

國 立 交 通 大 學

資訊工程系

博 士 論 文

GJMA–一個泛用的 Java 行動應用程式開發平台

GJMA – A Generic Java Mobile Application Development Framework

研 究 生：鄭明俊

指導教授：袁賢銘 教授

中 華 民 國 九 十 六 年 六 月

GJMA–一個泛用的 Java 行動應用程式開發平台

GJMA – A Generic Java Mobile Application Development Framework

研 究 生：鄭明俊 Student：Ming-Chun Cheng

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學
資 訊 工 程 系
博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

i

G J M A – 一 個 泛 用 的 J a v a 行 動 應 用 程 式 開 發 平 台

學生: 鄭明俊 指導教授: 袁賢銘

國立交通大學資訊工程系(研究所)博士班

摘 要

使用行動裝置與無線網路的人愈來愈多，行動應用程式的需求也日益

增強，但是行動裝置之間有著很大的差異，且無線網路並不穩定，裝置的

差異與網路的不穩定讓開發行動應用程式變得更加困難，開發者必須面對

並花費大量的時間來解決這些問題。雖然有許多的研究試圖解決這些問題，

像是使用者介面調適，程式語言轉換等等，但是大多數的研究並沒有將行

動裝置的計算能力與功能考慮進去，造成這些行動裝置上的資源被忽略或

浪費，為了解決這個問題，本篇論文提出一個泛用的 Java 行動應用程式開

發平台，稱為 GJMA，它共支援三種運算模式，分別為 BROWSER，STANDALNONE

與 MASTER-SLAVE，GJMA 可以根據行動裝置的使用者介面，計算能力與功能

來選擇程式要在哪種模式下運行，使得程式可以被大部分的裝置所存取使

用。換句話說，在 GJMA 上開發程式時並不需要考慮該程式要使用何種運算

模式，也不需要考慮行動裝置的計算能力與使用者介面為何，所有需要的

轉換都是在佈署到行動裝置上時由 GJMA 來自動完成，也就是說，寫一次程

式，就可以讓不同的裝置來存取使用。在這篇論文中，有三個調適的機制

將被介紹，分別為運算模式的調適機制，使用者介面的調適機制與通訊協

定的調適機制。

ii

GJMA – A Generic Java Mobile Application Development Framework

Student: Ming-Chun Cheng Advisors: Dr. Shyan-Ming Yuan

Department of Computer Science
National Chiao Tung University

ABSTRACT

Although wireless networks and mobile devices have become popular, the
diversity of mobile devices and unsteadiness of wireless networks still cause
software development much trouble. Mobile application developers are forced to
confront these problems, and therefore spend a lot of time developing mobile
applications. Although many studies on user interface adaptation and language
transformation have attempted to solve the problem, most of them do not consider
the computing power and functionalities of end-devices. As a result, these
resources are ignored or wasted. To overcome these problems, the author
proposes a generic Java mobile application development framework, named
GJMA, to help developers build Java mobile applications quickly and easily.
The GJMA framework can tailor an application to fit different devices according
to user interface formats and the computing power and functionalities of the
devices. Every application developed by GJMA can run in one of three computing
modes: thin-client computing, distributed computing and fat-client computing. As
a result, a mobile application developed on GJMA can enjoy the “write once,
run everywhere” benefit. In addition, three adaptation mechanisms are
introduced in this dissertation: computing model adaptation, user interface
adaptation and network adaptation.

iii

誌 謝

本篇博士論文的完成必須感謝許多人。首先感謝我的指導教授袁賢銘博

士，謝謝老師多年來的指導，並感謝老師在我的求學過程中給予充分自由

的發揮空間，讓我可以作不同的嘗試，學習到不同的知識並獲得各種寶貴

的經驗。接著要感謝孫春在教授、陳俊穎教授以及曹孝櫟教授，舉凡論文

的架構、所採用的技術、投影片的編排都給予我許多的指導。在此要特別

感謝所有的校外口試委員，曾黎明教授、楊竹星教授、鄭憲宗教授與張玉

山教授，在百忙之中給予我寶貴的建議，讓我可以讓本篇論文更加的完善。

此外我也要感謝實驗室的各位學長，張玉山、梁凱智、何敏煌、焦信達、

葉秉哲、許瑞愷、劉旨峰、蕭存喻、林獻堂，給予我許多的指導，在我遇

到瓶頸時，指引我一條可行之路。這邊要特別感謝葉秉哲、邱繼弘、吳瑞

祥，我們互相打氣，一起參加比賽，一起作研究，一起玩樂，一起寫論文。

要不是你們，我的博士班生涯不會多采多姿，也不會充滿著歡笑。除了學

長同學外也要感謝實驗室的各位學弟妹給予我的各種幫助，讓我們得以完

成各種大小的計畫，藉此機會謝謝所有對實驗室付出心力的人。另外也要

感謝系辦的楊秀琴小姐、俞美珠小姐、陳小翠小姐給予我的所有協助。

最後將此論文獻給我的父母與一直鼓勵我支持我的老婆卓宜青，感謝你

們提供我如此好的學習機會與環境。求學的過程中，需要感謝的人實在太

多，希望在未來可以貢獻所學於社會上。

iv

TABLE OF CONTENTS

CHINESE ABSTRACT……………………………………………………………………….i

ENGLISH ABSTRACT……………………………………………………………..………..ii

ACKNOWLEDGEMENT…………………………………………………………………..iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... viii

LIST OF TABLES .. x

LIST OF LISTINGS .. xi

Chapter 1 Introduction ... - 1 -

1.1. Motivation ... - 1 -

1.2. Objectives .. - 2 -

1.3. Organization .. - 3 -

Chapter 2 Background .. - 5 -

2.1. Related Specifications ... - 5 -

2.1.1. Thin-Client Computing ... - 5 -

2.1.1.1. Wireless Markup Language ... - 6 -

2.1.1.2. Compact HyperText Markup Language - 6 -

2.1.1.3. Extensible HyperText Markup Language - 7 -

2.1.1.4. Markup Language Transform .. - 8 -

2.1.2. Fat-Client Computing.. - 8 -

2.1.2.1. Java ME ... - 9 -

2.1.2.2. BREW .. - 11 -

2.1.2.3. Symbian ... - 11 -

2.1.2.4. .NET Compact Framework .. - 11 -

2.1.3. Distributed Computing .. - 12 -

v

2.2. Related Works ... - 12 -

2.2.1. VNC .. - 12 -

2.2.2. TCPTE .. - 13 -

2.2.3. J2ME Polish .. - 13 -

2.2.4. Nano-X .. - 14 -

2.2.5. ART ... - 14 -

2.3. Java Class File Structure ... - 14 -

Chapter 3 GJMA Development Framework Overview ... - 16 -

3.1. GJMA Concepts .. - 16 -

3.2. GJMA System Entities .. - 18 -

3.2.1. End-device (GJMAClient) .. - 18 -

3.2.2. GJMApp .. - 20 -

3.2.3. GJMAServer ... - 22 -

3.3. Three Running Modes in GJMA ... - 22 -

3.3.1. BROWSER Mode ... - 24 -

3.3.2. STANDALONE Mode.. - 26 -

3.3.3. MASTER-SLAVE Mode .. - 26 -

3.3.4. Three Running Modes Comparison .. - 27 -

Chapter 4 GJMA Design Issues .. - 28 -

4.1. GJMAServer Architecture .. - 28 -

4.1.1. Adaptive Transport Layer ... - 28 -

4.1.2. Message Routing Layer ... - 30 -

4.1.3. Application Runtime Layer ... - 31 -

4.2. GJMAClient Architecture ... - 32 -

4.3. Initialization Process within GJMApp .. - 33 -

4.3.1. GJMApp in GJMAServer ... - 33 -

4.3.2. GJMApp in GJMAClient .. - 34 -

vi

4.4. Computing Model Adaptation Mechanism ... - 35 -

4.4.1. Adapt to the STANDALONE Mode ... - 35 -

4.4.2. Adapt to the BROWSER Mode .. - 36 -

4.4.3. Adapt to the MASTER-SLAVE Mode ... - 36 -

4.4.3.1. How to Intercept Invocation Actions - 39 -

4.4.3.2. How to Reflect Intercepted Actions - 43 -

4.4.3.3. How to Create Complementary Objects - 44 -

4.4.4. Deployment Process .. - 50 -

4.5. User Interface Adaptation Mechanism .. - 53 -

4.6. Network Adaptation Mechanism .. - 55 -

Chapter 5 GJMA Implementation Issues .. - 56 -

5.1. GJMAClassLoader .. - 56 -

5.2. GJMAMesg Format .. - 59 -

5.2.1. GJMAMesg for System Use ... - 60 -

5.2.2. GJMAMesg for BROWSER Mode ... - 61 -

5.2.3. GJMAMesg for MASTER-SLAVE Mode .. - 61 -

5.3. Marshalling and Unmarshalling .. - 62 -

5.3.1. Marshalling ... - 63 -

5.3.2. Unmarshalling ... - 66 -

5.4. GJMA Preprocessor .. - 67 -

5.4.1. Generate Wrapper Class .. - 68 -

5.4.2. Convert to Method Invocation Actions ... - 74 -

5.4.2.1. Filed Manipulation Action ... - 74 -

5.4.2.2. Synchronized Action ... - 75 -

5.4.3. Generate Code for Creating Complementary Objects ... - 76 -

5.4.4. Convert Array Type to Class Type ... - 77 -

5.4.5. Insert Code for Intercepting Instance Creation ... - 78 -

vii

5.5. GJMA Analyzer .. - 81 -

5.5.1. Generate Proxy Class .. - 81 -

5.5.2. Generate ObjMngr Class ... - 82 -

5.5.2.1. Generate the create Method ... - 83 -

5.5.2.2. Generate the invoke Method.. - 84 -

Chapter 6 Evaluation .. - 85 -

6.1. Programming Framework Comparison ... - 85 -

6.1.1. MPI Programming Framework ... - 85 -

6.1.2. Java RMI Programming Framework ... - 86 -

6.1.3. GJMA Programming Framework ... - 87 -

6.1.3.1. Hello World ... - 87 -

6.1.3.2. Web Services ... - 88 -

6.2. Performance Evaluation .. - 91 -

6.3. Program Size Evaluation ... - 93 -

Chapter 7 Conclusion and Future Works .. - 95 -

References ... - 97 -

viii

LIST OF FIGURES

Figure 1-1: Computing power requirements for client and server .. - 3 -

Figure 2-1: Java platforms for different purposes ... - 9 -

Figure 2-2: A VNC2Go screenshot .. - 13 -

Figure 2-3: J2ME Polish screenshots .. - 14 -

Figure 2-4: Java class file structure ... - 15 -

Figure 3-1: Three-tier architecture used in GJMA .. - 17 -

Figure 3-2: The decision tree for the class org.gjma.application.GJMApp - 20 -

Figure 3-3: A GJMApp deployed to different running modes or devices. - 23 -

Figure 3-4: A diagram for the BROWSER mode .. - 24 -

Figure 3-5: A screenshot of the GJMA task manager ... - 26 -

Figure 3-6: A diagram for the MASTER-SLAVE mode ... - 27 -

Figure 4-1: The layered architecture of GJMAServer. .. - 28 -

Figure 4-2: The detailed architecture of GJMAServer. ... - 30 -

Figure 4-3. The layered architecture of GJMABrowser. ... - 33 -

Figure 4-4: Logical and physical object views .. - 39 -

Figure 4-5: Proxy design pattern ... - 40 -

Figure 4-6: The relationship between managed and un-managed class - 42 -

Figure 4-7: Wrapper design pattern ... - 43 -

Figure 4-8: The sequence diagram for the proxy class. ... - 43 -

Figure 4-9: Insert GJMAObject in the inheritance chaining ... - 45 -

Figure 4-10: Separate two associated classes into two different hosts. - 47 -

Figure 4-11. The GJMApp development flow. .. - 51 -

Figure 4-12: A tree structure about user interface ... - 54 -

Figure 5-1: Class loader structures .. - 58 -

ix

Figure 5-2: Base GJMAMesg format .. - 60 -

Figure 5-3: GJMAMesg format for BORWSER mode ... - 61 -

Figure 5-4: GJMAMesg format for the MASTER-SLAVE mode - 62 -

Figure 5-5: Two phases in GJMA preprocessor .. - 67 -

Figure 5-6: Replace field manipulation action with SETTER/GETTER - 75 -

Figure 5-7: Modify codes for creating complementary object .. - 77 -

Figure 5-8. How to intercept method invoke action .. - 81 -

Figure 5-9: How ObjMngr to process a received GJMAMesg ... - 83 -

Figure 6-1: The GJMApp development flow .. - 87 -

Figure 6-2: The GJMApp (Hello World) accessed by different GJMAClient..................... - 88 -

Figure 6-3: The GJMApp using Web services development flow - 89 -

Figure 6-4: The GJMApp (Web services) accessed by GJMAppStandalone. - 91 -

Figure 6-5: The GJMApp (Web services) accessed by WAP browser. - 91 -

Figure 6-6: Remote method invocation performance evaluation. - 93 -

x

LIST OF TABLES

Table 2-1: Optional packages in Java ME platform .. - 10 -

Table 3-1: The GJMA packages .. - 21 -

Table 3-2: The comparsion table of the three running modes. .. - 27 -

Table 4-1: The mapping table among tree element, WML and HTML - 55 -

Table 5-1: Methods to build the first section ... - 65 -

Table 5-2: Methods to build the sections other than the first section - 65 -

Table 5-3: Methods to get parameter ... - 66 -

Table 5-4: Examples for wrapper class naming ... - 69 -

Table 5-5: The array class naming convention .. - 78 -

Table 6-1: Test environment. ... - 92 -

xi

LIST OF LISTINGS

Listing 2-1: WML page example ... - 6 -

Listing 2-2: C-HTML page example ... - 7 -

Listing 2-3: XHTML basic page example ... - 8 -

Listing 3-1: Partial device profile .. - 19 -

Listing 3-2: Partial class profile .. - 20 -

Listing 3-3: Java ME MIDP codes vs. GJMApp codes ... - 21 -

Listing 5-1: InferaceA source code .. - 56 -

Listing 5-2: ClassA source code .. - 56 -

Listing 5-3: Use the same class loader to load ClassA twice .. - 57 -

Listing 5-4: Use two different class loaders to load ClassA twice - 57 -

Listing 5-5: Use GJMAppInterface to control GJMApps ... - 59 -

Listing 5-6: The partial source code for ActionBuilder ... - 63 -

Listing 5-7: A marshalling example .. - 66 -

Listing 5-8: An unmarshalling example .. - 67 -

Listing 5-9: The source code for test.Foo1 .. - 70 -

Listing 5-10: The source code for test.Foo1’s wrapper ... - 71 -

Listing 5-11: The source code for test.Foo1’s wrapper after replacements - 73 -

Listing 5-12: The source codes for GJMA_ENTER and GJMA_LEAVE - 76 -

Listing 5-13: The partially source code for GJMAObject ... - 80 -

Listing 6-1: A partial sample code for MPI. .. - 86 -

Listing 6-2: A sample interface for Java RMI. .. - 86 -

Listing 6-3: A sample RMI server implementation. .. - 86 -

Listing 6-4: Hello World sample code ... - 88 -

Listing 6-5: Web services sample code ... - 90 -

xii

Listing 6-6: The test code template. .. - 91 -

- 1 -

Chapter 1 Introduction

In the past decade, the number of mobile devices, such as mobile phones, PDAs, and notebooks,

has increased enormously. Wireless networks, such as GRPS, UMTS, WiFi, have also become

prevalent. These two factors have changed computing environments tremendously, and many

new computing paradigms have been introduced, such as mobile computing [1], pervasive

computing [2], and ubiquitous computing [3]. In other words, the requirements for developing

mobile applications have increased, and more mobile applications have been developed for

these mobile devices.

1.1. Motivation

However, there are many differences between these devices. First, they may have different

executing environments. For instance, some of them comply with WAP [4], some with Java ME

[5], and some with Microsoft .NET CF [6]. Second, the computing power and functionalities of

these devices are diverse and they may have different hardware resources. For example, some

have powerful processors, but some do not. Some are equipped with high resolution screens,

but some are not. Third, these devices support different kinds of networks. These networks may

have different bandwidths, latency, and reliability, and they may disconnect during use. These

differences increase the complexity of developing a mobile application capable of supporting

them all [7]. Developers have to face these issues, and have spent much time solving them.

Writing an application capable of supporting multiple devices is difficult. Thus, many studies

and standards have tried to solve them. For example, Mobile Execution Environment (MExE

[8]) defined by a 3GPP working group categorizes these devices into four execution

environments, named classmark 1-4, to reduce mobile application development complexity.

Different classmarks mean different execution environments. If a mobile application was

- 2 -

developed for classmark 1, it can be run on all devices which conform to classmark 1.

Consequently, before developing a mobile application, developers have to decide which

classmarks the application will support. This approach makes developers focus on specific

execution environments, and implies that the application cannot support devices belonging to

other classmarks. To overcome this problem, many studies have been made on adaptations and

attribute programming [9], including user interface adaptation [10][11][12][13][14] and

programming language transformation [15][16]. They can tailor the application to fit different

user interface formats or execution environments. However, most of them do not consider the

computing power and functionalities of devices and these resources are ignored or wasted. For

instance, some of them focus solely on user interface adaptation. Some of them sacrifice the

computing power and functionalities of devices because they can only use functions which all

devices support.

1.2. Objectives

The aim of this dissertation is to design and implement a generic Java mobile application

(GJMA) development framework. Every application developed from GJMA is capable of

tailoring itself to fit different devices or situations according to user interface formats and the

computing power and functionalities of the devices. In other words, more powerful devices will

do more things in GJMA.

- 3 -

Figure 1-1: Computing power requirements for client and server

A server supports weak devices in this study, helping them do something they cannot do. Thus,

every GJMA application can be viewed as client-server computing [17]. Figure 1-1 shows the

computing power requirements for three different computing paradigms derived from

client-server computing, and every computing paradigm has many different state-of-the-art

technologies. In thin-client computing [18], clients are only responsible for user interface, and

nearly all application logic is handled by the server. In distributed computing, clients are

responsible for some application logic, and other logic is handled by the server. In fat-client

computing, all application logic is handled by clients themselves. These three computing

paradigms have different computing power requirements for clients. By adapting an application

to one of the three computing paradigms, all kinds of devices can be well supported regardless

of their computing power and functionalities. In addition, a user interface adaptation

mechanism and a network adaptation mechanism are proposed in this dissertation.

1.3. Organization

This rest of this dissertation is organized as follows. Chapter 2 will introduce related

background about mobile application development and Java language. Chapter 3 will describe

thin-client computing
WEB, WAP, VNC

computing power requirements for client

com
puting pow

er requirem
ents for server

distributed computing
CORBA, RMI, DCOM

fat-client computing
J2ME, PJava, .NET CF

- 4 -

the concepts of GJMA. Chapter 4 will express the design issues and chapter 5 will discuss the

implementation issues. Chapter 6 gives some evaluations and finally chapter 7 gives

conclusion as well as future works.

- 5 -

Chapter 2 Background

There are many specifications and works for mobile application developments. Moreover,

some researches [19] had surveyed how to develop mobile applications. In this chapter, some

important specifications and works are introduced. Also, Java class file structure is described

in this chapter.

2.1. Related Specifications

There are many different specifications related to mobile application developments. They can

be categorized according to which computing paradigms they used. Different computing

paradigms have different way to develop an application. The most three popular computing

paradigms are introduced here and they are thin-client computing, fat-client computing and

distributed computing respectively. All of them are derived from client-server computing

paradigms, so there is no clear boundary among them.

2.1.1. Thin-Client Computing

In thin-client computing, the bulk of business logic is processed on the corresponding server, so

it can also be called server-based computing. The responsibility of clients is providing user

interface only, thus the computing power requirement of clients is lower.

In this computing model, an application run on server-side can be developed by various

platforms, such as Java Servlet[20], PHP[21], ASP[22] and so on. No matter what platform is

used, the important is how clients interact with the server. There are many ways for clients to

interact with the server and they can be categorized into two categories: standard and

proprietary. Basically, clients can use built-in browsers to access the application which will

use standard protocols (such as WAP and HTTP) and content formats (such as WML [23],

- 6 -

XHTML [24] and so on). Moreover, clients can use specific programs to access the

application which will use proprietary protocols (ex. NTT DoCoMo’s i-mode [25]) and

content formats (ex. C-HTML [26]). In short, both browsers and specific programs run on

client-side are used to render user interface and send user request to the application. The

differences among them are content formats and protocols. Some specifications used to create

thin-client mobile applications are given below.

2.1.1.1. Wireless Markup Language

Wireless Markup Language (WML) is the content format used in Wireless Application

Protocol (WAP) and Listing 2-1 is a WML page example. Currently, almost mobile phones

support WAP and they have built-in browsers capable of accessing these WML pages. An

application has to output WML pages if it is designed to support WAP-enabled mobile devices.

Moreover, the browsers use WAP to communicate with the server.

Listing 2-1: WML page example

2.1.1.2. Compact HyperText Markup Language

Compact HTML (C-HTML) is the content format used in NTT DoCoMo’s i-mode and Listing

2-2 is a C-HTML page example. Basically, C-HTML is a subset of the HTML markup

language. In addition, C-HTML adds some features which cannot find in the HTML standard,

notably the accesskeys, phone number shortcuts for links and so on. Currently, only i-mode

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//PHONE.COM//DTD WML 1.1//EN"

"http://www.phone.com/dtd/wml11.dtd">

<wml>

<card id="main" title="WML Example">

Hello World

<p>About...</p>

</card>

</wml>

- 7 -

mobile phones have browsers capable of accessing these C-HTML pages. An application has

to output C-HTML pages if it is designed to support i-mode mobile phones. Moreover, the

browsers use NTT DoCoMo’s proprietary protocols, ALP (HTTP) and TLP (TCP and UDP),

to communicate with the server.

Listing 2-2: C-HTML page example

2.1.1.3. Extensible HyperText Markup Language

Extensible HyperText Markup language (XHTML) is a content format similar to HTML but

XHTML also conform to XML [27] syntax. In XHTML family, there are two members related

to mobile devices: XHTML basic [28] and XHTML mobile profile [29]. The former is

designed to support devices which cannot support all XHTML dialects and it is intended to

replace WML and C-HTML. Listing 2-3 is a XHTML basic example. The latter is based on

XHTML basic and it adds more features for mobile phones. An application has to output

XHTML pages if it is designed to support mobile phones equipped with XHTML browser.

Moreover, the browsers use HTTP or WAP 2.0 to communicate with the server.

<html>

<head><title>C-HTML Example</title></head>

<body>

 Hello World

 <p>About...<p>

</body>

</html>

- 8 -

Listing 2-3: XHTML basic page example

2.1.1.4. Markup Language Transform

There are many different content formats mentioned above and the greater part of them is

markup languages. Hence, an application has to output different markup languages to serve

different clients equipped with different browsers. XSLT [30] is a technology often used to

convert XML data into other markup languages. Thus, an application applied

Model-View-Controller pattern [31] can exploit XML document, such as UIML [32], to

describe user interface and then use XSTL to convert it into the markup languages supported by

the target client on demand. Besides this, there are several similar researches [33][34][35][36].

2.1.2. Fat-Client Computing

In fat-client computing, the bulk of business logic is processed on the client directly. All

applications using this computing model can be executed on client without any server

assistance. It implies these applications can run offline and the devices must have enough

capabilities to execute the applications. This computing model is widely used. Currently, the

most three popular development platforms are Java ME, BREW [37], Symbian [38], and .NET

Compact Framework.

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

<html>

<head><title>XHTML Basic Example</title></head>

<body>

 Hello World

 <p>About...<p>

</body>

</html>

- 9 -

2.1.2.1. Java ME

Java is an object-oriented programming language developed by Sun Microsystems in the early

1990s. Unlike C programs are compiled to native machine codes, Java applications typically

are compiled to Java bytecode which is platform independent and is run on a stack machine

named Virtual Machine [39]. Nowadays, there are many different editions for Java, such as

Java EE [40], Java SE [41] and Java ME for different purposes as Figure 2-1 shows. Java EE is

for enterprise application, Java SE is for general application, and Java ME is for mobile

application.

Figure 2-1: Java platforms for different purposes

Because of the mobile device diversity and resource constraints, Java ME architecture is

combined of three parts: configurations, profiles and optional packages. It implies that it is

impossible to put all codes into a resource-limited device. Thus, each combination of the three

parts is optimized for the memory, processing power, and I/O capabilities for target devices. All

these things make it clear that Java ME use different combinations to support diverse mobile

devices well. For example, some mobile devices are equipped with Bluetooth and some are not.

- 10 -

For devices equipped with Bluetooth, the optional package JSR [42] 82 has been included in

the combination to support it. For devices which are not equipped with Bluetooth, the optional

package JSR 82 is excluded in the combination to save memory. The functionalities of the three

parts are described as follows:

 Each configuration provides base functionalities for particular devices with similar

characteristics. Currently, there are two base configurations, CLDC and CDC, in Java

ME. The full name of CLDC is “Connected Limited Device Configuration” which is

designed for limited mobile devices such as cellular phones. Moreover, the full name of

CDC is “Connected Device Configuration” which is designed for more capable devices

such as smartphones.

 Each profile is a set of higher level APIs. It defines the application life cycle model, the

user interface, and the device specific properties.

 Each optional package offers different functionality as Table 2-1 shows. The capabilities

of Java ME can be further extended by combining various optional packages.

Table 2-1: Optional packages in Java ME platform

Optional package name Version JSR

Java APIs for Bluetooth

 Bluetooth, OBEX

1.1 JSR 82

Content Handler API 1.0 JSR 211

Mobile Media API 1.2 JSR 135

Java Binding for the OpenGL® ES 1.0 JSR 239

J2ME Web Services Specification

 JAXP, JAX-RPC

1.0 JSR 172

Security and Trust Services APIs

 ADPU, JCRMI, PKI, CRYPTO

1.0 JSR 177

Security

 JSSE, JCE, JAAS

1.0 JSR 219

Advanced Graphics and User Interface

 Java 2DTM, Swing

1.0 JSR 209

RMI 1.0 JSR 66

- 11 -

JDBC 1.0 JSR 169

JavaTVTM API 1.1 JSR 927

Because Java is platform independent, the greater part of mobile phones is Java ME-enabled

currently.

2.1.2.2. BREW

Binary Runtime Environment for Wireless (BREW) is a mobile application development

platform created by Qualcomm for mobile phones. It can support GSM/GPRS, UMTS and

CDMA. BREW is similar to Java ME but BREW is more powerful because the running level

of BREW is lower than Java ME. In other words, BREW is more close to hardware. For

example, it can access screen buffer directly.

2.1.2.3. Symbian

Symbian is an operating system for handheld devices with limited resources. It has different

device classes and variants for different mobile devices, such as Series 60, Series 80, UIQ and

so on. Basically, they have same basis but may have different look and feel. A Symbian

application has to be written in C++ and use classes provided by Symbian libraries. Currently,

a Symbian application only can be executed on Symbian OS.

2.1.2.4. .NET Compact Framework

The Microsoft .NET Compact Framework is a version of the .NET Framework that is

designed to run on mobile devices. Basically, it is a subset of .NET Framework but it adds

some libraries designed specifically for mobile devices. A .NET Compact Framework

application can be developed in C# or Visual Basic.NET. Currently, the application only can

be executed on mobile devices powered by Microsoft .NET Compact Framework.

- 12 -

2.1.3. Distributed Computing

In distributed computing, the bulk of business logic is spread on different hosts. These hosts

provide different services and they cooperate with each other to complete the business logic.

This computing model is widely used, such as CORBA [43], Java RMI [44], and Web services

[45] are examples. Different distributed technologies have different usages [46]. Some have to

write remote interface descriptions [47][48], some have to declare and implement specific

interfaces [14], some exploit annotation or attribute to declare remote methods in source

codes [49], and some only provide communication library to call [50]. However, for mobile

application development, not all technologies is suitable for mobile application and only Web

services and Java RMI [51] are two of the most popular technologies to realize distributed

computing. It is worth to notice that not all mobile devices support Web services and Java

RMI.

2.2. Related Works

2.2.1. VNC

Virtual Network Computing (VNC) [52] is a remote desktop software capable of showing

user interface locally (client-side) and controlling the applications remotely (server-side). At

the beginning, VNC is not designed for mobile devices but there are some client

implementations for mobile devices, such as VNC2Go [53] and so on. In fact, these

applications run on server-side are not designed for mobile devices, so the user interface

displayed on client-side may be terrible. Figure 2-2 (the figure is captured from

http://www.freeutils.net/vnc2go/index.jsp) is an example and it only can display small portion

of desktop at once. Moreover, VNC uses its proprietary protocol to communicate between

server and client.

- 13 -

Figure 2-2: A VNC2Go screenshot

2.2.2. TCPTE

The thin-client applications for limited devices (TCPTE) framework [54][55] is a development

framework for mobile applications. It can execute Java application on a remote server and

display their AWT interface on a local client. It combines the advantages of thin-client

computing with the richness user interface and lets programmer develop mobile applications

using same process and tools they typical use for desktop applications. Besides this, there are

several similar researches and projects [56][57]. They can display user interface remotely

also.

2.2.3. J2ME Polish

J2ME Polish [14] is based on Java ME and it is a collection of tools for developing Java ME

applications. These tools include device database, preprocessor and utility classes. The device

database is used to describe the capabilities of mobile devices and the preprocessor modify

source codes to fit target devices according the device database. Furthermore, it provides

richer and flexible user interface classes which can use CSS [58] to describe. An example is

shown in Figure 2-3 (the figure is captured from http://www.j2mepolish.org/screenshots.html).

There are three screenshots and they shows the same screen with different CSS. Besides, it

also provides some useful features, such as remote method invocation, serialization,

- 14 -

persistence and so on. These mechanisms can help developer build mobile application easier.

Figure 2-3: J2ME Polish screenshots

2.2.4. Nano-X

The Nano-X Window System (previously Microwindows) [59] is aimed at bringing the

features of modern graphical windowing environments to smaller devices and platforms.

Basically, it only provides user interface related functionalities. Unlike X Window [61], both

server-side and client-side have to be executed on mobile devices in the Nano-X Window

System. Because the usage of Nano-X is similar to usage of X Window, developer can use the

same process to build mobile application appearance.

2.2.5. ART

Adaptive Remote Terminal (ART) [60] is a mobile development framework capable of

executing the application on server-side and displaying user interface on client-side. Besides,

it can output different content formats for different browsers. End-users can use built-in

browsers or the proprietary browser to access these applications run on server-side.

2.3. Java Class File Structure

Figure 2-4 is the structure of the java class file. There are many parts in a class file, including

- 15 -

header, constant pool, access rights, this class, super class, implemented interfaces, fields,

methods and attributes. It is worth to notice that there are many indexes. Every index is used

to pointer to an entry in the constant pool. In fact, there is much information stored in the

constant pool, such as methods’ name, methods’ signatures, fields’ name, fields’ type, class

name, and so on. By analyzing the constant pool in a class file, all information can be got and

there are many tools capable of modifying or examining the class files. In other words, Java

class file is easy to be modified. In GJMA, BCEL [62] is used to do this. It can generate class

file or modify the class file on demand, including the bytecode in the methods.

Figure 2-4: Java class file structure

Header

Constant Pool

Access Rights

This class

Super class

Implemented Interfaces

Fields

Methods

Attributes

CONSTANT_Utf8
“toString”

CONSTANT_NameAndType
*name_index
*descriptor_index

CONSTANT_Utf8
“org/evitan/gma/Hello”

CONSTANT_Utf8
“()Ljava/lang/String;”

CONSTANT_Utf8
“self”

CONSTANT_Utf8
“java/lang/Object”

CONSTANT_Class
*name_index = “java/lang/Object”

CONSTANT_Fieldref
*class_index = “org/evitan/gma/Hello”
*name_and_type_index= “self”

CONSTANT_Methodref
*class_index = “org/evitan/gma/Hello”
*name_and_type_index= “toString”

aload_0
invokevirutal org.evitan.gma.Hello.toString

CONSTANT_Class
*name_index = “org/evitan/gma/Hello”

bytecode

class file format Detailed Constant Pool

zoom in

- 16 -

Chapter 3 GJMA Development Framework Overview

This chapter will introduce GJMA concepts, GJMA system entities and three supported

running modes.

3.1. GJMA Concepts

It is difficult for a mobile application to support all devices well due to varying computing

power and functionalities. A simple scenario follows. Three end-users want to control home

appliances via their own mobile devices, named DeviceA, DeviceB, and DeviceC, respectively,

using a Java ME MIDP (JSR 118) home appliance control application which uses Web services

to control home appliances. These devices have different functionalities. DeviceA cannot run

Java ME applications and only has a built-in WAP browser. DeviceB has a WAP browser and is

Java ME MIDP compatible, but it does not support Web services (JSR 172). DeviceC is similar

to DeviceB, except DeviceC supports Web services. In the scenario, DeviceC can run the home

appliance control application directly, but DeviceA and DeviceB cannot. Without an

automatically adaptation framework, a developer can only solve the problem in two ways. The

first approach is to develop three specific editions for the three devices. The second approach is

to develop one general WAP version which can be accessed by WAP browsers on all devices.

The former is a tedious task and the latter sacrifices the computing power of DeviceB and

DeviceC. One of the primary GJMA framework objectives is to let all devices run at capacity

without publishing many editions of an application: write an application once and it can support

all kinds of devices well.

- 17 -

Figure 3-1: Three-tier architecture used in GJMA

GJMA uses a three-tier architecture, as Figure 3-1 shows, to solve the problems of diverse

computing power and functionalities. End-users use their own desktops or mobile devices,

called end-devices, in the front-tier to access mobile applications. There is at least one

application server in the middle-tier, which provides necessary execution environments and

services for running applications and end-devices. An application in the GJMA is designed to

be capable of running in the front-tier (fat-client computing), in the middle-tier (thin-client

computing), or even in both tiers (distributed computing) simultaneously depending on the

computing power and functionalities of end-devices. More front-tier computing power means

more codes will be run in the front-tier (implicitly fewer codes will be run in the middle-tier).

By analyzing, an application may therefore face three different running cases:

 The computing power of the end-device is not good enough or the device cannot run

applications other than built-in applications. The device here is not suitable for the

application or cannot run the application. Thus, thin-client computing, such as WEB-based

technology, is suitable for this case. Entire application codes must be executed in the

internet or intranet

Browser-enabled

Smartphone & PDA

Java-enabled

Other devices

Application
server

Front-tier Middle-tier Backend-tier

- 18 -

middle-tier, and the front-tier is only responsible for user interface.

 The computing power of the end-device is good enough and the device supports all

functionalities which the application requires. In this case, entire application codes can be

executed on end-devices. This is a kind of fat-client computing, like running a Java ME

MIDP application on a mobile device.

 The computing power of the end-device is good enough but the device does not support

all functionalities which the application requires. The device in this situation cannot

execute some codes within the application, and these codes have to be handled by the

middle-tier application server. This is a kind of distributed computing, such as Java RMI.

To support all kinds of end-devices, GJMA provides three different running modes for an

application to fit the three cases above: BROWSER mode (thin-client computing),

STANDALONE mode (fat-client computing), and MASTER-SLAVE mode (distributed

computing). Section 3.3 will discuss the details.

3.2. GJMA System Entities

The GJMA framework contains three important entities: end-device (GJMAClient), GJMApp,

and GJMAServer. In Figure 3-1, End-device (GJMAClient) participates in front-tier and

GJMAServer involves in middle-tier as the application server. Furthermore, GJMApps are

applications capable of running in one of the three running modes.

3.2.1. End-device (GJMAClient)

An end-device is any device used by an end-user in the front-tier. These include PDAs, mobile

phones, notebooks and so on. End-devices can be divided into two categories according to their

programmable characteristics. All end-devices belonging to the programmable GJMAClient

category can execute applications other than their built-in applications. On the other hand, all

- 19 -

end-devices belonging to the non-programmable GJMAClient category can only execute the

built-in applications.

Because there are many differences between end-devices, the GJMA framework contains an

end-device database to provide related information. This database helps the GJMA framework

adjust applications to fit different end-devices. The end-device database comprises two XML

[27] documents: device profile and class profile. Device profile describes related information

for end-devices, and class profile describes decision trees used to find the most suitable classes.

End-device capabilities are listed in device profile as Listing 3-1 expressed, including

execution environments, screen size and other data. Figure 3-2 is an example of a decision tree

for the org.gjma.application.GJMApp class. The class has four implementations for different

running modes and Listing 3-2 is the corresponding class profile.

Listing 3-1: Partial device profile

<Vendor="SonyErission">
<Device name="k700i">
<Browser type="WAP">
</Browser>
<ExecutionEnvironment val="J2ME_MIDP">
</ExecutionEnvironment>

</Device>
</Vendor>

Running modes?

BROWSER

STANDALONE

MASTER-SLAVE

a b Server or Client?

c d

- 20 -

Figure 3-2: The decision tree for the class org.gjma.application.GJMApp

Listing 3-2: Partial class profile

3.2.2. GJMApp

Every mobile application developed from the GJMA framework is called a GJMApp.

Developing a GJMApp is similar to writing a general Java ME MIDP application, but there are

something differences between them as Listing 3-3 shows. In Java ME MIDP applications,

developers must consider whether or not the classes within the Java ME application are

compatible for end-devices. This is because all classes have to be handled by the end-devices.

Conversely, GJMApp developers need not worry about compatibility problems since the server

will help end-devices handle all incompatible classes. Classes which need to be executed by the

servers are determined in deployment time. A GJMApp can be deployed in different running

modes according to end-device execution environments, computing power, and functionalities.

Because different running modes have different requirements for end-devices, a GJMApp can

support the majority of end-devices by adapting to different running modes. As a result,

developers do not need to take different devices into account. Instead, they can focus on

<Class name="org.gjma.application.GJMApp">
<Decision var="RunningMode">
<Equal val="BROWSER">
<Edition name="a" path="BROWSER\org\gjma\application\GJMApp.class“ />
</Equal>
<Equal val="STANDALONE">
<Edition name="b" path="STANDALONE\org\gjma\application\GJMApp.class“ />
</Equal>
<Equal val="MASTERSLAVE">
<Decision var="MasterOrSlave">
<Equal val="Master">
<Edition name="c" path="MS\MASTER\org\gjma\application\GJMApp.class“ />
</Equal>
<Equal val="Slave">
<Edition name="d" path="MS\SLAVE\org\gjma\application\GJMApp.class“ />
</Equal>
</Decision>
</Equal>
</Decision>
</Class>

- 21 -

business logic only. Section 4.4.4 introduces deployment process details.

Listing 3-3: Java ME MIDP codes vs. GJMApp codes

Every GJMApp has a main class which must inherit from the org.gjma.application.GJMApp

class. This is similar to every Java ME MIDP application which has a main class which must

inherit from javax.microedition.midlet.MIDlet class. The GJMA framework, like software

development kits, provides classes other than the org.gjma.application.GJMApp class as Table

3-1 shows. This helps developers build mobile applications efficiently. The GJMA framework

prepares many different editions of classes to support all kinds of end-devices in three running

modes. Different editions of a class have the same functionalities but have different

implementations. When a GJMApp is deployed, the most suitable classes are chosen according

to the class profile in the end-device database. For example, the class

org.gjma.ui.LayoutManager is used to arrange widgets, and has two editions. One is for small

screens and the other is for large screens. Another example is that the class

org.gjma.application.GJMApp, which initializes all necessary resources in runtime, has four

editions. One is for the STANDALONE mode, one is for the BROWSER mode, and two are for

the MASTER-SLAVE mode as Figure 3-2 shows.

Table 3-1: The GJMA packages

public class TestMIDlet
extends javax.microedition.midlet.MIDlet {

public TestMIDlet() {
//constructor
}
public void startApp() {
//this will be called, when MIDlet is started
}
public void pauseApp() {
//this will be called, when MIDlet is paused
}
public void destroyApp(boolean unconditional) {
//this will be called, when MIDlet is destroyed
}
}

public class TestGJMApp
extends org.gjma.application.GJMApp {

public TestGJMApp() {
//constructor
}
public void startApp() {
//this will be called, when GJMApp is started
}
public void pauseApp() {
//this will be called, when GJMApp is paused
}
public void destroyApp(boolean unconditional) {
//this will be called, when GJMApp is destroyed
}
}

- 22 -

3.2.3. GJMAServer

The GJMAServer plays an important role in the BROWSER and the MASTER-SLAVE modes.

If a GJMApp is run in the STANDALONE mode, the GJMAServer is unnecessary. Generally

speaking, the GJMAServer provides runtime environments and services for GJMApps. The

GJMAServer’s main functions are application management, communication management, and

user interface adaptation. Application management manages the lifecycle of GJMApp. It can

load, start, and stop a GJMApp according to end-device requests. Communication management

supports different network protocols. It converts all requests into messages, named GJMAMesg

described in section 5.2. Moreover, user interface adaptation transforms user interface to

different content formats.

3.3. Three Running Modes in GJMA

This subsection discusses the concepts of the three running modes. The mode(s) in which a

GJMApp is deployed depends on which end-devices are used, and the decision is made in

deployment time. In other words, a GJMApp may be simultaneously deployed in different

running modes to support different kinds of end-devices. End-device deployment results may

be different even though a GJMApp is deployed in the same running mode because the

end-devices may have different functionalities as Figure 3-3 shows.

package name descriptions
org.gjma.application core package, including main class, loader class and so on

org.gjma.ui all user interface related classes are put in this package

org.gjma.io The classes used to handle I/O are put in this package

org.gjma.service The classes related to UPnP, Web Service and Jini are put in this package

org.gjma.util The utility classes are put in this package

- 23 -

Figure 3-3: A GJMApp deployed to different running modes or devices.

Figure 3-3 is a sample to demonstrate the result after deployment. Many details, such as proxy

class and other necessary classes, are omitted in this figure to keep it simple. For the same class

name, different superscript represents different editions/implementations. In Figure 3-3, the

original GJMApp is consisted of two classes, X and Y. Moreover, the GJMApp is deployed to

four different end-devices.

(1) Deploy the GJMAPP to BROWSR mode. Both X and Y are placed on GJMAServer.

(2) Deploy the GJMApp to the STANDALONE mode. Both X and Y are placed on

GJMAClient, specially named GJMAppStandalone.

(3) Deploy the GJMApp to the MASTER-SLAVE mode. X is placed on GJMAClient,

specially named GJMAppSlave and Y is placed on GJMAServer, specially named

GJMAppMaster.

(4) Deploy the GJMApp to the MASTER-SLAVE mode also. This case is similar to the

case (3) but the target end-device is different. Hence, (3) and (4) have different results.

In other words, (3) and (4) used different editions of class X.

X Y Xa Ya

Xb Yb

Xc Ya

BROWER

STANDALONE

MASTER‐SLAVE +

GJMAServerGJMAClient

GJMApp

(1)

(2)

(3)

GJMApp

GJMAppStandalone

GJMAppSlave GJMAppMaster

Xb Ya
+

(4)

GJMAppSlave GJMAppMaster
MASTER‐SLAVE

- 24 -

3.3.1. BROWSER Mode

In the BROWSER mode, all GJMApp codes are handled by a GJMAServer. The front-tier in

Figure 3-1 is a presentation layer, and end-devices are responsible for user interface only as

Figure 3-4 shows. End-users can use many types of devices in the front- tier and the GJMA

framework will automatically tailor content formats to fit various end-devices in runtime.

When a GJMApp is deployed in the BROWSER mode, it can be used by a great majority of

browser-enabled devices. This mode is also device-independent, and all GJMApps can be

deployed in this mode.

Figure 3-4: A diagram for the BROWSER mode

Currently, GJMA systems support two kinds of browsers: built-in browsers and the

GJMABrowser. End-users can use either one, but the latter is specifically designed for GJMA

use. As a result, it has better display effects and interactive abilities. However, it requires a

GJMABrowser installation before use. For built-in browsers, no additional applications need to

be installed prior to use.

 Built-in browser

Java SE

GJMAServer

GJMABrowser
APP

widgets
widgets

widgets

APP
APP

APPJava ME MIDP/Java SE

GJMAMesg over HTTP,
TCP or UDP

HTTP or WAP

Front‐tier Middle‐tier

Built‐in browser

widgets
widgets

Symbian/WinCE

- 25 -

Mobile devices use many different kinds of built-in browsers, such as XHTML browsers,

WAP browsers, and others. They may use different network protocols to communicate,

including HTTP and WAP. This means that a GJMAServer must support these different

protocols. Currently, most mobile devices have a built-in browser. If an end-device is a

non-programmable GJMAClient, its built-in browser is the only interface to interact with

GJMApps.

 GJMABrowser

A GJMABrowser is a mobile application capable of drawing UI widgets and handling

end-user actions. A GJMABrowser only can be installed on a programmable

GJMAClient. It interacts with GJMApps by delivering GJMAMesg between them. The

most popular mobile device programming environments are currently Java ME MIDP

and .NET CF. Two editions of GJMABrowser are implemented to support both

environments.

The front-tier consumes very few resources in this mode because all application codes are

handled by the middle-tier. The front-tier is responsible for presentation only. End-users can

access several mobile applications simultaneously in this mode, and GJMA provides a menu

like the task manager in Microsoft Windows XP (see Figure 3-5). This helps end-users select

which GJMApp to start, stop or switch to.

- 26 -

Figure 3-5: A screenshot of the GJMA task manager

3.3.2. STANDALONE Mode

In the STANDALONE mode, all application codes are run entirely on end-devices and do not

need any middle-tier assistance, implying that this mode can be used in an environment without

a network. When a GJMApp is deployed in the STANDALONE mode, the entire application,

called GJMAppStandalone, will be executed devices which are powerful enough. This mode is

device-dependent, so the application must be re-deployed when changing end-devices. In other

words, a GJMApp has to be deployed in the STANDALONE mode many times for different

end-devices.

3.3.3. MASTER-SLAVE Mode

When a GJMApp is deployed in the MASTER-SLAVE mode, its codes will be divided between

end-devices and the GJMAServer as Figure 3-6 shows. The end-device part belongs to

GJMAppSlave, and the GJMAServer part belongs to GJMAppMaster. Both of them are

generated automatically from the original GJMApp in deployment time. The details will be

described in section 4.4.3.

- 27 -

Figure 3-6: A diagram for the MASTER-SLAVE mode

3.3.4. Three Running Modes Comparison

Table 3-2 is a comparsion table among the three running modes and there are five criteria in the

table. The first criterion is the computing power requirement for end-devices. Today, almost

end-devices can access a GJMApp in the BROWSER mode. The second criterion is whether or

not need network environemnts when running a GJMApp. If a GJMApp is deployed in

STANDLAONE, the GJMApp can be executed when off-line. The third criterion is whether or

not support to access multiple GJMApps concurrently. Because almost end-devices, especially

hand-held devices, can only run a KVM at the same time, they can only launch a Java

application at one time also. The fourth criterion is whether or not need to install additional

program on end-devices. In GJMA, only GJMABrowser has to be installed. The final criterion

is whether or not to deploy a GJMApp on end-devices before accessing it.

Table 3-2: The comparsion table of the three running modes.

Java SE

GJMAServer
GJMAppSlave

APP1

widgets
widgets

APP1

APP2 APP3

Java ME MIDP/Java SE

GMAMesg over HTTP,
TCP or UDP

Front‐tier Middle‐tier

GJMAppMaster

BROWSER MASTER-SLAVE STANDALONE

built-in GJMABrowser

1. requirements Low Middle High

2. need network? Must Must No

3. support multi-tasks? Yes No No

4. need installation? No Yes No No

5. need deployment? No Yes Yes

- 28 -

Chapter 4 GJMA Design Issues

This chapter contains two parts. The first part introduces system architecture and the second

part discusses adaptation mechanisms.

4.1. GJMAServer Architecture

GJMAServer plays an important role in the BROWSER and MASTER-SLAVE running modes

because some GJMApp codes are executed by the GJMAServer in these two modes.

GJMAServer architecture is shown in Figure 4-1. It can be considered a layered architecture;

with an Adaptive Transport Layer, a Message Routing Layer and an Application Runtime

Layer from bottom to top. In this way, GJMA can be modularized very well and the layered

design makes maintenance and upgrading easier. The following sub-sections will discuss these

three layers respectively.

Figure 4-1: The layered architecture of GJMAServer.

4.1.1. Adaptive Transport Layer

The Adaptive Transport Layer enables GJMAServer to communicate with different kinds of

GJMAClients which may use different network protocols. Figure 4-2 helps illustrate the

detailed GJMAServer architecture.

Non‐GJMA
resources

Message Routing Layer

Application Runtime Layer

Adaptive Transport Layer

Java Virtual Machine

Operating System

HTTP TCP UDP Others

- 29 -

The primary role in this layer is Communication Manager (CommMngr), which is a super

daemon capable of handling many different networks protocols including TCP, UDP, HTTP and

so on. It has two missions. First, it establishes the relationship between GJMAServer and

GJMAClient when a GJMAClient sends a login request to GJMAServer. Secondly, after

successful login, CommMngr creates a logic process (i.e. a user process, including a UserOutD,

a UserInD and a UserOutQ) for the GJMAClient. Every logic process might have different

components or functionalities depending on which network protocol it uses. The UserOutD is a

thread. It is responsible for picking messages called GJMAMesg from the queue named

UserOutQ, and sending them to the corresponding GJMAClient directly or translating

GJMAMesgs to specific content formats. The UserInD is also a thread. It handles GJMAMesgs

from its client directly or translates incoming requests from its client to GJMAMesgs, and then

put them into the queue named InnerQueue. Section 4.5 and Section 4.6 introduce the details of

this layer’s adaptation mechanisms. In short, the main functionality of this layer is to transform

from different network protocols and content formats to GJMAMesgs and to transform

GJMAMesgs to different network protocols and content formats.

- 30 -

Figure 4-2: The detailed architecture of GJMAServer.

4.1.2. Message Routing Layer

The Message Routing Layer implements an asynchronous message delivery mechanism and

the process unit in this layer is GJMAMesg, which’s formats is introduced in Section 5.2. This

layer is responsible for delivering GJMAMesgs to right queue(s) depending on the information

encoded in the GJMAMesgs. For example, when a user presses a button or a GJMApp orders

the client-side to create a new UI widget, a corresponding GJMAMesg will be generated and

routed to the proper destination. The main components in this layer are Queue and Message

Dispatcher (MesgDispatcher). The MesgDispatcher is responsible for routing GJMAMesg to

the correct queue(s). Moreover, there are three kinds of queues on GJMAServer: InnerQueue,

AppInQ and UserOutQ.

AppInQ

ObjMngr

GJMApp3

AppInQ

WinMngr

GJMApp2

AppInQ

WinMngr

GJMApp1

InnerQueue

Application
Runtime
Layer

Message
Routing
Layer

Adaptive
Transport
Layer UserInD UserOutD

UserOutQ

UserInD UserOutD

UserOutQ

AppMngr

CommMngr

MesgDispatcher

UserInD UserOutD

UserOutQ

Translator

GJMABrowser

User process User process User process

built‐in browser GJMASlave

TCP HTTP TCP, UDP, or HTTP

- 31 -

Every request received by UserInD is translated to a GJMAMesg and placed it into

InnerQueue. Then MesgDispatcher will dispatch them to the some AppInQ in which GJMApp

will process these GJMAMesg or call Application Manager (AppMngr) to handle the

GJMAMesg.

Once a GJMApp generates a GJMAMesg whose destination is a GJMAClient, the message will

be placed in UserOutQ within the GJMAClient’s user process. UserOutD within the user

process will later send the message to its client or pass the message to the translator according

to the kinds of GJMAClient.

If a GJMApp needs to negotiate with other GJMApps on the same GJMAServer, GJMAMesgs

will be sent back to InnerQueue and wait for dispatching by MesgDispatcher again.

Since wireless networks are often not stable enough, the GJMA framework uses the

asynchronous message delivery mechanism mentioned above for transmissions between

GJMAServers and GJMAClients. This mechanism decouples the GJMApp and low-level

network protocols, helping the GJMAServer handle disconnection situations and preventing

GJMApps from accessing the network directly. After a GJMAClient reconnected, just rebind

the previous used GJMApps. Also, this mechanism enables communication among GJMApps

and supports one-to-one, one-to-many and many-to-many modes.

4.1.3. Application Runtime Layer

A GJMAServer can serve many GJMAClients at the same time. Also, the GJMAClient can

access several GJMApps run on the GJMAServer at the same time if the GJMAClient is a

GJMABrowser or a built-in browser. The Application Manager (AppMngr) is responsible for

loading, resuming and stopping GJMApps. Before starting a GJMApp, AppMngr will check if

- 32 -

any instance of the GJMApp already exists in the memory. If it does, AppMngr will then check

the startup setting of the GJMApp and decide to create a new instance or bind the GJMAClient

to the old one. This is useful when a network is temporarily broken. When the GJMAClient

re-connects to the GJMAServer, previous work can continue. AppMngr uses different class

loader instances to load a GJMApp every time to maintain independent space between them.

This lets every GJMApp have its own space. How to use different class loader instances to

load class is explained in section 5.1.

4.2. GJMAClient Architecture

There are four kinds of GJMAClient: built-in browser, GJMABrowser, GJMAppSlave, and

GJMAppStandalone. It must be noted that the first one can be used by both programmable and

non-programmable GJMAClient. The remaining three can only used by programmable

GJMAClient. Moreover, GJMAppSlave and GJMAppStandalone are generated from original

GJMApp when deployment.

GJMABrowser architecture is similar to the GJMAServer as Figure 4-3 illustrates. Because a

GJMABrowser can communicate with only one GJMAServer at a time, there are only a couple

of InputD and OutputD in the Adaptive Transport Layer. InputD always listens for an arriving

GJMAMesgs; if it gets any, it will put the message to the InputQ. At the same time, Message

Handler (MesgHandler) retrieves messages from InputQ asynchronously and passes them to

the Command Manager (CmdMngr) or Window Manager (WinMngr). The functionality of

WinMngr is to manage widgets created on the GJMABrowser. CmdMngr plays almost the

same role that the AppMngr on GJMAServer does, but it does not physically load or stop

GJMApp instances. It only issues those requests to the GJMAServer and waits for the results.

Every widget has an associated listener. Whenever the status of a widget is changed by its user,

- 33 -

the listener is triggered and generates some corresponding GJMAMesgs. WinMngr then puts

these GJMAMesgs into OutputQ, and OutputD will later send them to the GJMAServer.

Figure 4-3. The layered architecture of GJMABrowser.

4.3. Initialization Process within GJMApp

Every GJMApp has to be initialized prior to use, and these initialization process is taken care

by the constructor of the class org.gjma.application.GJMApp. Moreover, different running

modes may need different initialization process, and this section will discuss them.

4.3.1. GJMApp in GJMAServer

A GJMApp requires different components when running in different modes on a GJMAServer.

A GJMApp deployed in the BROWSER mode needs a window manager (WinMngr) to manage

all objects related to user interface. A GJMApp deployed in the MASTER-SLAVE mode needs

an object manager (ObjMngr) for both parts to manage remote objects. These necessary

components are initialized by the org.gjma.application.GJMApp constructor. Hence, when

loading a GJMApp, the constructor will be invoked and the necessary components will be

initialized automatically. The following content discusses the initialization process of a

GJMApp in different running modes.

Adaptive
Transport
Layer

Message
Routing
Layer

Application
Runtime
Layer

GJMAServer

- 34 -

 GJMApp in the BROWSER mode

The GJMApp class constructor has to create a window manager (WinMngr) and the

queue AppInQ is assigned by AppMngr.

 GJMApp in the STANDALONE mode

All codes within the GJMApp are handled by the GJMAClient. The GJMAServer has

nothing to do.

 GJMApp in the MASTER-SLAVE mode (GJMAppMaster)

The GJMApp class constructor has to create an object manager (ObjMngr) and the queue

AppInQ is assigned by AppMngr.

4.3.2. GJMApp in GJMAClient

A GJMApp requires different components in different running modes in a GJMAClient also.

 GJMApp in the BROWSER mode (GJMABrowser and built-in browser)

All codes within the GJMApp are handled by the GJMAServer. The GJMAClient has

nothing to do.

 GJMApp in the STANDALONE mode (GJMAppStandalone)

The GJMApp has an empty constructor because it does not need to communicate with

the GJMAServer.

 GJMApp in the MASTER-SLAVE mode (GJMAppSlave)

The GJMApp constructor will build a three-layer architecture like the GJMABrowser, as

Figure 4-3 shows. The only difference is in the Application Runtime Layer. In this mode,

this layer contains an ObjMngr instead of the WinMngr.

- 35 -

4.4. Computing Model Adaptation Mechanism

Three running modes described in section 3.3 are supported in GJMA and every GJMApps can

be adapted to one of the three modes automatically depending on situations in deployment time.

In developmemt time, GJMApp developers do not need to worry about which computing model

is used and do not need to write any interface description files such as CORBA IDL [47][48]. In

other words, To program a GJMApps is similar to program a Java ME MIDP application.

Moreover, which running mode can be used is determined in deployment time and all necessary

transformations are taken care by GJMA. According to the above descriptions, a computing

model adaptaion mechanisms has to be deisgined in GJMA. It can tailor GJMApps to fit one of

the three running modes. This subsection introduces how a GJMApp can be automatically

adapted to the three running modes : STANDALONE, BROWSER and MASTER-SLAVE,

respectively.

4.4.1. Adapt to the STANDALONE Mode

To tailor a GJMApp to fit the STANDALONE mode is easy. Just replace some classes with the

most suitable classes. In GJMA, there may be many classes having the same class name but

they have different implementations for different purposes. For example, there are several

implementations for org.gjma.application.GJMApp class, placed in different directories, and

each of them has different initialization process for different running modes as sections 4.3

discusses. In other words, every org.gjma.application.GJMApp class implementation is

suitable for a specific running mode and situation (ex. master or slave part). Hence, if a

GJMApp is determined to deploy as the STANDALONE mode, the computing model

adaptation mechanism has to choose an org.gjma.application.GJMApp class file implemented

for the STANDALONE mode from all of them. In addition, in sometimes, the computing

model adaptation mechanism has to consider about other criteria, such as execution

- 36 -

environment of end-devices, screen size of end-devices, computing power of end-devices, and

so on. For instance, there are two implementations for the org.gjma.ui.LayoutManager class.

One is implemented for big screen and the other is implemented for small screen. It follows

from what has been said that each class may need different criteria and the computing model

adaptation exploits different decision trees for different classes when choosing. Furthermore,

the decision trees are described in the class profile in the end-device database. In the

STANDALONE mode, all codes within a GJMApp are executed in end-devices. It must be

noted that not all end-devices are good enough to execute it, so not all end-devices can run all

GJMApps in the STANDALONE mode.

4.4.2. Adapt to the BROWSER Mode

To tailor a GJMApp to fit the BROWSER mode is same as to tailor a GJMApp to fit the

STANDALONE mode. The only difference is that the computing model adaptation mechanism

may choose different class implementations because of different running mode and situation.

Take org.gjma.ui.Canvas class implementations for example. The implementation for

BROWER mode differs from the implementation for the STANDALONE mode. In execution

time, the former only generates internal data structures, which are used to transform user

interface to specific content formats such as HTML, and the latter will call practical API to

draw directly. Consequently, the computing model adaptation mechanism may choose different

implementation for different running modes. In BROWER mode, all codes within a GJMApp

are executed in GJMAServer and the majority part of end-devices can access all GJMApps in

the BROWSER modes.

4.4.3. Adapt to the MASTER-SLAVE Mode

To tailor a GJMApp to fit the MASTER-SLAVE mode is a little complicated. Generally, a Java

application is consisted of classes and all the classes will be executed by the same host. The

- 37 -

STANDALONE and the BORWSER mode keep this characteristic but the MASTER-SLAVE

mode does not. In the MASTER-SLAVE mode, because some codes within a GJMApp cannot

be executed in some end-devices, GJMAServer has to help the end-devices handle these codes.

In this situation, the codes within the GJMApp have to be divided into two parts. One part,

called slave part, is handled by the end-device and the other part, named master part, is handled

by the GJMAServer. The question then arises about how to automatically divide a GJMApp

into two parts without bothering GJMApp developers and both parts can cooperate with each

other in run-time just like running in the same host. The divided strategy can be fine-grained (ex.

method) or coarse-grained (ex. class). To simply the problem, the computing model adaptation

mechanism chooses the latter and the minimum dividable unit in GJMA is class file. Hence, the

reduced problem is how to segment class files within a GJMApp into two parts: master and

slave.

Before discussion, some terminologies are defined first. They are defined one by one as

follows:

 remote class

A class is called a remote class if the class is placed in a remote host. The terminology

remote represents an opposite relationship. Hence, in the master part’s viewpoint, the

classes placed in the slave part are called remote class. Moreover, in the slave part’s

viewpoint, the classes placed in the master part are called remote class too.

 remote method

A method is called a remote method if the method belongs to a remote class.

 managed class

A class is called a managed class if the class can be replaced by GJMA. It implies an

action acted on its instance can be directly intercepted by GJMA.

 managed object

- 38 -

An object is called a managed object if the object is the instance of a managed class.

 complementary object

In Java, an object is an instance of a class and it is an individual unit of run-time data

storage. It implies that an object only contains data and the practical method codes are

contained in the class. To be precise, an object is initialized from a class and the class’s

superclass according to Java inheritance relationship, and the methods associated to the

object are contained in the class as well as the class’s superclass. Because the class and

the class’s superclass may be placed in different part in the MASTER-SLAVE mode, an

object created from the class is physically divided into two parts. In this case, the

run-time data storage of the object and the method codes associated to the object are

spread in the two parts’ virtual machine as Figure 4-4 shows. An object is called a

complementary object if the object logically represents the same object in the other part.

In other words, an object and its complementary object must have the same object id.

Moreover, a complementary object has two main missions. The first mission is to make

the data storage of a logical object can be spread in two parts. The second mission is to

make both virtual machines have the same object view. In other words, the both two

virtual machines are capable of locating and accessing the same object logically. To

achieve the second mission, a corresponding complementary will be created

automatically by GJMA in the other part when an managed object was created.

- 39 -

Figure 4-4: Logical and physical object views

In order to make the both parts cooperate with each other, three problems must be solved. The

first problem is how to intercept all actions which act on remote classes or remote methods. The

second problem is how to reflect these intercepted actions on the corresponding remote classes

or remote methods. The third problem is how to create the corresponding complementary object

when a managed object was created.

4.4.3.1. How to Intercept Invocation Actions

GJMA exploits proxy design pattern [31] as Figure 4-5 illustrates to solve the first problem.

Because many end-devices are JavaME-enabled and Java ME does not support dynamic class

loading [63], GJMA generates proxy classes before run-time. Every proxy class has the same

class A

class B’

class C’

class A’

class B

class C

X

Z

X

Y
Z

object view
in master part’s VM

proxy

proxy

proxy

complement to

complement to

complement to

class files in slave part class files in master part

X

Y

Z

object view

Class view
(deploym

ent tim
e)

Physical object view
(run‐tim

e)
Logical object view

(run‐tim
e)

new new new new new new

object view
in slave part’s VM

Y

- 40 -

class name, skeleton and inheritance relationship as the original class, but there are no fields in

the proxy class as Figure 4-10 shows. Moreover, the codes within a class and its corresponding

proxy class are different. The former is practical business logic and the latter is responsible for

delegating intercepted actions to the corresponding object managers in the other part. After

proxy classes are generated, each original class which is determined to be placed in the other

part will be replaced with the corresponding proxy class. Then, actions want to act on remotes

classes or remote methods will be intercepted by these proxy classes. When a method within a

proxy class is called, the codes within the method are run as the following steps:

1. Encode action type, target object id, method number, and all parameters into an action

string. Then, fill the action string into the GJMAMesg. The marshalling details are

discussed in section 5.3.1.

2. Deliver the GJMAMesg to the object manager in the remote host and wait until the result

returns.

3. Decode results into original return type and return it to the caller. The unmarshalling details

are discussed in section 5.3.2.

Figure 4-5: Proxy design pattern

On the other hand, because all codes within proxy classes are only executed when the methods

were called, the proxy class only can be used to intercept method invocation action. However,

local host remote host

class A proxy

Methods
(delegation codes)

2. delegate

1. invoke

class A

Methods
(business logic)

- 41 -

there are other actions having to be intercepted, such as field manipulation action, synchronized

action and so on. To intercept all possible actions, the original classes within a GJMApp have to

be modified first. The idea is to convert all actions to method invocation actions and a class

modification process is designed to do this. Nevertheless, it must be noted that not all class

modifications are useful, because the built-in classes, such as java.lang.String, have the highest

class loading sequence. For example, there are two java.lang.String class implementations. One

is built-in class placed in rt.jar and the other is modified one placed in somewhere. In the case,

both have the same class name but the former is always loaded when JVM requires

java.lang.String class. For the reason that the former has higher class loading sequence than the

latter has. To sum up, the modified classes for these built-in classes are never loaded and these

modifications are useless. To solve the problem, the class names of the modified classes for the

built-in classes have to be changed and all classes which references to the modified class have

to be changed also. Too many classes involve in this changes and it is hard to complete.

Hence, GJMA divides classes into two categories: managed class and un-managed class.

- 42 -

Figure 4-6: The relationship between managed and un-managed class

Moreover, GJMA only modifies classes belonging to managed class and the wrapper design

pattern [31] as Figure 4-7 shows is used to bridge between both. Instead of modifying

un-managed classes, just generate wrapper classes to wrap them. After modification, all codes

referencing to un-managed classes in the managed class are replaced to reference to the

corresponding wrapper classes and the codes in the un-managed class are never modified as

Figure 4-6 illustrates.

managed class un‐managed class

wrapper classes

unwrap

wrap

wrapper

wrapper

before m
odification

after m
odification

ref.

ref.

ref.

ref. ref.
ref.

ref.

ref.

ref. ref.

ref. ref.

ref.

ref.

class A wrapper

Methods
(reflection codes)

2. reflect

1. invoke

class A

Methods
(business logic)

local host

- 43 -

Figure 4-7: Wrapper design pattern

4.4.3.2. How to Reflect Intercepted Actions

Because Java ME does not support Java reflection [64], the GJMA framework generates an

object manager class, named ObjMngr, for a GJMApp to solve the second problem. All

ObjMngr classes are responsible for delegating actions to the corresponding classes or methods.

Because of lacking Java reflection mechanism, all methods which can be called by an ObjMngr

have to be determined in deployment time. Thus, a method table is hard-coded in every

ObjMngr class and the table is generated in deployment time. In run-time, when receiving a

command from proxy classes on the other side, the ObjMngr will traverse into the method table

and invoke the corresponding methods. The steps are as follows:

1. (Unmarshaling) Decode action string in the received GJMAMesg.

2. Traverse into the method table according the method number in the action string.

3. Invoke the corresponding methods within the practical object or class.

4. (Marshaling) Encode the results into an action string.

Figure 4-8: The sequence diagram for the proxy class.

- 44 -

4.4.3.3. How to Create Complementary Objects

In order to solve the third problem, instance creation actions have to be intercepted. To do this,

GJMA has to find a hook point in an object initialization path and then inject some

interception-related codes into it. It is desirable to describe some Java characteristics before

moving on to the main topic. Java guarantees that the constructor method of a class is called

whenever an instance of that class is created. It also guarantees that the constructor is called

whenever an instance of any subclass is created. In order to guarantee this second point, Java

must ensure that every constructor method calls its superclass constructor method. In other

words, there is a constructor chaining when creating an object. Because the top class in every

constructor chaining is always the class java.lang.Object, which is the root of the class

hierarchy as Figure 4-9 shows, and it has only one constructor Object(), the constructor is

always called when an object is created. If it is possible to inject interception-related codes into

the constructor Object(), then instance creation actions can be intercepted. However, there is no

way to replace the built-in class java.lang.Object as the previous discussion. Hence, GJMA

exploits another way to do this. GJMA modifies the original inheritance relationships as Figure

4-9(a) shows by inserting a class org.gjma.application.GJMAObject as Figure 4-9(b) shows.

The superclass of the class org.gjma.application.GJMAObject is the class java.lang.Object.

After the insertion, the constructor within the class org.gjma.application.GJMAObject will be

called when every managed object is created and then the interception-related codes can be put

in the constructor.

- 45 -

Figure 4-9: Insert GJMAObject in the inheritance chaining

When the interception-related codes are executed, it implies a managed object is been creating

and the codes respond to send a creation command encoded in a GJMAMesg to the other

part’s object manager. When the object manager receives the GJMAMesg, the object manager

will create the corresponding complementary object. After the complementary object is built,

some initialization codes belonging to the other constructors in the constructor chaining will

be executed to complete all necessary initializations. The following serves as an example.

Figure 4-10(a) is the general case and the original classes are placed on the same host. Figure

4-10(b) is the case after a deployment and the original classes are spread into two parts. In

order to make the discussion clear, some fields and methods are ignored. In Figure 4-10(a), if

ObjectX is created from ClassB, ObjectX will have three fields: field1, field2 and field3. This

obeys inheritance associations. If ClassA and ClassB are placed on the same host, there is no

trouble. In Figure 4-10(b), ClassA on HostB (GJMAClient) is replaced by its proxy class and

ClassB on HostC (GJMAServer) is also replaced by its proxy class. In Figure 4-10(b), if

ObjextY is created from ClassB, ObjectY will have only two fields: field2 and field3, because

of no fields in proxy classes. According to the previous definition, the missed field field1

should be in its complementary object in the other part. In the example, the complementary

object of ObjectY will be created from ClassB on HostC, and it will have one field: field1. This

means that a logical object may be divided into two parts physically. Traditionally, when an

- 46 -

object is created from a class, its constructor will be called and the constructor will call the

constructor of the superclass recursively. For example, in Figure 4-10(a), when an object is

created from ClassB, the constructor chaining is executed as following orders:

1. Constructor ClassB() is called and it calls the constructor ClassA().

2. Constructor ClassA() is called, and it calls the constructor Object().

3. Constructor Object() is called and it is the last constructor to be called. It will create

the object instance and then return.

4. Return to constructor ClassA(). The field1 is initialized here and the remaining

initialization codes in the constructor are executed. After completion, the constructor

returns.

5. Return to constructor ClassB(). The field2 as well as field3 are initialized here and the

remaining initialization codes in the constructor are executed. After completion, the

constructor returns and the object initialization is completed.

- 47 -

Figure 4-10: Separate two associated classes into two different hosts.

We should notice that the initialization order has to be kept after replacing some classes with

proxy classes. Figure 4-10 (b) is an example after a deployment. When an object is created

from ClassB on HostB (GJMAClient), the initialization order is as follows: (The paragraph

starting with Arabic numerals is used to describe the actions taken place on HostB. The

paragraph starting with Roman numerals is used to express the actions taken place on

HostC.)

1. Constructor ClassB() is called and it calls the constructor ClassA().

2. Constructor ClassA() is called, and it calls the constructor GJMAObject().

3. Constructor GJMAObject()is called and it calls the constructor Object().

4. Constructor Object() is called and it is the last constructor to be called. It will create

+ClassA()
+method1()
+method2()

-field1
ClassA

+ClassB()
+method3()

-field2
-field3

ClassB

+ClassA()
+ClassA(GMAClass)()
+init_ClassA()
+method1()
+method2()

ClassA

+ClassB()
+ClassB(GMAClass)()
+init_ClassB()
+method3()

-field2
-field3

ClassB

+ClassA()
+ClassA(GMAClass)()
+init_ClassA()
+method1()
+method2()

-field1
ClassA

+ClassB()
+ClassB(GMAClass)()
+init_ClassB()
+method3()

ClassB

HostC
(GMAServer)

HostB
(GMAClient)

HostA

(a) (b)

after deployment

+Object()

Object

+GJMAObject()
+GJMAObject(GJMAClass)()

-object_id
GJMAObject

+GJMAObject()
+GJMAObject(GJMAClass)()

-object_id
GJMAObject

+Object()

Object

+Object()

Object

- 48 -

the object instance and then return.

5. Return to constructor GJMAObject (). The codes will send a creation command to the

object manager on HostC (GJMAServer).

I. The object manager on HostC receives the command. It calls constructor

ClassB(GJMApp) to create the complementary object.

II. Constructor ClassB(GJMApp) is called and it calls the constructor

ClassA(GJMApp).

III. Constructor ClassA(GJMApp) is called and it calls the constructor

GJMAObject(GJMApp).

IV. Constructor GJMAObject(GJMApp) is called and it calls the constructor

Object().

V. Constructor Object() is called and it is the last constructor to be called. It

will create the object instance and then return.

VI. Return to constructor GJMAObject(GJMApp). The codes will set object id

and then return.

VII. Return to constructor ClassA(GJMApp). Do nothing and return directly.

VIII. Return to constructor ClassB(GJMApp). Do nothing and return directly. The

empty complementary object is completely created.

IX. Return to the object manager. It will store the relationship between the object id

and the complementary object reference and then send result to HostB.

6. Return to constructor GJMAObject(). It will store the relationship between the object

id and the object reference and then return.

7. Return to constructor ClassA(). Because ClassA is a proxy class, it will invoke a remote

method init_ClassA(). The field1 will be initialized in its complementary object on HostC.

8. Return to constructor ClassB(). ClassB is not a proxy class so the field2 and field3 will be

initialized here by invoking the method init_classB(). After completion, the constructor

- 49 -

returns and the object initialization is completed.

When an object is created from ClassB on HostC (GJMAServer), the initialization order is as

follows: (The paragraph starting with Arabic numerals is used to describe the actions taken

place on HostC. The paragraph starting with Roman numerals is used to express the actions

taken place on HostB.)

1. Constructor ClassB() is called and it calls the constructor ClassA().

2. Constructor ClassA() is called, and it calls the constructor GJMAObject().

3. Constructor GJMAObject()is called and it calls the constructor Object().

4. Constructor Object() is called and it is the last constructor to be called. It will create

the object instance and then return.

5. Return to constructor GJMAObject (). The codes will send a creation command to the

object manager on HostC (GJMAServer).

I. The object manager on HostB receives the command. It calls constructor

ClassB(GJMApp) to create the complementary object.

II. Constructor ClassB(GJMApp) is called and it calls the constructor

ClassA(GJMApp).

III. Constructor ClassA(GJMApp) is called and it calls the constructor

GJMAObject(GJMApp).

IV. Constructor GJMAObject(GJMApp) is called and it calls the constructor

Object().

V. Constructor Object() is called and it is the last constructor to be called. It

will create the object instance and then return.

VI. Return to constructor GJMAObject(GJMApp). The codes will set object id

and then return.

VII. Return to constructor ClassA(GJMApp). Do nothing and return directly.

- 50 -

VIII. Return to constructor ClassB(GJMApp). Do nothing and return directly. The

empty complementary object is completely created.

IX. Return to the object manager. It will store the relationship between the object id

and the complementary object reference and then send result to HostB.

6. Return to constructor GJMAObject(). It will store the relationship between the object

id and the object reference and then return.

7. Return to constructor ClassA(). ClassA is not a proxy class so the field1 will be

initialized here by invoking the method init_classA(). After completion, it returns.

8. Return to constructor ClassB(). Because ClassB is a proxy class, it will invoke a remote

method init_ClassB(). The field2 and field3 will be initialized in its complementary object on

HostB. After completion, the constructor returns and the object initialization is completed.

It will be clear from these examples that wherever the object is created on, the initializations

orders are similar to the original initialization orders but the original object is divided into two

objects (an object and its complementary object) physically. So far, we have seen that creating

an object from ClassB on HostB is equivalent to creating an object from ClassB on HostC.

4.4.4. Deployment Process

According to the above discussion, there are three main functionalities in computing model

adaptation mechanism: class replacement, class modification and class generation. Thus, a

deployment process is designed to apply the computing model adaptation mechanism. Different

running modes require different deployment processes, as Figure 4-11 shows. Three important

components participate in the deployment process. They are preprocessor, the analyzer and the

deployer.

The preprocessor modifies the bytecodes within original classes and gerneate some wrapper

- 51 -

classes for the un-managed classes. Every modified class and wrapper class is equivalent to the

original class, but bytecodes have small differences. Moreover, the analyzer generates proxy

classes and ObjMngr classes by analyzing the class file. Both preprocessor and analyzer exploit

a class file manuiplation tool, BCEL [62], to handle all class file modifications, including

bytecode modificaitons. The deployer packages necessary classes together. It will lookup

end-device database when deployment. The end-device database is consisted of two XML

documents : device profile and class profile. The former describes capabilities about

end-devices and the latter describes the requirements of classes. The deployer use information

in end-device database to choose suitable classes which can be original or generated classes.

Figure 4-11. The GJMApp development flow.

The following discussion contains some notations which are defined as follows. If a GJMApp

named APP1 has only three classes, X, Y and GJMApp, it is represented by the notation

APP1={X, Y, GJMApp}. Moreover, notation X’ is used to represent the corresponding proxy

class of class X. Because some classes provided by GJMA have more than one implementation,

the implementation name is denoted by a superscript lowercase letter a, b, c and so on, to

distinguish them. For example, Xa and Xb represent two different implementations for class X.

In other words, Xa and Xb have the same interface and functionalities, but have different

- 52 -

implementations. Because Xa and Xb have the same interface, they will have the same

corresponding proxy class X’.

A GJMApp can be deployed in three modes. Different modes or runtime environments may

require different GJMA class implementations, and deployers are responsible for choosing

correct and suitable classes by searching the end-device database. APP2={X, Y, Canvas,

GJMApp} is used as an example in the following. Canvasa is an implementation for BROWER

mode. Canvasb is another implementation for the STANDALONE and the MASTER-SLAVE

mode. GJMAppa is an implementation for the BROWSER mode. GJMAppb is an

implementation for the STANDALONE mode. GJMAppc is an implementation for the slave

part and GJMAppd is an implementation for the master part in the MASTER-SLAVE mode.

If an application is deployed in the BROWSER mode, it does not need to be modified. Just put

the original class file within the application to BROWSER repository, because the default

implementation of GJMA classes is just for the BROWSER mode. GJMA classes for the

BROWSER mode will intercept all user interface actions and translate them into the

corresponding GJMAMesgs. If APP2 is deployed in the BROWSER mode, the result is

APP2={X, Y, Canvasa, GJMAppa }.

If an application is deployed in the STANDALONE mode, it also does not need to be modified.

The deployer will replace some GJMA classes with the correct class implementations. If APP2

is deployed in the STANDALONE mode, the result is APP2={X, Y, Canvasb, GJMAppb,

Loader}. Loader is a frontend program to load the GJMApp.

If an application is deployed in the MASTER-SLAVE mode, the application must be modified

first, and then generate corresponding proxy classes and ObjMngr classes. In this mode, the

- 53 -

application is divided into two parts, and the deployer packages them. In the slave part, the

deployer will insert the ObjMngr class and replace some GJMA classes with the correct class

implementations. The deployer will also replace some classes which cannot be executed by

end-devices with the corresponding proxy class. In the master part, the deployer will also add

the ObjMngr. If the slave part contains class X, the deployer will choose X’ to package the

master part. If the slave part contains class Y’, the deployer will choose Y to package the master

part. The master part and slave part are complementary. Furthermore, the class which can be

executed on end-devices depends on the end-device database. If APP2 is deployed in the

MASTER-SLAVE mode and Y cannot be processed by the end-device, the results are

SLAVE={X, Y’, Canvasb, GJMAppc, ObjMngr, Loader} and MASTER={X’, Y, Canvas’,

GJMAppd, ObjMngr}.

4.5. User Interface Adaptation Mechanism

In the STANDALONE and the MASTER-SLAVE modes, all classes related to user interface

are executed on end-devices. In these two modes, user interface adaptation is achieved by

replacing user interface related classes within the application with suitable ones according to

the class profile in the end-device database. The remaining content in this section will focus on

user interface adaptation for the BROWSER mode, in which all classes related to user interface

are executed on GJMAServer.

A GJMApp developer does not need to know what kind of GJMAClient the application serves.

When a GJMApp runs in the BROWSER mode, it handles and generates GJMAMesgs

regardless of the client type. To serve built-in browsers, the GJMA framework needs a

mechanism to translate GJMAMesgs to other content formats, such as WML or HTML, and

this mechanism is implemented in adaptive transport layer.

- 54 -

Section 4.1.1 introduces the CommMngr. One of the CommMngr’s missions is to create a user

process for a client. When a client sends a login request to the GJMAServer, CommMngr will

know what kind of end-device it serves. If the client is a built-in browser, a translator

component within the user process is combined with many convert functions and a layout

manager.

A layout manager is used to intercept GJMAMesgs transferred to a GJMAClient. When

receiving a GJMAMesgs, the layout manager processes the GJMAMesgs and keeps widgets in

tree structures, as Figure 4-12 shows. The layout manager knows how many and what kinds of

widgets are created by the GJMApp based on the trees. In addition, the layout manager can

arrange widget positions. Another function of the layout manager is to traverse the tree and call

the corresponding convert functions to translate widgets to specific content formats. When

serving a built-in browser, GJMAMesg are not sent to directly to the client, but handled by the

layout manager.

Every convert function has a different capability to translate a UI widget in the tree structure to

a corresponding widget of other content formats. Table 4-1 is a widget mapping among tree

element, WML and HTML.

Figure 4-12: A tree structure about user interface

Name:
Pass:

OK

window

textbox textbox button

- 55 -

Table 4-1: The mapping table among tree element, WML and HTML

Tree element WML HTML

Window <wml>+<card> <body>

canvas <wml> + <card> +

4 direction button+

<body> +

4 direction button +

listbox <select> <select>

button <a href> <a href>

textbox <input> <input>

4.6. Network Adaptation Mechanism

Because of the diversity of mobile devices, network capabilities are not always the same. Some

devices support TCP but some devices may support only HTTP. In order to hide these details

from mobile application developers, the GJMAServer exploits a loosely coupled design, and

the network adaptation is achieved by asynchronous message routing layer as well as adaptive

transport layer. In adaptive transport layer, it defines a unified transport interface and all

implementation complied with the interface can be plugged into GJMA framework easily.

Currently, The GJMA framework supports TCP, UDP, and HTTP.

- 56 -

Chapter 5 GJMA Implementation Issues

5.1. GJMAClassLoader

In GJMAServer, all GJMApps are loaded by the same Java Virtual Machine (JVM). It can

reduce resource consumption but may cause some problems. These GJMApps can be written

by different developers. Hence, these GJMApps may contain some different classes with the

same class name. Also, the same GJMApp may be loaded more than twice to serve different

GJMAClients concurrently. Without independent running space, a GJMApp may inference

with other GJMApps, and may cause incorrect results. An example is given to demonstrate the

problems.

Listing 5-1: InferaceA source code

Listing 5-2: ClassA source code

01 URLClassLoader loader = URLClassLoader.newInstance(urls);

02
03 InterfaceA a1=(InterfaceA)loader.loadClass(“ClassA”).newInstance();

04 InterfaceA a2=(InterfaceA)loader.loadClass(“ClassA”).newInstance();

05
06 System.out.println("a1="+a1.get_next_id()); //a1=0

07 System.out.println("a2="+a2.get_next_id()); //a2=1

01 public class ClassA implements InterfaceA{
02

03 private static int id=0; //start with 0

04
05 public synchronized int get_next_id(){ //get next id

06 return(id++);

07 }
08 }

01 public interface InterfaceA {

02 public int get_next_id();

03 }

- 57 -

Listing 5-3: Use the same class loader to load ClassA twice

Listing 5-4: Use two different class loaders to load ClassA twice

If ClassA listed in Listing 5-2 is loaded twice by the same class loader as Listing 5-3 shows, the

result is unexpected. In Listing 5-3, ClassA is loaded just one time actually and its running

space is the same. Thus, calling the method associated to a1 may inference with the variable

value in a2. In other words, if two more GJMApps use ClassA and they use the same class

loader, these GJMApps will inference with each other. If ClassA is loaded twice by two

different class loaders as Listing 5-4 shows (assume that ClassA is actually loaded by the two

class loaders), a1 and a2 will have independent running space and then the code

a1.get_next_id() and a2.get_next_id() both return 0. These results lead to the conclusion that

GJMA has to use different class loader to create different independent running space.

Therefore, GJMA can provide independent running space for every GJMApps to prevent them

from breaking in each other. In GJMA, AppMngr uses different class loader to load every

GJMApps and every GJMApp will own an independent space. As a result, the classes with the

same name loaded by different class loader will have different space and JVM treats them as

different classes.

01 URLClassLoader loader1 = URLClassLoader.newInstance(urls);
02 URLClassLoader loader2 = URLClassLoader.newInstance(urls);

03

04 InterfaceA a1=(InterfaceA)loader1.loadClass(“ClassA”).newInstance();
05 InterfaceA a2=(InterfaceA)loader2.loadClass(“ClassA”).newInstance();

06

07 System.out.println("a1="+a1.get_next_id()); //a1=0
08 System.out.println("a2="+a2.get_next_id()); //a2=0

- 58 -

Figure 5-1: Class loader structures

It is helpful to describe how class loaders work in JVM before moving on to the main task.

After JVM initialization, there are three default class loaders: Bootstrap loader, ExtClassLoader

and AppClassLoader. In JVM, each class loader owns a parent class loader except bootstrap

loader as Figure 5-1 shows. When a class loader tries to load a class, the load mission will be

taken by its parent class first. If its parent class was failed to load, the load mission is then taken

by itself. Bootstrap loader is implemented by C/C++ and is used to load classes placed in the

path described in parameter sun.boot.class.path, such as rt.jar. ExtClassLoader is used to load

classes placed in the path described in parameter java.ext.dirs. AppClassLoader is used to load

classes placed in the path described in parameter classpath. Thus, in Figure 5-1, when a

GJMAClassLoader tries to load a class, the search sequence is expressed as follows.

1. Bootstrap loader will search the path described in parameter sun.boot.class.path. If failed,

next step continues. If successful, the class is loaded here.

2. ExtClassLoader will search the path described in parameter java.ext.dirs. If failed, next step

continues. If successful, the class is loaded here.

3. AppClassLoader will search the path described in parameter classpath. If failed next step

continues. If successful, the class is loaded here.

BootStrapClassLoader
search: sun.boot.class.path

ExtClassLoader
search: java.ext.dirs

AppClassLoader
search: classpath

GJMAClassLoader1
search: /app/aaa

GJMAClassLoader2
search: /app/bbb

GJMAClassLoaderN
search: /app/xxx

parent

parent

parent

parent
parent

- 59 -

4. GJMAClassLoader will search the path where the GJMApp is placed in. If failed,

ClassNotFoundException occurs. If successful, the class is loaded here.

If a class can be found in the first three steps, the class will be in the same running space

because the class is loaded by the same class loader. Thus, all classes within GJMApps have

been placed in the specific path and the path should not be described in parameters

sun.boot.class.path, java.ext.dirs and classpath. It will guarantee that all classes within

GJMApps will be loaded by GJMAClassLoaders. Moreover, in GJMA, every GJMApp

instance is loaded by different GJMAClassLoader and each of them will own an independent

running space.

According to the discussion in section 4.3, the class GJMApp is responsible for initialization.

Thus, every GJMApps has to contain a GJMApp class and the class has to be loaded by

GJMAClassLoader. It implies the three default class loaders cannot find the class GJMApp.

Hence, AppMngr loaded by AppClassLoader cannot access these GJMApp instances directly.

To solve the problem, class GJMApp has to implement an interface named GJMAppInterface

which can be located and loaded by the AppClassLoader and then AppMngr can control these

GJMApp instances by the interface as Listing 5-5 expresses.

Listing 5-5: Use GJMAppInterface to control GJMApps

5.2. GJMAMesg Format

There are many GJMAMesg formats in GJMA and the base format of GJMAMesg is illustrated

01 URLClassLoader cl= URLClassLoader.newInstance(urls);

02

03 GJMAppInterface a=(GJMAppInterface)cl.loadClass(“APP1”).newInstance();
04

05 a.start(); //start the GJMApp

06 a.stop(); //stop the GJMApp

- 60 -

in Figure 5-2. In the base format, there are only two fields with fixed size and an optional

type-specific payload. Whatever the running modes is, the meanings of first two fields for

every GJMAMesg is the same. The length field contains the information about the total length

of the GJMAMesg and its data type is a short. By reading the length field, the boundary of the

GJMAMesg can be recognized. The type field contains the information about which command

the GJMAMesg represents, such as create a window (in the BROWSER mode), invoke a

method (in the MASTER-SLAVE mode), and so on. Moreover, the type field is also a short

and the most two significant bits represent which mode the command belongs to. The

remaining of the GJMAMesg is the type-specific payload. Its size and content depends on the

type field. For example, the invocationId field only appears in the type-specific payload when

the type field value represents a method invocation command. It must be noted that different

running modes use different format to communicate. The variable GJMAMesg format makes

all information useful in a GJMAMesg and it reduces the size requirement for GJMAMesgs.

Figure 5-2: Base GJMAMesg format

5.2.1. GJMAMesg for System Use

There are several commands for system use, such as login, logout, start a GJMApp in the

BROWSER mode, start a GJMApp in the MASTER-SLAVE mode, stop a GJMApp, and so

on. Basically, different commands will need different values in the type-specific payload. For

example, the value should be the user id and password if the command is login, the value

should be the GJMApp’s name if the command is start, and the type-specific should be empty

length (short)

type (short)

type‐specific
payload(?)

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0zoom in

bits
bits for running modes
00: system use
01: BROWSER mode
10: MASTER‐SLAVE mode

running modes command

- 61 -

if the command is logout. In other words, GJMA will treat the type-specific payload value as

different meanings according to the type field value.

5.2.2. GJMAMesg for BROWSER Mode

The number of fixed fields in a GJMAMesg for the BROWSER mode is four. The first two

fields are the same as the fixed fields in the basic format. The appId (application id) field

contains the id of the destination GJMApp where the GJMAMesg will go. The widgetId field

contains the id of the target widget which the command will act on. Moreover, there are also

several commands for the BROWSER mode; such as create a form, create a text field, set the

window title and so on. In addition, some commands needs extra parameter and the necessary

parameter will be filled in the parameter field. For instance, the value in the parameter field

should be the window title if the command is setting the window title.

Figure 5-3: GJMAMesg format for BORWSER mode

5.2.3. GJMAMesg for MASTER-SLAVE Mode

The number of fixed fields in a GJMAMesg for the MASTER-SLAVE mode is five. The first

two fields are the same as the fixed fields in the basic format. The appId (application id) field

contains the id of the destination GJMApp where the GJMAMesg will go. The invocationdId

field contains the id of the invocation. It is used to indicate which invocation the result is for.

The threadId field contains the id of the caller thread. It indicates which thread is used to

length (short)

type (short)

appId (short)

parameter (string)

widgetId (short)

partial possible type values for BROWSER mode

examples (every line is an example)
Window Title
TextField Value

CMD01_CHANGE_DISPLAY:
CMD01_KEY_UP:
CMD01_KEY_DOWN:
CMD01_FORM_CREATE:
CMD01_FORM_ADD_TEXT:
CMD01_FORM_ADD_IMAGE:

0100000000000000b
0100000001000000b
0100000001000001b
0100000010000000b
0100000010000001b
0100000010000010b

- 62 -

handle the action. Moreover, there are only three commands for the MASTER-SLAVE mode.

They are result, invoke and create commands. The action field contains the necessary

parameter and it is a string. The details about the action field will be described in section 4.3.

Figure 5-4: GJMAMesg format for the MASTER-SLAVE mode

5.3. Marshalling and Unmarshalling

When a remote method is called or a complementary object is created, the related parameters

have to be encoded into an action string. After the remote method was completed or the

complementary was created, the result is also encoded into an action string. These encoding

actions are called marshalling. On the other hand, when receiving an encoded action string,

ObjMngr has to decode it first and the decoding action is called unmarshalling. In the

MASTER-SLAVE mode, marshalling and unmarshalling are taken place often, so a utility

class named ActionBuilder is implemented to help proxy classes do this. Currently, the

encoded format is plain string. In other words, all parameters and results are encoded into

strings and then these strings will be filled in the action field in GJMAMesgs.

length (short)

type (short)

appId (short)

action (string)

invocactionId (short)

CMD10_RESULT:
CMD10_INVOKE:
CMD10_CREATE:

1000000000000000b
1000000000000001b
1000000000000010b

possible type values for MASTER‐SLAVE mode

examples (every line is an example)
Test1:S1002;
M1000:2001;OS1002;I50;
S546; return the result

create an instance
call a remote method

threadId(short)

- 63 -

Listing 5-6: The partial source code for ActionBuilder

Listing 5-6 is the partial code of the class ActionBuilder. In fact, there are many methods for

different parameters types. However, all methods cannot be discussed here for lack of space.

Basically, there are one pair methods for every data type in the class ActionBuilder. One is

used to encode and the other is used to decode.

5.3.1. Marshalling

GJMA can call methods belonging to the class ActionBuilder to build action strings on

01 public class ActionBuilder{

02
03 public ActionBuilder(String action){//parse the encoded string}

04

05 public String toString(){//return the encoded string}
06

07 public GJMAClass getClass(){

08 //return class information encoded in the action string
09 //the class information contains class name and object id

10 }

11
12 public GJMAMethod getMethod(){

13 //return method information encoded in the action string

14 //the method information contains object id and method no.
15 }

16

17 public void init_create(String class_name, String object_id){
18 //start to build an action for creation

19 }

20
21 public void init_invoke(String object_id, String method_id){

22 //start to build an action for invocation

23 }
24

25 public void init_result(){

26 //start to build an action for result
27 }

28

29 public void add_int(int a){//add a new parameter with type int}
30

31 public int get_int(int index){

32 //return the parameter encoded in the action string in the order index
33 }

34 }

- 64 -

demand. An action string is consisted of at least one section and these sections are separated

by semi-colon. The first section is the most important and all action strings own this section

because the action type is encoded in it. There are three possible action types: creation,

invocation and result. The creation type is used when creating a complementary object. The

invocation type is used when calling a remote method. The result type is used when returning

a result. Moreover, these three types need different extra information when used.

When building an action string to create a complementary object, GJMA has to know the

string represents a creation. Besides, GJMA has to know what class the complementary object

belongs to and GJMA has to set the same object id to the complementary object. Thus, the

first section in the creation action string should include the action type, class name and object

id. The information is separated by colon. The method init_create is implemented to do this.

The creation action string only has one section.

When building an action string to call a remote method, GJMA has to know the string

represents an invocation. Besides, GJMA has to know the invocation is acted on what object

and method. Thus, the first section in the invocation action string should include the action

type, object id and method id. The information is separated by colon. The method init_invoke

is implemented to do this. The invocation action string may have other sections if the called

remote method needs other parameters. Each section represents a parameter and the sections

are appended one by one after the first section. These sections can be appended by calling the

methods listed in Table 5-2. Listing 5-7 shows a marshalling example.

When building an action string to return a result, GJMA has to know the string represents a

return. Thus, the first section in the return action only includes the action type, so it is a fixed

string. The method init_result is implemented to do this. The result action string should have

- 65 -

two sections. The second section is used to represent the result and it can be appended by

calling the methods listed in Table 5-2.

Table 5-1: Methods to build the first section

string type method the first section format

creation init_create create:{class name}:{object id};

invocation init_invoke invoke:{object id}:{method id};

result init_result result;

Table 5-2: Methods to build the sections other than the first section

data type method appended string format

byte add_byte B{value};

boolean add_boolean Z{value};

char add_char C{value};

short add_short S{value};

int add_int I{value};

float add_float F{value};

long add_long J{value};

double add_double D{value};

string add_string X{value};

object add_object O{value};

void add_void V;

- 66 -

Listing 5-7: A marshalling example

5.3.2. Unmarshalling

When receiving a GJMAMesg with action filed, GJMA has to parse the action field first. The

first step is to use semi-colon as delimiter to break the action string into sections. Then these

sections will be processed individually and the processing results are stored in internal

structures. After parsing, GJMA can get the information about the action string by calling the

corresponding method listed in Table 5-3 according to the parameter types or return type.

Moreover, Listing 5-8 shows an unmarshalling example.

Table 5-3: Methods to get parameter

data type method

byte get_byte

boolean get_boolean

char get_char

short get_short

int get_int

float get_float

long get_long

double get_double

01 int sum(int a, int b){

02 ActionBuilder invoke=new ActionBuilder(); //create an instance
03 invoke.init_invoke(object_id, 1001); //initialize invoke action

04 invoke.add_int(a); //add the first parameter into the action

05 invoke_add_int(b); //add the second parameter into the action
06 String action=invoke.toString(); //get the encoded action

07

08 //transfer the above action to the remote host and wait the result
09 //unmarshalling and return result

10 }

- 67 -

string get_string

object get_object

Listing 5-8: An unmarshalling example

5.4. GJMA Preprocessor

GJMA preprocessor has five main missions. The first mission is to generate necessary wrapper

classes. The second mission is to convert all possible actions to method invocation actions. The

third mission is to make classes capable of creating complementary object by modifying the

original constructors. The fourth mission is to wrap some special type such as array. The fifth

mission is to insert GJMAObject into original constructor chaining. All works are made before

GJMA analyzer in two phases as Figure 5-5 shows and make GJMA analyzer easier to handle

later. In the first phase, the input is original classes and the output is the necessary wrapper

classes. In the second phase, the input is original classes as well as the wrapper classes

generated in the first phase, and the output is the modified classes. In this section, how to

complete the five missions are discussed respectively.

Figure 5-5: Two phases in GJMA preprocessor

01 ActionBuilder ab=new ActionBuilder(m.action); //parse action field

02 ab.get_int(0); //get the first parameters with type int
03 ab.get_int(1); //get the second parameters with type int

- 68 -

5.4.1. Generate Wrapper Class

Because replacement on some classes such as built-in classes is impossible, GJMA needs to

generate some wrapper classes to wrap these classes. Moreover, this work is done in the first

phase and the workflow is as follows.

1. Find all used classes which cannot be modified.

2. For each class found in step 1, generate its corresponding wrapper class.

The corresponding wrapper class of a class is similar to the original class. Both have the same

superclass and all methods in the original class can be found in the corresponding proxy class,

but the parameter types and the return type may need to be changed because some classes

cannot directly be used in the MASTER-SLAVE mode. In addition, there are two more

differences between them. The codes in these methods are different and the field declarations

are different also. Because GJMA cannot modify the class loading order, the wrapper class

name should be different from the original class name. If both have the same class name

otherwise, the wrapper class may never be loaded and all efforts to generate wrapper classes are

meaningless. Hence, the different class name guarantees that the proper wrapper class will be

loaded when necessary. To maintain the relationships between wrapper class and original class

easier, a wrapper class naming convention is designed. The naming rule is simple. Just replace

character ‘.’ with character ‘_’ in the original class name and then add a fixed prefix

“org.gjma.wrapper.”. Table 5-4 is an example.

- 69 -

Table 5-4: Examples for wrapper class naming

Original class name The corresponding wrapper class name

java.lang.String org.gjma.wrapper.java_lang_String

java.util.Vector org.gjma.wrapper.java_util_Vector

An example class test.Foo1 is given to illustrate how to generate its corresponding wrapper

class org.gjma.wrapper.test_Foo1. This work is directly made on Java bytecode level in

practical but its equivalent Java source code is used to make the explanation clear. The wrapper

generation steps are described as follows.

1. The wrapper class name is set to org.gjma.wrapper.test_Foo1. For source code view, it

means the package name and class name have to be changed. In the example, lines 1-3 in

Listing 5-9 are changed to lines 1-3 in Listing 5-10.

2. Add one field declaration used to store the wrapped object in the wrapper class. The field

type is the original class. In the example, line 6 in Listing 5-10 does this.

3. All field declarations in original class do not appear in the wrapper class. Nevertheless, the

corresponding SETTERs/GETTERs are generated for these fields. In the example, line 6 in

Listing 5-9 does not appear in Listing 5-10 and lines 8-10 in Listing 5-10 are its

SETTER/GETTER.

4. Add one static field declaration used to store relationships between all wrapper object and

wrapped object. In the example, line 12 in Listing 5-10 does this.

5. Add a new static method named wrap in the wrapper class. The method functionality is to

wrap an instance of the original class to the instance of the wrapper class. In the example,

lines 14-21 in Listing 5-10 do this.

6. Add a new static method named unwrap in the wrapper class. The method functionality is to

unwrap an instance of the wrapper class to the instance of the original class. The

transformation direction is contrast to the wrap method’s direction. In the example, lines

- 70 -

23-26 in Listing 5-10 do this.

7. Add a new constructor which is only used by the wrap method. This constructor just assigns

the field added in the step 3 to an original object. In the example, lines 28-30 in Listing 5-10

do this.

8. Add all constructors in the original class to the wrapper class. For each added constructor,

the signature is the same as the original constructor but the codes are changed to delegation

codes. In the example, lines 32-34 in Listing 5-10 do this.

9. Add all methods in the original class to the wrapper class. For each added methods, the

signature is the same as the original method but the codes are changed to delegation codes.

In the example, lines 36-38 in Listing 5-10 do this.

Listing 5-9: The source code for test.Foo1

01 package test;

02

03 public class Foo1 //original class name: test.Foo1
04 extends Foo2 { //Foo1’s superclass name: test.Foo2

05

06 int a; //field declaration
07

08 public Foo1(java.lang.String a){ //the constructor

09 //business logic
10 }

11

12 public java.lang.String toString(){
13 //business logic

14 }

15 }

- 71 -

Listing 5-10: The source code for test.Foo1’s wrapper

Listing 5-10 is the fully source code of the wrapper class. It is worth to discuss what the method

wrap and unwrap do. Because GJMA needs to keep original business logic after using the

wrapper class, it is designed to return the same wrapper instance when wrapping the same

01 package org.gjma.wrapper;

02

03 class test_Foo1 //the wrapper class name

04 extends Foo2 {

05

06 test.Foo1 v; //the original class test.Foo1

07

08 public int GET_a(){return v.a;} //GETTER for field a within v

09

10 public void SET_a(int value){v.a=value};//SETTER for field a within v

11

12 private static HashMap ref=new HashMap(); //object references

13

14 public static synchronized test_Foo1 wrap(test.Foo1 s){

15 test_Foo1 t=(test_Foo1)ref.get(s); //check existence

16 if(t==null){

17 t=new test_Foo1(s);

18 ref.put(s, t);

19 }

20 return(t);

21 }

22

23 public static test.Foo1 unwrap(test_Foo1 o){

24 if(o==null) return null;

25 return(o.v);

26 }

27

28 private test_Foo1(test.Foo1 s){

29 v=s;

30 }

31

32 public test_Foo1(java.lang.String a){

33 v=new test.Foo1(a);

34 }

35

36 public java.lang.String toString(){

37 return(v.toString());

38 }

39 }

- 72 -

object. To achieve this, a field with type HashMap (line 12) is used to store relationships

between all wrapper object and wrapped object. When used to wrap an object, the wrap method

will check whether the object is ever wrapped before (line 15). If not (line 16), the wrap method

will create a new wrapper instance (line 17) and then store the relationship in the field (line 18).

Finally, whatever found or not found, the wrap method always return the wrapper instance (line

20). According to the design and implementation, the following two statements’ results should

be all true.

(1) obj==obj; (obj is an instance of test.Foo1 class)

(2) test_Foo1.wrap(obj) ==test_Foo1.wrap(obj);

After all necessary wrapper classes are generated, GJMA has to replace the instructions using

the wrapped-necessary classes. For example, if an instruction uses the java.lang.String, the

instruction has to be changed to use org.gjma.wrapper.java_lang_String, because

java.lang.String cannot be replaced and needs to be wrapped. The replacements may occur in

three portions in a class file. For every class within target GJMApp, do following steps:

1. Change the superclass to the corresponding wrapper class if necessary.

2. Change the field types to the corresponding wrapper class if necessary.

3. For each constructor and method, change the signature and instructions to use the

corresponding wrapper class if necessary.

Listing 5-11 is an example after replacement. The shaded portion represents the

modified-required parts.

- 73 -

Listing 5-11: The source code for test.Foo1’s wrapper after replacements

01 package org.gjma.wrapper;

02

03 class test_Foo1 //the wrapper class name

04 extends test_Foo2 {

05

06 test.Foo1 v; //the original class test.Foo1

07

08 public int GET_a(){return v.a;} //GETTER for field a within v

09

10 public void SET_a(int value){v.a=value};//SETTER for field a within v

11

12 private static HashMap ref=new HashMap(); //object references

13

14 public static synchronized test_Foo1 wrap(test.Foo1 s){

15 test_Foo1 t=(test_Foo1)ref.get(s); //check existence

16 if(t==null){

17 t=new test_Foo1(s);

18 ref.put(s, t);

19 }

20 return(t);

21 }

22

23 public static test.Foo1 unwrap(test_Foo1 o){

24 if(o==null) return null;

25 return(o.v);

26 }

27

28 private test_Foo1(test.Foo1 s){

29 v=s;

30 }

31

32 public test_Foo1(java_lang_String a){

33 java.lang.String p0=java_lang_String.unwrap(a);

34 v=new test.Foo1(p0);

35 }

36

37 public java_lang_String toString(){

38 java.lang.String r0=v.toString();

39 java_lang_String r1=java_lang_String.wrap(r0);

40 return(r1);

41 }

42 }

- 74 -

5.4.2. Convert to Method Invocation Actions

All actions have to be converted to method invocation actions. This subsection will discuss

how to do this and this processing takes place in phase 2.

5.4.2.1. Filed Manipulation Action

Everything occurring after an action took place is injected into respective constructor or method

in the previous two actions. However, the solution cannot be applied to intercept a field

manipulation action because there is no hook point about this action within the proxy class.

Using the proxy class without modifying the original class makes it hard to intercept field

manipulation actions. In GJMA systems, all field manipulation actions will first change to

SETTER/GETTER, like JavaBean, and all field manipulation actions will be changed to

method invocation actions. This change is made by analyzing original Java bytecode, and

replacing putfield and getfield instructions with corresponding invokevirtual/invokestatic

instructions as Figure 5-6 indicates. This change process is included in the preprocess step in

Figure 4-11. For every class within target GJMApp, do following steps:

1. Find all non-private fields in the class file.

2. Generate the corresponding SETTER and GETTER method for all fields found in the first

step. In other words, every non-private field will cause two method generations.

3. Find all putfield/putstatic instructions in the class file, and replace them with the

corresponding invokevirtual/invokestatic instructions which will invoke the corresponding

SETTER method.

4. Find all getfield/getstatic instructions in the class file, and replace them with the

corresponding invokevirtaul/invokestatic instructions which will invoke the corresponding

GETTER method.

- 75 -

Figure 5-6: Replace field manipulation action with SETTER/GETTER

5.4.2.2. Synchronized Action

In the Java language, a synchronized action acts on an object. Nevertheless, because of the

existence of remote objects, the synchronized semantics may become incorrect. In the

developer’s point of view, a synchronized action occurs on one object only. In GJMA, in fact,

the object may have the corresponding remote object, and the synchronized action may occur

on both objects at the same time. The problem is that both objects represent the same object

logically yet they are different objects physically. Like field manipulation action, there is no

hook point related to this action within the proxy class. Thus, in GJMA, all synchronized

actions will change to method invocation actions also. This change is made by analyzing the

original Java bytecode and replacing the monitorenter and monitorleave instructions with the

corresponding invokevirtual instructions. This change process is also included in the preprocess

step in Figure 4-11. For every class within target GJMApp, do following steps:

1. Insert a field named GJMA_LOCK into the class file with primitive type boolean. The

default value is set to false.

2. Generate two methods, GJMA_ENTER and GJMA_LEAVE. The codes within the two

int a;

void method1(){
a=1;
}

original class

int a;

public int GET_a(){
return a;
}

public void SET_a(int value){
a=value;
}

void method1(){
SET_a(1);
}

modified class

aload_0
iconst_1
putfield Test.a

aload_0
iconst_1
invokevirtual Test.SET_a

replace

preprocessor(1)

(2)

(2)

(3)

- 76 -

methods are shown in Listing 5-12. GJMA_ENTER is like a barrier, and only one thread

can return from it at the same time if and only if GJMA_LOCK is false. The GJMA

framework uses these two methods to simulate a monitor, and it is equivalent to the original

monitorenter/monitorleave instructions.

3. Find all monitorenter instructions in the class file and replace them with the corresponding

invokevirtual instructions which will invoke the corresponding GJMA_ENTER method.

4. Find all monitorleave instructions in the class file and replace them with the corresponding

invokevirtaul instructions which will invoke the corresponding GJMA_LEAVE method.

Listing 5-12: The source codes for GJMA_ENTER and GJMA_LEAVE

5.4.3. Generate Code for Creating Complementary Objects

When an instance is created from a class, the instance’s field initialization is done explicitly in

the classes’ constructors. In other words, the field initialization instructions are placed in the

constructors. Besides the field initialization instructions, there are other initialization codes in

the constructors. In the MASTER-SLAVE mode, every managed object will have a

corresponding complementary object in the remote host. It implies that some codes are placed

in the remote host and the initialization process is handled by two threads instead of one thread.

It may break the initialization order. Hence, a few modifications have to be made on a class to

make it capable of creating an empty complementary object first. Then, all initialization

methods are called after the complementary object was created. This work is done in second

- 77 -

phase. For every class within target GJMApp, do following steps:

1. Add a special constructor with one parameter with type GJMAClass. This constructor does

nothing except to call its superclass’s constructor. The constructor is designed to create an

empty complementary object.

2. For each original constructor, create a new method and move all codes after the

invokespecial instruction within the constructor to the new method.

3. For each original constructor, its instructions are modified to call the new method added in

step 2.

Figure 5-7: Modify codes for creating complementary object

5.4.4. Convert Array Type to Class Type

After the previous discussion, a problem still remains when the return type or some parameter’s

type is array. GJMA cannot generate the corresponding proxy class because there is no concrete

original class for array type. To solve this problem, GJMA transfers all array types to class types

generated by GJMA, changes all array manipulation instructions to new instructions or the

SETTER/GETTER mentioned above, and changes all method signatures and returns types

from array to object. For every class within target GJMApp, do following steps:

ClassA(){
//initial code
}

ClassA(){
init_ClassA();
}

void init_ClassA(){
//original initial code
}

ClassA(GJMAClassclass){
//do nothing
}

(1)

(2)

(3)

original class modified class
preprocessor

- 78 -

Table 5-5: The array class naming convention

Original array type Generating class name Static method to create object

byte[] Byte_Array1 Byte_Array1.create1(int s1)

byte[][] Byte_Array2 Byte_Array2.create2(int s1, int s2)

Byte_Array2.create1(int s1)

int[] Int_Array1 Int_Array1.create1(int s1)

java.lang.String[][][] Object_Array3 Object_Array3.create3(int s1, int s2, int s3)

Object_Array3.create2(int s1, int s2)

Object_Array3.create1(int s1)

1. Find all array types in fields, method parameters and method return type.

2. Generate the corresponding class. The number of constructor parameters is equal to the

dimension of the array. Some examples are shown in Table 5-5 to explain this step.

3. Find all newarray, anewarray, and multianewarray instructions in the class file, and replace

them with the corresponding invokestatic instructions which will create the corresponding

object.

4. Find all caload, castore, iaload, iastore, saload, sastore, laload, lastore, faload, fastore,

daload, dastore, baload, bastore, aaload, and aastore instructions in the class file, and

replace them with the corresponding invokevirtual instructions which will invoke the

corresponding method. In this way the original code semantics will be completely

preserved.

5.4.5. Insert Code for Intercepting Instance Creation

According to the previous discussion, GJMA inserts the class

org.gjma.application.GJMAObject into the original constructor chaining to intercept instance

- 79 -

creation action. When intercepting an instance creation action, GJMA has to create the

corresponding complementary object in the remote host. Listing 5-13 is the partially source

code of the class org.gjma.application.GJMAObject. There are two constructors. The one

without any parameters (lines 5-7) is used to intercept method invocation actions because all

instance creation actions will always call this constructor. When this constructor is called, it

implies an object was created and the constructor does two things. First, the constructor will get

a unique object id from the object manager (ObjMngr) and the object manager maintains an

object table to keep the relationship between the object id and the object reference. Second, the

constructor will build a GJMAMesg which contains the creation command, including class

name and object id. Then, the constructor sends the GJMAMesg to the remote host. The other

constructor which has one parameter (lines 10-12) is used to create complementary objects.

When the object manager received a creation command, the object manager will create the

complementary object by using this constructor. This constructor does only one thing. The

constructor makes the object manager keeps the relationship between the object id encoded in

the received command and the object reference of the complementary object. In brief, an object

and its complementary object both have the same object id and they are in different hosts.

Besides the constructors, there are other methods overriding the methods in java.lang.Object to

guarantee that an object and its complementary object are the same logically. For example, the

method hashCode() acted on an object and on its complementary object have to return the same

results.

- 80 -

Listing 5-13: The partially source code for GJMAObject

If a class’s original superclass is java.lang.Object, GJMA preprocessor has to replace its

superclass with org.gjma.application.GJMAObject. The steps are as follows.

1. Add a new entry with type CONSTANT_Class into the constant pool. The entry represents

a class named org.gjma.application.GJMAObject.

2. Modify the superclass field in the class file. After the modification, the value of the

superclass field will point to the entry added in STEP 1.

3. Modify the bytecode within the constructors. There is an invokespecial instruction in the

beginning of every constructor. This instruction is dedicated to call constructors, which is a

special method with named “<init>”. If an invokespecial instruction calls the constructor

belonging to java.lang.Object, the instruction has to be changed. After the modification, the

instruction will call the constructor belonging to org.gjma.application.GJMAObject.

01 package org.gjma.application;

02

03 public class GJMAObject {

04

05 public GJMAObject() { //used to intercept instance creation action

06 //1. make this object be managed by ObjMngr

07 //2. send create command to the remote host

08 }

09

10 public GJMAObject(GJMAClass c){//used to create complementary object

11 //make this complementary object be managed by ObjMngr

12 }

13

14 public int hashCode(){ //override other methods in java.lang.Object

15 if(GJMApp.is_slave_part){

16 return(super.hashCode());

17 }else{

18 //call the remote method hashCode()

19 }

20 }

21 }

- 81 -

5.5. GJMA Analyzer

The main mission of GJMA analyzer is generating proxy classes and ObjMngr classes. The

generated proxy classes are used to intercept method invocation action and the generated

ObjMngr classes are used to reflect all intercepted actions to the practical remote classes and

remote methods. This sub-section includes two parts. The first part illustrates how to generate

proxy class and the second part describes how to generate ObjMngr.

5.5.1. Generate Proxy Class

When a method of the proxy class is invoked, it means the practical business logic is placed in

the remote host and the method invocation action has to reflect on the complementary object.

Hence, the codes of these methods within the proxy classes are responsible for delegating these

actions to the corresponding object manager in the other side. For every class within target

GJMApp, do following steps:

1. Make a copy of the class. It implies the proxy’s class name is the same as the class’s class

name and the proxy’s superclass is the same as the class’s superclass.

2. For each method excluding constructors, replace the instructions within the method. The

codes within the proxy method are responsible to delegate the request to the object

manager in other host.

Figure 5-8. How to intercept method invoke action

void method1(){
//business logic;

}

void method1(){
//delegate the method1() to the ObjMngr

}

modified class proxy class
analyzer

- 82 -

The delegation codes within proxy methods do following steps:

1. Create an ActionBuilder instance to do further marshalling.

2. Call init_invoke method with the instance created on step 1 to create an invocation action

string.

3. According to the method parameter types, call the corresponding methods to append

necessary parameters to the action string.

4. Call toString method with the instance created on step 1 to get the finally action string.

Then fill it into the action field in the GJMAMesg and send the GJMAMesg to the object

manager in the remote host.

5. Wait the result returns.

6. Parse the action string in the action field in the received GJMAMesg.

7. According to the method return type, call the corresponding methods to get the result and

then return it.

5.5.2. Generate ObjMngr Class

The codes in an ObjMngr class can be divided into two parts. One part is fixed and all

ObjMngr implementations are the same in this part. This part provides codes to generate

unique object id and manage object references. The other part is generated in the deployment

time. This part includes two methods. One named create is used to create complementary

objects and the other named invoke is used to call a method. When ObjMngr received a

GJMAMesg with the action field, ObjMngr will do unmarshalling on the action field first.

After unmarshalling, ObjMngr will know which method has to be called, either create or

invoke as Figure 5-9 demonstrates.

- 83 -

Figure 5-9: How ObjMngr to process a received GJMAMesg

5.5.2.1. Generate the create Method

The most important part in a create method is if-else structures. The structure is responsible

for comparing the class name encoded in the received GJMAMesg and creating the

corresponding complementary object. The create method has a parameter. The only parameter

is an ActionBuilder instance created in handle_request method and the return type is a

GJMAObject instance. Moreover, the GJMA analyzer should generate codes to do following

steps.

1. Call getClass method with the received parameter to get the information about creation.

The information includes class name as well as object id, and it is encapsulated in a

GJMAClass instance.

2. Use if-else statements to compare the class name got in step 1. If a match occurs, create an

instance of the class by using the constructor responsible for creating a complementary

object. The GJMAClass instance got in step 1 is used as the constructor’s only required

parameter. After this step, GJMA will get an empty complementary object.

3. Return the GJMAObject reference got in step 2.

received
GJMAMesg handle_request(GJMAMesg m){

//parse the action field in the parameter m
//call either create or invoke method according to action type

}

if(class_name.equal(…))
…..

}else if(….){
…..

}else if(….){
…..

}

select(method_id){
case 1001:

….
case 1002:

….
}

call create

call invoke

- 84 -

5.5.2.2. Generate the invoke Method

The most important part in the invoke method is switch structures. The structure is

responsible for matching the method number encoded in the received GJMAMesg and calling

the corresponding method. Hence, every method within target GJMApp has to be assigned a

unique method number. The invoke method has two parameters. The first parameter is an

ActionBuilder instance created in handle_request method and the second parameter is a

GJMAObject instance encoded in the received GJMAMesg. Moreover, the return type is

String. The GJMA analyzer should generate codes to do following steps.

1. Call getMethod method with the first received parameter to get the information about

invocation. The information includes method id and it is encapsulated in a GJMAMethod

instance.

2. Use switch statements to match the method id got in step 1. If a match occurs, cast the

second received parameter to the specific class which the calling method belongs to. Call

the corresponding method with the parameters which can be got from the first received

parameter according to the data types. After the method completed, do marshalling on

the return result and finally return a String.

- 85 -

Chapter 6 Evaluation

6.1. Programming Framework Comparison

There are many technologies capable of deploying an application to distributed computing,

such as MPI (Message Passing Interface) [65] and Java RMI. However, in development time,

these technologies are not fully transparent to developers and developers have to handle some

extra codes for distributed purposes. In addition, these technologies may use different

semantics to handle remote method invocation. For example, a parameter with specific data

type may use “call by copy” in a remote method invocation, but the same parameter with the

same data type may use “call by reference” in a local method invocation. Hence, developers

have to know the differences prior to developments to prevent incorrect semantics. Here, we

notice that which codes are remotely are determined in development time in these

technologies and they are not suitable for GJMA which makes the decision in deployment

time. To be precise, GJMA is fully transparent to developers in development time.

6.1.1. MPI Programming Framework

The Message Passing Interface (MPI) is a language-independent communication protocol.

MPI is widely used in parallel computing and it is often used to implement distributed shared

memory. Applications in different hosts can communicate with each other by passing

messages. Listing 6-1 is a MPI sample code. It is worth to notice that some codes (with bold

font) other than business logic are used to communicate. In other words, developers have to

handle these communications by themselves.

- 86 -

Listing 6-1: A partial sample code for MPI.

6.1.2. Java RMI Programming Framework

The Java Remote Method Invocation (Java RMI) is a Java application programming interface

for performing the object equivalent of remote procedure calls. If developers want to use Java

RMI, they have to define interface as Listing 6-2 shows first and then implement its

corresponding RMI server as Listing 6-3 demonstrates. The same as MPI mentioned above,

Java RMI still need developers to define interface and write some extra codes.

Listing 6-2: A sample interface for Java RMI.

Listing 6-3: A sample RMI server implementation.

01 public class SampleServerImpl extends UnicastRemoteObject

02 implements SampleServer{

03

04 public int echo(int a) throws RemoteException{

05 return a;

06 }

07 }

01 public interface SampleServer extends Remote{

02 public int echo(int a) throws RemoteException;

03 }

01 int main(int argc, char *argv[]){

02

03 //variable declarations

04

05 MPI_Init(&argc,&argv); //MPI initialization

06 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

07 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

08

09 //business logic

10 MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD); //send

11 //business logic

12 MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat); //recv

13

14 MPI_Finalize(); //MPI finalization

15 return 0;

16 }

- 87 -

6.1.3. GJMA Programming Framework

Developing a GJMApp is similar to developing a Java ME MIDP application as Listing 3-3

illustrates, but developers have not concerned about devices capabilities in GJMA

development process. In developers’ view, all classes within a GJMApp are logically run on

the same host. In this chapter, two examples are given to demonstrate how to develop a

GJMApp.

6.1.3.1. Hello World

The simplest GJMApp is only consisted of one class implemented by developers. It implies

that developers only need to implement the main class to complete the whole GJMApp. The

general GJMApp development flow is shown in Figure 6-1. It is worth to notice again that the

main class has to be extended from GJMApp class.

Figure 6-1: The GJMApp development flow

A GJMApp which will show “Hello World” on screen is used to demonstrate the simplest

GJMApp. Listing 6-4 is the source code of the main class. The source used two classes

provided by GJMA framework. The class GJMApp is used to initialize necessary resources

and the class Window is used to show something in the device screen. The important point to

2. compile
1. implement
logic and UI parts Java source

files
 Java classes
GJMApp

- 88 -

note is that all programming is based on Java language in GJMA development framework. All

developers who are familiar with Java language can develop GJMApps easily without

learning any other thing. Figure 6-2 shows snapshots of this example.

Listing 6-4: Hello World sample code

Figure 6-2: The GJMApp (Hello World) accessed by different GJMAClient.

6.1.3.2. Web Services

Like Web services client development flow in Java SE, developers have to get WSDL

document which describes the Web services definition first and a tool (WSDL2Java) is used

to generate Java stub from the WSDL file. Then, developers can directly invoke the methods

import org.gjma.application.GJMApp;

import org.gjma.ui.Window;

public class Main extends GJMApp{

 public void startApp(){ //be called when the application is started

 //create a window ui widget

 Window w=new Window();

 //set window title

 w.setTitle("Hello World");

 }

 public void stopApp(){ //be called when the application is stopped

 //do nothing in this example

 }

}

- 89 -

of the generated stub to access the Web service described in the WSDL document. The

development flow is shown in Figure 6-3.

Figure 6-3: The GJMApp using Web services development flow

In addition, like the previous example, developers still have to implement other business logic,

including user interface and main class which extends GJMApp class, to complete the

GJMApp. Listing 6-5 is the source code for a GJMApp using Web services. The source used

several user interface related classes provided by GJMA framework. Moreover, the class

WeatherForecastSoap_Stub and the class WeatherForecasts are automatically generated by the

WSDL2Java tools. In addition, we should notice that some event listeners have to be

implemented to handle occurring events. In Listing 6-5, a listener is assigned to the button

(line 23). In runtime, when the button is pressed, the handler in the listener will be invoked. In

this example, the handler will invoke the Web services to get weather information according

to the post code got from the text field (lines 14-21). Figure 6-4 and Figure 6-5 show

snapshots of this example.

 2. WSDL2Java
WSDL
files

4. compile

Web Service
classes

1. get WSDL document

3. implement
logic and UI parts Java source

files
 Java classes

invoke methods of the
generated stub

GJMApp

- 90 -

Listing 6-5: Web services sample code

01 import org.gjma.application.GJMApp;

02 import org.gjma.ui.*;

03 import weather.*; //stub for web service

04

05 public class Main extends GJMApp{

06

07 public void startApp(){

08 Window query=new Window(); //create a window

09 query.setTitle("Query"); //set window title

10 Button ok=new Button("OK"); //create a button

11 TextField f=new TextField("PostCode", "11001"); //create a textfield

12

13 class OkListener implements GJMAButtonListener{ //define listener

14 public void actionPerform(){//invoke web service

15 WeatherForecastSoap_Stub service = new WeatherForecastSoap_Stub();

16 try {

17 WeatherForecasts wf = service.getWeatherByZipCode(f.getText());

18 text.setText(wf.getPlaceName()); //fill result to text widget

19 }catch(Exception e){}

20 result.show(); //show the result window

21 }

22 }

23 ok.addListener(new OkListener()); //set listener for the ok button

24 query.add(field); //add a textfield to the query window

25 query.add(ok); //add a button to the query window

26

27 Window result=new Window(); //create a window

28 result.setTitle("Result"); //set window title

29 Button back=new Button("BACK"); //create a button

30 Text text=new Text(); //create a text

31

32 class BackListener implements GJMAButtonListener{ //define listener

33 public void actionPerform(){

34 query.show(); //show the query window

35 }

36 }

37 back.addListener(new BackListener());//set listener for the back button

38 result.add(text); //add a text to the result window

39 result.add(back); //add a button to the result window

40 query.show(); //show the query window

41 }

42

43 public void stopApp(){

44 //do nothing in this example

45 }

46 }

- 91 -

Figure 6-4: The GJMApp (Web services) accessed by GJMAppStandalone.

Figure 6-5: The GJMApp (Web services) accessed by WAP browser.

6.2. Performance Evaluation

Because every GJMApp is consisted of original class files (without modifications) in the

BROWSER mode and the STANDLAONE mode, the performance does not be influenced by

GJMA. Hence, this section only evaluates the performance in the MASTER-SLAVE mode.

Listing 6-6: The test code template.

01 TYPE echo(TYPE t){

02 return(t);

03 }

- 92 -

In the MASTER-SLAVE mode, some original method invocations are replaced with the

corresponding remote method invocations and these remote method invocations are the main

factor to influence on the performance. A test code template listed in Listing 6-6 is used to

evaluate the remote method invocation performance and the test environments is listed in

Table 6-1. In this dissertation, the authors compared the remote method invocation

performance between GJMA and Java RMI. Moreover, different parameter types and return

types are applied to the test code template and Figure 6-6 shows the result. Every bar in

Figure 6-6 represents the elapsed time of every remote method invocation.

Table 6-1: Test environment.

Environment Description

CPU Intel Core 2 Duo 1.6 GHz

RAM 2G DDR2 667MHz

Network Loopback (127.0.0.1)

Java platform Java Standard Edition 1.6.0_01

For primitive data types (int, short, byte, boolean, char, long, float, double), Java RMI has

better performance. The reason is that GJMA exploits the asynchronous message delivery

mechanism to handle disconnection situation and Java RMI does not consider about this. In

other words, every command in GJMA spends extra time passing from a queue to another

queue. For array data type and object data type, GJMA has better performance. The reason is

that all parameters are “call by reference” in GJMA to keep the original semantics regardless

of the class locations (remote of local). Moreover, Java RMI exploits “call by copy”

(serialization) to handle parameters with array data type and some object data types. The

serialization action takes long time and it may break the original application semantics.

- 93 -

Figure 6-6: Remote method invocation performance evaluation.

6.3. Program Size Evaluation

In the BROWSER mode, end-users can use built-in browsers or GJMABrowser to access

GJMApps placed on a GJMAServer. If end-users use built-in browsers, no installation is

required and it costs 0 Kbytes. If end-users use GJMABrowser, it had been installed before

use and it costs 16 Kbytes (compressed). In the MASTER-SLAVE mode, some classes

(modified classes) are modified and some classes (proxy classes) are generated. How many

bytes will be increased in a modified class depends on how many constructors and fields the

corresponding original class owns. Every constructor in the original class will increase the

size about 250 bytes in the modified class and every field in the original class will increase the

size about 210 bytes in the modified class. Furthermore, the size of a proxy depends on how

many methods the corresponding original class owns and how many parameters these

methods have. A method with no parameter and no return costs about 76 bytes in a proxy file

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GJMA

RMI

ms

- 94 -

and every parameter needs extra 30 bytes to do marshalling or unmarshalling actions.

- 95 -

Chapter 7 Conclusion and Future Works

In this dissertation, a novel development framework GJMA, which is capable of tailoring

mobile applications to fit different end-devices and environments, is proposed and how it works

is discussed in the previous chapters. GJMA currently supports WAP and Java MIDP. In other

words, GJMA can be used by almost all mobile devices. In addition, three adaptation

mechanisms are introduced to solve the problem about the diversity of hardware capabilities

and functionalities. To handle disconnection situation, the asynchronous message delivery

mechanism is designed and implemented. By using GJMA, when developing a mobile

application, developers do not need to concern about the computing power as well as

functionalities of the target end-devices and these resources will be effectively used. Moreover,

all necessary adaptations are made by GJMA automatically, including computing model

adaptation, user interface adaptation and network adaptation. Besides, because XML document

is flexible and extensible, anyone can easy to extend the end-device database to support more

end-devices. Nevertheless, GJMA has some issues for the moment. First, it is not fully

supported Java dynamic class loading. If a GJMApp uses dynamic class loading related codes,

the GJMA analyzer cannot recognize these codes and may cause some errors in runtime.

Second, remote method invocation action is the performance bottleneck in the

MASTER-SLAVE mode. To solve the performance issue, GJMA currently place all codes on

the client side unless the codes cannot be handled by the client. In others words, only codes

which cannot be executed by the client side will be placed on and handled by the server side.

It can reduce the number of necessary remote method invocation actions.

In the future, more user interface widgets will be designed and implemented. For example,

Java ME MIDP compatible library will be provided and then existent Java ME MIDP

application will be supported by GJMA without modifications. Moreover, the GJMAMesg

- 96 -

formats can be tuned and GJMA may do second phase analysis during the deployment process

to make performance better. In addition, a GUI deployment tool will be provided and

developers can use the tool to control the deployment process.

- 97 -

References

[1] G. H. Forman, J. Zahorjan, "The Challenges of Mobile Computing", Computer, vol. 27(4), pp. 38-47, 1994

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges”, IEEE Personal Communications, vol.

8(4), pp. 10-17, 2001

[3] M. Weiser, “Some computer science issues in ubiquitous computing”, ACM SIGMOBILE Mobile

Computing and Communications Review”, vol. 3(3), pp. 10-21, 1999

[4] WAP, http://www.wapforum.org/

[5] Java Micro Edition (Java ME), http://java.sun.com/javame/

[6] Microsoft .NET Compact Framework,

http://msdn.microsoft.com/netframework/programming/netcf/default.aspx

[7] N. Medvidovic, M. Mikic-Rakic, N. R. Metha, S. Malek, “Software Architectural Support for Handheld

Computing”, Computer, vol. 36(9), pp. 66-73, 2003

[8] 3GPP TS 22.057 V6.0.0. Mobile Execution Environment (MExE) service description; Stage 1, 2004,

http://www.3gpp.org/ftp/Specs/html-info/22057.htm

[9] Attribute programming, http://msdn2.microsoft.com/en-us/library/dcy94zz2.aspx

[10] M. Butler, F. Giannetti, R. Gimson, T. Wiley, "Device independence and the Web", IEEE Internet

Computing, vol. 6(5), pp. 81-86, 2002

[11]W. Mueller, R. Schaefer, S. Bleul, "Interactive multimodal user interfaces for mobile devices", Proc. of the

37th Annual Hawaii International Conference on System Sciences, 2004

[12] J. Plomp, R. Schaefer, W. Mueller, H. Yli-Nikkola, "Comparing Transcoding Tools for Use with Generic

User Interface Format", Extreme Markup Languages, 2001

[13] J. Grundy, J. Hosking, "Developing adaptable user interfaces for component-based systems", Proc. of the

1st Australian User Interface Conference, pp. 175-194, 2002

[14] J2ME Polish, http://www.j2mepolish.org/

[15] Tzu-Han Kao, Shyan-Ming Yuan, "Designing an XML-based context-aware transformation framework for

mobile execution environments using CC/PP and XSLT", Computer Standards & Interfaces, vol. 26(5), pp.

377-399, 2004

[16] Tzu-Han Kao, Shyan-Ming Yuan, "Automatic adaptation of mobile applications to different user devices

using modular mobile agents", Software Practice and Experience, vol. 35(14), pp. 1349-1391, 2005

[17] J. Jing, A.S. Helal and A. Elmagarmid, “Client-server computing in mobile environments", ACM

Computing Surveys, vol. 31(2), pp. 117-157, 1999

[18] J. P. Kanter, Understanding Thin-Client/Server Computing, Microsoft Press, 1998

[19] K. Read, F. Maurer, “Developing Mobile Wireless Applications”, IEEE Internet Computing, vol. 7(1), pp.

81-86, 2003

[20] J. Hunter and W. Crawford, Java Servlet Programming, O'Reilly, 2001

[21] D. Sklar, Learning PHP 5, O’Reilly, 2004

- 98 -

[22] J. Liberty, D. Hurwitz, Programming ASP.NET, O’Reilly, 2003

[23] Wireless Markup Language (WML) Specification, http://xml.coverpages.org/wap-wml.html

[24] XHTML™ 1.0 The Extensible HyperText Markup Language, http://www.w3.org/TR/xhtml1/

[25] NTT DoCoMo i-mode, http://www.nttdocomo.com

[26] Compact HTML (C-HTML) for Small Information Appliances,

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209

[27] Extensible Markup Language (XML), http://www.xml.it:23456/XML/REC-xml-19980210-it.html

[28] XHTML Basic, http://www.w3.org/TR/xhtml-basic

[29] XHTML Mobile Profile, http://www.wapforum.org/tech/documents/WAP-277-XHTMLMP-20011029-a.pdf

[30] W3C, XSL Transformations (XSLT), http://www.w3.org/TR/xslt

[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Professional, 1995

[32] M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams, J. Shuster, “UIML: an appliance-independent

XML user interface language”, Computer Networks, vol. 31(11, 17), pp. 1695-1708, 1999

[33] J. Grundy and B. Yang, “An Environment for Developing Adaptive, Multidevice User Interfaces”, Proc. of

4th Australasian User Interface Conference, Australian Computer Society, vol. 18, 2003, pp. 47-56

[34] M. Bisignano, G. D. Modica, O. Tomarchio, “Dynamic User Interface Adaptation for Mobile Computing

Devices”, Proc. of the 2005 Symposium on Applications and the Internet Workshops, pp. 158-161, 2005

[35] T. Ziegert, M. Lauff, L. Heuser ,“Device Independent Web Applications - The Author Once - Display

Everywhere Approach”, Proc. of 4th International Conference on Web Engineering, pp. 244-255, 2004

[36] V. Cardellini, M. Colajanni, R. Lancellotti, P. S. Yu, “A Distributed Architecture of Edge Proxy Servers for

Cooperative Transcoding”, Proc. of the 3rd IEEE Workshop on Internet Applications, 2003

[37] Binary Runtime Environment for Wireless (BREW), http://brew.qualcomm.com/brew/

[38] Symbian, http://www.symbian.com/

[39] T. Lindholm , F. Yellin, Java Virtual Machine Specification, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, 1999

[40] Java Enterprise Edition (Java EE), http://java.sun.com/javaee/

[41] Java Standard Edition (Java SE), http://java.sun.com/javase/

[42] Java Specification Request (JSR), http://jcp.org/en/jsr/all

[43] CORBA, http://www.cs.wustl.edu/~schmidt/corba-overview.html

[44] Java RMI, http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

[45] W3C, Web Services Architecture, http://www.w3.org/TR/ws-arch

[46] N. A.B. Gray, “Comparison of Web Services, Java-RMI, and CORBA service implementation”, Proc of . 5th

Australasian Workshop on Software and System Architecture, 2004

[47] Yue-Shan Chang, Min-Huang Ho, Shyan-Ming Yuan, “A unified interface for integrating information

retrieval”, Computer Standards & Interfaces, vol. 23(4), pp. 325-340, 2001

[48] Yue-Shan Chang, Ruey-Shyang Wu, Kai-Chih Liang, Shyan-Ming Yuan, Magic Yang, “CODEX:

Content-Oriented Data EXchange Model on CORBA”, Computer Standards & Interfaces, vol. 25(4), pp.

329-343, 2003

- 99 -

[49] JavaParty, http://svn.ipd.uni-karlsruhe.de/trac/javaparty

[50] D. Caromel, W. Klauser, and J. Vayssiere, “Towards Seamless Computing and Metacomputing in Java”,

Concurrency: Practice and Experience, vol. 10(11-13), 1998, pp. 1043-1061

[51] J. Kawash, A. El-Halabi and G. Samara, “Utilizing Object Compression for Better J2ME Remote Method

Invocation in 2.5G Networks”, Journal of Computing and Information Technology, vol. 14, pp. 255-264, 2006

[52] T. Richardson, Q. Stafford-Fraser, K. R. Wood, A. Hopper, “Virtual network computing”, IEEE Internet

Computing, vol. 2(1), pp. 33-38, 1998

[53] VNC2Go, http://www.freeutils.net/vnc2go/index.jsp

[54] G. Canfora, G. D.Santo, E. Zimeo, “Developing Java-AWT Thin-Client Applications for Limited Devices”,

IEEE Internet Computing, vol. 9(5), pp. 55-63, 2005

[55] G. Canfora, G. D. Santo, E. Zimeo, “Toward Seamless Migration of Java AWT-based Applications to

Personal Wireless Devices”, Proc. 11th IEEE Working Conference Reverse Engineer, IEEE CS Press, pp.

38-47, 2004

[56] Canoo Engineering AG, “Ultra Light Client: Technology White Paper”,

http://www.canoo.com/ulc/developerzone/ULCWhitePaper.pdf

[57] IBM AlphaWorks, Thin-Client Framework (TCF), http://www.alphaworks.ibm.com/tech/tcf

[58] W3C, Cascading Style Sheet (CSS), http://www.w3.org/Style/CSS/

[59] NanoX, http://www.microwindows.org/

[60] Ming-Chun Cheng, Shyan-Ming Yuan, "An Adaptive Mobile Application Development Framework", LNCS

3824, pp. 765-774, 2005

[61] N. Mansfield, The Joy of X: An Overview of the X Window Systems, Addison-Wesley, 1993

[62] M. Dahm. “Byte code engineering with the BCEL API”, Technical Report B-17-98, Freie Universitat Berlin,

Institit fur Informatik, 2001

[63] S. Liang , G. Bracha, “Dynamic class loading in the Java virtual machine”, Proc. of the 13th ACM

SIGPLAN conference on Object-oriented programming, pp. 36-44, 1998

[64] G. T. Sullivan, “Aspect-oriented programming using reflection and metaobject protocols”, Communications

of the ACM, vol. 44(10), pp. 95-97, 2001

[65] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing

Interface, The MIT Press, 1999

