9.62 9.24 9.50 10.87 7.92 0.19 7.87 7.82 9.19

20 0.09 0.20 0.20 0.19 0.40 0.04 0.16 0.04 0.04 0.17

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60

10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93

20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

NEH Nawaz et al. [17], CDS Campbell et al [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan R, Rajendran C [6], Laha Laha and Chakraborty
[12, 13], LR Liu J, Reeves CR [16], SA Chakravarthy K, Rajendran C [3], H-1 and H-2 Laha D, Chakraborty UK [12, 13], PSO proposed PSO)

756 Int J Adv Manuf Technol (2009) 45:749–758

ARPD and MPD. Table 1 show that the proposed PSO
outperforms for almost all problem instances in the make-
span object. The comparison of TFT object is revealed in
Table 2. It shows the ARPD and MPD of six heuristics and
the Laha’s algorithm performs better. We have given the
comparison of MIT in Table 3 that indicates the proposed
PSO can get better solution. At last, we aggregate the
results of three objects in order to show the performance of
the proposed PSO to solve the multi-objectives problems.
We observed that the PSO performed better than other five
heuristics. Table 4 shows the superior performance of the
proposed PSO in terms of the three simultaneous objec-
tives. The computation cost is demonstrated on Table 5.
The proposed PSO spends more CPU time than other
construct heuristic because of the proposed PSO is an
evolutionary algorithm.

In addition, we compare TFT of benchmarks by more
algorithms—Liu and Reeves[16] (LR), Chakravarthy-
Rajendran [3], simulated annealing-bases approach (SA)
and Laha and Chakraborty [12] (H-1 and H-2). The results
are shown in Table 6 for ARPD and Table 7 for MPD. We
can observe that the H-1 and H-2 perform better than other
algorithms while only one object TFT is considered.

6 Conclusion

Many flowshop scheduling problem studies have been
conducted in the past. However, the objective of most of
these has been the minimization of the maximum comple-
tion time (i.e., the makespan). In the real world, there exist
other objectives, such as minimization of machine idle time
that might help improve efficiency and reduce production
costs. PSO, which was inspired by the behavior of birds
and fish, has certain advantages, including simple structure,
easy implementation, immediate accessibility, short search
time, and robustness. However, there has been limited study
of PSO to address the multiple objectives found in the
flowshop scheduling problem. We have therefore presented
a PSO method for solving a flowshop scheduling problem
with multiple objectives, including minimization of make-
span, mean flow time, and machine idle time.

PSO was originally proposed for continuous optimiza-
tion problems. We modified the representation of particle
position, particle movement, and particle velocity to make
PSO suitable for flowshop scheduling, which is a combi-
national problem. In addition, we used a mutation operator
in our PSO algorithm. We also incorporated the concept of
Pareto optimality to measure the performance of multiple
objectives rather than using a weighted fitness function.
Another necessary adjustment to the original PSO, required
to maintain the Pareto optimal solution, was the external
Pareto optimal set used to produce a limited size of non-

dominated solutions. We also used a diversification strategy
in our PSO algorithm. The results demonstrated that the
proposed PSO could produce more optimal solutions than
other heuristics (CDS, NEH, RAJ, GAN-RAJ, and Laha).
The ARPD and MPD of each problem scenario in our PSO
algorithm were less than those methods. The results of our
performance measurement also revealed that the proposed
PSO algorithm outperformed the heuristics in minimizing
the makespan, mean flow time, and total machine idle time.

In future research, we will attempt to apply our PSO to
other shop scheduling problems with multiple objectives.
Possible topics for further study include modification of the
particle position representation, particle movement, and
particle velocity. Issues related to Pareto optimality, such as
a solution maintenance strategy and performance measure-
ment, are also topics worthy of future study.

References

1. Campbell HG, Dudek RA, Smith ML (1970) A heuristic
algorithm for the n-job m-machine sequencing problem. Manage
Sci 16:B630–B637. doi:10.1287/mnsc.16.10.B630

2. Carlier J (1978) Ordonnancements à contraintes disjonctives.
RAIRO Rech Oper. Oper Res 12:333–351

3. Chakravarthy K, Rajendran C (1999) A heuristic for scheduling in
a flowshop with the bicriteria of makespan and maximum
tardiness minimization. Prod Plann Contr 10:707–714. doi:
10.1080/095372899232777

4. Eren T, Güner E (2007) The tricriteria flowshop scheduling
problem. Int J Adv Manuf Technol 36:1210–1220. doi:10.1007/
s00170-007-0931-1

5. Gupta JND, Stafford JEF (2006) Flowshop scheduling research
after five decades. Eur J Oper Res 169:699–711. doi:10.1016/j.
ejor.2005.02.001

6. Gangadharan R, Rajendran C (1993) Heuristic algorithms for
scheduling in no-wait flow shop. Int J Prod Econ 32:285–290.
doi:10.1016/0925-5273(93) 90042-J

7. Hejazi SR, Saghafian S (2005) Flowshop- scheduling problems
with makespan criterion: a review. Int J Prod Res 43:2895–2929.
doi:10.1080/0020754050056417

8. Heller J (1960) Some numerical experiments for an MxJ flow
shop and its decision- theoretical aspects. Oper Res 8:178–184.
doi:10.1287/opre.8.2.178

9. Jarboui B, Ibrahim S, Siarry P, Rebai A (2008) A combinational
particle swarm optimisation for solving permutation flowshop prob-
lems. Comput Ind Eng 54:526–538. doi:10.1016/j.cie.2007.09.006

10. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc
IEEE Int Conf Neural Netw 1995:1942–1948. doi:10.1109/
ICNN.1995.488968

11. Knowles JD, Corne DW (1999) The Pareto archived evolution
strategy: a new baseline algorithm for multi-objective optimiza-
tion. In: Congress on Evolutionary Computation, Washington,
DC, IEEE Service Center, 98–105

12. Laha D, Chakraborty UK (2008) An efficient heuristic approach
to total flowtime minimization in permutation flowshop schedul-
ing. Int J Adv Manuf Technol 38:1018–1025. doi:10.1007/
s00170-007-1156-z

13. Laha D, Chakraborty UK (2009) A constructive heuristic for
minimizing makespan in no-wait flow shop scheduling. Int J Adv
Manuf Technol 41:97–109. doi:10.1007/s00170-008-1545-0

Int J Adv Manuf Technol (2009) 45:749–758 757

http://dx.doi.org/10.1287/mnsc.16.10.B630
http://dx.doi.org/10.1080/095372899232777
http://dx.doi.org/10.1007/s00170-007-0931-1
http://dx.doi.org/10.1007/s00170-007-0931-1
http://dx.doi.org/10.1016/j.ejor.2005.02.001
http://dx.doi.org/10.1016/j.ejor.2005.02.001
http://dx.doi.org/10.1016/0925-5273(93) 90042-J
http://dx.doi.org/10.1080/0020754050056417
http://dx.doi.org/10.1287/opre.8.2.178
http://dx.doi.org/10.1016/j.cie.2007.09.006
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/s00170-007-1156-z
http://dx.doi.org/10.1007/s00170-007-1156-z
http://dx.doi.org/10.1007/s00170-008-1545-0

14. Lian Z, Gu X, Jiao B (2008) A novel particle swarm optimization
algorithm for permutation flow-shop scheduling to minimize
makespan. Chaos Solitons Fractals 35:851–861. doi:10.1016/j.
chaos.2006.05.082

15. Liu B, Wang L, Jin YH (2007) An effective PSO-based memetic
algorithm for flow shop scheduling. IEEE Trans Syst Man Cybern
C 37:18–27. doi:10.1109/TSMCB.2006.883272

16. Liu J, Reeves CR (2001) Constructive and composite heuristic
solutions to the P//∑Ci scheduling problem. Eur J Oper Res
132:439–452. doi:10.1016/S0377-2217(00) 00137-5

17. Nawaz M, Enscore JR, Ham I (1983) A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem. Omega 11:91–
95. doi:10.1016/0305-0483(83) 90088-9

18. Pasupathy T, Rajendran C, Suresh RK (2006) A multi-objective
genetic algorithm for scheduling in flow shops to minimize the
makespan and total flow time of jobs. Int J Adv Manuf Technol
27:804–815. doi:10.1007/s00170-004-2249-6

19. Ponnambalam SG, Jagannathan H, Kataria M (2004) A TSP-GA
multi-objective algorithm for flow-shop scheduling. Int J Adv
Manuf Technol 23:909–915. doi:10.1007/s00170-003-1731-x

20. Rajendran C (1994) A no-wait flow shop scheduling heuristic to
minimize makespan. J Oper Res Soc 45:472–478

21. Rajendran C, Ziegler H (2004) Ant-colony algorithms for
permutation flowshop scheduling to minimize makespan/total
flowtime of jobs. Eur J Oper Res 155:426–438. doi:10.1016/
S0377-2217(02) 00908-6

22. Rahimi-Vahed A, Mirghorbani S (2007) A multi-objective particle
swarm for a flow shop scheduling problem. J Comb Optim 13:79–
102. doi:10.1007/s10878-006-9015-7

23. Reeves CR (1995) A genetic algorithm for flowshop sequencing.
Comput Oper Res 22:5–13. doi:10.1016/0305-0548(93) E0014-K

24. Ruiz R, Maroto C (2004) A comprehensive review and evaluation
of permutation flowshop heuristics. Eur J Oper Res 165:479–494.
doi:10.1016/j.ejor.2004.04.017

25. Sha DY, Hsu CY (2006) A hybrid particle swarm optimization for
job shop scheduling problem. Comput Ind Eng 51:791–808.
doi:10.1016/j.cie.2006.09.002

26. Sha DY, Hsu CY (2008) A new particle swarm optimization for
the open shop scheduling problem. Comput Oper Res 35:3243–
3261. doi:10.1016/j.cor.2007.02.019

27. Stützle T (1998) Applying iterated local search to the permutation
flow shop problem. Tech Rep, AIDA-98-04, FG Intellektik, TU
Darmstadt.

28. Taillard E (1993) Benchmarks for basic scheduling problems. Eur
I Oper Res 64:278–285. doi:10.1016/0377-2217(93) 90182-M

29. TasgetirenMF, LiangYC, SevkliM, Gencyilmaz G (2007) A particle
swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem. Eur J
Oper Res 177:1930–1947. doi:10.1016/j.ejor.2005.12.024

30. Yagmahan B, Yenisey MM (2008) Ant colony optimization for
multi-objective flow shop scheduling problem. Comput Ind Eng
54:411–420. doi:10.1016/j.cie.2007.08.003

31. Zhang H, Li X, Li H, Huang F (2005) Particle swarm optimization-
based schemes for resource-constrained project scheduling. Auto
Const 14:393–404. doi:10.1016/j.autcon.2004.08.006

32. Zizter E, Laumanns M, Thiele L (2001) SPEA2: Improving the
strength Pareto evolutionary algorithm. Computer Engineering
and Networks Laboratory (TIK) – Report 103 Sept 2001.

758 Int J Adv Manuf Technol (2009) 45:749–758

http://dx.doi.org/10.1016/j.chaos.2006.05.082
http://dx.doi.org/10.1016/j.chaos.2006.05.082
http://dx.doi.org/10.1109/TSMCB.2006.883272
http://dx.doi.org/10.1016/S0377-2217(00) 00137-5
http://dx.doi.org/10.1016/0305-0483(83) 90088-9
http://dx.doi.org/10.1007/s00170-004-2249-6
http://dx.doi.org/10.1007/s00170-003-1731-x
http://dx.doi.org/10.1016/S0377-2217(02) 00908-6
http://dx.doi.org/10.1016/S0377-2217(02) 00908-6
http://dx.doi.org/10.1007/s10878-006-9015-7
http://dx.doi.org/10.1016/0305-0548(93) E0014-K
http://dx.doi.org/10.1016/j.ejor.2004.04.017
http://dx.doi.org/10.1016/j.cie.2006.09.002
http://dx.doi.org/10.1016/j.cor.2007.02.019
http://dx.doi.org/10.1016/0377-2217(93) 90182-M
http://dx.doi.org/10.1016/j.ejor.2005.12.024
http://dx.doi.org/10.1016/j.cie.2007.08.003
http://dx.doi.org/10.1016/j.autcon.2004.08.006

	A particle swarm optimization for multi-objective flowshop scheduling
	Abstract
	Introduction
	Problem formulation
	Basic PSO concept
	Formation of the proposed PSO
	Position representation
	Particle velocity
	Particle movement
	Pareto optimal set maintenance
	Diversification strategy

	Computational results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

