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and total power dissipation.
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1. INTRODUCTION

To cope with the increasing design complexity of System-on-a-Chip (SoC), hi-
erarchical design and reusable IP (Intellectual Property) modules are widely
used [Coussy et al. 2002; Vorg et al. 2004]. Meanwhile, increased circuit density
and performance compel the need to reduce power consumption that increases
significantly as designers strive to utilize the advancing silicon capabilities
[Hwang 2003; Meindl 1995]. Since the early stage of design will determine the
overall chip performance, an efficient and effective power-aware floorplanning/
placement approach is needed to improve the quality and shorten the design
cycle.

The dynamic and static power dissipation in CMOS digital circuits both have
direct relationship with supply voltage Vdd: dynamic power is proportional
to Vdd2 and static power is proportional to Vdd. Applying lower Vdd under
the performance requirements is obviously one of the effective ways to reduce
power consumption. One of the techniques to reduce power consumption is
voltage island methodology, which is proposed by IBM [Lackey et al. 2002]. A
voltage island is a group of on-chip cores powered by the same voltage source,
independently from the chip-level voltage supply. This concept (in use of voltage
islands) permits operating different portions of the design at different supply
voltage levels.

Voltage island architecture can achieve power saving and has become more
and more popular [Carballo et al. 2003; Hu et al. 2004; Lackey et al. 2002; Wu
et al. 2005; Hung et al. 2005; Lee et al. 2006; Ching et al. 2006]. Hu et al. [2004]
and Hung et al. [2005] partition IP cores into several subvoltage islands, floor-
plan each subvoltage island independently, and floorplan all voltage islands to
form the final result. This approach somewhat restricts the exploration of solu-
tion space. In Wu et al. [2005], a postplacement approach of generating voltage
islands is proposed. However, chip floorplanning level has more flexibilities.
Moreover, since timing convergence is an important issue in deep submicron
(DSM) and nanometer design, the critical delay should be bounded. Therefore
floorplanning with performance constraints is a necessity [Tang and Wong 2002;
Wu and Chang 2004].

In this article, we propose a methodology to preserve good voltage islands
property, which can be viewed as the clustering of modules with same op-
erating supply voltage in achieving lower power consumption. We adopt B*-
tree [Chang et al. 2000] as our floorplan representation and underlying imple-
mentation since B*-tree can provide very good quality of nonslicing floorplans
in area and wirelength costs, plus some properties for voltage islands gener-
ation. Our methodology can save power consumption and routing cost by lo-
cation constraint [Chang et al. 2000], and solve the critical delay problems by
performance constraint consideration [Wu and Chang 2004]. We generate volt-
age islands in the chip floorplanning stage instead of the postplacement one,
in order to have more flexibilities in design. We have added heuristics to adapt
the B*-tree algorithm to obtain voltage islands more easily and efficiently. Our
approach can simultaneously consider voltage islands generation and perfor-
mance constraints imposed by designers, even when the constrained modules
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Fig. 1. A resultant floorplan ami49 from our approach which generates voltage islands with perfor-
mance constraint consideration (dead space = 4.53%, power = 146.6mW while the lowest possible
power = 142mW). Blocks 5, 6 and 7 are under performance constraints and they are placed on
different voltage islands.

are on different voltage islands. It is illustrated in Figure 1. Instead of two-
stage iterative approaches in [Hu et al. 2004; Hung et al. 2005], we have one-
stage floorplan packing methodology, which can explore more solution space.
Experimental results based on some MCNC benchmarks with the additional
power tables and constraints show that our method can meet the performance
requirements while reducing the cost of power routing complexity.

The remainder of this article is organized as follows. In Section 2, we dis-
cuss chip level floorplanning strategy considering voltage islands architecture
and performance-constraint blocks. In Section 3, we present our floorplanning
algorithm for simultaneously dealing with voltage islands and performance
constraints. Our experimental results are shown in Section 4, and we conclude
the article in Section 5.

2. VOLTAGE ISLANDS ARCHITECTURE AND PERFORMANCE
CONSTRAINTS IN CHIP LEVEL FLOORPLANNING

In this section, we briefly review the B*-tree representation, concepts of voltage
islands, and performance constraints in floorplanning. The problem is then
formulated.

2.1 Review of B*-Tree Representation

A B*-tree [Chang et al. 2000] is an ordered binary tree whose root corresponds
to the module on the bottom-left corner for modeling a nonslicing floorplan.
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Fig. 2. A B*-tree placement. (a) An admissible placement. (b) The B*-tree representing the corre-
sponding placement.

Given a B*-tree, we can also obtain an admissible placement by packing the
blocks in linear time with a contour structure [Guo et al. 1999]. An admissible
placement is a compacted placement, and no block can move down nor left in
this placement. The packing based on the B*-tree representation uses simulated
annealing algorithm with module moves (rotate, move to another place, swap,
and remove-insert-best), including deletion and insertion in trees. In a B*-Tree
T , the root of T represents the block on the bottom-left corner, the x-coordinate
and y-coordinate of the block associated with the root (xroot, yroot) = (0,0). If
node nj is the left child of node ni, block bj is placed on the right-hand side
and adjacent to block bi in the admissible placement; that is, x j = xi + wi, wi is
the width of bi. Otherwise, if node nj is the right child of ni, block bj is placed
above block bi, with the x-coordinate of bj equal to that of bi; i.e., x j = xi. With
the contour structure, we can compute the y-coordinate of a block in constant
time.

Figure 2 illustrates (a) an admissible placement and (b) its corresponding
B*-tree. Using the depth-first search (DFS) procedure, the B*-tree T for an ad-
missible placement P can be constructed in a recursive fashion. In Figure 2,
we first pick n0, the root of T , and place b0 on the bottom-left corner. Then we
traverse the left child of n0, n1. Block b1 is placed on the right of b0. Therefore,
since n1 does not have a left child, we traverse n3, the right child of n1. The
process continues until all nodes are traversed, and finally we will have an ad-
missible placement. Inheriting from the nice properties of ordered binary trees,
the B*-tree is simple, efficient, effective, and flexible and particularly suitable
for representing a nonslicing floorplan with various types of modules (such as
preplaced and rectilinear) and for creating or incrementally updating a floor-
plan. We use the B*-tree representation and simulated annealing algorithm
as our underlying engine and embed the voltage islands generation concept to
save power dissipation.

2.2 Voltage Island Methodology

The combination of increasing active power density and leakage currents
has created a power management problem in the semiconductor industry.
Performance-critical elements of the design require the highest voltage level
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to maximize performance, while other coexisting functional cores may not need
this voltage level and can work at lower voltages to save significant active power.
This idea enables the concept of voltage island architecture [Lackey et al. 2002].

Introducing voltage islands concept makes the chip design process even more
complicated with respect to static timing and power routing. In particular, the
complexity grows significantly with the number of islands. The cores powered by
the same voltage should be grouped together without violating design metrics
such as timing and wire congestion. Meanwhile, the number of voltage islands
should be appropriate (not too many) considering signal level maintenance and
communication between different islands, which requires level converters. We
also need to consider power routing complexity [Hu et al. 2004] for design cost.
Hence the overhead for applying voltage islands methodology with respect to
area and delay is inevitable.

2.3 Performance Constraints Consideration in Floorplanning

Performance is one of the major concerns since the interconnect delay dom-
inates the circuit performance for DSM VLSI design. Minimizing total wire
length, as traditional floorplanners/placers did, can not guarantee bounded de-
lay for critical nets. It is desirable to minimize the critical net delay to optimize
performance or to meet the delay constraints by placing these blocks/cores with
critical nets close enough to each other. In Tang and Wong [2002], the maxi-
mum delay of performance constrained blocks is bounded by the summation of
its height and width of the bounding box enclosing those blocks. However, it
is not trivial to bound the maximum delay for those performance constrained
blocks in voltage island architecture, especially for those which are not in the
same voltage island.

2.4 Problem Formulation

For voltage island planning, we use a simplified model for modules/IPs, based
on the setup in [Hu et al. 2004]. Since the power consumption of an IP varies
with different supply voltage, we use a power table for every IP. The power table
is a list of matching pairs [supply voltage, power dissipation] and specifies the
legal voltage levels to work functionally and the corresponding average power
dissipation values as illustrated in Figure 3 . We set this power dissipation
based on IP’s timing constraint and circuit size.

The problem discussed in this article is as follows. Let B = {b1, b2, . . . , bn} be
a set of n rectangular modules whose width, height, and area are denoted by Wi,
Hi, and Ai, 1 � i � n. Let (xi, yi) denote the coordinates of the bottom-left corner
of module bi, 1 � i � n, on a chip. Each module is associated with a power table.
A floorplan/placement P considering the performance constraints and voltage
islands generation is an assignment of (xi, yi) for each bi, 1 � i � n, such that
cores are clustered using the same voltage to form appropriate number of volt-
age islands and achieving low power consumption, while no two modules over-
lap and the given performance constraints are satisfied. For different voltage
islands, there are level converters to modify the voltages of signals. If there are
more level converters, we have to pay more power routing cost. Since we need
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Fig. 3. An illustration of an intuitive approach to generate voltage islands in chip-level design.
One obvious way to maximize power saving in floorplanning is to operate each block at its lowest
available voltage. We partition the blocks according to their lowest supply voltage, then construct
the subtrees of those compatible blocks. We then build the B*-tree and the corresponding floorplan.
This approach will seriously limit the exploration of the solution space.

to reduce the power routing cost during the floorplan stage as well, the goal of
our algorithm is to simultaneously minimize the packing area, power routing
cost, and total power dissipation, while meeting performance constraints.

3. PERFORMANCE-CONSTRAINED VOLTAGE ASSIGNMENT IN MULTIPLE
SUPPLY VOLTAGE FLOORPLAN DESIGN

In this section, we propose the heuristics for voltage islands generation with B*-
tree representation, discuss the strategy to consider performance constrained
blocks during floorplanning under voltage island architecture, and present our
algoritm.

3.1 Floorplanning with Voltage Islands Generation

We first give an example to show the setup in creating voltage islands in SoCs
using B*-trees and one intuitive strategy. In Figure 3, each core is followed by
a number identifying its operable voltages, which are associated with a power
table. For instance, the block b3 can operate at 1.0V , 1.1V , or 1.2V , and its
corresponding power consumption are 1.3mW, 1.8mW, and 2.6mW. One obvious
way to maximize power saving in floorplanning is to operate each block at its
lowest voltage, which means that we need at least 3 voltage islands: one for
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Fig. 4. Examples to explain the condition that nodes are not in the same subtree does not mean
they do not abut physically; and the condition that two nodes abut does not represent the situation
that the corresponding two blocks abut directly. In (a), node n5 is not in the same subtree with
{n1, n3, n4}; but in the floorplan, block b1, b4 and b5 are adjacent. In (b), nodes {n0, n2, n6} abut one
by one and are in one subtree; but in the floorplan, block b2 is not adjacent to block b6. There are
extra area overheads in this voltage island.

{b0, b4, b7}, one for {b1, b2, b9, b10}, and one for {b3, b5, b6, b8}. This arrangement
is obviously not optimal since the exploration of solution space is limited and
the cost of area/wirelength overhead may be very high. Sometimes we may be
forced to use more islands, or to switch the supply voltages of some blocks which
support two or more legal supply voltages to one of its higher legal voltages to
alleviate the problems.

An important observation to create the voltage islands is to constrain the
relationship between each pair of nodes which exist the parent-child relation-
ships in the B*-tree, which means to cluster the blocks with the same supply
voltage (say compatible), grouping them to be a subtree in the corresponding
B*-tree. However, the condition that nodes are not in the same subtree does not
mean they do not abut physically. Similarly, the condition that two nodes abut
in the tree does not always mean that the corresponding two blocks abut, as
shown in Figure 4. We observe that not all the blocks constructed in one subtree
will be put together to form one voltage island. It is therefore more practical
to increase the probability of those nodes to be clustered together, then apply
a simple validation to inspect if they really form a favorable island with better
power routing cost.

From the B*-tree representation and observations mentioned previously,
there will be a visible mapping relationship that if nj is the left child (or right
child) of ni in the B*-tree representation, then the block bj right abuts to the
block bi (or is visible and above to the block bi). Thus the probability that a
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Fig. 5. Three swapping conditions to increase the probability of clustering the same voltage is-
lands. (a) V (p) = V (n). Node p and node n have the same voltage. (b) V (p.parent) = V (n). Node
n and the parent of node p have the same voltage. (c) V (p.leftchild) = V (n) and V (p.rightchild) =
V (n). Node n has the same voltage with both children of node p.

node adds to a compatible subtree and the subtree grows and maps to the same
voltage island shape will be increased. To implement this idea, we first ran-
domly choose two nodes n, p in the tree (V (n) and V (p) denote the adopted
voltages of node n and node p), and if the following conditions appear, we swap
the positions of these two nodes in a B*-tree.

—V (p) = V (n). Node p and node n are compatible, no new voltage islands will
be created.

—V (p.parent) = V (n). Node p’s parent and node n are compatible. We swap
node p and node n, and node n becomes the leaf of the subtree, or connects
two or three compatible subtrees to form a larger subtree (if one or both p’s
children have the same voltage with node p’s parent).

—V (p.leftchild) = V (n) and V (p.rightchild) = V (n). Node p’s children both
have the same voltage with node n. We swap node n and node p, and node
n becomes the root of the subtree, and connects two compatible subtrees to
form a larger subtree.

The three swapping conditions are explained in Figure 5. Besides, we modify
two following operations in the B*-tree algorithm.

—Delete Node. If we want to delete node n, we have to keep the connection
of nodes with the same voltage. If the supply voltage of one child nodes
(n.leftchild or n.rightchild ) is compatible with node n’s parent, we choose
it to be new child of node n’s parent. If the children are in the same situation
(both compatible or both not compatible), we randomly choose one of them.

—Insert Node. If node n has to be inserted into one subtree and the subtree
exists compatible nodes, the node n will be placed to join the cluster of the
compatible nodes. If there does not exist any node compatible, we randomly
choose one place to insert.

The reason why we need to remodel the basic procedures in constructing
the B*-tree [Chang et al. 2000] is that it (or other floorplanners) only han-
dles position constraints. Position constraints are concerned on the changes of
blocks position, either precise position (such as pre-placed problems) or the rela-
tive position, that is, alignment or performance constraints problems. However,
considering to maintain voltage island, the nodes in different supply voltages
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should be ranked to different orders when needed to abut with other nodes or
delete from the B*-tree.

Since the subtree construction is just a method to increase the possibility
to place blocks/cores together, we need a property checking function to check if
there exists a suitable voltage island. We do it after the contour updated to make
sure the number of voltage islands is acceptable. Our checking is efficient since
the block is only checked one time while it is placed at the segment of contour
line, instead of checking all placed blocks.

3.2 Floorplanning with Performance Constrained Blocks
in Voltage Island Architecture

Traditional floorplanners/placers minimize total wirelength but they can not
guarantee critical nets to meet bounded delay. This problem becomes more im-
portant because timing convergence is a big issue in DSM design. In order to
meet critical delay constraint, there are methods proposed in Tang and Wong
[2002] and Wu and Chang [2004] during floorplanning. Since actual intercon-
nect delay after appropriate buffer insertions will be close to linear in terms
of distance, linear function in terms of distance to estimate delay is used. As-
sume there are a source at (xs, ys) and a sink at (xt , yt), and the delay of the net
Ds,t = δDists,t = δ(|xt −xs|+| yt − ys|), where δ is a constant to scale the distance
to timing, and Dists,t is the maximum distance between source and sink, equal
to the half perimeter of the bounding box of the two points. Wu and Chang [2004]
use the delay model to do subplacement (to place a set of feasible subplacements
for the performance constrained blocks) by restricting the longest distance of
performance constrained blocks: Dists,t = (|xt−xs|+| yt− ys|) = Ds,t/δ ≤ Dmax/δ,
where Dmax is the given maximum delay bound.

By applying this idea to a set of performance constrained blocks (whose areas
are Ai, i = 1, 2, . . . , k), they can get some rectilinear super blocks that the width
Wperf and height Hperf satisfy the performance constraint: Wperf + Hperf = B ≤
Bmax, where Bmax is the maximum bounded distance. Among the placements
(rectilinear super blocks) meeting the performance constraints, they pick the
one with the minimum dead space Sperf = Wperf ∗ Hperf − ∑

Ai and fix the recti-
linear block (and thus fix the delay) for further processing with other blocks. By
using the preclustered shape-fixed appropriate rectilinear block, they guaran-
tee that the performance constraints will be satisfied throughout the remaining
processing. In Tang and Wong [2002], it is different in choosing an appropriate
rectilinear super block, where they use a method that adjusts the Wperf and
Hperf dynamically into the rectilinear super blocks. At higher temperature in
annealing process, let Wperf and Hperf to be half-half: Wperf = Hperf = Bmax/2.
Simulated annealing is characterized as chaotic process where a square range-
box is appropriate to use for approximate guidance. And at lower temperature,
a specific range box is almost fixed and cannot be changed easily to exactly
capture delay bound.

There is a major problem in this performance model using voltage island
architecture. The performance of each block does not vary with supply voltage.
The legal supply voltage has a big impact on the driving strength, thus the
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Fig. 6. The diameter is the number of nodes between two nodes. Each pair of blocks whose cor-
responding nodes have 0 diameter is almost abutting to each other, except blocks b3 and b8. Two
nodes whose diameter is less than or equal to 2 are near to each other. Blocks b0 and b5 are adjacent
to each other though the diameter of nodes n0 and n5 is larger than 2.

bounding box size. If signals are communicated by high supply voltage, the
bounding box for performance constrained blocks will be larger than one with
lower voltage. In addition, the allowable box size should be a function of the
supply voltage. In Wu et al. [2003], the location constraint (LC for short) was
proposed to maintain the relation of blocks after packing of B*-trees. The blocks
with LC relation will be placed with the desired shape (L-shape or T-shape) in
the final floorplan. Wu and Chang [2004] extend the LC relation to alignment
shape to guarantee the alignment constraints will be satisfied at all times. From
these two works and the observation in Section 3.1, we know that if the nodes
in the B*-tree are closer to each other, the chance that blocks are next to each
other will be higher in the final floorplan. We then define a diameter of two
nodes in the B*-tree: the number of nodes between those two nodes. Two nodes
with 0 diameter are in the direct parent-child relationship. We use Figure 6
(from Figure 3) to illustrate this idea. In Figure 6, we can see that the blocks
whose corresponding nodes with diameter less than or equal to 2 are almost
adjacent or near to each other. There exists an exception that blocks b0 and b5
are placed next to each other but their corresponding nodes have the diameter
larger than 2. Though the diameter does not guarantee the final relation of
blocks, we could use it to guide the desired blocks being placed near each other
without restricting their shapes (as in Wu and Chang [2004]).

Our approach combines the advantages of these methods [Wu et al. 2003;
Wu and Chang 2004; Tang and Wong 2002], keeping the flexibility of the sub-
placement for the performance constraints. We do not pick the minimum dead
space subplacement and fix the shape (or the relational position) of the perfor-
mance constrained blocks before processing with other blocks at the beginning.
Instead, in a B*-tree, we set the diameter of performance constrained nodes
and let the performance constrained nodes be handled with other nodes as if
they are not under restriction. And then, after floorplanning, we check whether
these performance constrained blocks are placed in the desired bounding box
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or not. If these performance constrained blocks are in the desired bounding
box, we accept this floorplan. The bounding box will be shrunk at every time
we accept a new floorplan until meeting the performance constraints, like men-
tioned in Tang and Wong [2002]. Thus, the total area and wirelength can be
better optimized. This is further verified in the condition that supply voltages
of the performance constrained blocks are possibly different.

In experiments, the initial bounding box is the bounding box of first floorplan
we got after first packing. We use its half perimeter to calculate first Dbound,
where Dbound presents the delay of the shrinking bounding box as we mentioned,
and we can get Ds,t of performance constrained blocks. There is no doubt we
have a first valid floorplan whose Ds,t < Dbound. Every time we accept a valid
floorplan, we decrease the Dbound and repeat it until Dbound <= Dmax. Once
the condition Ds,t <= Dbound <= Dmax is achieved, we get a floorplan meeting
performance constraints and can use Dmax to constrain performance blocks in
further process. By reducing Dbound step by step, we can get more solution
space than Wu and Chang [2004] and guarantee the final floorplan meets the
performance constraints by Dbound <= Dmax as Tang and Wong [2002].

3.3 The Algorithm

Our floorplanning/placement design algorithm is based on the simulated an-
nealing method and we only consider hard modules in this article. We perturb
a B*-tree to another by the following operations.

—Op1: Change the supply voltage of a block.
—Op2: Rotate a block.
—Op3: Flip a block.
—Op4: Swap two blocks.
—Op5: Move a block to another place.

The first operation Op1 is designed for blocks’ voltage perturbation. The
block which has more than two voltages will be involved by the operation. In
this operation, we change the voltage of the block to be the same with its parent
or children if possible and expect to generate larger voltage island. In Op2, we
rotate a block. This action can be applied to any node without changing the
relations between any two nodes. In Op3, we flip a block. It can be applied to
any blocks including performance constrained blocks, since we do not bind them
together at the beginning. Op4 and Op5 change the relations of blocks to get
a different placement and B*-tree structure based on our heuristics. Like the
Op1, these two operations expect to extend the voltage islands. To get better
results by Op4, we give the higher probability to the two nodes with the same
voltage, and lower probability to the two nodes with different voltages. In the
original B*-tree, it gives the random move for Op5. In our algorithm, we use the
new Delete Node and Insert Node here to generate voltage islands as large as
possible. Moreover, if we tighten the shape of performance constrained blocks
at the beginning, we may be forced to raise the supply voltages of some of
them to the higher one to match the voltage of the island which these blocks
belong to; or we will get a malicious B*-tree structure that the voltage property
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Fig. 7. The algorithm of floorplanning with performance constraints for voltage island generation.

is withered. When the temperature becomes lower in annealing process, we
do not accept a solution that violates performance constraints even if it has
better cost, the best solution will be kept until next feasible solution with better
cost.

Figure 7 shows our algorithm in detail. First, we initialize the B*-tree and
set up the power table and constraints (see line 1). We construct the initial B*-
tree according to the order which the blocks are presented and set all blocks to
their lowest voltage. Then, we start the simulated annealing (SA) process. Af-
ter each perturbation (see line 4), we check the performance constrained blocks
(see line 5). Because there are no exact coordinates of performance constrained
blocks in this stage (before packing), we use the diameter to maintain their
relation in the B*-tree (close to each other). If there exists any diameter be-
tween each pair of nodes of performance constrained blocks larger than 2, we
will reorder their relations and make sure there is no diameter larger than 2 to
expect the more adjacency of performance-constrained blocks (see line 7). The
adjusting function consists two steps: remove the node with the largest diame-
ter and then insert it into the original group with diameter less then 2. Then we
do the packing, check the performance constrained blocks, accept a placement
without violating performance constraints (see line 8), and pass it to the next
step. If the performance constraints check fails, we treat it as a failing step in
the simulated annealing process. We check the property of voltage islands for
this placement (see line 9), if the property is not good for this placement (ex. too
many voltage islands or too many level converters), we penalized the solution so
that it will be rejected by SA. After checking the property of voltage island, the
placement is evaluated by its area, wire length, the number of voltage islands,
and the cost of level converters (see line 12). This cost function, cost = αarea +
βpower + γ power routing, where α + β + γ = 1, takes care of area of the
floorplan, the total power consumption and the power routing cost of voltage
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islands. In our experimental setting, we set α = 0.9, β = 0.05, and γ = 0.05.
The iteration continues until the end of SA scheme (see lines 3–13) and the best
solution is reported(see line 14). According to this flow, we can guarantee the
performance constraints are met during the perturbation and we will try to get
the placement with good property of voltage islands at each perturbation.

4. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ on a PC with P4-2.4GHz CPU and
440MB memory. Our method can handle circuits that have two or three kinds
of supply voltages, circuits with more than three supply voltages are applica-
ble as well. If there is only one supply voltage for the circuit, our program will
be applied like the original B*-tree simulated annealing method, and will not
spend extra runtime to handle voltage island property. The good voltage island
property means that the number of voltage island and power routing cost are
acceptable. For verifying our observation in voltage islands generation on large
number of blocks, we apply our approach on some of the MCNC benchmarks
with more blocks, and compare with Chang et al. [2000], the original B*-tree
with simulated annealing method. For adopting voltage island architecture,
power routing cost and level converter issues should be addressed.

To compare the power routing complexity, and the overhead area due to
level converters, we adopt a simple method to estimate the cost of it. Wire
connections between two blocks in different islands always need level shifters
to change its signal levels, and we assume that all level converters are placed
on the periphery of voltage islands (the boundary of the two islands), except
for the boundary of the chip. The main reasons are that, firstly, we preserve a
thin layered unit level converter area on the boundary between two different
islands, and it is enough for the required area of all level converters for the
wire connections; secondly, the power pins located on the outmost periphery
(the boundary of the chip), so we do not place level converters there. Moreover,
although different types of level converters may need different sizes of area to
implement, we simply assume all level converters are the same size. Based on
above assumptions, we count the boundary length except the outmost side to
be the power routing/overhead area cost.

Table I shows the comparison between Chang et al. [2000] and our approach
on power consumption and power routing cost, where columns 1 and 2 give
the name of the circuit (the number of blocks) and the power tables we use,
and the power consumptions in column 4 are lowest since we use the lowest
available voltages for every block in these circuits, and we compare the power
routing/overhead converter area cost from Chang et al. [2000], which are nor-
malized to ours. We experiment our method by testing with different power
tables, which are composed of <supply voltage, power dissipation> pairs. They
are randomly assigned in order to simulate the fact that different functional
cores may be different in their power density or supply voltage. Pt2 means the
power table that contains 2 different supply voltages, while pt3, pt3 1, pt3 2
are power tables containing 3 folds. For power consumption, we sum up every
block’s power consumption at its operated voltage. From Table I, we can see
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Table I.
The comparisons between pure B*-tree [Chang et al. 2000], the results of [Hu et al. 2004] which
are implemented based on the B*-tree representation, and our approach on power consumption
and power routing cost. The results are obtained from some MCNC benchmarks with different

power tables. C is level converters area and routing cost, normalized to our approach. With
slightly more power consumption, we can obtain much lower power routing cost in voltage

islands generation. The unit of P is mV and CPU is second.

Original B*-tree Results of [Hu et al. 2004] Ours
Circuit Table Dead P C CPU Dead P C CPU Dead P C CPU

pt2 83.7 1.81 3.10% 86.4 1 18 3.10% 86.4 15hp
pt3

1.4%
73.4 2.38

4
2.98% 78.30 1 22 2.98% 78.3 18

pt3 113.6 4.52 4.25% 115.8 1.458 82 2.07% 123.2 89ami33
pt3-1

1.47%
131.1 4.76

26
3.75% 136.6 2.461 86 2.23% 136.3 89

pt2 147.1 4.18 4.08% 157.9 1.49 263 3.34% 151.5 243
pt3 142 5.43 4.42% 151.1 1.53 246 3.38% 156.2 234

pt3-1 183.1 6.11 5.24% 200.1 1.12 275 3.52% 196.4 234ami49

pt3-2

3.68%

208 5.97

53

4.21% 223.7 1.20 255 3.64% 222.9
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(a) (b) (c)

Fig. 8. The floorplans of circuit ami33 with 3 usable supply voltage. (a) An illustration of ami33
without voltage island methodology. Dead space = 2.12%, power = 113.6mW. (b) An illustration
of applying heuristic of supply voltage adjusting method for original B*-tree resulting in Figure
8(a). We raise supply voltages of some blocks to reduce some power routing and area overhead due
to level converters. Power = 136.8mW, and 20.4% increasing in power consumption compares to
the lowest power dissipation. (c) An example from Figure 8(a) raising all the supply voltages and
forming two voltage islands finally. Power = 146.3mW, and 28.8% increases in power consumption
compared to the lowest power dissipation.

that our power consumption is a little more than the lowest power listed in
column 4, but our routing/level converters cost is about 16.4%–55.2% less when
compared with Chang et al. [2000].

There are many works discussing about voltage island issues. To demon-
strate the effectiveness of our algorithm, we implement the work of Hu et al.
[2004] based on the B*-tree representation, which is comparable in experimen-
tal setup and assumptions to our work, the corresponding results are also shown
in Table I. For the benchmark of ami33 pt3, it obtains the result of dead space =
4.25%, power = 115.80, and level converter cost = 1.458. Because their method
merges subvoltage islands first and floorplans these subvoltage islands, their
method will get better result in power consumption. For dead space and level
converter cost, our algorithm has better results on all benchmarks.

Here we use some figures to illustrate the differences between Chang et al.
[2000] and the proposed algorithm. Figure 8(a) shows the final results from the
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Fig. 9. Two floorplans of circuit ami33 with 3 usable supply voltage. (a) Floorplan with much
higher power routing complexity since the number of voltage islands is large. Dead space = 1.47%,
power = 113.6mW. (b) Floorplan with nice voltage island property (slightly more power dissipation).
Dead space = 2.07%, power = 123.2mW.

Table II.
The comparison between two approaches on power consumption and power routing cost. With

both meeting performance constraints, our approach obtains much lower power routing cost with
slightly more power consumption.

Perf. Const. Only [Wu and Chang 2004] OursCircuit Table Perf.
Area Dead P(mw) C Area Dead P(mw) C

pt3 113.6 4.34 1.18 2.02% 121 1ami33
pt3-1

3 1.181 2.2%
131.1 4.93 1.181 2.2% 145.1 1

pt2 147.1 4.5 36.78 3.64% 156 1
pt3 142 6.33 36.89 4.53% 146.6 1

pt3-1 183.1 6.89 36.87 3.86% 200.9 1ami49-2

pt3-2

3 36.56 3.1%

208 6.7 36.89 3.93% 221.9 1
pt2 147.1 4.48 36.8 3.68% 156.8 1
pt3 142 6.43 36.98 4.14% 149.7 1

pt3-1 183.1 6.6 37.1 4.46% 215.9 1ami49-3

pt3-2

6 36.64 3.3%

208 6.25 37.07 4.38% 223.3 1

original B*-tree. In this experiment, we fix each block at its lowest power and
try to minimize the area. In Figure 8(b), we add the penalty in the cost function
of the original B*-tree to minimize the boundary of different voltage islands.
Finally, Figure 8(c) further reduces the number of voltage islands to two, which
is to mimic the result applying our voltage island generation strategy, this
result is therefore not in Table I. Figure 9 shows our experimental results
and demonstrates the comparison between two floorplans of ami33, with and
without voltage islands generation heuristic. From the experiments and these
figures, we can observe that, for power saving, we could use the lowest voltage
of each block, but we have to pay much more cost to level converters and power
routing. Our algorithm can achieve a very good result at generating voltage
islands with the acceptable cost.

According to Table II, our B*-tree based algorithm is also very efficient (the
results reported in [Wu and Chang 2004] ran on a 440 Sun Sparc Ultra 10
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machine). Table II shows the comparison of our results with Wu and Chang
[2004], which considers only performance constraints. Column 3 gives the num-
ber of performance constrained blocks, there are one group in ami33 and ami49-
2, two groups in ami49-3, and each group has 3 blocks. Both methods meet
performance constraints but our approach could get much lower cost of level
converters with slightly more power consumption. Figure 1 illustrates final
floorplanning result of ami49 with performance constrained blocks 5, 6, and 7,
and they are not on the same voltage island.

5. CONCLUSION

In this article, we have presented an effective algorithm to deal with the floor-
planning with voltage islands consideration and performance constraints. The
algorithm is based on the B*-tree representation and the simulated annealing
framework. According to the circuit power table information and the idea of
location constraint (LC relation), we can group a set of cores using the same
supply voltage, obtain appropriate number of voltage islands, and form good
shapes of voltage islands. We also take performance constraints into consider-
ation while generating voltage islands.
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