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Abstract

Let  be an immersion of a compact Willmore surface M into the n-dimensional unit
sphere S™. In this thesis we first consider the Willmore surfaces in the unit 3-sphere,
and establish an integral inequality for the square of the length of the trace free part
of the second fundamental form and the mean:curvature. Based on this integral
inequality, we characterize the totally umbilical, spheres and the Clifford torus by a
certain pinching condition. We then introduce a conformal invariant quantity which
is formulated in terms of the square of.thedength of the trace free part of the second
fundamental form and the mean curvatureyand prove that if this quantity is bounded
above by that value of the Clifford torus then x(M) is either a totally umbilical sphere
or a conformal Clifford torus. As for the case n = 3, we also characterize the totally
umbilical spheres and the Veronese surface by a pinching condition for the case n > 4.
Analogous to the case n = 3, we then introduce a conformal invariant quantity, and
prove that if this quantity is bounded above by that value of the Veronese surface

then (M) is either a totally umbilical sphere or a conformal Veronese surface.
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Chapter 1

Introduction

For an immersion x : M — S™ of a compact surface M into the n-dimensional
unit sphere S™, we use (h%) to denote the second fundamental form of M, and let
H* = 3" h{ be the a—component of the mean curvature vector H. It is convenient
to denote by ¢f; = hf; — % d;; the trace free part of the second fundamental form,
and let ® = 37(¢%)*. We shall denote by H_the length of the mean curvature vector
H when n > 4, and by H = ) hj the méan curvature when n = 3.

The Willmore functional is'defined by

Wia) — /M 3

where the integration is with respect to the area measure of M. This functional is
preserved if we move M via conformal transformations of S™. The critical points of
W are called Willmore surfaces. In the case n > 4, they satisfy the Euler-Lagrange
equation

AH*+) ¢l H® =0,
where A is the Laplacian in the normal bundle NM (see [15]). For the case n = 3

(see [2]), the corresponding equation is given by
AH+ ®H =0.

Since the mean curvature depends on the second derivatives of x, this is a fourth

order equation. The simplest examples of Willmore surfaces are minimal surfaces in



S™. However the set of Willmore surfaces turns out to be larger than that of minimal
surfaces (see [11]).

For M being a minimal submanifold in the n-dimensional unit sphere S™, there are
vast estimates for the square of the length of the second fundamental form. Significant
works in this direction have been obtained by Simons (see [14]), Chern, do Carmo
and Kobayashi (see [3]), Peng and Terng (see [12]) and the references cited therein.
One expects that similar results are also valid for Willmore surfaces (see [8]). Based
on this idea, Li proved that if M is a compact Willmore surface in the 3-dimensional
unit sphere S? satisfying 0 < ® < 2, then z(M) is the totally umbilical sphere or
the Clifford torus. He also proved that if M is a compact Willmore surface in the
n-dimensional unit sphere S™ satisfying 0 < ¢ < % when n > 4, then x(M) is the
totally umbilical sphere or the Veronese surface (see [7] and [8]). These results are
analogous to that of Chern, do Carmo,and Kebayashi in the case of minimal surfaces.
As a special case of their result, they provedithat.if n =3, H =0 and 0 < & < 2,
then z(M) is the equatorial sphere or the Clifford torus, and if n > 4, H = 0 and
0 < ® < 3, then x(M) is the equatorial’sphere or tlie Veronese surface (see [3]).

For M being a hypersurface with. constant.mean curvature in the n-dimensional
unit sphere S™, Alencar and do Carmo obtained a pinching constant which depends on
the mean curvature (see [1]). For submanifolds with parallel mean curvature vector
in spheres, the above theorem was extended to higher codimension by Santos and
Fontenele(see [13] and [5]).

Because in general a Willmore surface is not minimal, it is interesting to find an
upper estimate for ® including the mean curvature.

This thesis is divided by two parts. In the first part, we shall consider the Willmore
surfaces in the unit 3-sphere. Our starting point is to find an upper estimate for ®

which includes the mean curvature.

Theorem A. Let M be a compact immersed Willmore surface in the 3-dimensional

unit sphere S3. Then
H2
/ B2+ — — ) < 0.
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In particular, if
2

H
0§@§2+T,

then either ® = 0 and M is totally umbilical or & = 2 + HT2 and M is the Clifford

torus.

Just as the results of Li, the result mentioned above does not characterize any
non-minimal Willmore surface in S® except the totally umbilical spheres. However,
the estimate is sharp in the sense that for every given positive €, there is a compact
Willmore surface M in S? satisfying 0 < ® < 2 + iH 2 + € but it is not the Clifford
torus. Such examples can be constructed by using the method given in Chapter 5.

For characterizing a non-minimal Willmore surface and the conformal classes of
Willmore surfaces, for each immersion = of M into the unit 3-sphere S®, we consider
the infimum of maximum values of ® — %H 2 obtained by composition of x with g
where g ranges over all conformal ttansformations.of S3. We show that this conformal
invariant characterizes the totally umbilical sphere-and the conformal classes of the
Clifford torus. Since the conformal group @ of the ambient space S is not compact,
the proof involves some new tricks™ “More“pregcisely, we shall prove the following

theorem:

Theorem B. Let M be a compact immersed Willmore surface in the 3-dimensional
unit sphere S3. If
1

infgegmaxgox(M)(CI)g — ZHQQ ) <2,

where G is the conformal group of the ambient space S%, ®, and H, are the square
of the length of the trace free part of the second fundamental form and the mean
curvature of the immersion g o x respectively, then z(M) is either a totally umbilical

sphere or a conformal Clifford torus.
From the above theorem, we obtain immediately the following.

Corollary 1. Let M be a compact immersed Willmore surface in the 3-dimensional

unit sphere S3. If

inf geaMa goa(ar)(Py) < 2,
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then M is either a totally umbilical sphere or a conformal Clifford torus.

In the second part, we shall consider the case n > 4. As the case n = 3, we first

find an upper estimate for & which includes the mean curvature.

Theorem C. Let M be a compact immersed Willmore surface in the n-dimensional

unit sphere S™, n > 4. If

2 1 4 1 1
<P<Z4_H? V— ~H?+ —H*
Os®sgtgltygteto

then either ® = 0 and M is totally umbilical or ® = % + %HQ + \/g + %HQ - %H“.

In the latter case, n = 4 and M is the Veronese surface.
From the above theorem, we obtain immediately the following.

Corollary 2. Let M be a compact immersed Willmore surface in the n-dimensional
unit sphere S™, n > 4. If
)
0<d<=4_-H2,
T - 6

then either ® = 0 and M is totally umbilical or @ = % + %H 2 In the latter case,

n =4 and M is the Veronese surface.

It is remarkable that the Veronese surface is the minimal surface in the 4-dimensional

unit sphere S* satisfying ® = 3 (see [3]). As the case n = 3, the above theorem

does not characterize any non-minimal Willmore surface except the totally umbilical

spheres. However, the estimate is sharp in the sense that for every given positive

€, there is a compact Willmore surface M in S* satisfying 0 < & < % + %H St

\/ g + %H 4 %H 4 + € but it is not the Veronese surface. Such examples can be
constructed by using the method given in Chapter 5.
For characterizing a non-minimal Willmore surface, for each immersion x of M

into the unit n-sphere S™, we consider the infimum of maximum values of

1 4 1 1
d— —H* — \/— ~H? + —H*
8 976" "o



obtained by composition of z with g where g ranges over all conformal mappings of S™.
This conformal invariant depends on the immersion x. We show that this conformal
invariant characterizes the totally umbilical sphere and the conformal class of the

Veronese surface. The following is the main result in the case n > 4.

Theorem D. Let M be a compact immersed Willmore surface in the n-dimensional

unit sphere S™, n > 4. If

1 4 1 1 2
S it Ly <2
87 g "ol Tggtl) =3

where G is the conformal group of the ambient space S", ®, and H, are the square

inf geama goo(1r)(Py —

of the length of the trace free part of the second fundamental form and the mean
curvature of the immersion g o x respectively, then z(M) is either a totally umbilical

sphere or a conformal Veronese surface.

As an immediate consequence of therabove theorem, the pinching condition can

be simplified as follows.

Corollary 3. Let M be a compact immersed Willmore surface in the n-dimensional

unit sphere S™, n > 4. If

1

. 4
mfgeGmaxgow(M)(q)g 5 3) < 3’

then z (M) is either a totally umbilical sphere or a conformal Veronese surface.

The main idea of the proof of Theorem D is close to that of Theorem B. However,
the proof requires some careful modifications in progress. In these proofs, we consider
a minimizing sequence ¢, in G. If this minimizing sequence is convergent in G, the
assertion follows from Theorems A and C. Otherwise, we shall show that M must be
totally umbilical.

This thesis is organized as follows. In Chapter 2 we introduce some notations and
auxiliary lemmas about Willmore surfaces. In Chapter 3 we consider the case n = 3,
and prove Theorems A and B. In Chapter 4, the case n > 4 is dealt and Theorems C
and D are proved. Finally, in Chapter 5 we construct certain examples which show
our upper bound estimates for ®, Theorems A and C, may fail to be true if we make

a slight change in the pinching conditions.



Chapter 2

Preliminaries

In this chapter we shall introduce some notations and auxiliary lemmas.

2.1 Notations

Let x : M — S™ be an immersed surface in the n-dimensional unit sphere S™. We
choose a local orthonormal frame'field {&fy=+%, ¢,} in S™, so that when restricted to
x(M) the vectors e, ep are tangent to x(M),; and {es,--- ,e,} is a local frame field
in the normal bundle NM of M. Let {wyryw,}denote the dual coframe field in
S™. We shall use the following ranges of indices

1<4,5,k,--- <2 3<a,B,7,--<n.

Then the structure equations are given by

dr = Z wi€i,
de; = Z wij€j + Z hijwjeq — wi,
de, = — Z hiw;e; + Z WaBEs, hi; = b3,
where w;; and was are the connection forms and (A¢;) is the second fundamental form

of M. From the structure equations of M, the Gauss equations are then given by

Ry = (607 — 0adm) + > _(hhS — h§hsy), (2.1)
Ry, = o+ Z Hhg, — Z hiihie, (2.2)
2K = 24+ H?-8, (2.3)

Ragi; = Z( ?k:hfj - jak’hgz)7 (2.4)
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were K is the Gaussian curvature of M, S = »7(hg;)* is the square of the length of
the second fundamental form, H =" H%, = ) _ hie, is the mean curvature vector,
and H = /> (h$)? is the length of the mean curvature vector of M.

As M is two-dimensional surface, we have

Rijw = K(0irdj — 6udjk)
1
= 5(2 + H2 — S)((Lkéﬂ — 5115]19)

The covariant derivative Vh% of the second fundamental form h% of M with

components hgj, is defined by

D hipn = dh+ Y hiywn+ Y hwig + ) hwsa,

and the covariant derivative VZhg; of VA, with components A, is defined by

Z hijawr = dhi, + Z higeon + Z Dy + Z hiwu: + Z hfjkwga.

Then the Codazzi equation and:the Ricei formula are given by

hii, — hik; =0, (2.5)
Wy — h =Y he Roiw + Y W Rt + > Bl Rga. (2.6)

The Laplacian Ahg; of h¢: is defined by

A =" .

From the Codazzi equation and the Ricci formula we get

Ah% = Z h?jkk = Z hgijk
= > hfug+ D iRk + > hgiRuge + Y b Roagi
= D BRry D M Ruge + Y Wi Rije + Y Wi Raag

= H3+ > hiiRuge + > hiyRuge + Y 1 Roaji.



Thus

AS = —AZ( = (h)* + > hS AR,
= > (&) + D RS(HS+D hiRuge+ > iRk + Y b Roage)
= D (W) + D> b HE + > (hhi Ruge + hshiy Rugg) + Y hshiy Rgan
= > (h)*+ > hSH
IO (WS hE 810k, — Ouig) + i (810:% — 61k0i)]
IS (bl — )] R
= > (h)?+ D hEHS + K (25 — H?) = > " (Rgara)”.

Let ¢ denote the tensor h$; — £=6;;, and ® = >"(¢)? the square of the length of

the trace free tensor ¢f;. Then we have

iy, Hy

%k - 'quj - TJ(SZk 52], (27)
¢%kl Ulk Z d)m]Rmzkl o Z ¢szm]kl + Z ¢”Rﬁakl, (28)
Ropi = Yo (@500 05.0%), (2.9)

— H? «a (e
and ® = S — 75-. We replace ALy, by A¢gHence we can get

He o
AGS = > =D (05 + Tj@‘k - %%)k
= Z<Z51mk + Z Tjk@k - Z %5@'
= Z Prirs T Z S Z Do Fomish + Z e

AH®
5 O

o HY
= > (it — Ok — - — Oki)j

+K Z i (OO — mkékj) + Do (Omj0ik — Omidij)]

H
+ Z ¢£¢Rﬁajk + TJ - Téw

Jt
2




where A is the Laplacian in the normal bundle N M. Since
D b= Mk + > b Roii + > bt Rungi + > Mg Ragi)
= HE+2Y W Ruwji+ > H Raqjs
= HY+ 2K b (Omilki — Omid;) + > H Raas
= Hg.+2KZ hg —h%) + > H? Rpaji

= H3+> HRai,

we have
H? HY
AgS = > (e + 2’ Ok — Tkékz)
HS  AH®

> Q%Rﬂajk 5 5%
g
= D Oy + H <t 2K K00 + Y diRaeg
HZ H? AHS
J + Z Rﬁa]z 2= Tézj
= Z¢kkzy +Ha 2+H2_ Q‘+Z¢£iRﬁa]'k
AH~
—-(1 J2L5 Z P igi Z Rﬁaﬂ ——5 0
H?
AH~
—a+ qu 20 +Z Rﬁaﬂ — =50
Since Y ¢%,. = 0, it follows that
1 (63 (o3
§A(I) = Z(Q%k)Z + Z ¢ijA
H2
- X Koy o
+ Y 05D R + Z i Rgagi
H2
= ) (@57 + Do HD + 2+7—<1>)<1>
+ Z Bibin — 05:00) Roarz + Z ¢12Rﬂa21 + ¢51 Rgat2)

= Z biir) —|—Z¢QH°‘ %—¢)®—2R2ﬁ12-




2.2 Auxiliary lemmas

We shall establish some basic lemmas about Willmore surfaces in this section.

Lemma 2.2.1. 1A® = Y(¢2,)2 + S o3 HE + @2+ 12 — @) — S R2 5.
If n=3, then ;A® = >G5+ 20 G Hy + @2+ 7 - CD)-

Proof. By section 2.1, we have
A = D Fm
2

AH* H
_ ngwm e 5 6 R

1+—— qu 6w+z Rgaﬂ,

where A is the Laplacian in the normal bundle. Since ) ¢¢, = 0, it follows that
1
JAe = D (05 + Y b
H2
= > (68)7 + oot HY 2+7—<1>)c1>
+ Z ¢ ¢sz/604]k T Z ¢1JR/305J1
H?
= D057+ DTORE + 2 £5 — 92
5 5 u’
+D (9 - %¢ﬂﬂnmu—%§j———¢%fwmn—%¢%f%au>

= Z 2]k +Z¢QHQ+(D +__(P ZRQ,BH

The case of n = 3 is clear from the above argument.

Lemma 2.2.2. ) ¢% H® = %E |VH|?, where Y |[VH*|> =3 (H)?.

tjj

Proof. 1t is an immediate consequence of the fact that

d oo = D6,

o, Hi b
= Z( jji T 5]1 2j 5@']’ )
H? H‘l
pu— H;l _— L pu— ? .
2 2

a2
Yot =S L <SS v

10



Lemma 2.2.3. Y (¢%,)* > 1> |[VH®|*. The equality holds if and only if ¢, =
Ty = % and @51, = P99 = %, for all a.
Proof. Since 0 = ¢, + ¢%,, we therefore have ¢7;; = —¢5,; and ¢, = —¢%5,, Which
implies
D057 = D [00)° + (61)" + 2(00)° + 2(680)” + (¢521)° + (0520)°
= D 2[(610)" + (65) + (651" + (652)")
> > [($5h + 659)” + (0550 + D511)° |

« «

- Z [ (gblll + ¢221 H ) (¢222 + ¢112 Fé )2 ]
DNIC %)2)]
= iz | VH® |?.

T2 =801 F 7901
s HY
= | =932+ 72512 E—- — 022)
Ha
- N il
= 122 T 5
and
911 = o = —P1e
HOZ HOt
= —(¢1n + 1 — 012 — 7511)
Ha
— @511 + DR
equality case is clear from the above argument. Il

By use of the Willmore surface equation and Stokes’ theorem, we have

Lemma 2.2.4. Let M be a compact Willmore surface in the unit sphere S™. Then

f e = [ Sy

In particular, if n = 3, then
/ |\VH|? = / dH?.
M M

11



Proof.

/MZNHQF = —/ > HAH"
_ /Z¢ o2 1o P
- [,y

In particular, if n = 3, then

/|VH|2_/ dH?.
M M

O
Lemma 2.2.5. Forn =3, ®Y ¢2, = Y2 4 oVIE _ S~ 1,3,
Proof. Since Y ¢;; = 0, we have ¢11; = =29, for all i. It follows that
Z 051, =2 Of i . Por + Diao)-
At a point p of M, we can rotate the“frame so /¢, = %, $12 = ¢ = 0 and
(o9 = — %, we have
d

O, =2 Z PriPri = 21/ 5(625111' — (22i) = 2V 2Py,
for all 4. Using Y ¢yj; = %, we have

| VO [P= 8P(¢7); + di1,),

Z Gi Hi®; = 4P[d111 (111 + P122) — d112(P121 — P112)],

| VH |*=2[(¢111 + d122)° + (121 — d112)°],
at p. The proof is then straightforward. n

Lemma 2.2.6. If > (z%)%+(y*)? = 2, 3(2%)? = 2% and ¢ is a nonnegative constant,

then (3 x%2%)? + (X0 y*2®)? + 16c 30(x%)? 2o(y*)? — 16¢(3° 2°y*)? < f(®, 2), where
f(@,2) = c(® + ;—i)Q, if ¢ is positive and ® > g—i; f(®,2) = $®2%, otherwise. The

equality of the first case holds if and only if one of the following three cases holds

12



(1) A=0, B?

(2) 2=2(D+2) B=0,=10+2), 9=

4
(3)A*+ B? =
T(+50) (@

2

1(®+%),(=0and z* = 4;13/;,
1
1

2 2

Z Z2 z
=@+ %), ¢=3(®-5)n
1
4

¢ 8c
(‘I)_Z_Z)aCZO and 2 = 442

88 8 ¢,+§%7
2@+, A B2 =dce(P+ ) (E—n), AB=4c(P+2)(, &n— (2 =

=Y and 2% = 4%, where A =Y x%2% B =Y y*2*, & = (x)?

8c

2

n=7>(y*)? and ¢ = Y x°y*.

Proof. We first observe that the result follows by direct estimate for the cases of ¢ = 0,

2=0,P =0 or n— ¢?= 0. Without loss of generality, we may assume that c, z, ®

and &n — (2 are positive. By using the Lagrange multiplier technique, we get that

Az% + 16enx® — 16¢Cy” + px® = 0,
Bz® 4+ 16c€y® — 16¢Cx” + py® = 0,

Ax® + By +vz® = 0,

for all . Multiplying the these equations.by &, ¢’ and 2°, we find that

and thus

and

Az 16e(En ~ ) + € = 0,

B> #16e(En=¢%) +phy = 0,
AB+pu¢ = 0,

Az* 4+ 16¢An — 16¢BC + pA = 0,
B2 +16¢BE — 16cAC + puB = 0,
AE+B(+vA = 0,
AC+Bn+vB = 0,

A2+ B*+v2? = 0,

2
p= == (424 B2+ 320(n — ),
UV = -
z

After making the substitutions of u and v, the Lagrange conditions can be rewritten

13



as

A4 T6elen — ) = (424 B 4 82c(6n — (),
B4 16e(en — (%) = DA’ + B+ 32e(en — (),
AB = B4 B 4 se(en - ),

A2® +16cAn — 16¢B¢ = %(A2 + B? + 32¢(én — ¢?)),
Bz? + 16¢BE — 16cAC = %(M + B? + 32¢c(én — ¢%)),

Z2(AE+ BC) = A(A*+ BY),
22(AC+ Bn) = B(A*+ B?).
Case 1. A = B = 0. The only points that can give rise to a local maximum value c®?

are £ =1 = % and ¢ = 0. We note that ¢®* < 1022 if ¢ < g—i.
Case 2. A =0 but B # 0. In this case the thitd equation gives ( = 0. If £ # 0, then

. ., . . 22
the side condition £ +n = %, the first and fifth equations imply £ = %(% — 1) and
n= %(% + f—;c) This case occurs only when ® > g—i. It follows from the last equation

that B? = %(@ + ;—i), and theréfore that therfunction takes on the value ¢(® + g—i)Q.
If £ = 0, then the assertion followsftom the sitnple case of &n — ¢2 = 0.

Case 3. A # 0 but B = 0. The argument is similar to Case 2.

Case 4. A # 0 and B # 0. It flows from the sixth and seventh equations that

1 B
= —(A24+BY)-—
€ = SU+B) -
1l e A

The side condition £ +n = % then gives
¢ 2 )
AB 22 2(A%2 4+ B2)
On the other hand, we know from the third, fourth and sixth equations that

AB : 16¢
T =z +80(I)— ?<

Comparing these two equations, we find that A? 4+ B? satisfies a quadratic equation,

A* + B?).

: : : 2 2 _ 1 2 22 22
and by solving it, we obtain A* + B* = 5®2% or Z-(® + £).

14



To find the value of £&n — (2, the third equation gives

16
(A% + B% 4 32¢(én — (%)) = 2° + 8c® — Z—QC(A2 + B?).

| o

If A2+ B?= %Cbzz, then c(én — ¢?) = 0. There are nothing to prove. Thus we may
assume A%+ B2 = 2 (d+2°). In this case, we have c(én—(?) = 5 (®+2)(®—Z). This

22

5.~ Combining with the first and second equations, we

case occurs only when ¢ >
then obtain A%2— B? = 40(@+§—Z)(§—n). The third equation implies AB = 4c(<I>+§—Z)C.

Equalities cases are clear from the above argument. O

Let D,y; = {z € R"™ : |z| < 1} be the open unit ball in R"™ and G the
conformal group of S™. For each g € D, 1, we introduce the mapping, also denote
by g, g : S™ — S™ given by

Ak p<T,9>)g
N4+ <mg>)

g9()

Y

where A = \/liw and u = A’\—Jfl We kiiow that ‘each conformal transformation of

S™ can be expressed by T o g, where| T-is an orthegonal transformation of S™ and

g € D,11 (see [9] and [10]).

Let x : M — S™ be a compact Willmore surface. It follows that for each g € D, 11,

T = gox is also a compact Willmore surface. Then we have

ea = Ml+<x,9>)ea

_ 1

WA= M+ <z, g >)w,4

: (0 Jaws (0 )
w = W o wp — (O w
AP ABT VO <2, 9 )2 T V9NAT < 2,9 >) /PN

where 1 < A, B < n. The new induced first fundamental form of z may be written in

terms of the original induced first fundamental form as

1
ds* = ds®.
° N(1+ < z,9>)? °

Furthermore, the second fundamental forms of  and x are related by

he = A(1+ < 2,9 >)h+ < ea, g > 0y).

15



We recite some relationships of corresponding quantities between T and x as

follows

Lemma 2.2.7. The new H, ® and its derivatives can be expressed in terms of that

of original as follows

1. H* = N1+ < 2,9 >)H*+ 2 < eq, 9 >].

2. Hf = N(1+ < 2,9 >)[(1+ < z,9 >)H} =23 ¢ < ej,9 >].

3. 0% = M1+ < x,9 >)0f.

4. @ = N1+ < z,9 >)?®.
5. ¢ = N(14+ < z,9 >)[(1+ <89 >0t 05 < e, 9> +¢5, < €, 9 > +¢5; <
€, g > =D b < e, g > Ok DO < erng Z0k).
Proof. (1)It follows from the induced second fundamental forms that
H* = > I
= MN(I+<uz,9 >)Zh§+z < e, g > 0
= NI+ <z,9>)H"+2<e,,9>]

(2)By using of the structure equations, we have

<x,g> = <e€,9>,
o

H
<oy g >i = —Z¢%<ej,g>—7<ei,g>.

Since

D M = dh+ Y e+ higwr; + ) s,

16



we have that

dHa = Z dh - Z mkwk 271%1@]% - BZ@/BQ)
1

= H%wp — 2)\ 1 he.
)\(1—|—<m,g>)z k Wk Z[(+<xag>) ki

< €k, g > <é€,g9 > 703
+ < ey, >5i Whi — w; + Wg) — Hwgq
g ki J(wn I+ <x,9> I+ <x,9> ¢) Z s

1 _
= HXw, — 20 (14 < > he Wi
)\(1+<x,g>)z Wk ( + r,g )Z kiWEk
A [+ <z,g >)H +2 < g, 9 >)wpa
1 _
= HXw, — 20 (14 < > Wi
A1+ < 2,9 >) 2 Hiwn =2+ <2.9>) ) o

-2 Z[(l—l— <x,9>)H" +2 < es,9 >wgsa
and

dH® = d{N(1+ <mz,g>)H"+2< e, g}
= A <z, 9> wH FANIE K m g2) Y dh + 2\ < dea,g >
=AY <z,g > wH NIk <@g >) Y- (hewi — 2hgiwk — hiwga)
—2)\Zhgi<ei,g>wk+2)\z<eg,g>wa5

= A<ep,g>wH+ N1+ <'x)g >)ZH,§‘wk

21+ <z, 9 >) Z(gbgz + HT&ki)wki
N1+ < 2,9 >) ZHﬁwga — 2\ Z( v T %(5;“) < e, g > Wy
+2)\Z < e, g > Wap
= Ml+<z,9>) Z Hiwg —2\(14+ < 2,9 >) Zgbz‘zwm
A1+ <z, g >)ZHBWBQ — QAZgb‘,ji < e, g > wg —1—2)\2 < €g,g > Wags.

Hence

HY = X1+ < 2,9 >)|[(1+ < z,9 >)H —2Z¢ < €5,9>].
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(3)The proof is straightforward by

_ 1._
qﬁc.“. = hiaj_éHa(Sij
= M+ < 3,9 >)hi+ < eq, g > 6ij]
1
—5)\[(1+ <x,g>)H*+2 < ey, g >0
1
= A+ <w,9>)(hj — SH" )

= M1+ <uz,g >)¢%

(4)By (3), we have

(5)Since

dhs;

o = Z(‘g)Q = N1+ < 2,9 >)? Z( =N+ <z,g9>)0.

Z(B%k@k — B?k@kj — ng@ki = Biﬁjc—dﬁa)

1 _
A= = I+ <a,9>)h
M1+ <m,9 >)Z igk<k Z[( B9 >N
< ep,g > <ej,9>
+ < eag > O i e T )
A [+ < 2,9 >)h;
< €, g > <€, 9 >

k)

+<e€a g >0k |(Wpyy ——————wj+ ——w
g ki 1k 1+ <z,9> I+ <z,9>

A Z[ (I+ < z,g >)h@+ < e, g > 0ij |Waa

1 o N N
M1+ <a,9>) D B = Mi+ <9 >) p hijwn + XY < eng > b,
_)\Z <ej, 9> hjw, — A1+ <uz,9 >)Zh§jwki + /\Z < ep, g > hypw
_)\Z <epg > hpwe — A1+ <z,9 >) thjwﬁa — )\Z < eg,9 > 0ijWaa

1 - N N

Z{ M1+ < z,9 >)h"ﬂf +A<eng>hpdi —A<ejg>hi
+A < e, g > ok — A< ei,g > hy;
A1+ < z,9 >) Z hjwi; — A1+ <z, g >) Z hi W

M1+ <z,9>) thjwﬁa — )\Z < eg, g > 0ijWsa

18



and

dﬁ% = d{ N1+ <z,9 >)h%+ < €n g > 0] }
= /\Z <x,9 > wphiy + A1+ < 2,9 >)Zdh%+)\<dea,g>(5ij
= )\Z < ek, g >wkh%
+A(14+ <z, g >) Z(hf‘jkwk — hiiwry — higjwr: — hfjwﬁa)
—)\Z hiy < er, g > widij + )\Z < eg, g > 0ijWas
= Y {MI+ <2, 9>+ A< ex, g > bl — X < e, g > hiydy hwy
MU+ < 2,9 >) Y hwr — A1+ < 2,9 >) Y hifjw

M1+ <z,9>) thnga — )\Z < eg, g > 0ijWaa,

hence

hie = N0+ <z,9 >)[(1+ < =, g 2WMFasehs < ex, g > +hi; < e g >

—l—h%<ej,g>—2h§l<el,g>5ij—2hf;<el,g>(5ik—2hﬁ<el,g>(5jk.

a (e H*
Now, we replace h; by ¢ + 5=0i;.

fNe] Yo" I:Il?é
hijr = ijk+751'j

N1+ < z,9 >)

= 7%’19—’_ 9 6’ij[(1+<x7g>)Hl?_2Z¢(lzl<elag>]
o N+ <zg>)P N

On the other hand, we can get

B 1+ < x,g >)Hp
G = N+ <a,9>)[(1+ <z,9>) %k+< 2

0ij + ¢ < ex, g >

2
He i He .
+7<€k,g>5ij+¢kj <ei,g>—i—7 < €, g > 0 + O < €j,g >
He . He i
t5 <€ g >0k — » o <eng>0ij— — <erg> 05— > O < eng> o

« «

G <€j79>5ki_z¢3 <€lag>5jk_7 < e, g > 0]

(14 < z,g >)H
2
+op; < €i,g >+, < €5,9 > —Zﬁl < ey, g > 0

—ZCbZ- <61>9>5ik—z¢§7 < eng > djk.

= N(l4+<z,9>)] (I4+ <z,9 >)5 + 0ij + &5y < ex, g >

19



Hence

_%k = N1+ <z,9>)|(1+<2,9>) G T O <ew,g > o5, <ei g >
O < e g > — Y O <eng>0n— Y 0% <eng>dul

O
For any given constant vector g € R"™ let F*(z) = (1+ < x,9 >)H* +2 <
€asg >. Then F* satisfies the following equation
[e% (03 ﬁ J—
Lemma 2.2.8. AF”+ " ¢% ¢, F° = 0.
Proof. 1t follows from the structure equations that

<r,9> = <¢€,9>,

HO{
<x,g>iy = Z¢%<ea,g>+5¢jz7<ea,g>—5ij<x,g>,

Ha
< en,§>i = —Z¢%<ej,g>—7<ei,g>,
H*H"
_ a B
A<€omg> - _ZHz <€iag>_z¢%¢i]’<eﬂag>_z 9 <é€g,g >
+H <x,9>"

We then have
Ff= (14 <a,g >)H} =2 6% < ej,9 >,

and

AF® = HO‘A<x,g>+22<ei,g>Hf+(l+<x,g>)AHa
+2A < e,,9 >
_ ZHQHﬂ<@ﬁ,g>—2H°‘<x,g>+22<€i,9>H?
—(1+ <uz,g9 >)Z¢%¢fjHﬁ—QZHf‘<€ug>
_ngb%gbfj<@ﬁ,g>—ZHQHﬁ<eg,g>+2Ha<x,g>
= =) [(+<zg>)H +2<es9>] ¢,
= =2 e

20



Finally, for any given constant vector g € R"*!, let

Q/Jiajk = (1+<«T;g>) Z]k+¢zj<ek7.g>+¢jk<6279>+¢kl<€j7g>

=D o <eng>oh— Y 0 <eng> o,

for all a1, 7, k. We will use the following properties.

Lemma 2.2.9. ¢, satisfies the following equations:

1. gy, = g, for all o, 7, k.

2. X =0, for all i.

J]’L

EADNURTES

Proof. (1)By a direct computation, we:have

Vi = (14 < 2,9 >)dig + o5 <€k g > 405, < ei,g > +op; <ej,g >
= 6 <9 0n = Y 05.< ennd > i
- <1+<$,g>) ]1k+¢]z<ekag>+ jk<ei,g>+¢%i<€j,g>

—Zgbf;» <€z,9>5ki—z¢§§ <ep,g >0k

«
ik

(2)It is an immediate consequence of the fact > ¢% =

Zdjm = (I+<z,9>) ZQ%Z Z <€z,9>+z L < ej,g >
+Z¢§§-<ej,g>—Zqﬁfj<el,g>5ij—2¢j‘l<el,g>5z
= 2Z¢§‘i<ej,g>—2z¢ﬁ<el,g>
= 0.

(3)Since > ¢% = 0 and

ik = Pikj T 7]5% 5 —£ 5,
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we have that

>

.
ijj

(1+ < 2,9 >)Z¢%j+z¢%<ej,g>+z b < €i,g >

+D O <eng> =) o <eng>6i— > ¢ <eng >0
o HY a7
+2) 6% <ejg> =Y o <eng>—2> ¢ <eng>

Hy

(I+ < x,9>) 5 —Z¢%<ej,g>
Fe

5
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Chapter 3

Willmore surfaces in S°

In this chapter we shall consider the Willmore surfaces in the unit 3-sphere, and
establish an integral inequality for ® and H. Based on this integral inequality, we
characterize the totally umbilical spheres and the Clifford torus by a certain pinching
condition. We then introduce a conformal invariant quantity which is formulated in
terms of ® and H, and prove that if this quantity is bounded above by that value
of the Clifford torus then xz(MJ) is éither &' totally umbilical sphere or a conformal

Clifford torus.

3.1 A pinching theorem;of Willmore surfaces in
the unit 3-sphere

Our pinching theorem of compact Willmore surfaces in S? is the following:

Theorem A. Let M be a compact immersed Willmore surface in the 3-dimensional

unit sphere S®. Then
H2
/ P2+ ——9)<0.
M 4

In particular, if
2

H

then either ® = 0 and M is totally umbilical, or & = 2 4 HTQ and M is the Clifford

torus.
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Proof. Integrating both sides of the Lemma 2.2.1 over M, we have

2
0 = / Z¢ij+z¢inij+q)(2+H7_q)))

2
— / > ok — Z¢ijoi+<I>(2+H7—<I>)).

It follows from Lemmas 2.2.2 and 2.2.3 that

2

1 1 H
0 > /(—|VH|2——|VH|2+<I>(2+——<I>))
v 4 2 2

1 H?
_ /(——|VH|2+<I>(2+——<I>)).
v 4 2

We obtain from Lemma 2.2.4 that

1 H?
0 > /(——<I>H2+<I>(2+——<I>))
v 4 2

2

- /M‘I’(HHT_@)'

If0<® <2+ 2 then either & = 0-aid M is totally umbilical, or & = 2 4 £

In the latter case, all the integral inegualities become equalities.

® =2+ it follows from Leminas 2:2.1 and 2:2:5 that

/M(“H?“P) _ /(1A<I> Zgwk Z¢£Hm)

Assuming that

29l

B / 1A(I> |V<I>|2 |VH|2+Z¢ini‘1>j

2 20 2

o)

_|vHP Z%H‘I’ 2 9iHy

> )

/M 2¢ P2
VH2 ¢ijH; D, Gij
— [ R EOE L S
vm ¢y H, 0, Dpyj; — by P;
_ /M ‘ ’ Z (I]>2 +Z ]](1)2 J ]Hi)
_ / IVHI2 IVHP)
Ju 20

I
o

This implies that
H? H?
0:/(2+——<I>)=/ —
M 2 v 4
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Thus M is a minimal surface of S? with S = 2, we conclude that M is the Clifford
torus (see [CDK]). This completes the proof of Theorem A.
L

3.2 A pinching theorem for conformal classes of
Willmore surfaces in the unit 3-sphere

Our pinching theorem for conformal classes of Willmore Surfaces in S* is the

following;:

Theorem B. Let M be a compact immersed Willmore surface in the 3-dimensional
unit sphere S3. If
1

infgeGmaxgow(M)(CI)g — ZH; ) < 2,

where G is the conformal group of thé ambielitr space S®, ®, and H, are the square
of the length of the trace free patt of the second fundamental form and the mean
curvature of the immersion g o Z respectively; then (M) is either a totally umbilical

sphere or a conformal Clifford torus,

Proof. By the hypothesis mfgecmawgox(M)(CI)g—ngz) < 2, there is a sequence g,, € G
such that ®,, — 1HZ <2+ < on M, for all m =1,2,--- , where ®,, and H,, are the
square of the length of the trace free part of the second fundamental form and the
mean curvature of the immersion g, o x, respectively. Without loss of generality, we
may assume that g,, € D,. The closure of D, in R* being compact, there exists a
convergent subsequence of g,,. We may assume that g,, converges to gy for some g,
in the closed unit disk. If gy € Dy, then ®,, — &, and H,, — Hy as m — oco. We
find that &g, — %LH 920 <2 on M, and the desired conclusion follows from Theorem A.
So we need only consider the case that gy is a constant unit vector. In this case we
shall show below that M is totally umbilical.

Suppose, to get a contradiction, that ® is positive somewhere on M. To avoid
ambiguity, we shall now use the notations da and da,, for the area measures of x and

Jgm © x, respectively. Since g,, o x are Willmore surfaces, the integral inequality of
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Theorem A gives

H2 1
2 [ ®,,da, < S, (P, — —)day, <2+ —) | Dy dag,.
M M 4 mJm

It follows from Lemma 2.2.7 that, since Willmore functional is invariant under con-

formal transformations of S®,

21 |gaf") [ da
M

1
< /CI>[(1+<x,gm>)2CI>—Z((l—l—<x,gm>)H—|—2<63,gm>)2]da
M

1

< @+ -lgl) [ eda
m M

Letting m — oo, we find that
1
/ D(14 < g0 >0 — (14 < 0,90 >)H +2 < 5,90 >)]da = 0.
M
On the other hand, since ®,, =%H,, < 2+ % on M, Lemma 2.2.7 gives
2 1 2 1 2
(1+ < 2, gy >)°® — Z((H_ <Hggm > H +2 <359 >)° < (2+ E)(l — lgm|?)-

When m tends to infinity, we find that (THF<E, go->)*® — 1((1+ < z,90 >)H +2 <
e3, go >)? is nonpositive on M.

We then conclude that (1+ < z, gy >)?® = $((1+ < z,90 >)H + 2 < 3,90 >)*
or ® = 0 on M, and hence (1+ < x,gy >)*® = %FQ provided ® > 0, where F is
given as in Lemma 2.2.8 corresponding to the constant unit vector go. This implies
that either F = 2(1+ < 2,90 >)V® or F = —2(14+ < x,go >)v® on each of the
connected components of the set of points where & > 0.

For each fixed m, let & = g, o x. Since g,, o x is a Willmore immersion, we have

again

Y D ST NS SE AR TR P
M ijk ij 415 5
[72
= A[Zéfjk_Z&ijomL@(QJr%_q))]da
o VAP oo B
B /M[Z(ﬁﬂ_' e T a))m

26




When m tends to infinity, it follows from Lemmas 2.2.7 and 2.2.8 that

1 1
0 = / ¢r?jk_§‘VF|2+®[§F2—(1+<$,QO>)2©]da
M
1 1
_ 2 2 2
_ /Mwiﬂf_i‘vﬂ + 1O da
1 1
= /M 2031, + Piay + Vi1 + ) — §|VF|2 + ZI)FQ da
2 2 1 2, 1o
2 (V111 + Y122)” + (Y211 + Y222) —§\VF] +Z<I>F da
M
/ 1|VF|2+1<I>F2d
= —— - a.
Ly 4 1

= 0,

here we use the identity (1+ < z, gy >)?*®? = 1®F?. Therefore we have 1111 = 112
and 1511 = 999. Combining the last two equations with Lemma 2.2.9 and simplifying,

we can express ¢ in terms of Fy and Fj,

1
V111 = Y=o = 5 oz = ZF1

and

1

¢121 = ¢211 = w222 = _1/)112 = ZF2

Let U = 2(1+ < z, g0 >)vV®, and let Q'be a connected component of the set of

points where ® > (0. Then

U1 = 2\/5 <e1,g0 > +4@(1+ <Z,q0 >)¢111 + 4@(1—}- <Z,4go >)¢121,

Vo Vo

Uy, = 2\/6 < €e2,0gg > —‘—4@(14— <Z,q0 >)¢112 + 4%(1"’ <,Qgo >)¢122

Vo
on 2. Since 1,5, can be expressed in terms of | and F5, we then obtain that for all ,
Ui=>_ %FJ
on ). Therefore we have
VU? = é[(@bnﬂ + 019F2)? + (¢o1 F1 + oo Fo)?] = é(@bi + 01| VF|? = %|VF|2

on €. On the other hand, we know that U = +F on Q, |[VU|* = [VF|?> on Q. We

then conclude that |V F'| vanishes on 2, and hence F' is a constant on €. Since every
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immersion is locally an embedding, 1+ < z, go > vanishes only at most finite points
on M, and (1+ < z, gy >)*®* = i@FQ on M, this constant must be nonzero by the
continuity of ®. Since F' is a nonzero constant satisfying the equation AF + ®F = 0,
® vanishes on (2, we get a contradiction. This contradiction shows that ® vanishes

identically, and M is totally umbilical. This completes the proof of Theorem B. [
From Theorem B, we obtain immediately the following.

Corollary 1. Let M be a compact immersed Willmore surface in the 3-dimensional

unit sphere S3. If
infgeGmaxgoﬂf(M)(q)g) < 2’

then M is either a totally umbilical sphere or a conformal Clifford torus.
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Chapter 4

Willmore surfaces in S"

In this chapter, as for the case n = 3, we also characterize the totally umbilical
spheres and the Veronese surface by a pinching condition for the case n > 4. Analogous
to the case n = 3, we then introduce a conformal invariant quantity, and prove that
if this quantity is bounded above by that value of the Veronese surface then xz(M) is

either a totally umbilical sphere or & conformal Veronese surface.

4.1 A pinching theorem of Willmore Surfaces in
Sn

Our pinching theorem of Willmore Surfaces in S™ is the following:

Theorem C. Let M be a compact immersed Willmore surface in the n-dimensional

unit sphere S™, n > 4. If

2 1 4 1 1
0<PdP< -4+ _H? \/— “H?2+ —H*4
- _3+8 + 9+6 +96 ’

then either ® = 0 and M is totally umbilical or ® = % -+ %H2 + \/% + %Hz - %H“.

In the latter case, n =4 and M is the Veronese surface.

Proof. For simplicity, from now on in this section, let r(H) = \/ S+ LH?+ H
First, we wish to show that ® is equal to either 0 or 2 + %2 +1r(H).
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Integrating both sides of the Lemma 2.2.1 over M, we have

(- [ S oo T
M
By SRR

It follows from Lemmas 2.2.2 and 2.2.3 that

1
02 [ [~ S IVH + 82+ -~ )= 3 Ria ]

Since

Z(Ra,@12)2 = 42(925?@?2_@5?1 ?2)2
= 8 (6917 ) (65)* — 80> ¢%105,)°,

by Lemmas 2.2.4 and 2.2.6 with ¢ = 1, we get

0 = [ (3T e HP -8 S i St + 83 dhon)

iJ «
2

+<1>(2+i—<1>)]

2
= [ {3 (S o AP + 16 Y (1) Y (6
2
—16(> 565 +c1>(2+7—c1>)}
> [ ue.m),
M
where w is the continuous function given by u(®, H) = =3[ ®? — (3 + HTQ)CID + % |, if

o> L y(@ H)y =02+ L — @), if o <L

Notice that u is nonnegative. In fact, if 2 + %2 +r(H)>d > %2, then

u(@ H) > (@~ (24 T (H) ) ) 4 ()] 20,

and if ¢ < %2, then
2

H
u(® H) > &2+ ) > 0.

The preceding integral inequality then implies that if 0 < & < % + %2 +r(H),
then either ® = 0 and M is totally umbilical, or ® = 2 + %2 +r(H). In the latter
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case we show below that M is minimal.

Now we shall simply assume that & = % + %2 +7(H). In this case, all the integral
inequalities of previous argument become equalities. The proof of M is minimal is

broken up into four steps.

Step 1. We establish the following two equations for later use:

IVO[? =) g0, HY

> |IVH? / r(#) |VeP /
— _ aHa
/M 40 mr(H)+ 2+ 2 @2 4‘192 %%

2 (0% (03 (e (03 H
Because ® = 2 + L + r(H), by Lemma 2.2.3, ¢$4; = ¢S5 = 0S5 = — P59 = —&

and

and @9, = 0559 = @7y = — @7, = =y 1t follows, from a straight computation that

’vq)‘zzz aq)Ha_ Z¢?1HQ+Z¢?2HQ Z(b?zHaWLZ%QHa

We obtain the first equation.

1 l+H_
(bi —_ (= 6 48 HaHa
G
Hence
H)|V|?
i, - TV

Multiplying by H®, dividing by ® and integrating over M, the equation AH® +

> ¢%¢ H® = 0 implies that
- /Z<M+ZW>
N (ESTIIS
_ @[_Z(IV?PJ}?H& ZZWH‘“
/M[—Z|v2{a\2+@:<f?+%\z}q;|2 LS s
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This gives the second equation.

Step 2. We shall show that H? and ® are constants. Dividing the equation of
Lemma 2.2.1 by ® and integrating over M, we get

AD o 3(0)7 | X H? X R
Mﬁ_/M[ > @ '

By applying Stokes’ theorem, we obtain

P2 Ho|2 P 2 R?
|v | — / [ Z |V | . Z ¢Zj]q)2 i jHO( (2+ i i (P) i Z 312 ]
M

Y 202 40 2 o
SAVHP  Y|VHP | 2 o5%HY H? > Reps
_ _ 24— &
/M[ 40 I R Gl e A S

where we have used Y_(¢%)% = § > [VH*]> and ) ¢, =

we obtain from the equations of step 1 that

Vo2 S |VH2E > ¢fPiH H? ERamz
0 = /M[ 2p2 1 B o2 HE2+ 2 -2)- ) ]
V|2 1(H) Vo[ 1 |VfI>]2
— — _ T = OéHO!
/M[ 202 p(H)$2 202 4¢Z(Z¢ S KN
H? ERigm
24 = _ —
+(2+ 5 P) ‘s ]

_ V| 2r(H) 1 o e
B /M[ 292 (1_r(H)+§+%>_EZ(Z¢H> + Q2+ - )
_gz( ?1)22( ?2)24'%(2&1}1 12

B V|2 2r(H) 1 H2 0
- [ (5t i e RE LR R SO on ey

(D HHY?+16) (657D (65)* — 160> 6%16%)7)] }

]V@\Q 2r(H) 1 H? 1 H?
P2+ ——P)— (P + — .
S 0 )+ gle s ) e )
37712
Since the last term of the integrand vanishes,
H? 1 H? 3 4 H? H*
PR+ — —P)— (D + —)P =[P — (=4 —)O+ —
(+2 ) 2<+8) 2[ (3+4)+192] 0,
we have
Vo|? 2r(H
| 2|(1— T(Z)HQ) 0.
v 29 T(H)—i-g-i-ﬁ
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We note that the integrand is non-positive. In fact, let

1 l+£
fla) =g+
\/ 5+ 5% + g5
Then
1
fl(z) = — <0

108( + .CI? + %1’2)
for all x > 0, f is decreasing for all > 0, and f(z) < f(0) =1 for all z > 0.
We then have |[V®| = 0 or H = 0, thus ® is constant on each connected component
of the set where H # 0. Since H? satisfies the quadratic equation ®?—(3+% )<I>—|— fg; =

0, H? is also constant on each connected component of the set where H # 0. We con-

clude that, whether H is zero or not, H? and ® are constants.

Step 3. Assume that H? is a positive constant. We establish the following five

equations:
1 H?
AHS +' (&4 ——)HY= 0,
2 8
H2
Z|VHO{,2 ®+_)H27
Zﬁb{ﬁHf = dezﬂf = Zﬁb%H? = Zﬁﬁ?zHg =0,
2 2 H?
S(HE) = (H) =20+ =) > o H°
and

2
STHIHS = (@) 3 o

Since the equality in Lemma 2.2.6 with ¢ = 1 holds, applying

LHO QS+ ol H6)
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twice, we have

polH? = — (@02 H + Y ol S ol HP) gt

o+ 4= 5
+(O ey Y H ) (6ly) 22%2

<¢>+£>Z¢ N:C <I>+— Z¢12H% ]

8 [1
H2
o+ 54
1 H?

= —(P
(P +

He.
5 )

Thus
2

1 g
AH® + (@ + ~)H* =0,

as desired. We obtain the first equation.

Since H? is a constant, the first equation gives
1
0 = -AH’
2
= Y |VH] + Z N

2
= > V= <I>+£)H.

This is the second equation.

Now we show the third equation. Because the equality in Lemma 2.2.6 with ¢ = 1

holds, we have

H? H?
A2—|—B2 - I((I)+?)7
2

H
AP B = 40+ ?)[ 2 (01)7 =D (61)% ],
AB = 4(® JF - Z¢ 12;
where A =Y ¢} H* and B =) ¢, H".
Since A% + B? and H? are constants,
0 = 2403 o0 H"+ ) ¢ HY) +2B(Y_ dinH* + ) 6% H)
= 2AZ¢?1H? + 2BZ¢(112H1Q>
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we have
AZQS%H? + BZ(ﬁ%H? =0,

we make use here of the facts that ¢{; = % and ¢191 = %. Similarly, we also have

AquleQﬁ + BZgbngg =0.

Since A%+ B? is a positive constant, Y ¢ HY = —tB, > ¢S HY = tA, > ¢8 HS =
—sB and ) ¢%5HS = sA, for some functions ¢ and s.

Taking differentiation of equations A2 — B2 = 4(®+1L2)[ 32(¢$1)? = 32 (¢53)? | and
AB = 4(® + %2) > 0% 0%, and then substituting > ¢, HY = —tB, > ¢ HY = tA,
Yo HS = —sB and Y ¢, HS = sA, we get

2

H
AAB = (B+)(sA+1B),

2sAB &= (®+ H?z)(tA —sB),
t(A? — B3 = (d&+ H{)(m — sB),

s(A2 — B%) = (& + %2)(—314 —tB).

In particular, t(A? — B?) = 2sAB, s(A*=B?)= —2tAB, and s?AB = —t?AB. Since
at least one of A and B is nonzero, there are three cases. If A = 0, then —tB? = 0,
—sB? = 0, so that t = s = 0. Likewise, if B = 0, then t = s = 0. If A and B are
nonzero, then s> = —t2, and hence t = s = 0. In each case, t = s = 0. Therefore we

have the third equation.

Taking differentiation of the third equation, and substituting ¢}, = ¢%95 = 95,5 =
HO{ HC!
— %, = - and @5, = §%, = ¢y = — ¢y, = =2, we find that

LM~ (P Y enaET = 0,

1 « (07 (0% o «
5 E HYHY + E o1 (Hiy — Hyy) = 0,
1 (63 (63 (e} (0%
5 E Hl Hz + E ¢12AH = 07
1 (07 o « o «
Z E :[(Hl )2 - (Hz )2] + E ¢12(H12 - H21> = 0.
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The equations four and five then follow from AH® + (P + H{)H “ =0 and

Hyy — Hy = Z HﬁRﬂaw =2 Z Hﬁ(gb%qb?l - Qb?ld)%)

Step 4. The hard part is to show that M is minimal. Suppose, to get a contradic-

tion, that H? is a positive constant. The following computation is straightforward,

arro a2 H2 P |2
HYHS Rigjr, = [VH®| 312122(1+T—§)|VH .

Applying the third equation of step 3, we obtain
Z H?HfRBaij = —2(HfH25 - H2aH1’8)(¢?1¢f2 - ¢(112¢?1) = 0.
(e — (0% —_ (e — (03 — H](_)l (0% J— (e — (0% N (07 — Hg
Because ¢fy; = @73 = @515 = —0%; mEgland: 05, = @5y = ¢y = —0712 = 7,
(03 1 o x (04 (63 (63 (64 (03 [0
ZHi HﬁRBm’j,j = 9 Z[ (Hl )2 = (Hz )2 ] Z¢11H + ZH1 Hy Z¢12H :

Applying the fourth and fifth equations-ef-step, 3, we obtain

1 H?
> HYHPRpuiiy = 7@+ §)2H2-

Because H? and ® are constants, > |VH®|? is also a constant, combining the

above equations, we have

1 |2 a2 arya
0 = SAY [VHP = (Hg)* + H{ H;
= Y (H)* + HY(HS, + Hi Rijij + 2H) Rgas + H” Rgaij ;)

= Y (H3)? + HY(AH®); + HY Hf Rigji + 2HPHJ Rposj + HY H Roaij s

1 H? H?> &
o a2 - |2 = a2 arrf
= Y (H) —2(c1>+—8 )| VH?| +(1+—4 2)|VH ?+>  HYH’Rgaiy,
1 1 H? H?> &
> (Y HY)?—S(®+ —)|IVHP + (1 4+ — — ) |VHP + Y HfH Rgaij,

1 H? 10
= @+ ) HA( + HE = r(H)) > 0.

36



We then have a contradiction. This contradiction shows that H = 0. Then we
conclude that M is a minimal surface with & = %, so that M is the Veronese surface

(see [6]). This completes the proof of the Theorem C. O

From Theorem C, we obtain immediately the following.

Corollary 2. Let M be a compact immersed Willmore surface in the n-dimensional
unit sphere S™, n > 4. If

4 1
0<®< - 4+ -H?
< _3+6 ;

then either ® = 0 and M is totally umbilical or & = % + %H 2. In the latter case,

n =4 and M is the Veronese surface.

4.2 A pinching theorem for conformal classes of
Willmore Surfacesvin:S”

Our pinching theorem for econformal classes oft Willmore Surfaces in S™ is the

following;:

Theorem D. Let M be a compact immersed Willimore surface in the n-dimensional

unit sphere S™, n > 4. If

. 1 4 1 1 2
N f geaMAT gog(ar) (Py — gHgQ — \/§ + 6H92 + %Hg ) < 3

where G is the conformal group of the ambient space S™, ®, and H, are the square
of the length of the trace free part of the second fundamental form and the mean
curvature of the immersion g o x respectively, then z(M) is either a totally umbilical

sphere or a conformal Veronese surface.

Proof. The idea of the proof is to consider a minimizing sequence g,, of the conformal
group G, such that the sequence g,, converges to an element g, of the closure of G.
If go € G, then the result follows immediately from Theorem C. Otherwise we shall
show that M is totally umbilical.
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By the hypothesis of Theorem D, there is a sequence g,, € G such that &,, —
sHZ —r(Hy,) < 2+ 2 on M, for all m, where r(H) = \/g + ¢H? + 5-H*, ®,, and

H,, are the square of the length of the trace free part of the second fundamental
form and the mean curvature of the immersion g,, o x, respectively. Without loss
of generality, we may assume that g,, € D, ;. Since the closure of D, ; in R"! is
compact, there is a subsequence, still denoted by g¢,,, which converges to gy, for some
go in the closed unit disk. If gy € D, 1, then ®@,, tends to @y, and H? tends to H3
as m tends to infinity. In this case, we obtain that ®, — H§ —r(Hy) < 3 on M, and
the desired conclusion follows from Theorem C. Thus from now on, we may assume
that g is a unit vector. In this case we shall show below that M is totally umbilical.

There are four steps we want to do at this point.

Step 1. We want to show that ® =100r(l+ < z,gy >)*® = %F? The proof
is an adaptation of the proof of TheorempC«Io avoid ambiguity, for each fixed m,
let £ = g,, o x, and we shall now use the notations da and da for the area measures
of x and z, respectively. We have te .modify our integral inequality in the proof of

Theorem C as follows

0 = / > (68%) +Z¢QH°‘+<I>2+——<I> > R, ]da
M
- /MZ k) Z%H”‘PH——‘I’ > Rip)da
/——Z|VH°“|2+<I>( +——c1> —Y R, ]da
M
[72

U - B
/M[—§f(<1>,H)+<1>(2+7-<1>)]da

v

v

> / Bo(®, H)da,
M

= /CIDU(CI),H)da,
M

where v is the continuous function defined on M, v(®, H) = —3[ ®—(3+ %2 +r(H)) ],
<

i@ > 34554 (H); (@, H) = =2 0= (G5 +r(H)) | if £

o(®,H) =8 2 4 Lop() — & if & < 12,

O < 2+ 4 p(H);

Dividing the integral inequality by A2, = m and letting m — oo, Lemma
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2.2.7 gives

0 > /(I)L((I),F)da,
M

where F = >~ F%e,, F' = |F|, was defined at Lemma 2.2.8 and L is the continuous
function given by L(®, F) = =3[ (1+ < z, g0 >)?® — %FZ |, if (1+ < z,g0 >)?® >
SR [(0,F) = — 5[ (14 < 2,0 >)°® — B8 | if £ < (14 < 2, gy >)° <
B2 (@, F) = £ — (1+ < @, g0 >)?®, if (14 < 2, 9o >)>® < .

On the other hand, since ®,, — $ H2 — \/5 + ¢H2 + o HY < 24 L on M, taking

limits m — o0, we see that

(1+ < 2,90 >)*® — <0,

3+ V6
24
and thus the integrand ®L is nonnegative. We conclude that ® = 0 or L = 0, and

hence ® = 0 or (14 < z, g9 >)*® = MFZ. We note that all inequalities become

equalities in the procedure for limits; and, in particular, ¢, =

Step 2. We want to show that either M is totally umbilical or (1+ < z, gy >)*®
and F? are positive constants. Multiplying both sides of the equation for ® in Lemma

2.2.1 by ®, integrating over M and applyingpointwise estimates of Step 1, we obtain

Loy 1o
0 = /[—|V<I>|2+—<I>A<I>]dd
v 2 2

1 = T |2 ¥ a e
e o frad . L Bl d

> /M5\%;?-@ZWHQP—Z¢%H?¢>j+@[®(2+——‘I’ > Ripolda
1 — 2 (O & g (e Oé

_ /M§VCD| Z(I)HH Zch

Z > 65 H)? + O 2+— —®) =Y Ry, |da
where in the last step we have used the identity
/ ©Y " |VH da :/ =3 QHHI+ @Y (D ¢fH*)? | da
M

In fact, this identity comes from multiplying the equation AH® + > &%ég HP =0 by
®H and then integrating over M.
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By using Lemma 2.2.6 again, we have

0 > / —|V<1>|2 ZCDHQHQ > o H; | da
M
+/ [——f(<I>H)+<I>(2+H7—CI>)]da
M
> /M—|V<1>|2 Z@H“H“ > o HND, +/M v(®, H) | da,

where v was given at Step 1. Substituting the relationships of Lemma 2.2.7 into this

last integral, we get

0 2 [ (26004 <0 =) SO0~ (0 < 0 >)' S SR Y 65 E
M
1 « « « 03
+§/\?n(]‘+ <z, g >)° E Pt E FOF
1

M (1 m > 020N (1 m >)7 P, A F da.
A (14 < 2, g >) Q7 0(A, (14 < 2, g >)° @, )]/\?71(1+<Sc,gm>)2 !

Dividing the integral inequality by A% and letting,m — oo, we find that

0 > /M[ 2(14 <z, go >)° Z(¢kl @V + <L 7,90 >) Z¢kl kllz¢aFQ
1
+§(1+ <90 >) Zﬁbgﬂbgﬁ ZFQFZQ‘ | da

this we can do because ® = 0 or L = 0. We assert that the integrand is nonnegative.
Let Q be a connected component of the set of points where ® > 0, and let U =
(14 < 2, gy >)V® defined on Q, where 5 = 3+\[ . Then

- C\/_ < €i, 90 > +QCZ ¢11 1+ <z » go >)¢11’L + 2c Z ¢12 ]'+ < , 90 >)¢(112i7

for all i. Substituting (1+ < x, go >)¢f}; in terms of 7

ik Lemma 2.2.9 gives

Ui = \/—Z@” %Zd)mzﬁ,

for all 7, here we have used the fact that ¢ = U?, we

find that the integrand is equal to (1+ < x, gg >)? @(% - c%)|VU\2 on 2. When & =0

1]]7 »

the integrand vanishes, when ® > 0, because % — c% = 3=

6 >0, the integrand is also

nonnegative, as desired.
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Since every immersion is locally an embedding, 1+ < z, gy > vanishes only at
most finite points on M, thus [VU|> = 0, if ® > 0. Therefore U is constant on each
connected component of the set where ® = 0. A consequence of this is that either M

is totally umbilical or (14 < , gy >)*® and F? are constants.

Step 3. Assume that (1+ < z,g9 >)?*® and F? are positive constants. It is

important now to derive the following four equations which will require in Step 4:
[6% 4 (6%
F* = 72 Z S % + Z G2 F 65,

P + (1+<x 8(1+<w,g0>)2

Zﬂs(lela:Z¢?2FFZZ¢?1F§:Z¢?2F;:07

(Lt <200 > IR — (B =20 (1 < gn >0+ 5 13 oo

and

F2
(14 <90 >)° Y FPEE=T (Lt <igg >)°®+ ) oI

The way of proof is proceeding as the procedure of Step 1, but reverses the order
of taking limits and applying Lemma 2.2.6." Since g,, o x is a Willmore immersion,

Lemma 2.2.7 gives

0 = /MZ ) +Z¢QH“+<I>2+——<I> > R%,, ) da
= /MZ o) Z¢gjﬂa+c1>2+——q> > Ry, lda
> / ——Z\VH‘“!2+<I>(2+——¢ > RZy,lda
> [ {5l Ty + (T ) + 16360 o (5)°

2

—16(> _ &5 +<I>(2—|—H7—<I>)}da

- [ (3% Z%F“ (3 o
FI6(L+ < 2,0 >) (00 S 0007 — 1601+ < .00 (Y 0710)°)

A2
+P(2+ = 5 — 2 (1+ < z, g >)*®) } da,
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where A, and F2 = > (F2%)? was defined at Lemma 2.2.8 with g = g,,.

- 1
1_|gm|2’

Dividing the integral inequality by A2, and letting m — oo, we get

/ (=2 gy + (3 g, oy
+16<1+ <9020 3602 S0 — 161+ < 2, g0 )Y dty)? |

+<I>(F72 — (14 < 2, go >)*®) } da,
where F' denote the function related to go.
Now, we apply Lemma 2.2.6 with ¢ = (14+ < x, 9o >)? to the first term of the
integrand. Since (1+ < z, go >)*® is a positive constant, 1+ < z, gy > never vanishes
and (1+ < z,go >)?® = %EFQ, Lemma 2.2.6 gives
2
8(1+ <z, go >)?

0 > /{—%@+<n%>ﬂ¢+ ¥

F2
+®] - - (14 <uwigor>)>® | }
O F2 F

3
= 1+ < >Hoie
/M 5l I+ <grod>) D T <o)

= 0.

It follows that all the inequalities in the preceding process become equalities. In
particular, the equality in Lemma 2.2:6 ‘with' ¢ = (1+ < x, gy >)? holds, and hence
the first equation follows immediately.

Applying the first equation twice, we have

D e D DD YLD DD W
8

1+<z,9>)2
+<§j¢> §:¢5Fﬂ+§:¢ 2§:¢@Fﬁ

8 Z
1
(P Fﬁ
+4< +8(1—|—<1:g> Zd) Oz

1 F?
= [P+ |F

Y

2 8(1+ < z,g >)?

for all a. Thus F'* satisfies the following equation
F2

1
AFY 4+ =] ®
ol s <oy

2

|Fo =0,
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The scheme of showing others are similar to that of Step 3 in the proof of Theorem

C. We made a brief sketch here for clarity and completeness. Let ¢f; (1+ < z,g90 >

)o3 for all a4, j. Because 9}, = b:i'a, for all «, 1,7, Lemma 2.2.9 gives
(0% Fa (0%
Y111 = Tl +2 < e2,90 > P,
Sptl)élQ = _72 —-2< €1, 40 > ¢?27
Plo1 = T2 —2 < ez,90 > O
and
kT

Plag = 1 +2 <ei,go > 0.

Because the equality in Lemma 2.2.6 with ¢ = (1+ < z, ¢ >)? holds, we have
2 2 R

A= B® =08CI i) = > (%) ],
AB = 802(5(11@(112,

where A =Y ¢f F?, B =Y o5 Fe and C=((+ < z, g0 >)*® + £7).
Since A* 4 B and F? are constants, differentiating A®+ B* and substituting ¢,

in terms of F and ¢, we obtain

%’7
AZ%O%F?"'BZSO%F{I:Q

AD PNFS +BY ¢LF =0,
Since A% 4+ B? is a positive constant, > % F* = —tB, > i, F = tA, > oY F§ =
—sB and ) o Fe = sA, for some functions ¢ and s.

Next, we differentiate the equations involved A% — B? and AB, obtaining

tAB = C(sA+tB),
SAB = C(tA—sB),

t(A? — B*) = 2C(tA - sB),

s(A>— B%) = 20(—sA—tB).
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As before, this implies s = ¢ = 0, and we get the second equation.
Differentiating the second equation, the proof of remaining part uses exactly the

same argument as Theorem C, one just replaces H* by F'® throughout.

Step 4. Finally, we assert that M is totally umbilical. Suppose that, to get a
contradiction, M is not totally umbilical. It will then follow from Step 2 that both
(14 < z,go >)?*® and F? are positive constants.

Setting C' = [ (14 < z, g0 >)?® + %2) ], since F? is a constant function, we have

0 = %(H— <z, g0 >)’AF?
= (I+<x,9 >)2Z IVFY? + (1+ < 2, 9o >)ZZF"‘AFQ
= (I+<wz,g0>) ) |[VF|* = CF?,
and hence
(1+ < 2y 90>)? Z VP = CF2

This means that (1+ < z, g9 >)? ) [VE9? is also’a constant function. Both first

derivatives being equal to zeros, we got
(1+ <9 >)ZZF}a‘Fﬁl < €i, 90 >= _(1+ <,00 >) Z |VF1C%|2 < €4, 90 >2 .
Once again we use the fact that (1+ < z,gg >)*>_ [VF%|? is a constant, we have

1
0 = S+ <z >PA[ (14 < 2,90 >)° > [V
1 1
= S+ <70 > IVFPAL+ < 2,90 >)° + 51+ <200 >)IAD |VE)
+(14 < 2,90 >)°V(14+ < 2,90 >)*- V> _[VF??
= C’FQ[ —32 < ei, g0 >2 +(1+ <z, go >)(ZH°‘ < e€ayfo > —2<x,90>) |

1
+5 (14 <90 >)'AY [VFP,

here we have used the fact that A < z,g90 >= > H* < €na,90 > —2 < z,90 > . We
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need to adjust the last term,

1 e Oé (63
St <290 >)'AY VI = (1 <wogo >)'[ Y (F5)*+ ) ]
= (I <z,90>) [Z(E?) +)_FAFY),
D FTE Rig + 2 FUFY Ry
+>  FPF’Rgaij; ).
Now we take care of these terms containing curvature. First, it is straightforward

that

e (e [e% H2 (D «
> FPFP R = Rioz Y |[VFP = (14 -3 > IVEP

Next, applying the second equation of Step 3, we obtain
Z E‘aFjﬁRBaij = _Q(FlaFég - F2O[F1ﬂ)(¢(111¢?2 - (ﬁ?ﬂb%) =0

Finally, substituting ¢f; in terms of It and@f, the second equation of Step 3 gives

i)
(1+ <a,90 >)* X FF’Rpaisly
1 (6% (6% [e% (% (o7 (6% (0% (0%
= §Z¢11F Z[ (F1 )2_(F2 )2]+ZS012F ZFI Fy'.
Then applying the third and fourth.equations of Step 3, we have

F# F?

FOFPRgii = —[ @ 2,
Zz Bovij,] 4[ +8(1—|—<x,go>)2]

Together these equations imply that

1
2(1—|—<x go >)t A Z|VF‘1]2
H?> &
= (I4+ <, g0 >)4Z(F§)2 + CF*(14 < 2,90 >)*(1 + o 5)

Substituting this into the original equation, it follows that

0 = (I <z,g0>)" Y (FL)P+CF[ =3 < e, g0 >

H?> @
+ (I+ < 2,90 >)(2Ha<ea,go> —2<z,90>)+(1+<2,9 >)2(1+T_§

To estimate the first term, let
Fg = (1+ <90 >)°F}
(14 <z,90 >)[ F* <ej,90 > +F} < ei,90 > —ZF/? < €k, go > 0ij |,
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for all a4, 5. Then

Z =1+ < z,90 >) Z S =—-CF°,

201+ < w90 >)*[ D FLF <ejgo >+ Y FAFS <ejgo>
—ZFﬁF/? < er, go > |

+(1+ < z,90 >)* D (F)? +2(14 < 2,90 >)* Y |[VF)* < ej, 90 >

2(1+ < x, go >)*( ZE?F“<e],go>+Z — ) < ei,go >)

+(1+ < 2, g0 >)* Z:(FZ‘;‘)2 +2(1+ < z, 90 >)C’ZF“F,§‘ < eg, go >

+2(14+ < z, 9o >)? Z |IVFY? < e;, g0 >>

2(14 < z,90 >)*(2) _FGF < ej g0 >+ > FPRpoisFY < €1, 90 >)

1+ < @90 >)" Y (EPHRAS < 2,90 >) ) IV <eiygo >

—2(1+ < 2,90 > VR < o> +(1+ < 2,90 >) Y (F)2

Thus the first term can estimate from below by

(14 < 2,90 >)* ) (F)°

I

D (ESP+2CF Y  <eigo >’
Y (FS)?+2CF*) < ei go>”
%(Z ﬁﬁy + 20 F? Z < €i, 90 >2

1
§C2F2+20F22<6i,gg >2.

v

v

Because 1 =<z, g0 >2 + > < €5, 90 >2 + > < €q, go >2, we conclude that

0 >

1
CF?[1— Z < e go >0 — < x, gy >2 +Z(1+ <z, g0 >)H?

1 1
+(14+ < 2,90 >)H* < €0, 9o > +=—=F> — —(1+ < z,gp >)*® ]

32 4
9 1
F? —F? - 2(1 2
24 — /6
== T CF*>0.
96

This contradiction shows that M is totally umbilical. This completes the proof of

Theorem D.

]
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As an immediate consequence of Theorem D, the pinching condition can be sim-

plified as follows.

Corollary 3.Let M be a compact immersed Willmore surface in the n-dimensional
unit sphere S, n > 4. If
P, H2 -
N f yeaMat gou(ar)(Py — 5 ) < 3

then z(M) is either a totally umbilical sphere or a conformal Veronese surface.
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Chapter 5

Examples

The point of the following examples is that it shows our results about upper
estimate for ®, Theorems A and C may fail to be true if we make a slight change in
the pinching condition.

Example 1. Let z : S x ST — S3 be the Clifford torus,

(cos @, sinf, ¢os ¢, singp).

€

V2(4+e) "

Consider the Willmore surface-®, = go@, where g = (a,0,a,0) with a =

Since the Clifford torus is a minimal surface with.® = 2, we have

1
cosp+1)% — —(—i cosf + icosgp)2 ).

2 TV

1 2
o, — ~H? = ¢ cosh+ —

4 1—2a2[(ﬁ V2

The maximal value of ®, — $HZ over S* x S' is

1 2
2+—\/_a:2_|_€.
1—\/5(1

Thus for every e > 0, there is a compact Willmore surface M? in S3, it is not the

Clifford torus, with 0 < ® <2 + HT2 + €.

Example 2. Let x : S(v/3) — S* be the Veronese surface,

z(0,0) = (V3cosfsinfsinyp, V3 coshsinb cosy, v/3cos? 0 cos@sin g,
V3

1
5 cos? 0(cos® ¢ — sin® ), 3 cos” ) — sin® ).
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—V6+4/6+3e(5+5)

Consider the Willmore surface x, = goz, where g = (a, a,0,0,0) with a = e

Since the Veronese surface is a minimal surface with ® = %, we must have

1 4 1 1
o, — —HZ—\/— CH2 4+ HY

8 9+6 6+96 ¢

L { Lalsing +con ) sin20 + —= * = 2 (cos g — sin o) cos?d }
= a(sin @ + cos ) sin — ] — —(cos ¢ — sin¢)* cos

o v @ 7 5 (cosy @
4 242 4

—\/§ + 3(1_—a2a2)(cos<p —sin )2 cos? 0 — m(cosgo — sin )% cos* 0.

The maximal value of &, — $H2 — \/g + 1H2 + LH?! over S*(V/3) is

1

2
=2t 5 —3te

9 2

Thus for every e > 0, there is a compact Willmore surface M? in S*, it is not the

Veronese surface, with 0 < & < % +_HT2”+ \/g -+ %HZ + %Hﬁl + €.
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