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Abstract—Due to the low-cost design nature of greedy-based
routing algorithms, it is considered feasible to adopt this type
of schemes within the three-dimensional (3D) wireless sensor
networks. In the existing research work, the unreachability prob-
lem (i.e., the so-called void problem) resulting from the greedy
routing algorithms has not been fully resolved, especially under
the 3D environment. In this letter, a three-dimensional greedy
anti-void routing (3D-GAR) protocol is proposed to solve the 3D
void problem by exploiting the boundary finding technique for
the unit ball graph (UBG). The proposed 3D rolling-ball UBG
boundary traversal (3D-RUT) scheme is employed to guarantee
the delivery of packets from the source to the destination
node. The correctness proofs, protocol implementation, and
performance evaluation for the proposed 3D-GAR protocol are
also given in this letter.

Index Terms—Greedy routing, void problem, unit ball graph,
three-dimensional, wireless sensor network.

I. INTRODUCTION

N recent years, three-dimensional (3D) routing has gained

attention in the wireless sensor networks (WSNs). For
example, the applications for underwater sensor networks have
become more popular in the field of oceanographic engi-
neering, including data collection, water monitoring, pollution
control, and ocean surveillance. Previous work on the routing
protocols for the 3D WSNs can be found in [1]. Due to
the limited available resources, efficient design of localized
routing protocols becomes a crucial subject within the 3D
WSNs. How to guarantee delivery of packets is considered
an important issue for the localized routing algorithms. The
well-known greedy forwarding (GF) protocol [2] is proposed
as a superior scheme with its low routing overheads and
the adaptability to the 3D-routing environment. However, the
unreachability problem (i.e., the so-called void problem [3])
occurring within the GF algorithm will fail to guarantee the
delivery of data packets. In order to alleviate the void problem,
the 3D-ABLAR protocol [4] employs the heuristic next-hop
selection techniques that forward packets to additional two
neighbor nodes located in separated regions so as to gain more
chance to escape from the void. The projection from two-
dimensional (2D) face routing to 3D space is also proposed
in [5] as another technique to deal with the void problem.
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TNV ={Ns, Nr,Ny, N2}

Fig. 1.  The example routing path constructed by using the 3D-GAR
algorithm: (Ng, Np) is the transmission pair, and Ny is the void node. Ng,
N7, N1, and Ng are within the light-yellow transmission range @(PNV ,R)
of Ny, constructing the one-hop neighbor table Ty, . There exists no SN
in Ty, whose distance to Np is smaller than that of Ny to Np, which
results in the void problem while Ng intends to deliver the packets to Ny by
adopting the GF scheme. The 3D-GAR algorithm changes its routing strategy
into the 3D-RUT scheme, forming the rolling ball RBy, (sv, R/2) and the
resulting constrained SP surfaces. In order to clearly visualize the 3D diagram,
only the surfaces Sy, S, Sx, and Sy are illustrated, i.e., the light-blue
surfaces. After the surface traversal of Sy, St, Sx, and Sy associated with
the corresponding boundary nodes based on the 3D-RUT scheme, the GF
scheme can be resumed at Ny whose distance is smaller than that of Ny to
Np. Therefore, the entire path resulting from the 3D-GAR protocol can be
obtained as {Ng, Ny, N7, Nx, Ny,Np}.

However, the void problem resulting from the GF algorithm
has not been fully resolved under the 3D environment. In
this letter, a 3D greedy anti-void routing (3D-GAR) protocol
is proposed to solve the void problem under the unit ball
graph (UBG) settings. The associated 3D rolling-ball UBG
boundary traversal (3D-RUT) scheme is exploited within the
3D-GAR algorithm with the assurance for packet delivery.
Moreover, the proofs of correctness, protocol implementation,
and performance evaluation for the proposed algorithms are
also described in the end of this letter.

II. NETWORK MODEL AND PROBLEM STATEMENT

Considering a set of SNs N = {N;|Vi} within a 3D
Euclidean space R?, the locations of the set N are represented
by the set P = {Py, | Pn, = (zn,, YN,, 2N, ), Yi}, which
can be acquired by their own positioning systems. The set
of closed balls defining the transmission ranges of N is
denoted as ® = {O(Py,,R)|Vi}, where O(Py,,R) =
{x||lx — Pn,|| < R, Vx € R3}. It is noted that Py, is the
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center of the closed ball with R denoted as the radius of the
transmission range for each N;. Furthermore, a unit ball graph
(UBG) is defined as the intersection graph of a group of unit
spheres in R3. Therefore, the network model for the 3D WSNs
can be represented by a 3D UBG as G(P, E) with the edge set
E = {Eij ‘Eij = (Pu,, PN]-),PNi S @(PN].,R)7 Vi #£ j}.
The edge F;; indicates the unidirectional link from Py, to
Py, whenever the position Py, is within the closed ball region
O(Pn;,, R). Moreover, the one-hop neighbor table for each N;
is defined as Tn, = {[IDn,, Pn,]|| Pn, € ©(Pn,,R),VEk #
i}, where I Dy, represents the designated identification num-
ber for Nj. In the greedy forwarding (GF) algorithm, it is
assumed that the source node Ng is aware of the location of
the destination node Np. If Ng wants to transmit packets to
Np, it will choose the next hop from its Ty, which (a) has
the shortest Euclidean distance to Np among all the SNs in
Tng and (b) is located closer to Np compared to the distance
between Ng and Np. The same procedure will be performed
by the intermediate nodes (e.g., Ny as in Fig. 1) until Np is
reached. However, the GF algorithm will be inclined to fail
due to the occurrences of voids even though some routing
paths exist from Ng to Np. The void problem is defined as
follows:

Problem 1 (Void Problem). The greedy forwarding (GF) al-
gorithm is exploited for packet delivery from Ng to Np. The
void problem occurs while there exists a void node (Nv ) in
the network such that

{PNk|d(PNk7PND)<d(PNV7PND)7VPNk GTNV}:(D, (1)

where d(x,y) represents the Euclidean distance between x
and y. Ty, is the one-hop neighbor table of Ny .

ITI. PROPOSED 3D GREEDY ANTI-VOID ROUTING
(3D-GAR) PrOTOCOL

The 3D-GAR protocol is a hybrid scheme consisting of
both the GF algorithm and the 3D rolling-ball UBG boundary
traversal (3D-RUT) scheme. The 3D-RUT algorithm is utilized
to determine the boundary node set within the networks under
the occurrence of void nodes. As the GF algorithm fails due to
the void nodes, the 3D-RUT scheme can be utilized to escape
from the void nodes by traversing the boundary node set and
finally restart the GF forwarding process again. The packet
delivery from Ng to Np can therefore be guaranteed.

A. 3D Rolling-ball UBG Boundary Traversal (3D-RUT)
Scheme

The 3D-RUT scheme is adopted to solve the boundary
finding problem and acquire the so-called boundary node
set (which will be defined later in this subsection) within
the networks. The definition of boundary and the problem
statement are described as follows.

Definition 1 (Boundary). A boundary is defined as a closed
surface that partitions the set of SNs N into two disconnected
groups.

Problem 2 (Boundary Finding Problem). Given a UBG
G(P,E) and the one-hop neighbor tables T = {Tny, |V N, €
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(b)

Fig. 2. The 3D rolling-ball UBG boundary traversal (3D-RUT) scheme: Fig.
2(a), the 3D scenograph of the internal part of Fig. 2(b), represents a cube
with a node N4 at the center and {N;, N;, N1, N2, N3, N4, N5, Ng} at
the eight corners. Given s; and N;, the 3D-RUT scheme freely rotates the
rolling ball RBy;, (s;, R/2) hinged at N; and constructs the eight constrained
SP surfaces S;, Sj, S1, S2, S3, S4, S5, and Sg, which can be aggregated
and considered as a boundary (i.e., the light-blue closed surface). The set
B = {N;, N, N1, N2, N3, N4, N5, Ng } is established as a boundary node
set by adopting the 3D-RUT scheme.

N}, how can a boundary be obtained by exploiting the
distributed computing techniques?

The concept of adopting the 3D-RUT scheme to resolve
the boundary finding problem is briefly described as follows.
Considering the cube formed by nine nodes as the vertices in
Fig. 2(a), a 3D ball hinged at one of the vertex node with a
radius of R/2 can be formed and freely rotated. It is noticed
that the rolling ball is defined without any network node inside
the ball. As in Fig. 2(b), it can be observed that the center
points of the rotated balls can draw the closed blue surface,
which is viewed as the boundary since this closed surface
partitions the network into two disconnected parts, i.e., the
nine nodes on the cube vertices as one network segment and
node Np as the other part. This type of rotated balls and their
corresponding center points are formally defined as the rolling
balls and the starting points (SPs) as follows:

Definition 2 (Rolling Ball). Given N; € N, a rolling ball
RBN,(si, R/2) is defined as follows: (a) a closed ball hinged
at Py, with its center point at s; € R and the radius equal
to R/2; and (b) there exists no node Ny, € N located inside
the rolling ball.

Definition 3 (Starting Point). The starting point (SP) of N;
within the 3D-RUT scheme is defined as the center point s; €
R3 of RBy, (si, R/2).

The detailed mechanism of the proposed 3D-RUT scheme
is explained as follows. By means of computational geometry,
each node NN; can verify if it has an SP or not by utilizing
its one-hop neighbor table Ty, since the rolling ball of V;
is always bounded by N;’s transmission range. Given s; as
an SP associated with its rolling ball RBy;, (s;, R/2) hinged
at N, the rolling ball can freely rotate in all directions (i.e.,
360°) within the 3D space as shown in Fig. 2. Based on the
rotation of the rolling ball RBy;(s;, R/2), an SP surface will
be generated with the accumulation of the corresponding SPs.



5798

However, according to Definition 2 that there should not exist
any SN located inside the rolling ball, the resulting SP surface
will become a constrained SP surface S; since the rolling ball
can be stuck by some of the SNs in the network. These SNs
are denoted as the surface-adjacent nodes of IV;, i.e., N;, Ny,
Ny, N3, N4, and N5 as shown in Fig. 2. It is noticed that
these surface-adjacent nodes can be served as the next hopping
nodes of V,.

Subsequently, /V; will inform these surface-adjacent nodes
to continue the 3D-RUT scheme by sending control packets
that contain the information of their corresponding SPs in
order to construct other constrained SP surfaces. For exam-
ple, as shown in Fig. 2, the surface-adjacent node NN; can
continue the 3D-RUT scheme by adopting the rolling ball
RBNn, (s, R/2) along with the newly assigned SP s;, which
is located on the border of the constrained SP surface S;.
Based on the same rotating procedure that is implemented by
the rolling ball RBy;, (s, R/2) hinged at N;, the constrained
SP surface S; can therefore be constructed. Repeatedly, IV;’s
surface-adjacent nodes will be notified to continue the 3D-
RUT scheme. As a result, all the constrained SP surfaces are
established and identified as S;, S;, S1, S2, S3, Sa, Ss, and
S¢, which can be aggregated into a closed surface F, i.e.,
the light-blue surface as in Fig. 2. For reader’s clearness, the
surface visit order starting from S; is also summarized as in
Fig. 2. This closed surface F is regarded as a boundary that
is denoted in Definition 1; while the corresponding SNs that
define the closed surface are represented as the elements in
the boundary node set as follows:

Definition 4 (Boundary Node Set). The boundary node set
B C N is defined as the SNs that construct the boundary
based on the 3D-RUT scheme.

Consequently, according to those eight constrained SP sur-
faces shown in Fig. 2, the boundary node set for this example
can be obtained as B = {N;, N;, N1, No, N3, N4, N5, Ng }.
For preventing infinite recursion of the algorithm, each SN
in B will only implement the 3D-RUT scheme once for the
same boundary. Moreover, the reverse path of each SN in B
to the original SN N; can be obtained by referring to the
previously visited constrained SP surfaces. For example, the
surface traversing order can be obtained from S;, via S;, to
Se as in Fig. 2. Therefore, Ng can construct the reverse path
N¢ — N; — N; in order to communicate with the original
node N;.

B. Detailed Descriptions of Proposed 3D-GAR Protocol

As shown in Fig. 1, the packets are intended to be delivered
from Ng to Np. Ng will select Ny, as the next hop by adopt-
ing the GF algorithm. However, the void problem prohibits
Ny to continue utilizing the same GF algorithm for packet
forwarding. The 3D-RUT scheme is therefore employed by
assigning an SP (i.e., sy) associated with the rolling ball
RBp, (sv, R/2) hinged at Ny. It is noticed that there should
always exist an SP for each void node (NNy), which can be
proved in Property 1 as follows:

Property 1. There always exists an SP sy for a void node
Ny w.rt. the destination node Np.
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Proof: Tt is assumed that v is denoted as the Euclidean
distance between Ny and Np. Based on the definition of
a void node, there will not be any SN located inside the
intersection area Y of the two closed balls ©(Py,,, R) and
O(Px,,,7). Considering a point sy located on the connecting
line between Ny and Np with R/2 away from Ny, the
closed ball O(sy, R/2) will be situated inside the node-free
intersection region Y. According to Definitions 2 and 3, sy
will be an SP for Ny . It completes the proof. O

Based on Property 1, sy can be chosen to locate on the
connecting line between Ny and Np with R/2 away from
Ny as illustrated in Fig. 1. The corresponding constrained
SP surfaces can be established by adopting the proposed 3D-
RUT scheme. In order to clearly visualize the 3D diagram,
only the constrained SP surfaces Sy, Sp, Sx, and Sy are
depicted in Fig. 1 as the light-blue surfaces. Since Np is
one of the surface-adjacent nodes of Ny, Np will be chosen
by Ny as the next hopping node for continuing the 3D-
RUT scheme. Due to the nature of the void node Ny, the
distance from N7 to Np should be not smaller than that
from Ny to Np, i.e., d(Pn;, Pny) > d(Pny, PNy ). Similar
procedure will recursively be conducted by nodes N, Ny,
and others. In the case that there exists a surface-adjacent
node Ny such that d(Py, , Pn,) < d(Pn,,Pny,), Ny will
inform Ny regarding the escape route from the void node
based on the reverse path identified by the 3D-RUT scheme,
e.g., Ny - Nr — Nx — Ny as illustrated in Fig. 1.
Consequently, the GF algorithm will be resumed at Ny, and
the route from Ng to Np can therefore be constructed for
packet delivery, e.g., {Ng, Ny, Np, Nx, Ny, Np} as in Fig.
1. Moreover, if there does not exist a node Ny such that
d(Pny , Pnp) < d(Pny , Pnp ), the 3D-RUT scheme will be
terminated after completing the traversal of the boundary node
set, e.g., the yellow nodes as depicted in Fig. 2. The result
indicates that there is no routing path between Ng and Np.

C. Proof of Correctness

Lemma 1. A closed surface is established by all the SPs
resulting from the 3D-RUT scheme.

Proof: The relationship that "all the SPs within the 3D-
RUT scheme form the surface of the resulting 3D solid object
by overlapping the closed balls ©(Py,, R/2) for all N; € N"
is proven first. Based on Definitions 2 and 3, the set of SPs can
be obtained as S = R1NR2 = {s; | ||s;— Pn,|| = R/2,3N; €
N,s; € Rg} N {Sj | ||Sj — PN].H > R/Q,VN]‘ S N,Sj S Rg}
by adopting the (a) and (b) rules within Definition 2. On the
other hand, the surface of the resulting 3D solid object from
the overlapped closed balls ©(Py,, R/2) for all N; € N can
be denoted as 2 = Q1 — Q2 = Uy,en K(Pn,, R/2) —
Un,en ©(Pn,, R/2), where K(Py;, R/2) and ©(Py,, R/2)
represent the surface of a closed ball and the open ball centered
at Py, with a radius of R/2 respectively. It is obvious to notice
that Ry = Q1 and R = Q5, which result in S = Q and
manifest the relationship in the beginning of this paragraph.
Continuing the proof of this lemma, the surface of a 3D solid
object will apparently result in a closed surface. Therefore, a
closed surface is constructed by the combination of the SPs
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resulting from the 3D-RUT scheme, e.g., the light-blue surface
as in Fig. 2. It completes the proof of this lemma. O

Theorem 1. The boundary finding problem (Problem 2) is
resolved by the 3D-RUT scheme.

Proof: Based on Lemma 1, a closed surface (denoted as
F) is constructed from the 3D-RUT scheme by rotating the
rolling balls RBy;,(s;, R/2) hinged at Py, for all N; € N.
For example, as shown in Fig. 2, F = {S;, S;, S1, S2, Ss3, S,
Ss, Se} is represented as the light-blue surface, and all SNs
at which the corresponding rolling balls have been hinged are
denoted by the set U = {N;, N;, N1, No, N3, Ny, N5, Ng}.
Moreover, a hollow 3D solid object H is defined by the space
that are traversed by those rolling balls, where the thickness
of the object H will be equal to R since it is equivalent to
the diameter of the rolling balls. The partial outer surface of
H is illustrated as in Fig. 2(b). It is noticed that the closed
surface F will become a layer of H situated at distance R/2
inward from the outer surface of H.

Based on Definition 2, there is no SN located inside the
rolling ball which consequently results in the case that there
will be no SN within the 3D solid object H. It can be observed
that two disconnected regions can be derived as the inner and
the outer spaces that are separated by H since, for all N4 €
N in the inner space, the smallest distance from N4 to Np
located in the outer space is greater than the SN’s transmission
range R. Consequently, the closed surface F situated within
H can be considered as a boundary defined in Definition 1 that
partitions N into two disconnected groups. As the example in
Fig. 2(b), the set of nodes U and node N4 are located in the
inner space; while node Np is situated in the outer space. The
set U can therefore be obtained as the boundary node set B
based on Definition 4. It completes the proof. O

Theorem 2. The void problem (Problem 1) is solved by the
3D-GAR protocol with guaranteed packet delivery.

Proof: With the existence of the void problem occurring
at any void node Ny, the 3D-RUT scheme is utilized by initi-
ating an SP (sy) with the rolling ball RBy;,, (sy, R/2) hinged
at Ny . The 3D-RUT scheme within the 3D-GAR protocol will
conduct boundary traversal via the associated boundary node
set B under the condition that d(Px,, Pn,) > d(Pny , Pnp)
for all N; € B. If the boundary within the underlying network
is completely traveled based on Theorem 1, it indicates that
the SNs inside the boundary (e.g., Ny) are not capable of
communicating with those located outside of the boundary
(e.g., Np). The result shows that there does not exist a route
from the void node (Ny ) to the destination node (Np), i.e.,
the existence of network partition. On the other hand, if there
exists a node Ny such that d(Py,,Pny) < d(Pny,Pnp)
(e.g., in Fig. 1), the GF algorithm will be adopted within
the 3D-GAR protocol to conduct data delivery toward the
destination node Np. Therefore, the 3D-GAR protocol solves
the void problem with guaranteed packet delivery, which
completes the proof. O

IV. PROTOCOL IMPLEMENTATION

After describing the design concept of the proposed 3D-
GAR scheme, the implementation issues of the proposed
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protocol consisting of both the GF and the 3D-RUT algorithms
are explained in this section. The GF scheme is considered
a sequential table-lookup algorithm that only requires the
implementation of the one-hop neighbor table. Therefore, both
the time and space complexities are O(m), where m represents
the number of neighbors specified in the one-hop neighbor
table. If the void problem occurs, the 3D-RUT scheme is
utilized to forward packets to the nodes in the boundary node
set B as defined in Definition 4. Since a node N;’s neighbors
in the boundary node set can construct rolling balls with N;,
the original mechanism of forwarding packets to the nodes in
B can therefore be transformed into a simple forwarding rule.
In other words, node N; which currently conducts the 3D-
RUT scheme simply forwards packets to those neighbors that
can form a rolling ball with N;, where these neighbors can
be obtained by the following method. For each pair of nodes
(IV;, Ni) in the one-hop neighbor table of V;, if a node-free-
inside circumscribed ball hinged at N; with a radius of R/2
can be established with both nodes N; and N on the surface
of the ball, the definition of the rolling ball (i.e., Definition
2) will be satisfied since the two conditions are satisfied as
follows: (a) node NV; is located on the surface of the ball; and
(b) there does not exist any neighbor node situated inside the
ball. As a result, both IN; and N}, are considered as the next
hopping nodes of N; for packet forwarding. It is noted that the
time complexity of this process is O(m?) since three nested
loops to go through the one-hop neighbor table are required
to conduct this procedure; while the space complexity is still
O(m) since only the construction of the neighbor table is
required. Finally, by considering both the GF and the 3D-RUT
schemes, the time and space complexities of the 3D-GAR
protocol can be acquired as O(m?3) and O(m) respectively,
where m is the number of neighbors specified in the one-hop
neighbor table.

V. PERFORMANCE EVALUATION

The performance of the proposed 3D-GAR algorithm is
evaluated and compared with other three protocols via simula-
tions, including the 3D-ABLAR, the network flooding, and the
reference GF algorithms. The simulation settings are explained
as follows. A number of 1000 SNs are randomly deployed
in the Euclidean 3D box ranging from (0, 0, 0) to (1000,
800, 1200) in the unit of meters. The transmission range of
a node is 250 m. A pair of source and destination nodes are
respectively located at (0, 400, 600) and (1000, 400, 600).
The source node is with the data transmitting rate of 16
Kbps and data packet size of 512 bytes. There also exists
a void block with length 400 m, width 800 m, and variable
heights. This void block is randomly placed in the network in
order to simulate the occurrence of void problems. In other
words, there are SNs around the peripheral of the void block;
while none of the nodes is situated inside the void block.
Three performance metrics are utilized in the simulations for
performance comparison as follows: (a) packet arrival rate: the
ratio of the number of received data packets to the number
of total data packets sent by the source; (b) path length:
the average path length of successful routing in the unit of
hop count; and (c) routing overhead: the average number of
transmitted bytes per second for a network node.
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Fig. 3. Performance evaluation for the proposed 3D-GAR protocol.

Fig. 3(a) shows the packet arrival rate performance versus
the void height. Due to the property of guaranteed delivery,
both the 3D-GAR and network flooding algorithms will result
in the delivery rate of 100%. The 3D-ABLAR and the GF
protocols incur less delivery rate with regard to the increase
of void height since the void problem occurs frequently when
the void height becomes large. The 3D-ABLAR protocol has
higher delivery rate than the GF algorithm owing to the reason
that the GF scheme drops packet directly as the void problem
occurs. Fig. 3(b) illustrates the performance of average path
length for successful routing versus the void height. The net-
work flooding algorithm results in the lowest value under small
void heights since it can always find the shortest path between
the source and the destination. However, as the void height
becomes large, both the 3D-ABLAR and GF schemes will
incur relatively smaller value of path length. The major reason
is due to the 100% of packet delivery rate from the network
flooding algorithm, which requires additional packet rerouting
as the void problem becomes severe. The same reason can
be applied to the curve obtained from the 3D-GAR protocol,
which possesses a slightly longer routing path than the other
protocols, e.g., around 1.8 additional hops under the void
height of 800 m. Nevertheless, even with the slightly larger
path length, the 3D-GAR protocol can result in guaranteed
delivery rate as shown in Fig. 3(a), which outperforms both
the 3D-ABLAR and GF schemes with lowered packet delivery
rate.

Fig. 3(c) shows the performance of routing overhead versus
the void height. It can be observed that both the 3D-ABLAR
and GF schemes result in comparatively low overhead since
most of the packets are dropped due to the void problem.
In order to guarantee delivery and to find the shortest path,
the network flooding algorithm generates a large number of

Void Height (m)

(b) Path length for successful transmission

600 650 700 750 800 400 450 500 550 600 650 700 750 800
Void Height (m)

(c) Routing overhead (byte/sec)

packets in comparison with other protocols, which contributes
to a significant amount of routing overhead as shown in Fig.
3(c). Comparing with the network flooding algorithm, the 3D-
GAR protocol can achieve guaranteed packet delivery with
a comparably smaller number of packets since the 3D-GAR
scheme limits the packet rerouting only to nodes that are in
the boundary node set. The merits of the proposed 3D-GAR
protocol can therefore be observed, which achieves guaranteed
packet delivery with reasonable routing overhead.

VI. CONCLUSION

In this letter, a three-dimensional greedy anti-void routing
(3D-GAR) protocol is proposed to completely resolve the
void problem incurred by the conventional greedy forward-
ing algorithm under the 3D environment. The 3D rolling-
ball UBG boundary traversal (3D-RUT) scheme is adopted
within the 3D-GAR protocol to solve the boundary finding
problem, which results in the guarantee of packet delivery.
In the end, the correctness proofs, protocol implementation,
and performance evaluation of the proposed algorithms are
properly provided.
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