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Abstract: ATM connection-admission control 
(CAC) using neural networks offers improvement 
over conventional CAC but creates some 
difficulties in real operation, such as complicated 
training processes. This is because ATM traffic 
characteristics are quite diverse, and quality of 
service (QoS) and bandwidth requirements vary 
considerably. A neural-network connection- 
admission control (NNCAC) method which can 
overcome these difficulties by preprocessing 
neural-network input parameters is proposed. 
The NNCAC method introduces a unified metric 
for input-traffic parameters by utilising robust 
analytical results of the equivalent-capacity 
method. It diminishes the estimation error of the 
equivalent-capacity method, due to modelling, 
approximation and unpredictable statistical 
fluctuations of the system, by employing the 
learning capability of a neural network. The 
method further considers the congestion status 
parameter and the cell loss probability, which 
provides insight information about the system. 
Simulation results revealed that the proposed 
NNCAC method provided a 20% system- 
utilisation improvement over Hiramatsu’s neural- 
network CAC scheme and a 10% system- 
utilisation improvement over the fuzzy-logic- 
based CAC scheme, while maintaining QoS 
contracts. It was also found that the NNCAC 
method provided utilisation comparable with that 
of the NFCAC scheme but possessed a lower cell 
loss probability. NNCAC is suitable for designers 
who are not familiar with fuzzy-logic control 
schemes or have no ideas about the requisite 
knowledge of CAC. 

1 Introduction 

Asynchronous transfer mode (ATM) is a key technol- 
ogy for integrating multimedia services in high-speed 
networks. Because of bursty traffic characteristics and 
various quality of service (QoS) and bandwidth 
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requirements for these multimedia services, an ATM 
network must have an appropriate traffic control, 
which includes connection-admission control (CAC) 
and congestion control, to guarantee the QoS for exist- 
ing calls as well as to achieve high system utilisation. 

Conventional CAC and congestion-control schemes 
[ 1-71 based on mathematical analyses provide robust 
solution for different traffic environments at steady 
state. However, their design and implementation, which 
directly utilise capacity estimation and buffer thresh- 
olds, suffer from some fundamental limitations. One of 
the limitations is that, because of the difficulty in 
acquiring complete statistics on traffic input to ATM 
networks, it is not easy to determine accurately the 
effective thresholds or the equivalent capacity. The 
rationale and principles underlying the nature and 
choice of thresholds or equivalent capacity under 
dynamic conditions are unclear [2, XI. The decision 
process is full of uncertainty. In other words, because 
of modelling, approximation and the unpredictable sta- 
tistical fluctuations of the system, decision error always 
accompanies these control schemes and results in per- 
formance degradation. 

Recently, neural networks have been applied widely 
to deal with traffic-control-related problems in ATM 
networks [9, 121. The self-learning capability of the 
neural network is used to characterise the relationship 
between input traffic and system performance. In [9], 
Hiramatsu proposed a connection-admission 
controller which uses a neural network. This admission 
controller employed the offered traffic characteristics, 
QoS requirement and actual network-operation- 
performance measures to decide whether to accept or 
reject a call-setup request. The results showed that the 
neural network learned a complicated boundary for a 
call-acceptance decision. In [l 13, Tran-Gia and Gropp 
investigated different aspects of using neural networks 
to perform CAC. The numbers of active connections of 
each traffic class were selected as the inputs to the 
neural network for connection-acceptance decision. 
Numerical results showed that the neural-network 
approach yielded significant benefits. In [12], it was 
reported that a neural network used to produce a 
feedback-control signal adaptively was able to alter the 
source rate to relieve congestion. The control signal 
achieved an optimum in the sense that it maximised the 
performance-measure function defined by the authors. 
However, in most of the proposed neural-network 
approaches, all users for each kind of service were 
selected as the input parameters. Thus, the neural- 
network dimensions and the learning time required will 
increase as the number of traffic types grows; the 
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system complexity would be increased by system 
upgrades. The application of neural networks to CAC 
would thus be limited to simplistic traffic 
environments, such as limited traffic types, simplified 
traffic sources etc. 

This paper proposes a neural-network connection- 
admission-control (NNCAC) method for an ATM 
traffic controller. The NNCAC method retains the 
benefits of the two approaches mentioned above while 
reducing their drawbacks. It adopts a multilayer 
feedforward neural network with preprocessed inputs: 
an equivalent bandwidth, a congestion-status 
parameter and a cell-loss probability. The equivalent 
bandwidth is the first input and is obtained by 
transforming the traffic characteristics (usually 
described by three traffic parameters peak bit rate, 
average bit rate and mean peak-rate duration) of a new 
call into a unified metric. This transformation can 
reduce the dependence of the neural-network control 
mechanism on traffic types; it greatly reduces the 
dimensions of the NNCAC method and saves a large 
percentage of the learning time. The second input is the 
congestion-status parameter generated by a congestion 
controller. Congestion control is so correlated with 
CAC that it should be taken into account. One of the 
most frequently used congestion-control methods is the 
buffer-threshold method, in which network congestion 
sounds an alarm when a queue length exceeds some 
predefined threshold. Network congestion is then 
averted by regulating the traffic flow of incoming 
sources according to a congestion-status parameter. 
The last input is the cell loss probability, a measure of 
QoS, which is used as a system-performance feedback 
to indicate how effective the system-control 
performance is. The NNCAC method uses the back- 
propagation training algorithm to adjust link weights 
and to learn the proper call-acceptance decision 
boundary from training data. Simulation results reveal 
that the proposed NNCAC provides system utilisation 
superior to Hiramatsu's neural-network CAC scheme 
[9] and fuzzy-logic-based CAC scheme [ 131, while 
maintaining QoS contracts. It was also found that the 
NNCAC method provides a utilisation comparable 
with that of the NFCAC scheme [14]. 
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Possible realisation of an ATM traffic controllei 

2 Neural-network connection-admission control 

A functional block diagram of the ATM traffic con- 
troller is depicted in Fig. 1. As shown, the traffic con- 
troller includes a system-statistics calculator, a 
congestion controller, a coding-rate manager, a trans- 
mission-rate manager, a bandwidth estimator, a net- 
work-resource manager and a neural-network 
connection-admission controller. The system-statistics 
calculator measures the queue length q, the queue- 
length-variation rate Aq and the cell-loss probability pl 
of each queue. The parameters q, Aq and pI are output 
to the congestion controller. The congestion controller 
receives parameters q, Aq and p l  of specific queues and 
applies a congestion-control method to obtain the con- 
gestion-status parameter y .  The coding-rate manager 
outputs a signal to traffic sources which increases or 
decreases the rate at which cells are generated in 
response to the congestion-status parameter. The trans- 
mission-rate manager, however, outputs a signal which 
blocks (suspends) or unblocks (resumes) delivery of 
cells from those sources which cannot tolerate any data 
losses. The bandwidth estimator receives parameters 
from a traffic source which requests admission into the 
ATM network node and estimates its equivalent band- 
width C,. These parameters are peak bit rate (PBR), 
average bit rate (ABR) and peak-bit-rate duration 
(PBRD), denoted by Rp, R, and Tp, respectively. The 
network resource manager calculates the bandwidth 
currently available for allocation, denoted by C,, 
according to the equivalent bandwidth required by 
existing connections. When a new request for connec- 
tion admission with bandwidth C, is accepted, a new 
value of C, is generated by subtracting C, from the old 
value of C,. Conversely, when an existing connection 
with bandwidth C, is disconnected, a new value of C, is 
updated by adding C, to the old value of Ca. Initially, 
C, is set to 1. The NNCAC controller is a neural net- 
work which receives the bandwidth C, currently availa- 
ble for allocation, the congestion status parameter y 
and the cell loss probability p l  as input parameters. 
Based on the three parameters, the NNCAC controller 
generates a decision signal z and sends the signal back 
to the new connection to indicate acceptance or rejec- 
tion of the new call request. In this paper, fuzzy imple- 
mentations of the congestion controller and the 
bandwidth estimator are used. Details of these imple- 
mentations can be found in [13]. 

The NNCAC controller is a multilayer feedforward 
neural network. The neural network possesses an abil- 
ity to approximate a perfect connection-acceptance 
decision function from inputloutput data pairs {X, Z } .  
Consider a feedforward neural network NNCAC(X, 
W), where X represents an input vector and W repre- 
sents a set of weight vectors updated by some learning 
rules; denote the call acceptance decision function by Z 
= f(a : D C Rni - Rno, where D is a compact metric 
space on R, and ni (no) is the input- (output-) space 
dimension. The Stone-Weierstrass theorem [ 151 showed 
that NNCAC(X, W) can be trained to approachf(3 
asymptotically as much as possible. In other words, the 
NNCAC controller formulates the CAC problem as a 
pattern recognition problem: upon recognition of the 
input pattern X ,  a yeslno decision must be made to 
acceptheject a connection request. 

A backpropagation learning algorithm [ 161 is here 
used to train the NNCAC controller to solve such pat- 
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tern recognition problems. Let X(i) denote the vector 
randomly sampled from D and used as an input to the 
NNCAC controller at time instant t,; let NNCAC[X(i), 
W‘l = i(i) denote the corresponding decision of the 
NNCAC controller, and let J[X(i)] = z(i) denote the 
desired decision. The objective of the backpropagation 
learning algorithm is to minimise the decision error E 
by recursively adjusting its weight in each layer, where 
E is defined as 

1 
2 
1 
2 

E = -IINNCAC[X(i), W ]  - f[X(i)] l12 

(1) = -[2(2) - z ( i ) ] 2  

Consider an M-layer feedforward neural network. Each 
layer has a number of processing elements called neu- 
rons which are fully interconnected via adaptive 
weights. Neurons in the input layer (layer k = 1) do not 
process the input data; they simply store input-data 
values. Neurons in the hidden layers (2 5 layer k I A4 - 
1) and output layer (layer k = M) perform two opera- 
tions. The jth neuron in the kth layer, for example, first 
calculates a weighted sum, denoted by S$?, of all out- 
puts olk-l) of the (k - 1)th layer. SF) is given by 

where xj is the input variable of the jth neuron in the 
input layer, nk-, is the number of neurons in layer (k - 
l), and wf) is the weight of the link connected from the 
ith neuron in layer (k - 1) to the jth neuron in layer k .  
After that, the neuron further transforms Sy”) into out- 
put op) via an activation function G(.). of’) is expressed 
as 

The adjustment of weights is based on a steepest- 
descent algorithm [16]. It can be expressed as 

where q is a gain term which determines the learning 
rate of the link weight. q is usually set equal to a posi- 
tive constant less than unity. To obtain the partial 
derivative for the quadratic error E, an error term pro- 
duced by the jth neuron in layer k,  denoted by d?), is 
obtained from 

It was shown in [16] that the error signals Sjk) can be 
computed according to a recursive procedure of the 
generalised delta learning rule [ 161 described as follows: 

Once these error-signal terms have been determined, 
the partial derivative for the quadratic error can be 
computed directly by 

and the update rule for the backpropagation algorithm 
is then given by 

The procedure for setting up a training-data table is 
described as follows. Consider an ATM network ele- 
ment with multimedia-source users; the ith new user 
declares its traffic parameters (i.e. peak rate, mean rate 
and peak-rate duration). These parameters along with 
system performance statistics (i.e. queue length, cell- 
loss probability etc.) are converted into preprocessed 
parameters (i.e. available bandwidth C,,. congestion sta- 
tus parameter y and cell loss probability p I )  and then 
fed into the NNCAC controller (see Fig. 1). The 
NNCAC controller outputs a decision signal z to indi- 
cate acceptance or rejection of the call request. The 
correctness of the decision signal Z will be verified by a 
desired output z which is obtained by 

z = ~ ( P Q o S  - p l )  (9) 
where PI is the moving average of the next m-step meas- 
urements of the cell loss probability, PQos is the QoS 
requirement of the cell loss probability, and U(x) is a 
unit step function defined as 

1 i f z > O  
0 otherwise 

In other words, if the resulting j j  satisfies the QoS 
requirement PQos (i.e. j j  I Peas), then z = 1, denoting 
that the call-setup request should be accepted; other- 
wise z = 0, denoting that the call-setup request should 
be rejected. 

As shown in Fig. 2, the desired output z ,  along with 
C,, y ,  pl  and Z for the ith new call, are written into the 
ith location of the training-data table. A sequence of 
training data is then collected and stored. According to 
these training data, the NNCAC controller can be 
offline-trained to approximate the complicated call- 
acceptance-decision function. 

i 
c 

Fig. 2 NNCAC training-&tu tuble setup procedure 

However, in a real operation, traffic characteristics 
will change over time and the call-acceptance-decision 
function must be modified accordingly to prevent 
errors. The susceptibility of the NNCAC controller to 
crashes caused by propagation of decision errors 
implies that a further online training procedure must be 
provided. For online learning, the training data are 
updated from time to time to capture the dynamic 
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behaviour of the system. To learn an accurate decision 
function (or equivalently, an optimal weight w*) by 
backpropagation, it is necessary to train NNCAC over 
the training-data input space in random sequences. 
Here, a leaky pattern table (LPT) selection method [9] 
is used to update the learning table and to select proper 
data for online training. Use of the LPT selection 
method enables the NNCAC controller to capture the 
dynamic behaviour of network fluctuations as soon as 
possible and to reduce decision errors [9]. 

3 Simulation results 

3. I Simulation model for an ATM network 
The system model of an ATM-network element 
containing an ATM traffic controller is shown in 
Fig. 3 .  The ATM-network element has a total 
bandwidth of C = 1, in which a C, fraction of the total 
bandwidth is allocated to the jth type of traffic, E/=l C, 
5 1, and it consists of J types of queues in which the jth 
queue with length KJ is for thejth type of QoS, j = 1 ... 
J .  The traffic controller receives a request from a traffic 
source during the connection-setup phase and responds 
to the traffic source with a decision signal either to 
accept or to reject the request. In addition, the traffic 
controller periodically monitors the network-traffic 
load. Based on this monitoring, the traffic controller 
averts congestion by sending congestion-status signals 
to the traffic sources. After receiving the congestion- 
status signals, the traffic sources adjust the rate at 
which they deliver cells to the network. The cell rate 
can thus be adjusted by either altering the encoding 
process or suspendingiresuming cell production. 

In the simulations, it is assumed that there is delay- 
sensitive traffic and delay-insensitive traffic, Delay- 
sensitive traffic such as voice and video services is 
called type-1 for which QoSl = delay-insensitive 
traffic such as transactional data-bearing services is 
called type-2 for which QoS2 = Two separate 
finite buffers of length Kl = K2 = 100 cells are provided 
and capacities of C, = 0.8 and C, = 0.2 are assumed. 

The cell-generation process for a video coder is 
assumed to have two motion states: one is the low- 
motion state for interframe coding rate and the other is 
the high-motion state for intraframe coding rate [17]. 
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Interframe and intraframe alternate model for  a video source and 

The rate of intraframe coding is further divided into 
two parts: the first part has the same rate as the 
interframe coding and the second part, called difference 
coding, is the difference rate between intraframe coding 
and interframe coding. The interframe coding and the 
difference coding are all modelled as discrete-state 
Markov-modulated Bernoulli processes (MMBP) with 
basic rates A, and A,, as shown in Figs. 4-6. Let A,(t), 
A?(t) and A',(t) denote the respective cell-generation 
rates from the video coder for intraframe coding, 
interframe coding and difference coding at time t .  
Clearly, &(t) = ;ly(t) + A',(t) The process of &(t) is an 
(M,+ 1)-state birth-death Markov process. The state- 
transition diagram for h,(t) uses the label mrAv to 
indicate the interframe-coding cell-generation rate of a 
state and uses the labels (M,  - m,)y and m,m to denote 
the respective transition probabilities from state m,A, 
to state (m, + l )Ar ,  and from state mrAr to state 
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(m, - 1)A,. Similarly, the process for h’,(t) is an (M, + 
1)-state birth-death Markov process. The state- 
transition diagram for A’,(t) uses the label muAa to 
indicate the additional cell-generation rate of a state 
due to intraframe coding and uses the labels (Ma - 
ma)$ and maq to denote the respective transition 
probabilities from state maAa to state (ma + l)A,, and 
from state maA, to state (m, - l)& The video source 
alternates between interframe and intraframe, 
depending on the video-source activity factor. There is 
a transition rate c in the interframe state and a 
transition rate d in the intraframe state. The values of 
y, w, M,, A,., $, q, Ma, A,, c and d can be obtained 
from the traffic variables Rp, R, and Tp [3, 71. 

The cell-generation process for a voice call is mod- 
elled by an interrupted Bernoulli process (IBP) [3, 41. 
During the ON (‘talkspurt’) state, voice cells are gener- 
ated at rate A,; while during the OFF (silence) state, no 
cells are generated. A voice source has a transition rate 
of a in the OFF state, and a transition rate of in the 
ON state, as shown in Fig. 6b. 

As for the data source, there are high-bit-rate and 
low-bit-rate data services, and the generations of high- 
bit-rate data cells and low-bit-rate data cells are char- 
acterised by Bernoulli processes with rates of O1 and e,, 
respectively. Also, the holding times for video, voice, 
high-bit-rate data and low-bit-rate data are assumed to 
be exponentially distributed. 

For a video-source-arrival process, it is assumed that 
Rp = 3.31 x lo-*, R, = 1.10 x lo-, and Tp = 0.5s, which 
give M,. = Ma = 20, A, = 1.34 x A, = 3.15 x lo4, 
y = 3.77 x 10 6, w = 5.65 x c 
= 5.65 x For a voice source 
arrival process, it is assumed that Rp = 4.71 x lo4, R, 
= 2.12 x lo4 and T = 1.35s, which give A,  = 4.71 x 

bit-rate data source, it is assumed that Kp = 7.36 x 10- 
*, R, = 7.36 x 10 ’ and Tp = 3.14 x lO-,s, which give O1 
= 0.1, and for a low-bit-rate data source, it is assumed 
that Rp = 3.68 x lo-,, R, = 7.36 x lo4 and Tp = 2.88 x 
lO-,s, which give 0, = 0.02. The mean holding time is 
60 min for a video service, 3 min for a voice service 
and 18 s for both high- and low-bit-rate data services. 
Without loss of generality, we may assume that the val- 
ues of Rp and R, have been normalised by the network 
capacity. 

Two kinds of cell loss probability for type-i traffic 
are considered: source loss probability p s  due to selec- 
tive discarding on the customer side, and node loss 
probability pn,L due to blocking on the network side. 
Thus, the overall cell loss probability p I  I for type-i traf- 
fic is defined as 

$ = q = 2.83 x 
and d = 5.09 x 

a = 1.71 x 10- B and /3 = 2.09 x 10 6. For a high- 

m , t  = v ) s , z  +P,,,, 2 = 1 , 2  (11) 
where K is used to indicate the significance of the node 
loss over the source loss. K = 0.8 is here assumed 
because selectively discarding cells at the source should 
have less effect on information retrieval than blocking 
cells at the node. 

3.2 Simulation results and discussion 
Fig. 7 shows the utilisation of an ATM-network ele- 
ment employing the NNCAC method proposed in this 
paper, the fuzzy-logic-based CAC scheme proposed in 
[I 31, Hiramatsu’s neural-network CAC scheme pro- 
posed in [9] and the NFCAC scheme proposed in [14]. 
in the simulations, a three-layered neural network with 
30 hidden nodes, and a backpropagation learning algo- 
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rithm was used in both Hiramatsu’s neural-network 
CAC and NNCAC. The activation function G(x) was 
l/(l + ti”) in the hidden layer and U(x) in the output 
layer. 

i t  was found that the NNCAC method produced a 
processing gain in utilisation over Hiramatsu’s neural- 
network CAC scheme by preprocessing of the input 
parameters. This was because the training error for 
Hiramatsu’s neural-network CAC scheme cannot easily 
be reduced in such a complicated traffic environment. 
The technique of preprocessing was also employed by 
the fuzzy-logic-based CAC scheme and the NFCAC 
scheme to improve the controlled performance. How- 
ever, the NNCAC method produced about a 10% 
improvement in utilisation over that of the fuzzy-logic- 
based CAC scheme by reducing the estimation error of 
the equivalent capacity method through self-learning. 
In comparison with the NFCAC scheme, both the 
NNCAC method and the NFCAC scheme provided 
similar system utilisations in the steady state because 
they both adapted their behaviour to the system by 
means of the learning capability of the neural network. 
However, the design of the NFCAC scheme requires 
much more knowledge than the design of the NNCAC 
method. The NNCAC method would be a proper 
choice for designers who are not familiar with fuzzy- 
logic-control schemes, or lack the requisite knowledge 
or CAC. 
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Figs. 8 and 9 show the cell-loss probabilities of ATM 
networks employing different control schemes. The 
QoSs of the two types of traffic were all guaranteed for 
the NNCAC method, the fuzzy-logic-based CAC 
scheme, and Hiramatsu’s neural-network CAC scheme. 
However, the NNCAC method maintained a larger 
margin between the QoS requirement and its cell loss 
probability than the NFCAC scheme. 

4 Concluding remarks 

This paper presents a neural-network connection- 
admission-control NNCAC method for ATM net- 
works. The NNCAC method uses three preprocessed 
input parameters to simplify the training process and to 
improve the controlled performance. It supports a uni- 
fied metric for input-traffic characterisation by utilising 
robust analytical results from the equivalent capacity 
method and then diminishes the estimation error of the 
equivalent capacity method by employing the learning 
capability of a neural network. Simulation results 
showed that our proposed NNCAC method provided a 
20% system utilisation improvement over Hiramatsu’s 
neural-network CAC scheme, and 10% system utilisa- 
tion improvement over the fuzzy-logic-based CAC 
scheme [13], while maintaining QoS contracts. It was 
also found that the NNCAC method provided a utili- 
sation comparable with that of the NFCAC scheme 
[I41 and possessed a lower cell loss probability. The 
NNCAC method is suitable for designers who are not 
familiar with fuzzy-logic control schemes, or lack requi- 
site knowledge of CAC. 
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