IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.12 DECEMBER 2009

3143

| PAPER Special Section on VLSI Design and CAD Algorithms

Communication Synthesis for Interconnect Minimization in
Multicycle Communication Architecture

Ya-Shih HUANG ™, Yu-Ju HONG'?, Nonmembers, and Juinn-Dar HUANG', Member

SUMMARY  In deep-submicron technology, several state-of-the-art ar-
chitectural synthesis flows have already adopted the distributed register ar-
chitecture to cope with the increasing wire delay by allowing multicycle
communication. In this article, we regard communication synthesis target-
ing a refined regular distributed register architecture, named RDR-GRS, as
a problem of simultaneous data transfer routing and scheduling for global
interconnect resource minimization. We also present an innovative algo-
rithm with regard of both spatial and temporal perspectives. It features both
a concentration-oriented path router gathering wire-sharable data transfers
and a channel-based time scheduler resolving contentions for wires in a
channel, which are in spatial and temporal domain, respectively. The ex-
perimental results show that the proposed algorithm can significantly out-
perform existing related works.

key words: multicycle communication, communication synthesis, inter-
connect minimization, resource allocation, resource sharing, scheduling,
routing

1. Introduction

As proceeding into the deep-submicron (DSM) technol-
ogy era, interconnect delay is becoming inevitable due to
resistance-capacitance delay, coupling effect, inductance,
multiple-gigahertz operating frequency, and so on [1]-[3].
In architectural synthesis, the maximum sum of delay of
both the functional units (FUs) and the associated wires de-
cide the system speed. If the synthesis flow still neglects
the delays introduced by long wires (especially for global
interconnects), the serious impacts of long wires after phys-
ical floorplanning are very likely to worsen the whole sys-
tem performance due to unexpected larger clock cycle time.
To solve this problem, [4]-[6] propose synthesis flows to
estimate long interconnect delays more accurately by ap-
plying preliminary floorplanning and obtain better synthesis
results.

Typically, centralized register (CR) architecture is pre-
sumed in high-level synthesis. In a CR-based architecture,
an FU is expected to access any register within one clock
cycle. Though the device speed generally increases as the
manufacturing process advances, the wire delay does not
scale as well as the feature size. Consequently, global wire
delay gradually dominates and significantly lengthens the
cycle time. Hence, [7]-[16] propose distributed register

Manuscript received March 19, 2009.
Manuscript revised June 12, 2009.
"The authors are with the Department of Electronics Engineer-
ing, National Chiao Tung University, Taiwan, R.O.C.
""The author is with the Department of Electrical and Computer
Engineering, Purdue University, IN 47907, USA.
a) E-mail: sali.ee95g@nctu.edu.tw
DOI: 10.1587/transfun.E92.A.3143

(DR) architectures to overcome this issue. In a DR-based ar-
chitecture, the whole system is partitioned into several clus-
ters and each cluster contains its own local FUs and reg-
isters. As a result, the inter-cluster interconnect delay can
be isolated from the intra-cluster delay. The latter includes
the local wire delay within the same cluster and is supposed
shorter than a single cycle, while the former is the global
data transfer delay between different clusters and is allowed
to be completed in multiple cycles. Accordingly, the DR ar-
chitecture can not only alleviate the increase of cycle time
due to the long wire delay but enable simultaneous compu-
tation and communication.

Though allowing multicycle global data transfer can re-
duce the impact on system speed in a DR-based architecture,
performance improvement is still limited by the inaccurate
delay estimation of long wires. Therefore, authors in [9]
propose the regular distributed register (RDR) architecture
and the corresponding synthesis methodology, named the
architecture-level synthesis for multicycle communication
(MCAS). Due to the highly regular layout, it is applicable
to provide a table of the accurate interconnect delay between
each cluster pair in this architecture. With this look-up table,
MCAS can estimate the long wire delay in a very precise
fashion.

Nevertheless, there is one point worth being noticed.
That is, the required numbers of registers and wires in DR-
based architectures are usually greater than those in CR-
based architectures since the same data are likely demanded
by several different clusters. The DR-based architectures
require either dedicated global interconnects to hold data
for multiple cycles during transferring, or extra registers to
pipeline the multicycle interconnects. It is reported that on
average 100% more registers and 46% more global wires
are required for data transfers in an RDR-based architecture
than the CR-based architecture [9]. Consequently, the is-
sue of minimizing the demanded interconnect resources in
DR-based architectures must be addressed very seriously.
Recently, a refined RDR-based architecture, called Regular
Distributed Register-Global Resource Sharing (RDR-GRS),
is proposed [11]. While still preserving both the proper-
ties of multicycle communication and highly regular layout,
RDR-GRS further enables the interconnect resources to be
shared globally hence the required interconnect resources
can be minimized for completing a given set of data trans-
fers. Authors in [11] also present an optimal algorithm for
interconnect resource minimization based on integer linear
programming (ILP) formulation. Though the algorithm is

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers



3144

optimal, it fails to solve large-scale problems due to its high
time complexity. That is, up to now, there is no known time-
efficient algorithm to deal with the register and channel al-
location problem in RDR-GRS. Hence we believe there are
two major contributions presented in this article. Firstly, we
model the channel and register allocation problem in the
RDR-GRS architecture as a transfer scheduling problem.
Secondly, we propose an innovative time-efficient algorithm
which performs spatial routing and temporal scheduling at
the same time for the modeled transfer scheduling problem.
Experimental results show that it performs very well even
for those large-scale design cases ILP cannot solve.

The rest of this article is organized as follows. Sec-
tion 2 briefly introduces the RDR-GRS architecture. Sec-
tion 3 gives the problem formulation. Section 4 presents the
proposed algorithm, followed by the experimental results in
Sect. 5. Finally, Sect. 6 concludes this article.

2. RDR-GRS Architecture

Since the inaccurate delay estimation of long wires affects
the system cycle time, a regular architecture and its corre-
sponding synthesis methodology, RDR/MCAS, is proposed
in the first place to solve this problem [9]. RDR/MCAS di-
vides the whole chip into two-dimensional regular clusters
such that the accurate wire delay between any two clusters
can be obtained by just looking up the delay table. Later,
an extension named the RDR-Pipe/MCAS-Pipe is proposed
in [10]. RDR-Pipe allows data transfers with the identical
source-destination pair to share the same wires by inserting
extra pipeline registers as intermediate stops. Though wires
can be shared by data transfers under certain constraints in
the RDR-Pipe architecture, the major overhead comes from
the pipeline registers which can only forward the transferred
data every cycle. To utilize global wires and registers more
efficiently, the RDR-GRS architecture is further proposed in
[11].

Figure 1 shows an example of the channel and regis-
ter allocation outcomes on RDR/MCAS, RDR-Pipe/MCAS-
Pipe and RDR-GRS/ILP, respectively. Scheduled and bound
data flow graphs (DFGs) are shown on the left hand side of
the figure, while the architectures with operations placed in
the clusters are on the right hand side. A wire here is defined
as the connection between two neighboring clusters. As ex-
pected, the original RDR requires the most resources due to
its no-sharing nature. RDR-Pipe demands fewer wires be-
cause it enables shares among those transfers with the same
source and destination pair. Finally, by closely examining
the data transfers spatially and temporally, more aggressive
resource sharing can further be exploited. This example
clearly demonstrates the potential of the RDR-GRS archi-
tecture for reducing interconnect resource needs.

3. Problem Formulation

Section 3.1 describes the details of the target RDR-GRS ar-
chitecture used in this work. Section 3.2 defines how to de-

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.12 DECEMBER 2009

Fig.1 Inter-cluster communication in (a) RDR, (b) RDR-Pipe, and (c)
RDR-GRS.

rsq chy, rs; chys rss
chy, chs,
(2] (2] (2] 0 (2] (2]
= | T = =2 =2 =2
: = o N .z .:
ke
rsy chys rss chse Irse
chsg ches

Fig.2  Specification of a 2 x 3 RDR-GRS architecture.

rive a data transfer set from the given scheduled/bound DFG
and the placed FUs with topology information. Section 3.3
then discusses the transfer routing and scheduling problem.
Finally, the problem formulation is given in Sect. 3.4.

3.1 Architecture Specification

The target architecture in our work is the RDR-GRS archi-
tecture with a two-dimensional M X N cluster array. This ar-
chitecture contains a set of clusters C = {c;|]1 <i < M X N},
a set of register stations RS = {rs;j|]1 <i < M X N}, and a set
of channels CH = {ch; ;| the channel from rs; to its neighbor-
hood rs;, 1 < i, j < M X N}. Figure 2 shows the RDR-GRS
with a 2 X 3 cluster array. The neighborhoods of a cluster
(a register station) are defined as the four clusters (register



HUANG et al.: COMMUNICATION SYNTHESIS FOR INTERCONNECT MINIMIZATION IN MULTICYCLE COMMUNICATION ARCHITECTURE

c2

cycle 3 @

ISy

cycle 4
cycle 5 try

=1 c5
cycle 6 o op4
cycle 7 op8

rSs chas rss
Chs 4 |

Fig.3 A data transfer in the RDR-GRS architecture.

stations) up, down, right and left, respectively. A wire in
a channel can complete a data transfer from a register sta-
tion to its neighborhood within one cycle. Hence a global
(inter-cluster) transfer can be decomposed into a series of
transfers in wires between every two neighboring register
stations; and the cycles a global transfer takes are propor-
tional to the number of channels it passes by. Note that the
channel is assumed unidirectional here just for simplicity.
Our algorithm, proposed later, is capable of handling both
unidirectional and bidirectional channels.

3.2 Data Transfer Set

The data transfer set Tr = {tr;]1 < i < k}is a set of data trans-
fers that are derived from the given scheduled/bound DFG,
FU placement, and target architecture specification. The fol-
lowing are the parameters associated with a data transfer t7;:
source(tr;) and dest(tr;) mean the source and destination reg-
ister station of tr;, respectively; ready(tr;) indicates the cy-
cle at which tr; is ready for launch and deadline(tr;) sets the
deadline of the arrival time for r;; short_dist(tr;) gives the
number of cycles #r; passes through one of the shortest pos-
sible physical paths from source(tr;) to dest(tr;); slack(tr;) =
(deadline(tr;) — ready(tr;)) — short_dist(tr;) is equal to the
number of cycles #r; is allowed to be delayed (i.e., staying in
certain register stations) at most without missing the given
deadline if the shortest path is taken. Figure 3 gives an ex-
ample of a data transfer. The value of these parameters of
try in this example are: source(tr;) = rss, dest(tr)) = rsy,
ready(tr)) = 4, deadline(try) = 7, short_dist(tr;) = 2, and
finally slack(tr)) =(7-4)-2=1.

3.3 Transfer Routing and Scheduling

There are two critical tasks when organizing a data trans-
fer— transfer path routing and transfer time scheduling.
These two tasks solve the data transfer problem in spatial
and temporal domain, respectively. Transfer path routing
explores all shortest possible routing paths for the given data
transfer in the target architecture. For example, #r; shown in
Fig. 3 should be routed from rss to rs;. Thus the two avail-
able shortest paths are {chs, chy 1} and {chs 4, cha 1 }. Mean-
while, transfer time scheduling determines that at each cycle
the data should stay in a register or move out through chan-
nels. Take fr; in Fig.3 as an example, assuming the path
{chsa, chy,} is selected after path routing, there are three

3145
cycle 4 5 6 7 -
TS s s, s, = transferrlng_,
ts1 h h ch, | fromrs;, using
Chsz | CN2q - = channel ch;;
¢ ISs rs; rsz rs4 E hold for one cycle;
s2| P
chs, chy4 - staying in rs;
Iss ISs rs; rsq reachrs;;
ts3 chs, | chyy - deadline

Fig.4  Transfer path scheduling.

possible ways for time scheduling as Fig. 4 shows. Besides,
a data transfer #r; is fixed if it gets only one available routing
path and slack(tr;) = O (i.e., one possible time scheduling).

3.4 Problem Description

In this article, we formulate the resource (channel and regis-
ter) allocation problem in RDR-GRS as a data transfer rout-
ing and scheduling problem. Specifically, given a data trans-
fer set Tr and the target architecture specification, find how
to properly route and schedule every tr; € Tr such that the
total number of wires in all channels is minimized. That is,
the objective is to find a valid routing and scheduling solu-
tion with absolutely no deadline violation while minimizing
the required wires by exploring sharing at the same time.

4. Proposed Algorithm

According to the intensive discussion in Sect. 3.3, two sepa-
rate engines, concentration-oriented path router (CPR) and
channel-based time scheduler (CTS), are developed to solve
this problem jointly. CPR routes one data transfer at a time
by choosing the shortest path with the highest accumulated
sharing score (detailed in Sect.4.1). CTS is responsible for
resolving contending data transfers within a channel and de-
termines how to reschedule some of the transfers as well as
which transfers need to be ripped up. Since the outcome of
spatial routing and temporal scheduling affects each other,
the quality of solution is most likely degraded if the rout-
ing and scheduling are considered independently. There-
fore, here we propose an algorithm, named RSS (routing
and scheduling simultaneously), which solves the problem
in spatial and temporal domain simultaneously. The pro-
posed algorithm consists of two phases: (i) the concentra-
tion phase: calling CPR to route all data transfers initially;
and (ii) the iterative refinement phase: followed by alterna-
tively invoking CTS and CPR until all data transfers are well
tuned in both routing and scheduling as well as the required
interconnect resource is minimized. Sections 4.1 and 4.2 re-
veal more technical details about these two phases with a
walking example shown in Fig. 5.

4.1 Concentration Phase
In this phase, CPR routes all data transfers once and gener-

ates a routing result as the starting point for the following
iterative refinement phase.



3146

o] Je| e

tri: (source(tr;),dest(tr;))
rs) €——<rs; «——TIS; tra: (rsq,rse)
tra: (rsz,rsy7)
‘ s ‘ s ‘ e tra: (rss,rsq)
] try: (rsq,rss)

I
g gi=cpe—— iS¢ trs: (rss,rso)

trg: (rse,rso)
‘ cr ‘ Ccs ‘ Co try: (rso,rss)

] ] __ trg: (rss,rsz)
IS7 &—— I'Ss &——= 'Sy

Fig.5  An example for data transfer routing and scheduling.

Here we define a new metric, named sharing score,
of each channel. It indicates the potential of wire sharing
within a channel. Sharing scores are designated to guide
CPR when determining the routing path. At first, the score
of each channel is initialized to zero. Then, for each data
transfer tr;, the score is incremented by one cumulatively
for all channels inside its bounding box jointly defined by
source(tr;) and dest(tr;). For instance, channels within the
bounding box of tr; in Fig.5 are {chi 2, chia, chys, chas,
chy 7, chsg, chy ). A channel with a higher sharing score im-
plies that the wires inside have a better chance to be shared.

CPR first invokes the monotonic router [17] to find the
path with the highest accumulated sharing score for every
data transfer by dynamic programming. There are two ad-
vantages provided by a monotonic router — its capability of
finding the exact paths of highest score and the relatively
lower time complexity compared to a maze router. Also note
that CPR is fundamentally different than most existing path
routers. A classical router tends to distribute paths to pre-
vent congestions, while CPR tries to gather paths to create
more opportunities for extensive wire sharing.

Subsequently, all routed data transfers are initially
scheduled with the earliest timing. The earliest timing
scheduling intends to leave the entire timing slack in the end
of the data transfer; i.e., the slack is not exploited but simply
spent at the destination register station. After all data trans-
fers are routed by CPR and scheduled by the earliest timing,
we get an initial solution which is appropriate for the further
exploration of better timing scheduling in order to maximize
wire sharing.

4.2 Iteration Refinement Phase

The Iterative refinement process iteratively invokes CPR and
CTS to reroute and reschedule the data transfers. At the
beginning, the capacity of each channel (number of wires)
is set to the minimum required value (explained later). A
priority queue Tr_queue is used to store the data transfers
which are not completely scheduled yet, sorting them by
their slacks in decreasing order. Initially, immediately af-
ter the concentration phase, all transfers are pushed into
Tr_queue since they are only scheduled in earliest timing.
Then, the one tr. with the largest slack is popped out and
CTS determines the cycle schedules for all channels tr,
passes through one at a time from its source to its desti-

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.12 DECEMBER 2009

cycle 1 2 3 4 5 6 7
vor, (el - | - | -

tl’3 |Ch3y2| - |Ch2,5| - |Ch5y4| = |

Fig.6  Calculations for feasible cycle sets.

nation. CTS tries to maximize the number of data transfers
sharing a single channel under the current channel capacity.
A ripup_list recording the data transfers which fails to be
scheduled is generated by CTS. These data transfers are then
ripped, rerouted by CPR, and pushed back into Tr_queue.
During iterations of rerouting and rescheduling, every time
when a channel is examined, its state could change and the
corresponding channel capacity might increase according to
its utilization. The iterative refinement process ends when
Tr_queue is empty. The detailed implementation of CTS and
the channel control mechanism is described in the following
paragraphs.

4.3 Implementation of CTS

In contrast to CPR which maximizes the opportunities of
sharing by gathering the transfers into one channel, CTS
needs to find a feasible schedule for each data transfer us-
ing the specific channels under the capacity constraint. As
mentioned before, for the data transfer #r. popped from
Tr_queue, CTS tackles the channels it passes through one at
a time from its source to its destination. To schedule the data
transfers passing through c#,,,, a feasible cycle set for each
such transfer is derived as a set of cycles that CTS can assign
to it for using the channel ch,,,. Let the original scheduled
cycle of ch,,, in the path of tr, is c. ., the feasible cycle
set for tr, wW.r.t. chyp, Femn, 1s defined as {clc = coma + £,
0 < k < slack(tr.)}. For example, in Fig. 6, if the current
transfer is fry, then F,5 = {2,3,4,5} since slack(tr;) = 3.
Meanwhile, for any other transfer tr, also passing through
chy, ., any cycle adjustment on ¢, , has to avoid altering
the scheduled cycle of other channels it passes through. In
other words, CTS can only utilize the slack right before or
after the current scheduled cycle. Hence, two more factors,
S for(try, chy ) and spack(try, chy,y), are defined as the num-
bers of non-transferring cycles right before and after ¢, ,,
respectively. Hence, the feasible cycle set for tr, w.r.t. chy,
Frpmn, is defined as {clc = comn + k, =Spor(tre, chpy) <
k < Spack(try, chy,)}. For example, in Fig. 6, for the sched-
uled transfer tr3 in chy s, it is found that sz, (tr3, chy5) = 1,
Spack(tr3, chy5) = 1, and thus F355 = {2,3,4} in this case.
Then for a given channel, CTS assigns the cycle slots
to the data transfers according to those feasible cycle sets.
CTS firstly seeks for the cycle slots without contention and
assigns those cycles to the corresponding transfers. A con-
tention happens as long as multiple transfers can potentially
be scheduled at the same cycle. CTS resolves contentions
based on the weights of transfers, which are define as:

w(tr:) = a X reroute(tr.) — B X slack(tr.) €))



HUANG et al.: COMMUNICATION SYNTHESIS FOR INTERCONNECT MINIMIZATION IN MULTICYCLE COMMUNICATION ARCHITECTURE

w(try) = a X reroute(tr,) — B X [8ror(try, Chyp)
+sback(trr7 Chm,n)] (2)

The underlying notions of these weighting functions are: (i)
the more times that the data transfer is rerouted, the higher
the weight is; (ii) the larger slack the data transfer has, the
smaller the weight is. A data transfer with a higher weight
implies it can be scheduled earlier. That is, the transfer with
alarger slack is likely to be rerouted using other paths unless
it has been rerouted many times. If CTS successfully sched-
ules (resolves) all transfers in this channel, it proceeds to
process the next channel. Or, if any data transfer fails to fit
at any one of the feasible cycles of certain channel due to the
limited channel capacity, it is inserted into the ripup_list for
rerouting. The rerouting procedure first calls a ripup func-
tion to rip up the routed paths of given transfers, and then
invokes CPR for rerouting these transfers.

4.4 Channel Control Mechanism

When each time the channel is being examined, to reflect
the current utilization of each channel, the proposed algo-
rithm may dynamically 1) change its state, or 2) increase its
capacity.

o A channel is said to be overused when its current capac-
ity is not sufficient to accommodate all the data transfers
attempting to use it. If, when resolving a channel, it is
found that the channel is already overused, the channel
is locked by adding a large negative value to the sharing
score of that channel, which equivalently prevents that
channel from being selected in the subsequent routing
attempts. This is particularly useful when rerouting the
transfers in the ripup _list since the updated score prevents
them using the same congested channels again. On the
other hand, when a channel is being examined later again
and found no longer overused (either due to rerouting or
the increase of channel capacity), it should be unlocked by
restoring its original sharing score back. As mentioned,
the channel state is dynamically updated every time the
channel is being checked.

o The capacity of the channel ch,, , depends on two factors:
(1) the number of wires required to fulfill the communica-
tion needs of the fixed data transfers, which is defined
as #fixed(ch,,,); (ii) the number of transfers that have
been ripped up when resolving ch,,, accumulated from
the beginning of the iterative refinement phase, defined
as #ripup(chy,,). The first factor gives the minimum re-
quirement for a feasible scheduling solution to exist and
thus should always be satisfied. The second factor may
increase over refinement iterations and indicates that the
channel is highly utilized, and thus the capacity of ch,,,
should be further expanded to accommodate more data
transfers. Therefore, the capacity of chy,,, cap(chpp),
is set as max{1, #ripup(chy, )|y, #fixed(chy,,)}, where y
is a given threshold. The fact that the channel capac-
ity increases monotonically in the refinement phase indi-
cates that all data transfers can eventually be successfully

3147

1 RSS(Tr) {

2 Tr_queue.push(Tr); // Tr: a given data transfer set
3 while(7r_queue # 0) {

4 tr. = Tr_queue.pop();

5 for(each ch;; € CPR(tr.) from source to dest) {
6 ripup_list = CTS(ch;,);

7 ripup(ripup_list);

8 for(each tr; in ripup listy CPR(tr;); // reroute tr;
9 Tr_queue.push(ripup_list);

10 if(¢r. is in ripup_list) break;

11 }

12}

13 }

14 CTS(chy,) {
15 S=alist of tr; passing through ch,, »;
16  for(each tr;in S) {

17 assign F,,, and w(tr));

18 if(c; € Finy) cand list(c)) += {tr;};

19 3

20  while(3c¢; with cand _list(c;).length==1) { // no contention
21 tr; = cand_list(c;);

22 Cimn = ¢j; /] assign the transfer to use the cycle

23 adjust(zr;); // adjust the cycle assignments of 7;

24 update(cand list, F;,,,); // remove the assigned transfer
25 S=8—{t};

26}

s
27 sort(S); // sort the remaining transfers by weights
28  for(each ¢; with cand list(c;).length>1) {
29 tr; = S.top();

30 Cimn = Cjs

31 adjust(ry);

32 update(cand _list, F;,,,); // remove the assigned transfer
33 S=8—{tr};

34}

35  returnS; // S=ripup_list

36 }

Fig.7  Pseudo code of the iterative refinement process.

scheduled and routed at the cost of more wire resources
and thus guarantees the termination of the refinement pro-
cess.

Figure 7 shows the pseudo code of the iterative refine-
ment process. It comprises two levels of loops. Before en-
tering this process, all data transfers are inserted into the
priority queue Tr_queue for detailed scheduling. Tr_queue
then pops out a data transfer tr, at each iteration of the outer
while-loop. In the inner for-loop, CTS resolves the chan-
nels along the path of tr. from source(tr.) to dest(tr.). CTS
attempts to generate an available cycle schedule for each
given channel under its capacity constraint. Transfers failing
to be scheduled under the current channel capacity settings
are collected into ripup_list. Then CPR is invoked again to
reroute the path for every ripped up transfer in ripup_list.
After path rerouting, these transfers are pushed back into
Tr_queue again for another round of rescheduling. CTS
stops examining the rest of the path of 7, and starts a new
iteration immediately if the current #r, already gets ripped
up. This iterative refinement process is not terminated until
Tr_queue is empty.

In summary, the proposed algorithm RSS first gath-
ers all routing paths as concentrated as possible to maxi-
mize the potentials of wire sharing. Followed by iteratively
rerouting and rescheduling paths passing through highly uti-
lized channels as well as gradually increasing the capacity



3148

of those channels, the proposed algorithm can eventually
produce a feasible solution with the minimized number of
required wires.

5. Experimental Results
5.1 Experimental Environment Setup

We have implemented our algorithm in C++/Linux platform
on a workstation with a Xeon 3.2 GHz CPU and 2 GB RAM.
The target RDR-based architecture is with an M X N clus-
ter array and unidirectional channels connecting neighbor-
ing register stations. To obtain a scheduled/bound DFG and
a feasible FU placement, which are the inputs to our al-
gorithm, a (simplified) high-level synthesis flow shown in
Fig.8 is used to perform scheduling, FU binding, place-
ment and rescheduling in that order. Firstly, the original
C codes are converted into the general DFGs through SUIF
infrastructure [18] and Machine SUIF [19]. The DFGs are
then scheduled using FDS [20] with the minimum latency
given by ASAP scheduling and bound using an approxi-
mate maximum clique based algorithm [21]. With the given
architecture specification, the placement and rescheduling
are applied to produce the desired scheduled and bound
DFGs with FU placement information. Note that timing
constraints are not relaxed throughout the test case prepa-
ration process.

5.2 Results

Two experiments on different benchmark sets are con-
ducted. The first set of seven DFGs are extracted from
MediaBench [22], then scheduled, bound, and placed in
a 3 x 3 RDR-based architecture. The synthesis results
for four different architecture-algorithm pairs, RDR/MCAS
[9], RDR-Pipe/MCAS-Pipe [10], RDR-GRS/ILP [11] and
RDR-GRS/RSS, are shown in Table 1. The second and third
column show the number of nodes and data transfers of the
test case, respectively. The resources required by four dif-
ferent synthesis methods are shown in the last four columns.

Behavioral description in C

| DFG generation |
} prG

Minimum
latency given Force-directed scheduling |
by ASAP .
Y Resource allocation
v and scheduled DFG
| Functional unit binding |
]
; v
RDR-based | Placement |
architecture —»;
specification Rescheduling

Scheduled and bound DFG and
functional unit placement

Fig.8  High-level synthesis flow for test case preparation.

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.12 DECEMBER 2009

The numbers in parentheses represent the ratios normalized
to those of MCAS. As expected, on average, MCAS-Pipe
reduces 20% of wires at the cost of introducing 52% extra
pipeline registers. By using ILP in RDR-GRS, the optimal
solutions are always achieved with 62% of wires and 45% of
registers reduction on average. However, the ILP solver fails
to produce feasible solutions within 12 hours for four test
cases, while RSS can obtain these solutions within few min-
utes. Meanwhile, RSS demands 54% fewer wires and 10%
fewer registers on average. These results show that RSS
significantly outperforms MCAS and MCAS-Pipe. Besides,
though ILP can do better than RSS, it cannot guarantee to
finish for every test case.

In addition, a second experiment on large-size test
cases is also conducted to endorse the advantages of RDR-
GRS and to demonstrate the capability of RSS in minimiz-
ing interconnect resources. The second and third column
in Table 2 show the information about the manually-created
large synthetic DFGs which are modified from certain appli-

Table 1  Synthesis results of experiment 1.
#nodes #data | RDR/ | RDR-Pipe/ |RDR-GRS/|RDR-GRS/
transfers'| MCAS?|MCAS-Pipe?|  ILP? RSS?
71/87 29/27 37/47
mbl | 10T 54538 | T9I5T | 9 90/1.53) |(0.37/0.47)| (0.47/0.83)
48/56 28/24 33/38
mb2 |66 | 3918 | 6435 | 751 60) | (0.44/0.69)| (0.52/1.09)
144/166 -1 80/88
mb3 | 196 | 108/64 | 179/104] (0" | 045/085)
78/96 -3 46/55
mba | 100 | 6329 1 9362 | g4 55| (/) |(0.50/0.89)
49/64 -2 37/48
mbS |58 | 2920 1 6042 | o150y | () |(0.62/1.14)
57175 25/27 33/41
mb6 | 1191 9138 1 74156 | 77/1 34y | (0.34/0.48)| (0.45/0.73)
82/108 -/ 25/56
mb7 | 140 1 86/38 | 1I3/T3 1 73148y | () |(0.2200.77)
avg. - - - (0.80/1.52) |(0.38/0.55)|(0.46/0.90)
1: number of fixed / unfixed data transfers
2: number of wires / registers
3: failed to produce solutions within 12 hours

Table 2  Synthesis results of experiment 2.

#data | RDR/ | RDR-Pipe/ |RDR-GRS/|RDR-GRS/
transfers'| MCAS? [MCAS-Pipe’| RAND? RSS?

2945/3049 | 844/543 | 501/547
(0.98/5.46) 1(0.28/0.97)|(0.17/0.82)

2967/3375 | 996/915 | 462/736
(0.76/3.56) |(0.26/0.97)| (0.12/0.78)

2584/2667 | 752/426 | 484/381
(0.97/5.80) |(0.28/0.93)](0.18/0.83)

3049/3256 | 847/654 | 382/524
(0.94/4.69) |(0.26/0.94)|(0.12/0.76)

4334/4586 | 1243/926 | 638/714
(0.95/4.85) |(0.27/0.98)/ (0.14/0.76)

1026/1067 | 634/416 | 418/332
(0.92/5.06) |(0.57/1.97)|(0.38/1.57)

(0.92/4.91) |(0.32/1.13)|(0.18/0.92)

#nodes

synl| 567 |100/421 3005/558

syn2| 634 [212/801[3896/947

syn3| 538 |124/3502673/460

syn4| 497 |147/469 3261/694

syn5| 566 | 98/675 [4542/945

syn6 | 369 |[131/144|1115/211

avg. -

1: number of fixed / unfixed data transfers
2: number of wires / registers



HUANG et al.: COMMUNICATION SYNTHESIS FOR INTERCONNECT MINIMIZATION IN MULTICYCLE COMMUNICATION ARCHITECTURE

cations in MediaBench and the synthesis target is a 10 x 10
RDR-based architecture. Due to the larger target architec-
ture, the percentage of unfixed data transfers obviously in-
creases and the overall resource requirement more depends
on what the synthesis algorithm is in use. In addition to
the aforementioned four methods, another method called
RAND is implemented in RDR-GRS to emphasize the ad-
vantage of global resource sharing over other two RDR-
based architectures. RAND randomly assigns each data
transfer to one of its shortest paths with the earliest timing
schedule. Table 2 also reports the demanded interconnect
resources of the four methods. From the table, MCAS-Pipe
reduces only 8% wires at the cost of 391% more registers
on average. It implies that MCAS-Pipe is not capable of
saving interconnect resources significantly due to its shar-
ing under certain constraints. RAND, however, uses only
32% of wires and 113% of registers compared to MCAS.
This concludes that RDR-GRS is indeed a better architec-
ture platform in terms of interconnect resource efficiency.
Meanwhile, RSS not only reduces the number of wires by
82% but needs only 92% of registers compared to MCAS.
Moreover, RSS just needs nearly a half of wires and 81%
registers compared to RAND, which clearly demonstrates
the effectiveness of RSS even for larger design cases and
large target architectures.

6. Conclusion

Based on RDR-GRS, we formulate the channel and register
allocation problem in architectural synthesis as a data trans-
fer routing and scheduling problem. We also develop an
algorithm RSS, which contains the concentration-oriented
path router CPR and the channel-based time scheduler CTS.
It adopts an iterative refinement scheme to solve the prob-
lem in spatial and temporal domain simultaneously. The ex-
perimental results demonstrate that RDR-GRS/RSS is ca-
pable of handling large-scale design cases and significantly
outperforms both RDR/MCAS and RDR-Pipe/MCAS-Pipe
in terms of interconnect resource demand. Though the ILP
method can obtain better results than RSS, it might not be
practical enough in real applications due to its high time
complexity. Therefore, we believe that the combination of
RDR-GRS and RSS is currently a better choice for appli-
cations adopting the RDR-based multicycle communication
design paradigm. In the future, we will extend our algorithm
to deal with communication channel allocation and routing
problems in network-on-chip (NoC) related applications due
to architectural similarity between RDR-GRS and NoC.

Acknowledgment

This work was supported in part by the National Science
Council of Taiwan under Grant NSC 97-2220-E-009-032.

References

[1] International Technology Roadmap for Semiconductors, Semicon-
ductor Industry Association, 2007.

(2]

[3]

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

3149

D. Matzke, “Will physical scalability sabotage performance gains?,”
Computer, vol.20, pp.37-39, 1997.

L.P. Carloni and A.L. Sangiovanni-Vincentelli, “Coping with la-
tency in SOC design,” IEEE Micro, vol.22, no.5, pp.24-35, 2002.
Y. Mori, V. Moshnyaga, H. Onodera, and K. Tamaru, “A
performance-driven macro-block placer for architectural evaluation
of ASIC designs,” Proc. Int’l ASIC Conf. and Exhibit, pp.233-236,
Sept. 1995.

V. Moshnyaga and K. Tamaru, “A placement driven methodology
for high-level synthesis of sub-micron ASIC’s,” Proc. Int’l Symp.
Circuits and Systems, vol.4, pp.572-575, May 1996.

P. Prabhakaran and P. Banerjee, ‘“Parallel algorithms for simultane-
ous scheduling, binding and floorplanning in high-level synthesis,”
Proc. Int’l Symp. Circuits and Systems, vol.6, pp.372-376, May
1998.

D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-to-
placed RTL synthesis with performance-driven placement,” Proc.
Int’l Conf. Computer Aided Design, pp.320-325, Nov. 2001.

J. Jeon, D. Kim, D. Shin, and K. Choi, “High-level synthesis under
multi-cycle interconnect delay,” Proc. Asia and South Pacific Design
Automation Conf., pp.662—667, Jan. 2001.

J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture
and synthesis for on-chip multicycle communication,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.23, no.4, pp.550-
564, April 2004.

J. Cong, Y. Fan, and Z. Zhang, “Architecture-level synthesis for au-
tomatic interconnect pipelining,” Proc. Design Automation Conf.,
pp-602-607, June 2004.

W.-S. Huang, Y.-R. Hong, J.-D. Huang, and Y.-S. Huang, “A multi-
cycle communication architecture and synthesis flow for global in-
terconnect resource sharing,” Proc. Asia and South Pacific Design
Automation Conf., pp.16-21, Jan. 2008.

C.-I. Chen and J.-D. Huang, “CriAS: A performance-driven
criticality-aware synthesis flow for on-chip multicycle communica-
tion architecture,” Proc. Asia and South Pacific Design Automation
Conf., pp.67-72, Jan. 2009.

Y.-J. Hong, Y.-S. Huang, and J.-D. Huang, “Simultaneous data trans-
fer routing and scheduling for interconnect minimization in multicy-
cle communication architecture,” Proc. Asia and South Pacific De-
sign Automation Conf., pp.19-24, Jan. 2009.

A. Ohchi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “High-
level synthesis algorithms with floorplaning for distributed/shared-
register architectures,” Int’l Symp. VLSI Design, Automation and
Test, pp.164—167, April 2008.

J. Cong, Y. Fan, and W. Jiang, “Platform-based resource binding
using a distributed register-file microarchitecture,” Proc. Int’l Conf.
on Computer Aided Design, pp.709-715, Nov. 2006.

K. Lim, Y. Kim, and T. Kim, “Interconnect and communication syn-
thesis for distributed register-file microarchitecture,” Proc. Design
Automation Conf., pp.765-770, June 2007.

M. Pan and C. Chu, “FastRoute 2.0: A high-quality and efficient
global router,” Proc. Asia and South Pacific Design Automation
Conf., pp.250-255, Jan. 2007.

SUIF 2 Compiler System. [Online]. Available: http://suif.stanford.
edu/suif/suif2/

M. Smith and G. Holloway, “An introduction to machine SUIF and
its portable libraries for analysis and optimization,” in Division of
Engineering and Applied Sciences, Harvard University, 2002.

P. Paulin and J. Knight, “Force-directed scheduling for behavioral
synthesis of ASICs,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol.8, no.6, pp.661-679, June 1989.

G.D. Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communica-
tions systems,” Proc. Int’l Symp. Micro-Architecture, pp.330-335,
Dec. 1997.



3150

Ya-Shih Huang recieved the B.S. degree
in electronics engineering from National Chiao
Tung University, Hsinchu, Taiwan, in 2006. She
is currently working toward the Ph.D. degree in
the Institute of Electronics, National Chiao Tung
University, Taiwan. Her research interests in-
clude high-level synthesis, placement, and 3D
IC.

Yu-Ju Hong is currently a Ph.D. student in
the Department of Electrical and Computer En-
gineering at Purdue University. She received the
M.S. and BS degrees in Electronics Engineering
from National Chiao Tung University, Taiwan,
in 2007 and 2005, respectively. Her research
interests include computer architecture, parallel
computing, and design automation of computer
systems.

Juinn-Dar Huang received the B.S. and
Ph.D. degrees in electronics engineering from
National Chiao Tung University, Hsinchu, Tai-
wan, in 1992 and 1998, respectively. He is
currently an Assistant Professor in the Depart-
ment of Electronics Engineering and the Insti-
tute of Electronics, National Chiao Tung Uni-
versity. His current research interests include
high-level synthesis, design verification, 3D IC
architecture/CAD, and microprocessor design.
Dr. Huang is currently a Guest Editor of the In-

ternational Journal of Electrical Engineering (IJEE). He is serving on the
Organizing Committees of IEEE/ACM ASP-DAC and SASIMI. He has
been the Secretary General of Taiwan IC Design Society (TICD) from
2004 to 2008, the Technical Program Committee Vice-Chair of VLSI
Design/CAD Symposium 2008, the Technical Program Committee mem-
ber of IEEE/ACM DATE 2008, and the Organizing Committee mem-
ber of IEEE International Conference on Field-Programmable Technology
(ICFPT) 2008. He is a member of the IEEE, ACM, and Phi Tau Phi.

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.12 DECEMBER 2009




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


