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Maneuverability is the measure of the dynamic performance of a manipulator in a specific posture or con-
figuration, and acceleration radius is one of the most utilized indices of it. Acceleration radius can be uti-
lized as the reference to judge whether further dynamic analysis should be performed when evaluating
the controllability and feasibility of the manipulator following the prescribed path with assigned kine-
matic and kinetic requirements in the planning phase. When utilizing acceleration radius as the dynamic
reference in the planning phase, it can prevent wasting the calculation cost due to these non-necessary
dynamic analyses, and it can also be utilized as the benchmark in the on-line control.

However, the existence of the configuration errors is inevitable in reality, and it deteriorates the
dynamic performance of a manipulator with the ideal configuration parameters and leads to the potential
risk of failing to achieve an assigned dynamic task. To investigate the adverse behavior caused by the con-
figuration errors and to provide some clues to avoid or reduce their influence, this article proposes a novel
and systematic method which can be used to evaluate the maneuverability deterioration of a non-redun-
dant serial manipulator system due to the influence of configuration errors, and it also provides an index,
deterioration rate, to quantitate this kind of deterioration. Deterioration rate can be utilized to quantitate
the maneuverability deterioration due to the influence of configuration errors in a prescribed workspace
or region and can also be treated as the safety or derating margin when proceeding with the control or

path planning.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Acceleration radius is utilized to describe the ability of a manip-
ulator to accelerate its end-effecter and defined as the maximum
achievable acceleration in all directions of the end-effecter in a
specific posture or configuration by the known output limits of
joint actuators. For easily being understood, the definition of accel-
eration radius is briefly demonstrated in Fig. 1 with a two degrees
of freedom example. Acceleration radius is one of the common
indices of maneuverability which usually is utilized as the refer-
ence to judge whether further dynamic analysis should be
performed in the planning phase to reduce the calculation cost
and relieve the burden of a control or path designer when planning
the control strategies or trajectories.

However, when manufacturing and assembling a manipulator,
the existence of the configuration errors due to these processes is
inevitable. Since acceleration radius is defined as the maximum
achievable acceleration in all directions, it shall include the adverse
influence due to the configuration errors in its mathematical model
to prevent planning an unattainable or infeasible dynamic task.
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In the 80s and the early 90s, the literature studied in this field
discusses the best expression to present the maneuverability or
how to calculate it with the fastest speed or the maximum effi-
ciency [1-3]. In the 90s, the direction of the studies changed to
investigate the maneuverability in the redundant robot systems
and its application [4-9]. In the recent years, the study focused
on what the influence of velocity has on the maneuverability
[10-13]. Although lots of literature has been published in this field,
none of them mentions the influence of configuration errors in
their studies. This leads the conclusions to not fully match the
reality. To redeem this insufficiency, this article conducts the
mathematical model of the acceleration radius, which includes
the influence of configuration errors, and proposes a systematic
method to evaluate the maneuverability deterioration of a non-
redundant serial manipulator due to the influence of these errors.
Besides, this article also provides a new index, deterioration rate,
to quantitatively express the maneuverability deterioration due
to the influence of these configuration errors.

For effectively expressing the proposed method and index, this
article is arranged as follows. The kinematics of a manipulator
based on Denavit-Hartenberg transformation matrix (D-H trans-
formation matrix) with configuration errors is conducted in
Section 2. In Section 3, it interprets how to derive the acceleration
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Fig. 1. Definition of the acceleration radius with a two degrees of freedom example.

ellipsoid and acceleration radius with the influence of configura-
tion errors. In this section, the meaning and expression of deterio-
ration rate is also interpreted. In Section 4, two examples are
utilized to demonstrate the maneuverability deterioration due to
the influence of configuration errors in the prescribed workspace.
Some conclusions are presented in Section 5.

2. Kinematics with configuration errors

2.1. D-H Transformation matrix with configuration errors between
two consecutive links

D-H transformation matrix is wildly used in kinematic analysis
of the serial type manipulator. Between two consecutive links, link

Zi-1

Joint i
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i— 1 and i, D-H transformation matrix can be determined by four
D-H link parameters, 0;, d;, a;, and o, as shown in Fig. 2 [14].

From the definitions of D-H link parameters demonstrated in
Fig. 2 and [14], the standard form of D-H matrix, -'A™™", can be ex-
pressed as (1).

CH,‘ *S@,‘COC,‘ SH,‘SOC,‘ a,-CH,»
. S0;  CO;Co; —CO;Soy;  a;SO;
rflA;‘IDH _ i i i DU Qi (1 )
Sot; Co; di
0 0 0 1

However, when configuration errors exist in the manipulator, the
standard D-H transformation matrix can not fully describe
the whole system due to the angle error of the rotation about
the y; axis which can not be compensated or covered with rea-
sonable values by other standard D-H link parameters when
the orientations of the two consecutive joint axes are parallel
or near parallel [15-18]. For this reason, another link parameter,
Bi, which is the rotation angle about the y; axis as shown in Fig. 2
must be introduced into the standard D-H transformation matrix
to redeem this insufficiency. It must be emphasized that the
necessity of ; is only held when the orientations of two consec-
utive joint axes are parallel or near parallel. Except the condition
stated above, the standard D-H transformation matrix can fully
describe the whole system with configuration errors. The reason
for putting g; into the discussion is to get the general form of a
manipulator system with configuration errors. In any case, f; is
always set to be zero, and only its error, Ag; will be used and
discussed.

The modified D-H transformation matrix, ' ~ 'A;, aims to redeem
the insufficiency stated above and is conducted by post-multiply-
ing the standard D-H transformation matrix, ~'A°™, with the rota-
tion homogeneous matrix of g; as shown in (2).

Joint i+1

Xi-1

Fig. 2. Definitions of D-H link parameters.
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1A = APAG, )
CH,' 759,{0(,' SH,‘SOC,‘ a,-CHi Cﬂl 0 *Sﬁi 0
7 59,‘ C@,‘CO(I‘ —C@iSOC,‘ (1,‘591‘ 0 1 0 0
- 0 SO(i COC,‘ di S,B, 0 Cﬁ, 0
0 0 0 1 00 0 1
'CO,-Cﬂi — S@,‘SOC,‘S[)),- —SH,’CO{,‘ CH,S[;! + Sé),-Sot,»C[i,- aiCOi
_ SH[Cﬂi + C@,‘SOC,‘Sﬁ,- C@,‘CO(,' 59,‘5[3,- — Cf),‘SOC,‘C/))i (1156,‘
= —CoSp; Se; CoiCP; d;
I 0 0 0 1

(2)

where A(y;, f;) is the rotation homogeneous matrix of 8. When p; is
equal to zero, (2) is fully equivalent to the standard D-H transfor-
mation matrix. When configuration errors exist, the corrective
modified D-H transformation matrix that includes configuration er-
rors can be expressed as the sum of the original modified D-H
transformation matrix and the differential change matrix which is
due to the influence of these errors [16] and shown in (3).

AL = 1A + dA; (3)

where -1A is the corrective modified D-H transformation matrix,
i-14; is the modified D-H transformation matrix with nominal
D-H link parameters, and dA; is the differential change matrix due
to the influence of configuration errors. Because g; is always set to
be zero, then Cf;=1 and Sp; = 0. Setting A6;, Ad;, Aa;, A, and AB;
are the errors of 0;, d;, a;, o;, and g;, respectively. Because these errors
are always much smaller than the nominal design link parameters,
dA; can be presented as the linear combination of these errors, as
shown in (4).

_0Ai,, OA A, OA; OA;
dAlfaglAGI ad —IAd; + A ai+ o IA +8BIAB,~ (4)
Set S =D,"AL G = D,j’*lAi,‘(,’,—’;::D‘ 'Ai 5 =D, 1A, and G =
Dyi- ‘Al ,where
n . . n .
T, =To+ Y Tiad AT, = (1 +> T,-15’1A1Ti11> T,
i=1 i=1
- n n
[ Pﬁ}[Rﬁ(ZRuénRﬂl)Rn P [SRorR )|
= = i=1 i=1
10 1 0
r n ) 1 n 4 n
B {1 n (z R,-,lor,»RHﬂR,, {1 ny (R,»,lér,‘Rifl)}P,, S (RH
= i=1 i=1 i=1
L 0 1
0 -1 0 0 0000
1 0 00 0000
Dy = , Da= )
0 0 00O 0001
0 0 0 O 0000
ro 0 S0; —d;S0; 0 0 0 Co
0 0 —Co dcCe 0 0 0 So
Da: 3 Da: )
—S6; Co; O 0 000 O
L0 0 o0 0 000 O
r 0 —SOC,' CHiCOCi Cl,'S@,‘SOC, d Co; COC1
D So; 0 S0;Co;  —a;CO;Soy; — d;SO;Co;
"7 —cocy —-S0,C; O aCa,
L 0 0 0
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From (4),
dA; = (DyA0; + DgAd; + DoAd; + D,Av; + DsgAB;) A (5)

Set 6''A; = DyAO+DgAd+DoAai+DyAcitDyAf;, then the correc-
tive modified D-H transformation matrix can be expressed as (6).

i—lAiC _ i—lAi + di—lAi _ i—lAi + ((5i—1Ai)i—1Ai (6)
where
0 —A0; SO,-Aai C(),-Aoci — diSO,-Aai
S-1A: = AO; 0 —C0;Aa; SO;Aw;+d;CO;Aq;
e —Sé),Aa,- Cf)ani 0 Adi
0 0 0 0
0 750(,'Aﬁi CHiCOCiAﬁi (aiSHiSati — diCHiCoci)A/f,-
T SOCiAﬁi 0 S@iCOCiA/))i (—aiCQiS{X,’ - d,‘S@iCOCi)ABi
—C@jC(X,’A/ji —S@,’CO(,’Aﬁi 0 ajCO(,'A/fi
0 0 0 0

2.2. Total transformation matrix with configuration errors

From (6), the corrective modified D-H transformation matrix of
two consecutive links can also be presented as (7).
i 1AC

(I+ 81 A)1A; (7)

where [ is the 4 x 4 identical matrix. From (7), the total corrective
modified D-H transformation matrix, TS, can be presented as (8).

n .
[[7A = ®)
i=1
where n is the number of the consisting links.

Because the kinematic deviation due to the error items, §' ~ 'A;,
is relatively small, the influence of the second and higher order
terms can be omitted without any significant influence on the re-
sult. In the following, only the first order approximation of (8) will
be utilized, and it can be presented as (9).

n
[Ta+67A)"A

i=1

TS =

1 1
P,—3 (R,‘,lér,‘RHP,-,l -
i=1

1

6r1R;]1Pi,1 — R,;lép,-) ‘|

Ri—l(spi) :|

2.3. Jacobian matrix with configuration errors

Jacobian matrix is utilized to map the joint velocities in the joint
space into the end-effecter velocity in the world space. In the gen-
eral form, it can be shown as (10).

. Un
Xy =
w

where n is the dimension of joint and end-effecter velocities in their

corresponding spaces, v, is the linear velocity vector and w,, is the

angular velocity vector of end-effecter in the world space, J,,.., is

the n x n Jacobian matrix, and ¢, is the joint velocity vector in the

joint space. In (11) and (12), they show », and wj, respectively [19].
n

Up = Z [(%(z

i=1

} Jytin (10)

n

C1xpg) +Z£1di] (11)
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n
Wy =0z (12)
i=1

where z{ , is the z axis direction of the i — 1 frame which is de-
scribed in the reference frame and equivalent to the 3rd column
vector of R ;,"pS is the corrective position vector from end-effect-
er to the origin of the i — 1 frame and is also described in the refer-
ence frame, ¢; is the angular velocity value of the ith revolute joint,
and d; is the linear velocity value of the ith prismatic joint.

From the conduction in (9), z&, and "'p¢ can be presented as
(13) and (14), respectively.

i—1
<Z leo‘rjR]-‘]1>R,~1
=1 p
P = Ri 4 [ Tulp + Ria[d ' Tulp + dR: 1 [ Tolp + dRi 1 [d ' To),p

n
<Z i-1 Tj_]éi—lAji—l le]) ilTn:|
P

j=i

i-1
(Z R115OR;]1>R:'1} [Tl
=
i—1 n_ ) ) )
+ |:<ZRJ']5TJ'R)-11>R,'1:| |:<Zl]Tj]ylAjllTj-1]>llTn:|
=1 = b

(14)
where z; _ 1 is the z axis direction of the i — 1 frame presented in the
reference frame which is equivalent to the 3rd column vector of
Ri _1, '~ 'p, is the position vector from end-effecter to the origin
of the i — 1 frame and also is described in the reference frame,
and or; is the rotational part of & ~'A;. The subscript “P” means
the translation part of the bracketed transformation matrix and
the subscript “Z” means the z axis direction of the bracketed rota-
tion matrix equivalent to the 3rd column vector.

From (10)-(12), the corrective Jacobian matrix can be expressed
as (15).

o= U] (15)

=21+ (13)

= ii]Pn +Ri4

+

ze, xUpp
C
i-1
for a prismatic joint.
Substitute (13) and (14) into (15) and eliminate the second or-
der term, J° can be presented as (16).

Ji=li+d (16)
where J; is the ith column of the nominal Jacobian matrix without
the influence of configuration errors, and dJ; is the differential
change Jacobian matrix due to the influence of these errors.

In (17) and (18), they show J; and the first order dJ; of a revolute
joint, respectively.

C
where J¢ = { ] is for a revolution joint, and J& = {2'61} is

) i-1
= {211 X" Dy (17)
Zi 1
) i1
dji: |:ZI1 X Pe 4 Zge % Pn:| (18)
Zge

Similarly, in (19) and (20), they represent J; and dJ; of a prismatic
joint, respectively.

4]
4= || (20)

where zg, = [ (Z};} Ri1omiR )RH } is the direction error of the z axis

z
of the i—1 frame, and P, = R; ; [(ZJL’*ITH5/'*1Ajf*1T]11])HTHL+

{(Z};% Rj,] ()‘rjR]111>R,-,1} [Fl Tn] p + [(Z]l;} Rj,1 ‘SrjR]':l] )R,‘,]] [( j':,:l-Fl ijl
&1A{1T; | )-1T,], is the position error due to the influence of config-
uration errors from the end-effecter to the i — 1 link.

3. Acceleration radius with configuration errors

The first and second order differential kinematic equations of
the end-effecter of a non-redundant serial manipulator can be ex-
pressed as (21) and (22) [2,3].

Xn :ngn(q)qn (21)
xn = gxn(q)éIn +]gxn(q)qﬂ (22)
where q is the joint variable, x is the position variable of the end-
effecter, and JS , is the n x n corrective Jacobian matrix.

The dynamic equation of a manipulator can be presented as
(23).

T=M(q)q +c(q,q) +2(q) (23)

where 7 €R" is the vector of the joint forces, torques, or both,
M(q) € R™" is the symmetric, positive definite inertia matrix,
c(q,q) € R" is the vector of the centrifugal and Coriolis forces, tor-
ques, or both, and g(q) € R" is the vector of the external forces, tor-
ques, or both.Rearrange (23), the g can be presented as (24).

G=M'(t-c-g) (24)
Substitute (24) into (22), X can be presented as (25).
X=]M'(t-c-g)+/q

=Mt (M e+ ]G + (S Mg =S M TRy (25)
where X is the acceleration vector of the end-effecter, M7 is the
acceleration vector which is contributed by the actuation of each
consisting joint actuator, and X5 = (—=JM 'c +J°q) + ()M 'g) is
the acceleration vector due to the linear velocity, angular velocity,
external force and torque exists in each consisting link.

Usually, the output torque or force of each joint actuator has
symmetric upper and lower limits and can be expressed as (26).

—limit < ggimit j=1~n (26)
After normalizing, the normalized output vector, 7, can be pre-

sented as (27).

t=L"1 (27)

where L is the diagonal matrix which the value of each diagonal ele-
ment is equal to the output limit of the corresponding joint actuator
and is expressed as (28).

‘L'}im it 0 0
L= 0 . 0 (28)
0 0 tlimi

From (26) and (27), T has the characteristics as shown in (29)
and (30).

It <1 (29)
it <1 (30)

Substitute (27) into (25) and then rearrange, X and 7 can be pre-
sented as (31) and (32), respectively.

X =M 7LE + X (31)
T=L"M (% — Xop) (32)

Substitute (32) into (30), the equation of the acceleration ellipsoid
can be conducted and expressed as (33).
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(% = Xo) T TMTLTLMJ 7 (% — Ro) < 1 (33)

Substitute Q = TM'L-TL—'MJ~! into (33), a simpler form can be pre-
sented in (34).

(X = Zo) QX — Xop) < 1 (34)

The value of acceleration radius is equal to the value of the ra-
dius of the smallest inner tangent sphere of the acceleration ellip-
soid which is centered in the origin of the reference frame. When
Xof = 0, the acceleration radius is equal to the reciprocal of the
square root of the largest eigenvalue of Q. If the value of the accel-
eration radius is less than the prescribed acceleration at some
point of the path in planning or operation, this manipulator may
not perform its assigned dynamic task due to the insufficient accel-
eration ability at this posture or configuration. This means further
dynamic analysis should be performed to judge the assigned dy-
namic task at this posture or configuration is not toward these
directions without sufficient acceleration ability to assure the as-
signed dynamic requirements are achievable.

For reasonably and effectively quantitating the adverse maneu-
verability deviation due to the influence of configuration errors and
being as the derating margin of the manipulation, a new index,
deterioration rate, is proposed and defined in (35).

ri—T
DRp =-1—°¢
T

35)
where DRp is the deterioration rate at a specific posture or configu-
ration, r; and r,, are the acceleration radius without and with config-
uration errors, respectively.

Fig. 3. Link parameter definitions of the two-link planar manipulator.

For a small workspace or region, a representative index of der-

ating margin of manipulation over this workspace or region is use-
ful, and this index can be expressed as (36) [3].
DRy, = % (36)
where DRy, is the deterioration rate in a prescribed workspace or re-
gion, I= [ ,(dr)dw is the integral of deterioration rate over this
workspace or region, W= [ ,,dw presents the workspace or region
in discussion, dr is the differential function of deterioration rate,
and dw presents the differential of the workspace or region.When
in application, the exact derating margin of manipulation at a spe-
cific posture or configuration must be represented by DRp, but when
roughly estimating the derating margin for a region, DRy, would be
a better choice to reduce the cost and effort of judgment. When the
prescribed workspace or region is a specific posture or configura-
tion, DRp and DRy, will be equivalent.

4. Examples

In this section, a two-link planar manipulator and a PUMA 560
robotic arm will be taken as the examples to demonstrate the pro-
posed method and the maneuverability deterioration due to the
prescribed configuration errors which usually can be found as
the uncertainty or tolerance in the product specification. From
(34), it is easy to find the influences caused by the centrifugal force,
Coriolis force, gravity force, external force and torque just simply
shift the center of the acceleration ellipsoid and can be easily rein-
troduced into the conducted results by the basic definition of accel-
eration radius. To simplify, both examples discussed in this section
are assumed in standing, ¢ = 0 and omitted the influences of exter-
nal forces and torques.

4.1. Two-link planar manipulator

The first example is to evaluate the maneuverability deteriora-
tion of a two-link planar manipulator which usually can be used to
simulate the motion of arms or legs of a human being and shown in
Fig. 3. Because the inverse Jacobian matrix does not exist when

0.017
H 0.016
0.015
0.014
0.013
0.012
0.011
0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Deterioration Rate

Fig. 4a. Deterioration rate distribution of Example 1 (a) 3D plot.

-ll;::slcerilbed inertia properties, errors, and D-H parameters of the two links planar manipulator.
Link i Link parameters Errors

d 0 a a B Weight Torque limits Ad A0 Aa Ao AB
1 0 01 0.7 0 0 3.5 +5 0 +0.1° +0.0007 0 0
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Fig. 4b. Deterioration rate distribution of Example 1 (b) Contour plot.

near or in the singular posture or configuration, in this example, it
evaluates the maneuverability deterioration over a region which is
slightly smaller than the real achievable workspace in the first
quadrant. In Table 1, the setting of the inertia properties, configu-
ration errors, and link parameters are presented. After taking all
the settings presented in Table 1 into the proposed method, the
deterioration rate of this region is derived, and its value is 0.16%
which can be used as the rough estimation of derating margin of
this region. The distribution of the deterioration rate is demon-
strated in Figs. 4a and b and this distribution can be used as the ex-
act reference of the derating margin of any posture or
configuration in this region. In Figs. 4a and b, two phenomena
can be observed easily. One is when the manipulator gets closer
to the singular posture or configuration (the boundaries), no mat-
ter full stretched or folded, the deterioration rate becomes greater
with the same configuration errors. The other is with the same dis-
tance between the end-effecter and base joint, the deterioration
rate will also be the same, and this phenomenon implicitly means
the value of 0; has no influence on the deterioration rate.

To further investigate these observations, the analytical forms of
the acceleration radius and its sensitivity with regard to 0, of this
example are conducted and shown in (37) and (38), respectively.

Py

by Py Ps
5t P2 T 01225P;

Sensitivity with regard to 0,
Py

P_2+ Py Py
P P~ 01225P;
P2 p
*P14'p1—5*1’15',,—§+%‘ P9+P16',,1—2
_ &_Z-PS-PQ-P6+ 5 5
Ps P p, PP
2/t E
P
5 5
= (38)

3
V2. (MJr —@+P§"’9>2

2 2 Z
P Ps Ps

Acceleration radius = (37)

= 0,

where P; =v2, P,=0.35430 — 0.00286 cos 0, P5=0.1225 sin 20,,
P,=0.00085, Ps=sin0,, Pg=cos0, P;=0.02332, Pg=8.16327,

Sensitivity

0.4

0.2

6, (Rad)
0.5 1 1.5 2 2.5
-0.2
-04
Fig. 5. Sensitivity of acceleration radius with regard to 6, .
73,76
74,Y3,Y6
X4,X3,X6

X3

Fig. 6. Zero position with attached coordinate frames of PUMA 560.

Pg = 0.35430 — 0.00286 cos 0, P10=0.11334, P;;=0.19038, and
P, =0.05667.

From (37), it can easily be observed that no 0, item exists in the
analytic form, and this means 0; has no influence on the accelera-
tion radius. This matches the prior observation in this example. In
Fig. 5, it shows the sensitivity of the acceleration radius with re-
gard to 0,, and the range of 0, is from 0 to w. From Fig. 5, it also
can easily be observed that when 6, closes to O or 7, it has the
greatest sensitivity. This means when 6, closes to 0 or 7, the same
variation in 0, will cause greater deviation in the acceleration ra-
dius. In other words, when this manipulator is in full stretch or
fold, configuration errors will have the greatest influence on
maneuverability deterioration, and this matches the prior

observation.

Table 2

D—H link parameters of PUMA 560.

Frame i di (m) 0; (°) a; (m) o (°)
1 0 0 0 -90
2 0.2435 0, 0.4318 0

3 —0.0934 03 0 90

4 0.4331 04 —0.0203 -90
5 0 05 0 90

6 0 05 0 0
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Table 3
Inertial parameters of each link of PUMA 560.

Link i M (kg) Ty (M) ry (m) r, (m) L (kg m?) Iy (kg m?) I, (kg m?) Ly =1I,, = Ly. (kg m?) Torque limit (N m)
1 0 0 0 0 0 0 0.35 0 +97.6
2 17.4 0.068 0.006 0.2275 0.13 0.524 0.539 0 +186.4
3 48 0 —0.070 —0.0794 0.066 0.0125 0.086 0 +89.4
4 0.82 0 —0.0203 0.4141 1.8 x 1073 1.8x 1073 13 x1073 0 +24.2
5 0.34 0 0 0.032 03x1073 03x1073 04 %1073 0 +20.1
6 0.09 0 0 —0.064 0.15x 1073 0.15 x 1073 0.04 x 1073 0 +21.3
Z(m)
“ Table 4
The prescribed configuration and its errors of case 1.
Link i Parameters Errors
0 Ad A0 Aa Ao, AB
1 0° 0 +0.1° 0 +0.1° +0.1°
2 —45° to 45° +0.00024 +0.1° +0.00043 +0.1° +0.1°
3 95°-135° +0.00009 +0.1° 0 +0.1° +0.1°
4 41° +0.00043 0° +0.00002 0° 0°
5 37° 0 0° 0 0° 0°
6 16° 0 0° 0 0° 0°
Table 5
The prescribed configuration and its errors of case 2.
Link i Parameters Errors
0 Ad A0 Aa Aa AB
1 0° 0 +0.1° 0 +0.1° 0°
2 —45° to 45° +0.00024 +0.1° +0.00043 +0.1° 0°
3 95-135° +0.00009 +0.1° 0 +0.1° 0°
4 41° +0.00043 0° +0.00002 0° 0°
5 37° 0 0° 0 0° 0°
6 16° 0 0° 0 0° 0°
Table 6
The prescribed configuration and its errors of case 3.
04 05 06 07 0S8 Link i Parameters Errors
0 Ad A0 Aa Ao AB
Fig. 7. Workspace of the designated joint regions of example 2.
1 0° 0 +0.5° 0 +0.5° +0.5°
2 —45° to 45° +0.00120 +0.5° +0.00215 +0.5° +0.5°
3 95-135° +0.00045 +0.5° 0 +0.5° +0.5°
4.2. PUMA 560 4 41° +0.00215 0° +0.00010 0° 0°
5 37° 0 0° 0 0° 0°
6 16° 0 0° 0 0° 0°

In the second example, it discusses the maneuverability deteri-
oration due to the prescribed configuration errors of PUMA 560.
The zero position with the attached frames of PUMA 560 is shown
in Fig. 6, and its link parameters are shown in Table 2. In Table 3,
the inertia and joint torque parameters of each link and its at-
tached actuator are presented, respectively [20,21]. Because the
design purpose of the wrist is dedicated to change the orientation
of the end-effecter and not to be the kinetic functions provider, the
configuration errors of the wrist will be omitted in the following
discussion. Since 0, only changes the orientation of the accelera-
tion ellipsoid without changing its shape, the value of 6, is inde-
pendent of the acceleration radius [8]. Based on the reasons
stated above, in the following discussion, only 0, and 03 will be ta-
ken as the control variables, and their ranges are specified in accor-
dance with the one which covers most pick and place operations.
Except 0, and 65, others will be taken as the constants, and their
values will be explained as follows. For 04, 05, and 0g, their values
are 41°, 37°, and 16°, respectively for preventing the occurrence
of the singular configurations in the discussed region. Also, in

accordance with the capability of current precise machining tech-
nology, the values of the length and the angular errors are basically
assigned as the 0.1% of the nominal dimensions and 0.1°,
respectively.

For investigating the necessity of Ag;, and the effect of the mag-
nitude of the configuration errors to the deterioration rate, three
cases are used to discuss these two issues in the following simula-
tions. The link parameters and their errors of each case are pre-
sented in Tables 4-6, respectively, and the workspace under the
discussed joint regions is shown in Fig. 7. From Figs. 8a and 9a, it
can be observed that cases 1 and 2 have similar distributions of
the deterioration rate, but case 2 has a much lower deterioration
rate than the one in case 1. This phenomenon explicitly points
out without including the effect of Ap; will lead to underestimate
the deterioration rate, and this also shows the necessity of Ap;
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Deterioration Rate

Fig. 8a. Deterioration rate distribution in the X-Z coordinates of case 1 (a) In the X-
Z coordinates.

Deterioration Rate

Fig. 8b. Deterioration rate distribution in the X-Z coordinates of case 1 (b) In 6, and
03 joints space.
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Fig. 9a. Deterioration rate distribution in the X-Z coordinates of case 2 (a) In the X-
Z coordinates.

when evaluating the configuration errors causing maneuverability
deterioration of PUMA 560.

When observing Figs. 8a and 10a, these two diagrams also have
similar distributions but different amplitudes. This phenomenon
also means the magnitude of the configuration errors does influ-
ence the deterioration rate, and when the errors are greater, the
greater deterioration rate will be.

From the above discussions, no matter the effect of Ag; is omit-
ted, or the configuration errors are magnified, the distributions of
the deterioration rates have similar trends but different ampli-
tudes. This phenomenon can be deduced that the distribution of
the maneuverability deterioration rate due to the influence of con-

0.09
0.085
0.08
0.075
0.07
0.065
0.06
0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

Deterioration Rate

Fig. 9b. Deterioration rate distribution in the X-Z coordinates of case 2 (b) In 6, and
05 joints space.
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figuration errors mainly depends on the configuration of the dis-
cussed manipulator, but the actual amplitude is controlled by the
magnitude of these errors and the configuration.

Besides, in Figs. 8a, 9a and 10a, one common phenomenon can
be observed, and that is when 05 gets closer to 95° which is the out-
er boundary of the working region, the deterioration rate will be
greater. In Fig. 11, it shows the two extreme configurations of
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Fig. 11. Two extreme configurations of the discussed region (a) 6, = —45° and 03 = 95° (b) 6, = 45° and 05 = 135°.

the discussed region which are located on the outer and inner
boundaries. From Fig. 11a, it is easily observed that when
03 =90°, this robotic arm is in a singular posture due to the full
stretch between link 2 and link 3. Also from Fig. 11b, it can be
found that when 05 = 135°, it is the posture or configuration that
is far from the singular ones, no matter the one in full stretch or
fold is and has smaller deterioration rate. From this observation,
one deduction can be conducted, and that is even with the same
configuration errors, when getting closer to the singular posture
or configuration, the deterioration rate will be greater.

5. Conclusions

The existence of configuration errors is inevitable when manu-
facturing and assembling a manipulator. When evaluating the
maneuverability of a manipulator system without including the
influence of these errors, the system maneuverability will be over-
estimated and will cause system control failure or other unpredict-
able adverse outcomes especially in the high speed or relative
heavy loading applications with kinetic or dynamic requirements,
e.g. the limbs of a walking robot or a robot arm simulating a ball
throw of a human arm. To redeem this insufficiency, this article
proposes a systematic method to include the influence of configu-
ration errors into the analytical model and proposes an index, dete-
rioration rate, to quantitate the maneuverability deterioration due
to the influence of these errors. By utilizing this index, it is easy for
a control or path designer to assign a reasonable derating margin of
manipulation to plan control strategies or trajectories to attain an
assigned dynamic task without any potential failure risk caused by
the maneuverability deterioration due to the influence of configu-
ration errors.

From the observations found in Section 4, three conclusions can
be conducted. The first one is when getting closer to the singular
postures or configurations, the deterioration rate will be greater,
even with the same configuration errors. The second is the distri-
bution of the deterioration rate mainly depends on the configura-
tion, but the actual amplitude is controlled by the magnitude of
these errors and the configuration. The last one is that Ag; has its
existence necessity when evaluating maneuverability deteriora-
tion due to the influence of configuration errors. When omitting
the influence of Ag;, it will lead to underestimate the deterioration
and may cause some unpredictable adverse outcomes.

Based on these observations, for a control or path designer, it is
better to choose the path or working region far from the singular
postures or configurations when numerous ones are available to
reduce the influence of configuration errors on maneuverability,
and if choosing the one close to the singular postures or configura-
tions is inevitable, greater derating margin must be kept when the
control strategies or trajectories are implemented. From the obser-
vations in Section 4.1, when the implemented path or working re-
gion is short or small and far from the singular postures or
configurations, DRy is a good estimation of the derating margin
for the entire path or region. However, when close to the singular
postures or configurations is inevitable, DR, must be investigated
for all the segments or sections which are close to these singular
postures or configurations to get the information of setting the der-
ating margin to them.

In this article, it proposed a systematic method to evaluate the
maneuverability deterioration due to the influence of configuration
errors, and it also provides an index, deterioration rate, to quanti-
tate the maneuverability deterioration due to the influence of
these errors. The proposed method and index are useful for a
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control or path designer to decide the derating margin of manipu-
lation or choose the path or region with less influence of configu-
ration errors to ensure the achievement of the assigned dynamic
task in a prescribed workspace or region. The examples not only
show the relations between the maneuverability deterioration
and the configuration errors but also find the guideline to choose
the best path or region when numerous ones are available, and
all these make a great benefit to the control or path designers when
they plan the control strategies or trajectories to achieve an as-
signed dynamic task.
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