GIMA- - Bi2* qiJava F# " 25 BT 5

GJMA - A Generic Java Mabile Application Development Framework

g2 i mp g

BERE R T R

PEREBE L+ KX &FKXA

GIMA- - BiL* ehJava Fd R * 25 B & T o

GJMA — A Generic Java Mobile Application Development Framework

Moyo4 Tamp i Student : Ming-Chun Cheng
hERR R Advisor : Shyan-Ming Yuan

A Dissertation
Submitted to Department of Computer Science
College of Computer Science
National Chiao-TFung University
in partial Fulfillment-of the' Requirements
for the Degree of
Doctor of Philosophy

in
Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

PEARA LA ES D

GIMA - - B &£ * v Java 7 & & * &£ ;¥ B & T 2

g

g4 WPl R R &
B2 2l « FFiafe (g oLt

R AEEE S RSERGAG RS A AN g £ P F
B REFHEEEZF3FAR 0L > P aRNPRIFIFET LR D
AP B pR O FECERF AR R RS RE LT B XL o
TR RO kAR AR R G 2 S T BRI A
AR F A0 AR RIFEESE R LS S ROF L XL R
kB antEand BH NP REd > FATE AR KR P T R LG S
ﬂ?‘% ’ ; TR RRAE AR a‘%:'i— B2 * ¢ Java ﬁfrﬁ@’*ﬁi;\F’ﬂ
HFT Lo fEs GIMAC v & A 32 838 B #0504 %) & BROWSER - STANDALNONE

kEH AR & Wﬁw*T@F’@ FA7 N T AL K IR B AT B
Foodk e RCIMALY BERSN TG FR Y RAS LR PRAER
o304 A RRIBEH RS oP A 2R G L) R
HHEp A A GFIAHEE P PFd GIMA R pdon o B B- AR
*’%?uilkﬂjﬁjuﬂ%%¥oi¢ﬁwwﬂ 3 = B s
R o A H BRSO 7 A e P s
AR A -

] MASTER SLAVE » GIMA ¥ re 4245 7 & %‘k?ﬁ g EF G oo had B

GIJMA - A Generic Java Mobile Application Development Framework

Student: Ming-Chun Cheng Advisors: Dr. Shyan-Ming Yuan

Department of Computer Science
National Chiao Tung University

ABSTRACT

Although wireless networks and mobile devices have become popular, the
diversity of mobile devices and _unsteadiness of wireless networks still cause
software development much trouble. Mobile.application developers are forced to
confront these problems, and therefore ‘spend a lot of time developing mobile
applications. Although many studies on user interface adaptation and language
transformation have attempted to:solve-the.problem, most of them do not consider
the computing power and functionalities of end-devices. As a result, these
resources are ignored or wasted: To'overcome these problems, the author
proposes a generic Java mobile application development framework, named
GJMA, to help developers build Java mobile applications quickly and easily.
The GIMA framework can tailor an application to fit different devices according
to user interface formats and the computing power and functionalities of the
devices. Every application developed by GJIMA can run in one of three computing
modes: thin-client computing, distributed computing and fat-client computing. As
a result, a mobile application developed on GIMA can enjoy the “write once,
run everywhere” benefit. In addition, three adaptation mechanisms are
introduced in this dissertation: computing model adaptation, user interface
adaptation and network adaptation.

7S Gl

*%ﬁi%éﬁ%ﬁf%@mﬁﬁAoﬁi@ﬁﬂﬁﬁ%%ﬁi%@ﬁ
1o R S & ki PR AN AR BT BT AL p
VISR BT LT pamg Fo BV porRr BT LATE
R FF R MG IR MR AR L R B e
SRR TER Y DT S R R N S andp e At & R
éf TRERATRBLIL CFEPERE - HFOEKR BMERIRREEL
L B ’,}_'ﬁ'}eiﬂ B3 ;kg}% GuEZOEAT R AL B2 i%tﬁj;{‘% R
pUoh Ay .@}Q;&j—?%\;imx B E R T dis BRI o A S B i -
EAL ~rmld - Flq 4 ‘ﬁmﬂ'ﬁ ﬁi}*’ci BN G g o B
FIFLSEPT » 43l - 7 T2 R o w@@;ﬁa BOAE £ AT s R 85
ﬁ»ﬂW?w#?’—ﬁéﬁ“%’—awpﬂ’—ﬁﬁﬁ’—ka¢v
272 L APE LTS B LI RTL 0L D G ABFRR R
£ &by Q};; E ol e gk ,«gg,%wo, At AR RAP IR
S ERA LAY R BB AT T R A e o T R
Jééﬁti"‘?’%mﬁfz? [~ @ 2R RS BCER] e A m“rﬁf'ﬂ"’“
& B-pt /‘Q)I?c A g Al ggj;jﬁwk,{;};;\migi TR s
”ﬁ'“%ﬁ%mﬁ”%g S o R ALY 0§ R A R L
AR S XN S A

(s

P

F_‘~

o

45%

\

TABLE OF CONTENTS

CHINESE ABST RA CT ... ittt et et e e e e e et et e e e i
ENGLISH ABST R A CT .. e et e e e e e e e et e e eae e I
ACKNOWLEDGEMENT ...ttt et e e e et e e e et e e iii
TABLE OF CONTENTS ..ottt ettt 1\
LIST OF FIGUREScooiitiiiieie ettt viii
LIST OF TABLES ...ttt b et enbe e be e beeenne e X
LIST OF LISTINGS ...ttt bbbttt bbb Xi
Chapter 1 INEFOTUCTION L e -1-
1.1 IMIOTIVATION ...ttt -1-
1.2. ODJECTIVES. ...t b e ettt bbb -2-
1.3. Organization......... s e m e e -3-
Chapter 2 BacCKgrOUNG i i isssiee e ihrts e eseesseesesseesseessesseesssessesseessesssesassses -5-
2.1. Related SPeCifiCaliONS i i e iveeeeereiiie e e etee sttt e ie sttt e st eseesreeneeneeas -5-
2.1.1. Thin-Client COMPULINGeovveiiiiee et see e -5-
2.1.1.1. Wireless Markup Languageccooveveerenieneenieie e -6-

2.1.1.2. Compact HyperText Markup Languageccccceeververvennnnn -6 -

2.1.1.3. Extensible HyperText Markup Language.........c.cccoevevuernennn. -7-

2.1.1.4. Markup Language Transformccccccooeveiieiienncic e, -8-

2.1.2. Fat-Client COMPULING.oiiiririiieieie e -8-
2.1.2.1. JAVAME ... -9-

2.1.2.2. BREW ...ttt -11-

2.1.2.3. SYMDIAN ... -11-

2.1.2.4. NET Compact Framework..........c.ccccoecvvierivenenieneesn e -11-

2.1.3. Distributed COMPULING........eiviitiieieieieeses e -12-

2.2.
2.2.1.
2.2.2.
2.2.3.
2.2.4.
2.2.5.

2.3.

Chapter 3

3.1

3.2.
3.2.1.
3.2.2.
3.2.3.

3.3.
3.3.1.
3.3.2.
3.3.3.
3.3.4.

Chapter 4

4.1.
4.1.1.
4.1.2.
4.1.3.

4.2.

4.3.
4.3.1.

4.3.2.

REIALEA WOTKS ... -12 -
VN C ettt b e b e bt ettt et e b e nhe e she e nabennbe b -12 -
LI S 1 = PP VR TORTOPO -13-
J2IMIE POLISN ..ottt st naenrenne s -13-
INBNO=X ettt bbb e a e s e e sE b et e et e nare e rn e nareeanes -14 -
A R T bbbt bbb e nnre e e -14 -
Java Class File SrUCTUIEciiiiiieiieice e -14 -
GJMA Development Framework OVErVIEWcccccveveeieeieerieiieinnn -16 -
GIIMA CONCEPES ..ttt ettt ettt et be e she e st et e et e e sbe e st e e sbbeenbeenbeen -16 -
GIMA SYSEEIM ENLITIEScviiiieeieeeie ettt s -18 -
ENd-device (GIMACHENL)ocuoiiiiiiiiieise e -18-
LN Y N o] « TSP U TP TP U TP URRPPTPRUPPTPRPRN -20 -
GIMASEIVET ..ot B e -22-
Three Running Modesin GIMA cii e -22-
BROWSER IMOOE .5k it aneskiskisaasns e ideasseeeesessessessensesseseesessessessessessessessesessessessens -24 -
STANDALONE MO, . i it ettt -26-
MASTER-SLAVE MOUE ...ttt - 26 -
Three Running Modes COMPAIISONccveieeiieiiesee e eieesteesreesreesreeseesneesneesneens - 27 -
GIMA DESIGN ISSUBSvevietieiieiiesieesiesitesiee sttt sreesee e sbe b snee e - 28 -
GIMASEIVEN ATCHITECTUIEeceiieieiici e -28 -
Adaptive TranSPOrt LAYEEccviieieiecie ettt st sreaneas -28 -
MeSSage ROULING LAYET.........cviiieiiie ittt sttt e -30-
ApPlication RUNTIME LAYETccoveiiiieie ettt st -31-
GIMACHENT ATChITECTUNE ... -32-
Initialization Process Within GIMAPD ..ccvviiriieeie e -33-
GIMADPD IN GIMASEIVEL ...ttt e e sree e be e te e ta et e sraeaneeenneens -33-
GIMADPP IN GIMACHIENT ... e -34-

4.4,
4.4.1.
4.4.2.

4.43.

4.4.4,

4.5,

4.6.

Chapter 5

5.1.

5.2.
5.2.1.
5.2.2.
5.2.3.

5.3.
5.3.1.
5.3.2.

5.4.
5.4.1.

54.2.

5.4.3.
5.4.4.

5.4.5.

Computing Model Adaptation MechaniSmccooereiiiiiieniene e -35-
Adapt to the STANDALONE MOGE.........cooiiiiiiieeieie et -35-
Adapt to the BROWSER MOGEooviiiiiiiee et -36 -
Adapt to the MASTER-SLAVE MOGEcccooiiiiiiiiiise s - 36 -
4.43.1. How to Intercept Invocation ACtioNnS..........ccocvveieeivienne -39-
4.4.3.2. How to Reflect Intercepted ACLiONSc.coevvvvieiierecnnenee. -43 -
4.4.3.3. How to Create Complementary Objects...........cccevvveiiveennnnns -44 -
(=T 0] (0] V70 0T=] 0 o (00T RSP -50-
User Interface Adaptation MechaniSM.........cccceviveiiiiiienine s -53-
Network Adaptation Mechanism ..o -55-
GIMA Implementation ISSUESc.coeiiiiriiiiisieiee s - 56 -
GIMACIASSLOAUEN ...y sl BB S e - 56 -
GIMAMESY FOMMIAL AL o fiveitin b sieaes b e etiineeeesereesstesssteeessreressseesssessnsesessnesssseesssenens -59 -
GIMAMESG TOr SYSIEM USE ...ciiiiit i e - 60 -
GIMAMesg for BROWSER MOGE ...ttt -61-
GJMAMesg for MASTER-SLAVE Mode..........cccccoioiiiiiiiiee e, -61-
Marshalling and Unmarshallingccooiiiiiiieiiieee e -62 -
Y TS 0 1 T oo SRS -63-
UNMAISNATTING ... enes - 66 -
GIMA PIEPIOCESSON ...cuviiieieiitesiie sttt sttt sttt sb bbb nb et nn b e e sresreene -67-
Generate WIapPer ClaSS..........ooviiiiiiiiiiiesiesee et -68 -
Convert to Method INVOCAtION ACHIONS.........c.cviiiiiiiiierieeeee e -74 -
54.21. Filed Manipulation ACHION..........ccccvviiiiiiieiee s -74 -
5.4.2.2. Synchronized ACHIONcccooeiieiece e -75-
Generate Code for Creating Complementary ObjJects..........cccvvveveiiiiieeneieeiennens -76 -
Convert Array TYpe t0 Class TYPE ..ccecveiieieiiiiesie et se st =77 -
Insert Code for Intercepting Instance Creationcccccvvveveveieeie v -78 -

Vi

5.5.
55.1.

55.2.

Chapter 6

6.1.
6.1.1.
6.1.2.

6.1.3.

6.2.

6.3.

Chapter 7

References

vii

GIMA ANAIYZEE ...ttt ettt st et e bt nnenne e -81-
Generate PrOXY ClaSScovoiiiiee ettt et -81-
Generate ODJMNGE CIaSS........oiiiieiiiiiie ettt -82-
5.5.2.1. Generate the create Method...........cccooviiiiiiiiiiiis -83-
55.2.2, Generate the invoke Method............cccoeveinincininccee, -84 -
EVAIUATION ... -85 -
Programming Framework COMPAriSON...........ccoouiirrerriireieisesesese e -85 -
MPI1 Programming FrameWOIKcccecveiieiieeiie e se e e seesie et see e ee e -85-
Java RMI Programming FrameWOrK..........ccccceiveiiieiieiiini e se e see e -86-
GJIMA Programming FrameWOrKcccoooeeieniiieieneeee e -87-
6.1.3.1. HEllO WOIId ... - 87 -
6.1.3.2. WWED SERVCES .iiiifitys vttt -88 -
Performance EVAIUATION L. ol i it oo et -91-
Program Size EVAIUATION ..o it i e -93-
Conclusion and FUTUreWWOIKS. ...t o -95 -
... -97 -

LIST OF FIGURES

Figure 1-1: Computing power requirements for client and SErverccocvvevevevenieeiennncns -3-
Figure 2-1: Java platforms for different pUrPOSEScccveveiieiieii e -9-
Figure 2-2: AVNC2GO0 SCIEENSNOL........ccuiiiiiiiiieeie et -13-
Figure 2-3: J2ME Polish SCreenShOLSc.ovveieiieiiecce e -14 -
Figure 2-4: Java Class file SITUCTUIEcooiiieeee e s -15-
Figure 3-1: Three-tier architecture used in GIMA ..o -17 -
Figure 3-2: The decision tree for the class org.gjma.application.GIMAPP.......ccccceevvrernee. -20 -
Figure 3-3: A GIMApp deployed to different running modes or devices.ccccceervvernenee. -23-
Figure 3-4: A diagram for the BROWSER MOcccoiiiiiiiiiiesieeie e -24 -
Figure 3-5: A screenshot of the GIMATask MaNager............cccccvveveeieeieese e - 26 -
Figure 3-6: A diagram for the MASTER-SLAVE MOGE..............ccoooeeiiririienienienieic e - 27 -
Figure 4-1: The layered architecture OF GIMASEIVEL.ccevverieeiieceee e -28 -
Figure 4-2: The detailed architecture OF GIMASEIVEL.cccoviiiiiiiiicieee e -30-
Figure 4-3. The layered architecture 0f GIMABIOWSEL.ccccvueiieereiieeieeieseesie e e -33-
Figure 4-4: Logical and physical 0DJECt VIEWS........ccccoiiiiiiiiiiieceee e -39-
Figure 4-5: Proxy deSign Patterncccoviie e ste et sra e nns -40 -
Figure 4-6: The relationship between managed and un-managed Classccecevverinenne. -42 -
Figure 4-7: Wrapper deSign PAtterncccoivereiieeseee e ns -43 -
Figure 4-8: The sequence diagram for the proxy Class.cccccoverieiiiiniienne i -43 -
Figure 4-9: Insert GIMAODbject in the inheritance chaiNingccooveveviieneeie e -45 -
Figure 4-10: Separate two associated classes into two different hosts.cccccceevveineann -47 -
Figure 4-11. The GIMApp development fIOW..........ccccovvieiiiiiicceee e -51-
Figure 4-12: A tree structure about USer INtErfacecoovveeieiieiieiiee e -54 -
Figure 5-1: Class 10ader SITUCTUIESccviieiieecie et - 58 -

Figure 5-2: Base GIMAMESY fOrmMatccooieiiiiiiiicc e - 60 -

Figure 5-3: GIMAMesg format for BORWSER MOGEcccoviiiiiiniieee e -61 -
Figure 5-4: GIMAMesg format for the MASTER-SLAVE Modeccccoveveiieieecincnnenne. - 62 -
Figure 5-5: Two phases in GIMA PreprOCESSONuivrieierieniesiestesiesieeeeeesee e - 67 -
Figure 5-6: Replace field manipulation action with SETTER/GETTER..........c..cccevvenenee. -75-
Figure 5-7: Modify codes for creating complementary OBJect...........ccccevereiiiencniennnnen -77 -
Figure 5-8. How to intercept method invoke action............cceveiiiieinicin e -81-
Figure 5-9: How ObjMngr to process a received GIMAMES]ccoveverieiereneneneneens -83-
Figure 6-1: The GIMApp development FIOW ..o - 87 -
Figure 6-2: The GIMApp (Hello World) accessed by different GIMAClient..................... -88 -
Figure 6-3: The GIMApp using Web services development flow...........ccceovvvieieeincnenne. -89 -
Figure 6-4: The GIMApp (Web services) accessed by GIMAppStandalone..................... -91-
Figure 6-5: The GIMApp (Web services) accessed by WAP Drowser..........cccoveiereniennnn. -91-
Figure 6-6: Remote method invocation performance evaluation.cccceeevenvinnnenen, -93-

LIST OF TABLES

Table 2-1: Optional packages in Java ME platform ... -10 -
Table 3-1: The GIMA PACKAGESveevveieeieeieiiesieeiesee e stee et e e e e e e sraeae s -21-
Table 3-2: The comparsion table of the three running Modes.ccoccviiininnienieiienns - 27 -
Table 4-1: The mapping table among tree element, WML and HTML...........cccccceevveinennnns -55-
Table 5-1: Methods to build the first SECHION..........ccveieiiiiiiiie s - 65 -
Table 5-2: Methods to build the sections other than the first section...........c.ccccocvvniinnnn. - 65 -
Table 5-3: Methods t0 get PAramMeter..........cooeiieiiiieseeee e - 66 -
Table 5-4: Examples for wrapper class NAmMiNg.........ccoeeveieiieiieeresieseese e e e - 69 -
Table 5-5: The array class Naming CONVENTIONccouiiiriiiirieeie e -78 -
Table 6-1: TeSt ENVIFONMENL.o it st -92 -

LIST OF LISTINGS

Listing 2-1: WML page eXampPle ..o -6-
Listing 2-2: C-HTML page eXampPleccoiiiiiieiecie et sre e -7-
Listing 2-3: XHTML basiC page eXampPlecccooieiiieiieiiie e -8-
Listing 3-1: Partial device Profile..........cccvoieiieiiiie e -19-
Listing 3-2: Partial class Profile ... s -20-
Listing 3-3: Java ME MIDP codes VS. GIMAPP COUES......cceevrieerireiereesieeieseesieeseesseennas -21-
Listing 5-1: INTEraCceA SOUICE COUE.ccuuriiiiiiriieiteeie ettt enes - 56 -
Listing 5-2: CIaSSA SOUICE COURueuiirieiiieieeiesiee e etesee e ae e steeste e e sneenaesnaesreenneenes - 56 -
Listing 5-3: Use the same class loader to load ClasSAtWICEcccoereeienieiinniee e -57 -
Listing 5-4: Use two different class:oaders to load ClassA tWiCec.ccceevvvveircriernennn. -57 -
Listing 5-5: Use GIMAppInterfage to'control GIMAPPScccoveveeeieieieienese s -59 -
Listing 5-6: The partial source code for ActionBuilder;.............c.cccovvvieiiieie i - 63 -
Listing 5-7: A marshalling eXample . it i e - 66 -
Listing 5-8: An unmarshalling eXamplecooeiieiiiieirecces e - 67 -
Listing 5-9: The source code for teSt.FOOL.........c.ooieiiiiiiieece s -70 -
Listing 5-10: The source code for teSt.FOOL’S WIAPPENccveveiierirerieeiesieesie e sie e e -71-
Listing 5-11: The source code for test.Fool’s wrapper after replacements...........c..cc.e..... -73-
Listing 5-12: The source codes for GIMA_ENTER and GIMA_LEAVE...........ccccovennee. -76 -
Listing 5-13: The partially source code for GIMAODJECL..........cccevviiiiiiiiieeee -80 -
Listing 6-1: A partial sample code for MPL. ... - 86 -
Listing 6-2: A sample interface for Java RMI.ccoooiiiiiiii e -86 -
Listing 6-3: A sample RMI server implementation.ccccooeviveieeie e s - 86 -
Listing 6-4: Hello WOrld sample COUB.........oiiiiiiiiiieeecee s -88-
Listing 6-5: Web services Sample COUEccvvvieiiiieiiese e -90 -

Listing 6-6: The test code teMPIALte.cccoviiiiiiiieee s -91-

Xii

Chapter 1 Introduction

In the past decade, the number of mobile devices, such as mobile phones, PDAs, and notebooks,
has increased enormously. Wireless networks, such as GRPS, UMTS, WiFi, have also become
prevalent. These two factors have changed computing environments tremendously, and many
new computing paradigms have been introduced, such as mobile computing [1], pervasive
computing [2], and ubiquitous computing [3]. In other words, the requirements for developing
mobile applications have increased, and more mobile applications have been developed for

these mobile devices.

1.1. Motivation

However, there are many differences between these devices. First, they may have different
executing environments. For instance; some of them.comply with WAP [4], some with Java ME
[5], and some with Microsoft .NET CF.[6]-Second, the computing power and functionalities of
these devices are diverse and they may have. different hardware resources. For example, some
have powerful processors, but some do not. Some are equipped with high resolution screens,
but some are not. Third, these devices support different kinds of networks. These networks may
have different bandwidths, latency, and reliability, and they may disconnect during use. These
differences increase the complexity of developing a mobile application capable of supporting

them all [7]. Developers have to face these issues, and have spent much time solving them.

Writing an application capable of supporting multiple devices is difficult. Thus, many studies
and standards have tried to solve them. For example, Mobile Execution Environment (MEXE
[8]) defined by a 3GPP working group categorizes these devices into four execution
environments, named classmark 1-4, to reduce mobile application development complexity.

Different classmarks mean different execution environments. If a mobile application was

-1-

developed for classmark 1, it can be run on all devices which conform to classmark 1.
Consequently, before developing a mobile application, developers have to decide which
classmarks the application will support. This approach makes developers focus on specific
execution environments, and implies that the application cannot support devices belonging to
other classmarks. To overcome this problem, many studies have been made on adaptations and
attribute programming [9], including user interface adaptation [10][11][12][13][14] and
programming language transformation [15][16]. They can tailor the application to fit different
user interface formats or execution environments. However, most of them do not consider the
computing power and functionalities of devices and these resources are ignored or wasted. For
instance, some of them focus solely on user interface adaptation. Some of them sacrifice the
computing power and functionalities of devices because they can only use functions which all

devices support.

1.2. Objectives

The aim of this dissertation is to design_and.implement a generic Java mobile application
(GIMA) development framework. Every application developed from GJMA is capable of
tailoring itself to fit different devices or situations according to user interface formats and the
computing power and functionalities of the devices. In other words, more powerful devices will

do more things in GIMA.

»
>

thin-client computing
WEB, WAP, VNC

distributed computing
CORBA, RMI, DCOM

fat-client computing
J2ME, PJava, .NET CE

JaAlas 10j) sjuawaldinbal sjamod Buiindwoo

computing power requirements for client

Figure 1-1: Computing power requirements for client and server

A server supports weak devices in this study, helping them do something they cannot do. Thus,
every GIMA application can be viewed as client-server computing [17]. Figure 1-1 shows the
computing power requirements=for three -different computing paradigms derived from
client-server computing, and every computing paradigm has many different state-of-the-art
technologies. In thin-client computing [18], clients'are only responsible for user interface, and
nearly all application logic is handled by the server. In distributed computing, clients are
responsible for some application logic, and other logic is handled by the server. In fat-client
computing, all application logic is handled by clients themselves. These three computing
paradigms have different computing power requirements for clients. By adapting an application
to one of the three computing paradigms, all kinds of devices can be well supported regardless
of their computing power and functionalities. In addition, a user interface adaptation

mechanism and a network adaptation mechanism are proposed in this dissertation.

1.3. Organization

This rest of this dissertation is organized as follows. Chapter 2 will introduce related

background about mobile application development and Java language. Chapter 3 will describe

-3-

the concepts of GIMA. Chapter 4 will express the design issues and chapter 5 will discuss the
implementation issues. Chapter 6 gives some evaluations and finally chapter 7 gives

conclusion as well as future works.

Chapter 2 Background

There are many specifications and works for mobile application developments. Moreover,
some researches [19] had surveyed how to develop mobile applications. In this chapter, some
important specifications and works are introduced. Also, Java class file structure is described

in this chapter.

2.1. Related Specifications

There are many different specifications related to mobile application developments. They can
be categorized according to which computing paradigms they used. Different computing
paradigms have different way to develop an application. The most three popular computing
paradigms are introduced here and’they are thin-client computing, fat-client computing and
distributed computing respectively.-All of them are-derived from client-server computing

paradigms, so there is no clear boundary ameng-them.

2.1.1. Thin-Client Computing

In thin-client computing, the bulk of business logic is processed on the corresponding server, so
it can also be called server-based computing. The responsibility of clients is providing user

interface only, thus the computing power requirement of clients is lower.

In this computing model, an application run on server-side can be developed by various
platforms, such as Java Servlet[20], PHP[21], ASP[22] and so on. No matter what platform is
used, the important is how clients interact with the server. There are many ways for clients to
interact with the server and they can be categorized into two categories: standard and
proprietary. Basically, clients can use built-in browsers to access the application which will

use standard protocols (such as WAP and HTTP) and content formats (such as WML [23],

-5-

XHTML [24] and so on). Moreover, clients can use specific programs to access the
application which will use proprietary protocols (ex. NTT DoCoMo’s i-mode [25]) and
content formats (ex. C-HTML [26]). In short, both browsers and specific programs run on
client-side are used to render user interface and send user request to the application. The
differences among them are content formats and protocols. Some specifications used to create

thin-client mobile applications are given below.

2.1.1.1. Wireless Markup Language

Wireless Markup Language (WML) is the content format used in Wireless Application
Protocol (WAP) and Listing 2-1 is a WML page example. Currently, almost mobile phones
support WAP and they have built-in browsers capable of accessing these WML pages. An
application has to output WML pages if it is designed to support WAP-enabled mobile devices.

Moreover, the browsers use WAPR.to.communicate with the server.

<?xml version="1.0"?>
<IDOCTYPE wml PUBLIC ''-//PHONE.COM//DTD WML 1.1//EN"
"http://www.phone.com/dtd/wmll1l._dtd">
<wml>
<card id="main" title="WML Example">
Hello World
<p>About. . .</p>
</card>
</wml>

Listing 2-1: WML page example
2.1.1.2. Compact HyperText Markup Language

Compact HTML (C-HTML) is the content format used in NTT DoCoMo’s i-mode and Listing
2-2 is a C-HTML page example. Basically, C-HTML is a subset of the HTML markup
language. In addition, C-HTML adds some features which cannot find in the HTML standard,

notably the accesskeys, phone number shortcuts for links and so on. Currently, only i-mode

-6-

mobile phones have browsers capable of accessing these C-HTML pages. An application has
to output C-HTML pages if it is designed to support i-mode mobile phones. Moreover, the
browsers use NTT DoCoMo’s proprietary protocols, ALP (HTTP) and TLP (TCP and UDP),

to communicate with the server.

<html>
<head><title>C-HTML Example</title></head>
<body>
Hello World
<p>About. . .<p>
</body>
</html>

Listing 2-2: C-HTML page example
2.1.1.3. Extensible HyperText:Markup l.anguage

Extensible HyperText Markup language (XHTML) is“a content format similar to HTML but
XHTML also conform to XML [27] syntax..In-XHTML family, there are two members related
to mobile devices: XHTML basic [28] and XHTML mobile profile [29]. The former is
designed to support devices which cannot support all XHTML dialects and it is intended to
replace WML and C-HTML. Listing 2-3 is a XHTML basic example. The latter is based on
XHTML basic and it adds more features for mobile phones. An application has to output
XHTML pages if it is designed to support mobile phones equipped with XHTML browser.

Moreover, the browsers use HTTP or WAP 2.0 to communicate with the server.

<?xml version="1.0"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basicl0.dtd">
<html>
<head><title>XHTML Basic Example</title></head>
<body>
Hello World
<p>About. . _.<p>
</body>
</html>

Listing 2-3: XHTML basic page example
2.1.1.4. Markup Language Transform

There are many different content formats mentioned above and the greater part of them is
markup languages. Hence, an application has to output different markup languages to serve
different clients equipped with different browsers. XSLT [30] is a technology often used to
convert XML data into other markup, languages. Thus, an application applied
Model-View-Controller pattern <[31] can -exploit XML document, such as UIML [32], to
describe user interface and then use XSTL to convertit into the markup languages supported by

the target client on demand. Besides this, there are several similar researches [33][34][35][36].

2.1.2. Fat-Client Computing

In fat-client computing, the bulk of business logic is processed on the client directly. All
applications using this computing model can be executed on client without any server
assistance. It implies these applications can run offline and the devices must have enough
capabilities to execute the applications. This computing model is widely used. Currently, the
most three popular development platforms are Java ME, BREW [37], Symbian [38], and .NET

Compact Framework.

2.1.2.1. Java ME

Java is an object-oriented programming language developed by Sun Microsystems in the early
1990s. Unlike C programs are compiled to native machine codes, Java applications typically
are compiled to Java bytecode which is platform independent and is run on a stack machine
named Virtual Machine [39]. Nowadays, there are many different editions for Java, such as
Java EE [40], Java SE [41] and Java ME for different purposes as Figure 2-1 shows. Java EE is

for enterprise application, Java SE is for general application, and Java ME is for mobile

application.
Servers & Servers & High-end PDAs Mobile Smart
enterprise personal TV set-top boxes phones & cards
computers computers Embedded devices entry-level
PDAs
Optianal
Packages
Optienal
- _ Packages
Java 2 Jdava 2
Platfarm, Platform,
Enterprise Standard
Edition Edition
{J2ZEE) {J2SE)
Jvm™ | avm

Java Phtform, Hicmo Edition (Java HE)

Figure 2-1: Java platforms for different purposes

Because of the mobile device diversity and resource constraints, Java ME architecture is
combined of three parts: configurations, profiles and optional packages. It implies that it is
impossible to put all codes into a resource-limited device. Thus, each combination of the three
parts is optimized for the memory, processing power, and 1/0 capabilities for target devices. All
these things make it clear that Java ME use different combinations to support diverse mobile

devices well. For example, some mobile devices are equipped with Bluetooth and some are not.

-9-

For devices equipped with Bluetooth, the optional package JSR [42] 82 has been included in

the combination to support it. For devices which are not equipped with Bluetooth, the optional

package JSR 82 is excluded in the combination to save memory. The functionalities of the three

parts are described as follows:

® Each configuration provides base functionalities for particular devices with similar
characteristics. Currently, there are two base configurations, CLDC and CDC, in Java
ME. The full name of CLDC is “Connected Limited Device Configuration” which is
designed for limited mobile devices such as cellular phones. Moreover, the full name of
CDC is “Connected Device Configuration” which is designed for more capable devices
such as smartphones.

® Each profile is a set of higher level APIs. It defines the application life cycle model, the
user interface, and the device specific properties.

® Each optional package offers different functionality as Table 2-1 shows. The capabilities

of Java ME can be further extended'by combining various optional packages.

Table 2-1: Optional packages in Java ME platform

Optional package name Version JSR

Java APIs for Bluetooth 11 JSR 82
Bluetooth, OBEX

Content Handler API 1.0 JSR 211

Mobile Media API 1.2 JSR 135

Java Binding for the OpenGL® ES 1.0 JSR 239

J2ME Web Services Specification 1.0 JSR 172
JAXP, JAX-RPC

Security and Trust Services APIs 1.0 JSR 177
ADPU, JCRMI, PKI, CRYPTO

Security 1.0 JSR 219
JSSE, JCE, JAAS

Advanced Graphics and User Interface 1.0 JSR 209
Java 2D™, Swing

RMI 1.0 JSR 66

-10-

JDBC 1.0 JSR 169

JavaTV™ API 1.1 JSR 927

Because Java is platform independent, the greater part of mobile phones is Java ME-enabled

currently.

2.1.2.2. BREW

Binary Runtime Environment for Wireless (BREW) is a mobile application development
platform created by Qualcomm for mobile phones. It can support GSM/GPRS, UMTS and
CDMA. BREW is similar to Java ME but BREW is more powerful because the running level
of BREW is lower than Java ME. In other words, BREW is more close to hardware. For

example, it can access screen buffer directly.

2.1.2.3. Symbian

Symbian is an operating system for. handheld-devices with limited resources. It has different
device classes and variants for different‘mobile‘devices, such as Series 60, Series 80, UIQ and
so on. Basically, they have same basis but may have different look and feel. A Symbian
application has to be written in C++ and use classes provided by Symbian libraries. Currently,

a Symbian application only can be executed on Symbian OS.

2.1.2.4. NET Compact Framework

The Microsoft .NET Compact Framework is a version of the .NET Framework that is
designed to run on mobile devices. Basically, it is a subset of .NET Framework but it adds
some libraries designed specifically for mobile devices. A .NET Compact Framework
application can be developed in C# or Visual Basic.NET. Currently, the application only can

be executed on mobile devices powered by Microsoft NET Compact Framework.

-11 -

2.1.3. Distributed Computing

In distributed computing, the bulk of business logic is spread on different hosts. These hosts
provide different services and they cooperate with each other to complete the business logic.
This computing model is widely used, such as CORBA [43], Java RMI [44], and Web services
[45] are examples. Different distributed technologies have different usages [46]. Some have to
write remote interface descriptions [47][48], some have to declare and implement specific
interfaces [14], some exploit annotation or attribute to declare remote methods in source
codes [49], and some only provide communication library to call [50]. However, for mobile
application development, not all technologies is suitable for mobile application and only Web
services and Java RMI [51] are two of the most popular technologies to realize distributed
computing. It is worth to notice that not all mobile devices support Web services and Java

RMI.

2.2. Related Works

2.2.1. VNC

Virtual Network Computing (VNC) [52] is a remote desktop software capable of showing
user interface locally (client-side) and controlling the applications remotely (server-side). At
the beginning, VNC is not designed for mobile devices but there are some client
implementations for mobile devices, such as VNC2Go [53] and so on. In fact, these
applications run on server-side are not designed for mobile devices, so the user interface
displayed on client-side may be terrible. Figure 2-2 (the figure is captured from
http://www.freeutils.net/vnc2go/index.jsp) is an example and it only can display small portion
of desktop at once. Moreover, VNC uses its proprietary protocol to communicate between

server and client.

-12 -

) Help and Support

) Log oFFb}Ea.N. .

(0] Turn OFF Campute

Im*Start & @

Text heru

Figure 2-2: AVVNC2Go screenshot

2.2.2. TCPTE

The thin-client applications for limited devices (TCPTE) framework [54][55] is a development
framework for mobile applications. It can execute Java application on a remote server and
display their AWT interface on atlocal client. It. combines the advantages of thin-client
computing with the richness user interface and lets programmer develop mobile applications
using same process and tools they typical-use_for. desktop applications. Besides this, there are
several similar researches and projects. [56][57].* They can display user interface remotely

also.

2.2.3. J2ME Polish

J2ME Polish [14] is based on Java ME and it is a collection of tools for developing Java ME
applications. These tools include device database, preprocessor and utility classes. The device
database is used to describe the capabilities of mobile devices and the preprocessor modify
source codes to fit target devices according the device database. Furthermore, it provides
richer and flexible user interface classes which can use CSS [58] to describe. An example is
shown in Figure 2-3 (the figure is captured from http://www.j2mepolish.org/screenshots.html).
There are three screenshots and they shows the same screen with different CSS. Besides, it

also provides some useful features, such as remote method invocation, serialization,

-13-

persistence and so on. These mechanisms can help developer build mobile application easier.

NOKILA NODKIA

J2ME Polish J2ME Polish

= START G4ME

0 Load game

O Help
O ouit

Options

Figure 2-3: J2ME Polish screenshots

2.2.4. Nano-X

The Nano-X Window System (previously Microwindows) [59] is aimed at bringing the
features of modern graphical wi'rfdowing envrironrrrn'ents to smaller devices and platforms.
Basically, it only provides user interface related functibnalities. Unlike X Window [61], both
server-side and client-side have Lto be ‘éXchféd qr‘\. mobile devices in the Nano-X Window
System. Because the usage of Nano-X is similar to usage of X Window, developer can use the

same process to build mobile application appearance.

2.2.5. ART

Adaptive Remote Terminal (ART) [60] is a mobile development framework capable of
executing the application on server-side and displaying user interface on client-side. Besides,
it can output different content formats for different browsers. End-users can use built-in

browsers or the proprietary browser to access these applications run on server-side.
2.3. Java Class File Structure

Figure 2-4 is the structure of the java class file. There are many parts in a class file, including

-14 -

header, constant pool, access rights, this class, super class, implemented interfaces, fields,
methods and attributes. It is worth to notice that there are many indexes. Every index is used
to pointer to an entry in the constant pool. In fact, there is much information stored in the
constant pool, such as methods’ name, methods’ signatures, fields’ name, fields’ type, class
name, and so on. By analyzing the constant pool in a class file, all information can be got and
there are many tools capable of modifying or examining the class files. In other words, Java
class file is easy to be modified. In GIMA, BCEL [62] is used to do this. It can generate class

file or modify the class file on demand, including the bytecode in the methods.

classfile format

Detailed Constant Pool
Header CONSTANT_Utf8

<
“org/evitan/gma/Hello”

Constant Pool zoom in CONSTANT_Utf8
“java/lang/Object” Nl
CONSTANT_Utf8

Access Rights “toString”

This class CONSTANT_Utf8 .

Super class “()Ljava/lang/String;”

Implemented Interfaces CONSTANT_Utf8

llselfll
CONSTANT_Class M
*name_index = “org/evitan/gma/Hello™——
CONSTANT_Class

*name_index = “java/lang/Object”
CONSTANT_NameAndType P
*name_index
*descriptor_index
CONSTANT _Fieldref

*class_index = “org/evitan/gma/Hello”
*name_and_type_index = “self”

CONSTANT_Methodref
bytecode *class_index = “org/evitan/gma/Hello”

*name_and_type_index = “toString”
aload_0

invokevirutal org.evitan.gma.Hello.toString —

Fields

Methods

Attributes /

([

Figure 2-4: Java class file structure

-15-

Chapter 3 GIJMA Development Framework Overview

This chapter will introduce GIJMA concepts, GIMA system entities and three supported

running modes.

3.1. GJMA Concepts

It is difficult for a mobile application to support all devices well due to varying computing
power and functionalities. A simple scenario follows. Three end-users want to control home
appliances via their own mobile devices, named DeviceA, DeviceB, and DeviceC, respectively,
using a Java ME MIDP (JSR 118) home appliance control application which uses Web services
to control home appliances. These devices have different functionalities. DeviceA cannot run
Java ME applications and only has a'built-in WAP browser. DeviceB has a WAP browser and is
Java ME MIDP compatible, but it does not support \Web services (JSR 172). DeviceC is similar
to DeviceB, except DeviceC supports Web-services. In'the scenario, DeviceC can run the home
appliance control application direetly,.but.-DeviceA and DeviceB cannot. Without an
automatically adaptation framework, a developer can only solve the problem in two ways. The
first approach is to develop three specific editions for the three devices. The second approach is
to develop one general WAP version which can be accessed by WAP browsers on all devices.
The former is a tedious task and the latter sacrifices the computing power of DeviceB and
DeviceC. One of the primary GIMA framework objectives is to let all devices run at capacity
without publishing many editions of an application: write an application once and it can support

all kinds of devices well.

-16-

~Browser-enabled™,

i

.
i) /
\

\

Application
server

,Sm’éﬁphone & PDA

L

NNy

Front-tier Middle-tier Backend-tier

Figure 3-1: Three-tier architecture used in GIMA

GJMA uses a three-tier architecture, as Figure 3-1 shows, to solve the problems of diverse
computing power and functionalities, End=users use their own desktops or mobile devices,
called end-devices, in the front-tier to access mobile applications. There is at least one
application server in the middle-tier, which-provides necessary execution environments and
services for running applications and end-devices. An application in the GIMA is designed to
be capable of running in the front-tier (fat-client computing), in the middle-tier (thin-client
computing), or even in both tiers (distributed computing) simultaneously depending on the
computing power and functionalities of end-devices. More front-tier computing power means
more codes will be run in the front-tier (implicitly fewer codes will be run in the middle-tier).

By analyzing, an application may therefore face three different running cases:

® The computing power of the end-device is not good enough or the device cannot run
applications other than built-in applications. The device here is not suitable for the
application or cannot run the application. Thus, thin-client computing, such as WEB-based

technology, is suitable for this case. Entire application codes must be executed in the

-17 -

middle-tier, and the front-tier is only responsible for user interface.

® The computing power of the end-device is good enough and the device supports all
functionalities which the application requires. In this case, entire application codes can be
executed on end-devices. This is a kind of fat-client computing, like running a Java ME
MIDP application on a mobile device.

® The computing power of the end-device is good enough but the device does not support
all functionalities which the application requires. The device in this situation cannot
execute some codes within the application, and these codes have to be handled by the

middle-tier application server. This is a kind of distributed computing, such as Java RMI.

To support all kinds of end-devices, GIMA provides three different running modes for an
application to fit the three cases above: BROWSER mode (thin-client computing),
STANDALONE mode (fat-client_computing), and-MASTER-SLAVE mode (distributed

computing). Section 3.3 will discuss the details.

3.2. GIJMA System Entities

The GIMA framework contains three important entities: end-device (GJMACIient), GIMApp,
and GJMAServer. In Figure 3-1, End-device (GJIMACIient) participates in front-tier and
GJMAServer involves in middle-tier as the application server. Furthermore, GIMApps are

applications capable of running in one of the three running modes.

3.2.1. End-device (GJMACIient)

An end-device is any device used by an end-user in the front-tier. These include PDAs, mobile
phones, notebooks and so on. End-devices can be divided into two categories according to their
programmable characteristics. All end-devices belonging to the programmable GIMACIient

category can execute applications other than their built-in applications. On the other hand, all

-18-

end-devices belonging to the non-programmable GIMACIient category can only execute the

built-in applications.

Because there are many differences between end-devices, the GIMA framework contains an
end-device database to provide related information. This database helps the GIMA framework
adjust applications to fit different end-devices. The end-device database comprises two XML
[27] documents: device profile and class profile. Device profile describes related information
for end-devices, and class profile describes decision trees used to find the most suitable classes.
End-device capabilities are listed in device profile as Listing 3-1 expressed, including
execution environments, screen size and other data. Figure 3-2 is an example of a decision tree
for the org.gjma.application.GIJMApp class. The class has four implementations for different

running modes and Listing 3-2 is the corresponding.class profile.

<Vendor="SonyErission">
<Device name="k700i" >
<Browser type="WAP">
</Browser>
<ExecutionEnvironment val="J2ME_MIDP">
</ExecutionEnvironment>
</Device>
</Vendor>

Listing 3-1: Partial device profile

Running modes?

BROWSER

STAND/

¥

a b

ALONE

Server or Client?

-19-

Figure 3-2: The decision tree for the class org.gjma.application.GIMApp

<Class name="org.gjma.application.GJIMApp">
<Decision var="RunningMode">
<Equal val="BROWSER">
<Edition name="a" path="BROWSER\org\gjma\application\GJIMApp.class” />
</Equal>
<Equalval="STANDALONE">
<Edition name="b" path="STANDALONE\org\gjma\application\GJMApp.class“ />
</Equal>
<Equal val="MASTERSLAVE">
<Decision var="MasterOrSlave">
<Equal val="Master">
<Edition name="c" path="MS\MASTER\org\gjma\application\GJIMApp.class” />
</Equal>
<Equal val="Slave">
<Edition name="d" path="MS\SLAVE\org\gjma\application\GIMApp.class* />
</Equal>
</Decision>
</Equal>
</Decision>
</Class>

Listing 3-2: Partial class profile

3.2.2. GIMApp

Every mobile application developed from the . GIMA framework is called a GIMApp.
Developing a GIMApp is similar to writing a general Java ME MIDP application, but there are
something differences between them as Listing 3-3 shows. In Java ME MIDP applications,
developers must consider whether or not the classes within the Java ME application are
compatible for end-devices. This is because all classes have to be handled by the end-devices.
Conversely, GIMApp developers need not worry about compatibility problems since the server
will help end-devices handle all incompatible classes. Classes which need to be executed by the
servers are determined in deployment time. A GIMApp can be deployed in different running
modes according to end-device execution environments, computing power, and functionalities.
Because different running modes have different requirements for end-devices, a GIMApp can
support the majority of end-devices by adapting to different running modes. As a result,

developers do not need to take different devices into account. Instead, they can focus on

-20-

business logic only. Section 4.4.4 introduces deployment process details.

public class TestMIDlet
extends javax.microedition.midlet.MIDlet {

public TestMIDlet() {
//constructor
}
public void startApp() {
//this will be called, when MIDlet is started
}
public void pauseApp() {
//this will be called, when MIDlet is paused
}
public void destroyApp(boolean unconditional) {
//this will be called, when MIDlet is destroyed
}

public class TestGIMApp
extends org.gjma.application.GJIMApp {

public TestGJIMApp() {
//constructor
}
public void startApp() {
//this will be called, when GJIMApp is started
}
public void pauseApp() {
//this will be called, when GJIMApp is paused
}
public void destroyApp(boolean unconditional) {
//this will be called, when GJIMApp is destroyed
}

} }
Listing 3-3: Java ME MIDP codes vs. GIMApp codes

Every GIMApp has a main class which must inherit from the org.gjma.application.GIMApp
class. This is similar to every Java:ME \VHDP application which has a main class which must
inherit from javax.microedition.midlet. MIDlet class.“The GIMA framework, like software
development kits, provides classes other.than the org.gjma.application.GIMApp class as Table
3-1 shows. This helps developers build mobileapplications efficiently. The GIMA framework
prepares many different editions of classes to support all kinds of end-devices in three running
modes. Different editions of a class have the same functionalities but have different
implementations. When a GIMApp is deployed, the most suitable classes are chosen according
to the class profile in the end-device database. For example, the class
org.gjma.ui.LayoutManager is used to arrange widgets, and has two editions. One is for small
screens and the other is for large screens. Another example is that the class
org.gjma.application.GJIMApp, which initializes all necessary resources in runtime, has four
editions. One is for the STANDALONE mode, one is for the BROWSER mode, and two are for

the MASTER-SLAVE mode as Figure 3-2 shows.

Table 3-1: The GIMA packages
-21 -

packagename descriptions

org.gjma.application core package, including main class, loader class and so on

org.gjma.ui all userinterface related classes are putin this package

org.gjma.io The classesusedto handle I/O are putin this package

org.gjma.service The classesrelated to UPnP, Web Service and Jini are putin this package
org.gjma.util The utility classes are putin this package

3.2.3. GIMAServer

The GIJMAServer plays an important role in the BROWSER and the MASTER-SLAVE modes.
If a GIMApp is run in the STANDALONE mode, the GIMAServer is unnecessary. Generally
speaking, the GIMAServer provides runtime environments and services for GIMApps. The
GJMAServer’s main functions are application management, communication management, and
user interface adaptation. Application management manages the lifecycle of GIMApp. It can
load, start, and stop a GIMApp accarding to end-device requests. Communication management
supports different network protocols. It converts all requests into messages, named GJMAMesg
described in section 5.2. Moreover,user. interface adaptation transforms user interface to

different content formats.

3.3. Three Running Modes in GIMA

This subsection discusses the concepts of the three running modes. The mode(s) in which a
GJMApp is deployed depends on which end-devices are used, and the decision is made in
deployment time. In other words, a GIMApp may be simultaneously deployed in different
running modes to support different kinds of end-devices. End-device deployment results may
be different even though a GJMApp is deployed in the same running mode because the

end-devices may have different functionalities as Figure 3-3 shows.

-22 -

GJMAClient GJMAServer

SiMApp BROWER oA 5
O " ® |
GJMAppStandalone

STANDALONE - 5
©0L @

MASTER-SLAVE

GJMAppSlave GJMAppMaster

E+) (4)

MASTER-SLAVE

Figure 3-3: A GIMApp deployed to different running modes or devices.

Figure 3-3 is a sample to demonstrate the result'after. deployment. Many details, such as proxy
class and other necessary classes, are omitted-in this figure to keep it simple. For the same class
name, different superscript represents: different editions/implementations. In Figure 3-3, the
original GIMApp is consisted of two classes, X and Y. Moreover, the GIMApp is deployed to
four different end-devices.

(1) Deploy the GIMAPP to BROWSR mode. Both X and Y are placed on GIMAServer.

(2) Deploy the GIMApp to the STANDALONE mode. Both X and Y are placed on
GJMAClient, specially named GIMAppStandalone.

(3) Deploy the GIMApp to the MASTER-SLAVE mode. X is placed on GIMACIient,
specially named GJMAppSlave and Y is placed on GJMAServer, specially named
GJMAppMaster.

(4) Deploy the GIMApp to the MASTER-SLAVE mode also. This case is similar to the
case (3) but the target end-device is different. Hence, (3) and (4) have different results.

In other words, (3) and (4) used different editions of class X.

-23-

3.3.1. BROWSER Mode

In the BROWSER mode, all GIMApp codes are handled by a GIMAServer. The front-tier in

Figure 3-1 is a presentation layer, and end-devices are responsible for user interface only as

Figure 3-4 shows. End-users can use many types of devices in the front- tier and the GIMA

framework will automatically tailor content formats to fit various end-devices in runtime.

When a GIMApp is deployed in the BROWSER mode, it can be used by a great majority of

browser-enabled devices. This mode is also device-independent, and all GIMApps can be

deployed in this mode.

W widgets
widg

L]

GJMABrowser

GJMAMesg over HTTP,
TCPor.UDP

Java ME MIDP/Java SE

widgets

widgg

ok

GJMAServer

Built-in browser

Java SE

HTTP or WAP

Symbian/WinCE

Front-tier

Middle-tier

Figure 3-4: A diagram for the BROWSER mode

Currently, GJMA systems support two kinds of browsers: built-in browsers and the

GJMABrowser. End-users can use either one, but the latter is specifically designed for GIMA

use. As a result, it has better display effects and interactive abilities. However, it requires a

GJMABrowser installation before use. For built-in browsers, no additional applications need to

be installed prior to use.

® Built-in browser

=24 -

Mobile devices use many different kinds of built-in browsers, such as XHTML browsers,
WAP browsers, and others. They may use different network protocols to communicate,
including HTTP and WAP. This means that a GIMAServer must support these different
protocols. Currently, most mobile devices have a built-in browser. If an end-device is a
non-programmable GJIMACIient, its built-in browser is the only interface to interact with

GIMApps.

® GJMABrowser
A GIJMABrowser is a mobile application capable of drawing Ul widgets and handling
end-user actions. A GJMABrowser only can be installed on a programmable
GJMACIient. It interacts with GIMApps by delivering GIMAMesg between them. The
most popular mobile device programming environments are currently Java ME MIDP
and .NET CF. Two editions_of GIJMABrowser are implemented to support both

environments.

The front-tier consumes very few resources in this mode because all application codes are
handled by the middle-tier. The front-tier is responsible for presentation only. End-users can
access several mobile applications simultaneously in this mode, and GJMA provides a menu
like the task manager in Microsoft Windows XP (see Figure 3-5). This helps end-users select

which GIMApp to start, stop or switch to.

-25-

Figure 3-5: A screenshot of the GIMA task manager

3.3.2. STANDALONE Mode

In the STANDALONE mode, all application codes are run entirely on end-devices and do not
need any middle-tier assistance, implying that this mode can be used in an environment without
a network. When a GIMApp is deployed in the STANDALONE mode, the entire application,
called GIMAppStandalone, will be executed devices which are powerful enough. This mode is
device-dependent, so the application must be re-deployed when changing end-devices. In other
words, a GIMApp has to be deployed in the STANDALONE mode many times for different

end-devices.

3.3.3. MASTER-SLAVE Mode

When a GIMApp is deployed in the MASTER-SLAVE mode, its codes will be divided between
end-devices and the GJIMAServer as Figure 3-6 shows. The end-device part belongs to
GJMAppSlave, and the GIMAServer part belongs to GIMAppMaster. Both of them are
generated automatically from the original GIMApp in deployment time. The details will be

described in section 4.4.3.

-26-

GJMAppMaster
GMAMesg over HTTP,
APP1 TCP or UDP GJMAServer
GJMAppSlave — |
Java ME MIDP/Java SE Java SE
Front-tier Middle-tier

Figure 3-6: A diagram for the MASTER-SLAVE mode

3.3.4. Three Running Modes Comparison

Table 3-2 is a comparsion table among the three running modes and there are five criteria in the
table. The first criterion is the computing power requirement for end-devices. Today, almost
end-devices can access a GIMApp in the BROWSER mode. The second criterion is whether or
not need network environemnts when running a GJMApp. If a GIMApp is deployed in
STANDLAONE, the GIMApp can be executed when off-line. The third criterion is whether or
not support to access multiple GIMApps concurrently. Because almost end-devices, especially
hand-held devices, can only run a KVVM at the same time, they can only launch a Java
application at one time also. The fourth criterion is whether or not need to install additional
program on end-devices. In GIMA, only GIMABrowser has to be installed. The final criterion

is whether or not to deploy a GIMApp on end-devices before accessing it.

Table 3-2: The comparsion table of the three running modes.

BROWSER MASTER-SLAVE | STANDALONE
built-in | GIMABrowser
1.requirements Low Middle High
2.need network? Must Must No
3. support multi-tasks? Yes No No
4.needinstallation? No Yes No No
5.need deployment? No Yes Yes

-27 -

Chapter 4 GIJMA Design Issues

This chapter contains two parts. The first part introduces system architecture and the second

part discusses adaptation mechanisms.

4.1. GIMAServer Architecture

GJMAServer plays an important role in the BROWSER and MASTER-SLAVE running modes
because some GJMApp codes are executed by the GJMAServer in these two modes.
GJMAServer architecture is shown in Figure 4-1. It can be considered a layered architecture;
with an Adaptive Transport Layer, a Message Routing Layer and an Application Runtime
Layer from bottom to top. In this way, GIMA can be modularized very well and the layered
design makes maintenance and upgrading easier, The following sub-sections will discuss these

three layers respectively.

Application Runtime Layer

Non-GJMA

Message Routing Layer
8 gLy resources

Adaptive TransportLayer

Java Virtual Machine

Operating System

HTTP TCP ubP Others

Figure 4-1: The layered architecture of GIMAServer.

4.1.1. Adaptive Transport Layer

The Adaptive Transport Layer enables GIMAServer to communicate with different kinds of
GJMACIients which may use different network protocols. Figure 4-2 helps illustrate the

detailed GJIMAServer architecture.

-28-

The primary role in this layer is Communication Manager (CommMngr), which is a super
daemon capable of handling many different networks protocols including TCP, UDP, HTTP and
so on. It has two missions. First, it establishes the relationship between GJMAServer and
GJMACIient when a GIMACIient sends a login request to GJIMAServer. Secondly, after
successful login, CommMngr creates a logic process (i.e. a user process, including a UserOutD,
a UserInD and a UserOutQ) for the GIMACIient. Every logic process might have different
components or functionalities depending on which network protocol it uses. The UserOutD is a
thread. It is responsible for picking messages called GIMAMesg from the queue named
UserOutQ, and sending them to the corresponding GJMACIient directly or translating
GJMAMesgs to specific content formats. The UserInD is also a thread. It handles GIMAMesgs
from its client directly or translates incoming requests from its client to GIMAMesgs, and then
put them into the queue named InnerQueue. Section 4.5 and Section 4.6 introduce the details of
this layer’s adaptation mechanisms. In short, the main functionality of this layer is to transform
from different network protocols and.contentformats to GJIMAMesgs and to transform

GJMAMesgs to different network protocols and-content formats.

-29-

I'aimapp1 | ! Gimapp2 | I Gimapp3 |
1 1 1

i WinMngr : ; WinMngr : i ObjMngr :
Application AppMngr : I : I : |
Runtime ! = : =, ! =l
La er I I I Illlllllllllllll I
y | ! 1 ! | !
1 ! | ! 1 !
T | T
: | : 1 : |

1 1 |
I ! 1 ! | !
1 : 1 | :

|

Message
Routing
Layer ; - :
1 |
I ! | I
InnerQueue 1 | |
) ! : I
T~ """ XTranslator | =< 1
I I : I I
i 1 1 |
Adaptlve CommMngr | : ! | I I
Transport | | : I , |
UserInD UserOutD UserInD UserOutD UserInD UserOutD
Layer | luserind_serouen } luserind_userown e st
User process User process User process
T TP T HTTP TCP, UDP, or HTTP T
GJMABrowser built=in browser GJMASlave

Figure 4-2: The detailed architecture of GIMAServer.

4.1.2. Message Routing Layer

The Message Routing Layer implements an asynchronous message delivery mechanism and
the process unit in this layer is GIMAMesg, which’s formats is introduced in Section 5.2. This
layer is responsible for delivering GIMAMesgs to right queue(s) depending on the information
encoded in the GIMAMesgs. For example, when a user presses a button or a GIMApp orders
the client-side to create a new Ul widget, a corresponding GIMAMesg will be generated and
routed to the proper destination. The main components in this layer are Queue and Message
Dispatcher (MesgDispatcher). The MesgDispatcher is responsible for routing GIMAMesg to
the correct queue(s). Moreover, there are three kinds of queues on GIMAServer: InnerQueue,

AppInQ and UserOutQ.

-30-

Every request received by UserInD is translated to a GJIMAMesg and placed it into
InnerQueue. Then MesgDispatcher will dispatch them to the some AppInQ in which GIMApp
will process these GIMAMesg or call Application Manager (AppMngr) to handle the

GJMAMesg.

Once a GIMApp generates a GIMAMesg whose destination is a GIMACIient, the message will
be placed in UserOutQ within the GIJMACIient’s user process. UserOutD within the user
process will later send the message to its client or pass the message to the translator according

to the kinds of GIMAClIient.

If a GIMApp needs to negotiate with other GIMApps on the same GIMAServer, GIMAMesgs

will be sent back to InnerQueue and:wait for dispatching by MesgDispatcher again.

Since wireless networks are often tnot stable. enough, the GIJMA framework uses the
asynchronous message delivery mechanism mentioned above for transmissions between
GJMAServers and GIJMACIients. This mechanism decouples the GIMApp and low-level
network protocols, helping the GIMAServer handle disconnection situations and preventing
GJMApps from accessing the network directly. After a GIMACIient reconnected, just rebind
the previous used GIMApps. Also, this mechanism enables communication among GJIMApps

and supports one-to-one, one-to-many and many-to-many modes.

4.1.3. Application Runtime Layer

A GIJMAServer can serve many GJMACIients at the same time. Also, the GIMACIient can
access several GIMApps run on the GIMAServer at the same time if the GIMACIient is a
GJMABrowser or a built-in browser. The Application Manager (AppMngr) is responsible for

loading, resuming and stopping GIMApps. Before starting a GIMApp, AppMngr will check if

-31-

any instance of the GIMApp already exists in the memory. If it does, AppMngr will then check
the startup setting of the GIMApp and decide to create a new instance or bind the GIMAClIient
to the old one. This is useful when a network is temporarily broken. When the GIMACIient
re-connects to the GJIMAServer, previous work can continue. AppMngr uses different class
loader instances to load a GIMApp every time to maintain independent space between them,
This lets every GIMApp have its own space. How to use different class loader instances to

load class is explained in section 5.1.

4.2. GIJMACIient Architecture

There are four kinds of GIMACIient: built-in browser, GIMABrowser, GIMAppSlave, and
GJMAppStandalone. It must be noted that the first one can be used by both programmable and
non-programmable GJMACIient. The remaining-.three can only used by programmable
GJMAClient. Moreover, GIMAppSlave and GIMAppStandalone are generated from original

GJMApp when deployment.

GJMABTrowser architecture is similar to the GIMAServer as Figure 4-3 illustrates. Because a
GJMABrowser can communicate with only one GIMAServer at a time, there are only a couple
of InputD and OutputD in the Adaptive Transport Layer. InputD always listens for an arriving
GJMAMesgs; if it gets any, it will put the message to the InputQ. At the same time, Message
Handler (MesgHandler) retrieves messages from InputQ asynchronously and passes them to
the Command Manager (CmdMngr) or Window Manager (WinMngr). The functionality of
WinMngr is to manage widgets created on the GIMABrowser. CmdMngr plays almost the
same role that the AppMngr on GIJMAServer does, but it does not physically load or stop

GJMApp instances. It only issues those requests to the GIMAServer and waits for the results.

Every widget has an associated listener. Whenever the status of a widget is changed by its user,

-32-

the listener is triggered and generates some corresponding GIMAMesgs. WinMngr then puts

these GIMAMesgs into OutputQ, and OutputD will later send them to the GIMAServer.

Adaptive Message Application
..................... Transport Routing P
Layer Layer Layer
CmdMngr
InputD InputQ MesgHandler
@) > ‘ ‘ ‘ @ s ->
! H Window
GJMAServer I e

OutputD by listener

lngl==

o> 04l

1
L

1

I
e
P

1

1

|

| I
| I
| I
| Q |
| utput() | WinMngr
| I
| I
| I
| I
| I

T - -

Figure 4-3. The layered architecture of GIMABrowser.

4.3. Initialization Process within GIJMApp

Every GIMApp has to be initialized prior to-use, and these initialization process is taken care
by the constructor of the class org.gjma.application.GIMApp. Moreover, different running

modes may need different initialization pracess, and this section will discuss them.

4.3.1. GIMApp in GIMAServer

A GIMApp requires different components when running in different modes on a GIMAServer.
A GIJMApp deployed in the BROWSER mode needs a window manager (WinMngr) to manage
all objects related to user interface. A GIMApp deployed in the MASTER-SLAVE mode needs
an object manager (ObjMngr) for both parts to manage remote objects. These necessary
components are initialized by the org.gjma.application.GIMApp constructor. Hence, when
loading a GIMApp, the constructor will be invoked and the necessary components will be
initialized automatically. The following content discusses the initialization process of a

GJMApp in different running modes.

-33-

® GJMApp in the BROWSER mode
The GIJMApp class constructor has to create a window manager (WinMngr) and the
queue AppInQ is assigned by AppMngr.

® GJMApp in the STANDALONE mode
All codes within the GIMApp are handled by the GIMACIient. The GIMAServer has
nothing to do.

® GJMApp in the MASTER-SLAVE mode (GIJMAppMaster)
The GIMApp class constructor has to create an object manager (ObjMngr) and the queue

AppInQ is assigned by AppMnagr.

4.3.2. GIMApp in GIMAClient

A GIMApp requires different components in differentrunning modes in a GIMACIient also.

® GJMApp in the BROWSER mode (GJMABrowser and built-in browser)
All codes within the GIMApp are handled by the GIMAServer. The GIMACIient has
nothing to do.

® GJMApp in the STANDALONE mode (GJMAppStandalone)
The GJMApp has an empty constructor because it does not need to communicate with
the GIMAServer.

® GJIMApp in the MASTER-SLAVE mode (GJMAppSlave)
The GIJMApp constructor will build a three-layer architecture like the GIMABrowser, as
Figure 4-3 shows. The only difference is in the Application Runtime Layer. In this mode,

this layer contains an ObjMngr instead of the WinMngr.

-34-

4.4. Computing Model Adaptation Mechanism

Three running modes described in section 3.3 are supported in GIMA and every GIMApps can
be adapted to one of the three modes automatically depending on situations in deployment time.
In developmemt time, GIMApp developers do not need to worry about which computing model
is used and do not need to write any interface description files such as CORBA IDL [47][48]. In
other words, To program a GJIMApps is similar to program a Java ME MIDP application.
Moreover, which running mode can be used is determined in deployment time and all necessary
transformations are taken care by GJMA. According to the above descriptions, a computing
model adaptaion mechanisms has to be deisgined in GIMA. It can tailor GIMApps to fit one of
the three running modes. This subsection introduces how a GIMApp can be automatically
adapted to the three running modes: STANDALONE, BROWSER and MASTER-SLAVE,

respectively.

4.4.1. Adapt to the STANDALONE Mode

To tailor a GIMApp to fit the STANDALONE mode is easy. Just replace some classes with the
most suitable classes. In GIMA, there may be many classes having the same class name but
they have different implementations for different purposes. For example, there are several
implementations for org.gjma.application.GIMApp class, placed in different directories, and
each of them has different initialization process for different running modes as sections 4.3
discusses. In other words, every org.gjma.application.GIMApp class implementation is
suitable for a specific running mode and situation (ex. master or slave part). Hence, if a
GJMApp is determined to deploy as the STANDALONE mode, the computing model
adaptation mechanism has to choose an org.gjma.application.GJMApp class file implemented
for the STANDALONE mode from all of them. In addition, in sometimes, the computing

model adaptation mechanism has to consider about other criteria, such as execution

-35-

environment of end-devices, screen size of end-devices, computing power of end-devices, and
so on. For instance, there are two implementations for the org.gjma.ui.LayoutManager class.
One is implemented for big screen and the other is implemented for small screen. It follows
from what has been said that each class may need different criteria and the computing model
adaptation exploits different decision trees for different classes when choosing. Furthermore,
the decision trees are described in the class profile in the end-device database. In the
STANDALONE mode, all codes within a GIMApp are executed in end-devices. It must be
noted that not all end-devices are good enough to execute it, so not all end-devices can run all

GJMApps in the STANDALONE mode.

4.4.2. Adapt to the BROWSER Mode

To tailor a GIMApp to fit the BROWSER mode-is same as to tailor a GIMApp to fit the
STANDALONE mode. The only-difference is that the computing model adaptation mechanism
may choose different class implémentations.because of different running mode and situation.
Take org.gjma.ui.Canvas class implementations” for example. The implementation for
BROWER mode differs from the implementation for the STANDALONE mode. In execution
time, the former only generates internal data structures, which are used to transform user
interface to specific content formats such as HTML, and the latter will call practical API to
draw directly. Consequently, the computing model adaptation mechanism may choose different
implementation for different running modes. In BROWER mode, all codes within a GIMApp
are executed in GJIMAServer and the majority part of end-devices can access all GIMApps in

the BROWSER modes.

4.4.3. Adapt to the MASTER-SLAVE Mode

To tailor a GIMApp to fit the MASTER-SLAVE mode is a little complicated. Generally, a Java

application is consisted of classes and all the classes will be executed by the same host. The

-36 -

STANDALONE and the BORWSER mode keep this characteristic but the MASTER-SLAVE
mode does not. In the MASTER-SLAVE mode, because some codes within a GIMApp cannot
be executed in some end-devices, GIMAServer has to help the end-devices handle these codes.
In this situation, the codes within the GIMApp have to be divided into two parts. One part,
called slave part, is handled by the end-device and the other part, named master part, is handled
by the GIMAServer. The question then arises about how to automatically divide a GIMApp
into two parts without bothering GIMApp developers and both parts can cooperate with each
other in run-time just like running in the same host. The divided strategy can be fine-grained (ex.
method) or coarse-grained (ex. class). To simply the problem, the computing model adaptation
mechanism chooses the latter and the minimum dividable unit in GIMA is class file. Hence, the
reduced problem is how to segment class files within a GIMApp into two parts: master and

slave.

Before discussion, some terminologies-are_defined ‘first. They are defined one by one as

follows:

® remote class
A class is called a remote class if the class is placed in a remote host. The terminology
remote represents an opposite relationship. Hence, in the master part’s viewpoint, the
classes placed in the slave part are called remote class. Moreover, in the slave part’s
viewpoint, the classes placed in the master part are called remote class too.

® remote method
A method is called a remote method if the method belongs to a remote class.

® managed class
A class is called a managed class if the class can be replaced by GIMA. It implies an
action acted on its instance can be directly intercepted by GIMA.

® managed object

-37-

An object is called a managed object if the object is the instance of a managed class.
complementary object

In Java, an object is an instance of a class and it is an individual unit of run-time data
storage. It implies that an object only contains data and the practical method codes are
contained in the class. To be precise, an object is initialized from a class and the class’s
superclass according to Java inheritance relationship, and the methods associated to the
object are contained in the class as well as the class’s superclass. Because the class and
the class’s superclass may be placed in different part in the MASTER-SLAVE mode, an
object created from the class is physically divided into two parts. In this case, the
run-time data storage of the object and the method codes associated to the object are
spread in the two parts’ virtual machine as Figure 4-4 shows. An object is called a
complementary object if the object logically represents the same object in the other part.
In other words, an object and.its complementary object must have the same object id.
Moreover, a complementary object hastwo.main missions. The first mission is to make
the data storage of a logical object.can be spread in two parts. The second mission is to
make both virtual machines have the same object view. In other words, the both two
virtual machines are capable of locating and accessing the same object logically. To
achieve the second mission, a corresponding complementary will be created

automatically by GJIMA in the other part when an managed object was created.

-38 -

i
i class files in slave part

: ' i class files in master part | T
| AP ; proxy | o
1| class B’ € ; , classB |1 T o
: ! proxy : Q=
! class C'F > class C = 2
1 | ! 1 3 (7]
i | i -}
0 | | T 3
! , proxy : S] o S
1| class A : , > classA'|: =
: : : 3
' | ' 2
(o Sy R S ' H
new new new

B complementto |

[~

complementto
object view |

in master part’s VM

object E'yiew
in slave part’s VM

(awn-unu)
M3IA 13[qo [edisAyd

@, : complementto |

(awn-unu)
M3IA 1I3(qo [ed1807

Figure 444: Logical and physical object views

In order to make the both parts cooperate with each other, three problems must be solved. The
first problem is how to intercept all actions which act on remote classes or remote methods. The
second problem is how to reflect these intercepted actions on the corresponding remote classes
or remote methods. The third problem is how to create the corresponding complementary object

when a managed object was created.

4.4.3.1. How to Intercept Invocation Actions

GJMA exploits proxy design pattern [31] as Figure 4-5 illustrates to solve the first problem.
Because many end-devices are JavaME-enabled and Java ME does not support dynamic class

loading [63], GIMA generates proxy classes before run-time. Every proxy class has the same

-39 -

class name, skeleton and inheritance relationship as the original class, but there are no fields in
the proxy class as Figure 4-10 shows. Moreover, the codes within a class and its corresponding
proxy class are different. The former is practical business logic and the latter is responsible for
delegating intercepted actions to the corresponding object managers in the other part. After
proxy classes are generated, each original class which is determined to be placed in the other
part will be replaced with the corresponding proxy class. Then, actions want to act on remotes
classes or remote methods will be intercepted by these proxy classes. When a method within a

proxy class is called, the codes within the method are run as the following steps:

1. Encode action type, target object id, method number, and all parameters into an action
string. Then, fill the action string into the GJIMAMesg. The marshalling details are
discussed in section 5.3.1.

2. Deliver the GIMAMesg to the object manager in the remote host and wait until the result
returns.

3. Decode results into original return type and.return it to the caller. The unmarshalling details

are discussed in section 5.3.2.

Jommmmmm e ———— ~ Jemmmmmmm e ———— ~
/ AN ’ AN
! class A proxy ! H classA !
: 1 : 1
1 : 1 :
1 1

1 1
: 1.invoke hﬂethod§ ! : hﬂethods . '
I (delegation codes) ! 1 (business logic) :
i 1 2. delegate] 1
1 H 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
\ [} \ 1
\ ,I \ ,[
“Jocalhost ___________ - . remote host _.

Figure 4-5: Proxy design pattern

On the other hand, because all codes within proxy classes are only executed when the methods

were called, the proxy class only can be used to intercept method invocation action. However,

-40 -

there are other actions having to be intercepted, such as field manipulation action, synchronized
action and so on. To intercept all possible actions, the original classes within a GIMApp have to
be modified first. The idea is to convert all actions to method invocation actions and a class
modification process is designed to do this. Nevertheless, it must be noted that not all class
modifications are useful, because the built-in classes, such as java.lang.String, have the highest
class loading sequence. For example, there are two java.lang.String class implementations. One
is built-in class placed in rt.jar and the other is modified one placed in somewhere. In the case,
both have the same class name but the former is always loaded when JVM requires
java.lang.String class. For the reason that the former has higher class loading sequence than the
latter has. To sum up, the modified classes for these built-in classes are never loaded and these
modifications are useless. To solve the problem, the class names of the modified classes for the
built-in classes have to be changed and all classes which references to the modified class have
to be changed also. Too many -classes involve ‘in. this changes and it is hard to complete.

Hence, GIMA divides classes into twao.categories: managed class and un-managed class.

-41 -

ref.

uonedIpow 210434

e e —————————— -
4 - PaRRTN ~

/ -% / \\\Nrapper \

] I . \

1 " 1

1 1

! ! ref. C)

1 1 2

1 1 e+

1 1 0O

1 1 : =

1 1

1 I 1 3

I I 1 9

I 1 1 2

1 1 : —h

! ! ref o

1 1 o

i . i)

: i (=4

I i 1 S
1

| | !

\ [} F;

7

(.~ un-managedclass _,

N e o o i e e e e e -

Figure 4-6: The relationship-between managed and un-managed class

Moreover, GIMA only modifies classes belonging to managed class and the wrapper design
pattern [31] as Figure 4-7 shows is used to bridge between both. Instead of modifying
un-managed classes, just generate wrapper classes to wrap them. After modification, all codes
referencing to un-managed classes in the managed class are replaced to reference to the
corresponding wrapper classes and the codes in the un-managed class are never modified as

Figure 4-6 illustrates.

yo T T T T T T T T T T “\\

/
] class A wrapper classA \
' i
H 1
I

I
1 1.invoke Methods Methods . H
H (reflection codes) (business logic) I
: 2. reflect :
' i
! 1
! 1
! I
\]
“lecalhost A

Figure 4-7: Wrapper design pattern

4.4.3.2. How to Reflect Intercepted Actions

Because Java ME does not support Java reflection [64], the GIMA framework generates an
object manager class, named ObjMngr, for a GIMApp to solve the second problem. All
ObjMngr classes are responsible for delegating actions to the corresponding classes or methods.
Because of lacking Java reflection mechanism, all methods which can be called by an ObjMngr
have to be determined in deployment time. Thus, a method table is hard-coded in every
ObjMngr class and the table is generated in deployment time. In run-time, when receiving a
command from proxy classes on the other side, the ObjMngr will traverse into the method table

and invoke the corresponding methods. The steps are as follows:

1. (Unmarshaling) Decode action string in the received GIMAMesg.
2. Traverse into the method table according the methoed number in the action string.
3. Invoke the corresponding methods within the practical object or class.

4. (Marshaling) Encode the results into an action string.

proxy object object manager modified object

. ; | |
invoke !

|
|
|
marshal !
send invoke message |

unmarshal
invoke

result D
e ,,,,,,,,,,,,,,,,
> marshal
L send result message

result > unmarshal i
|

Figure 4-8: The sequence diagram for the proxy class.

-43-

4.4.3.3. How to Create Complementary Objects

In order to solve the third problem, instance creation actions have to be intercepted. To do this,
GJMA has to find a hook point in an object initialization path and then inject some
interception-related codes into it. It is desirable to describe some Java characteristics before
moving on to the main topic. Java guarantees that the constructor method of a class is called
whenever an instance of that class is created. It also guarantees that the constructor is called
whenever an instance of any subclass is created. In order to guarantee this second point, Java
must ensure that every constructor method calls its superclass constructor method. In other
words, there is a constructor chaining when creating an object. Because the top class in every
constructor chaining is always the class java.lang.Object, which is the root of the class
hierarchy as Figure 4-9 shows, and:it has only one constructor Object(), the constructor is
always called when an object is created. If it is possible to inject interception-related codes into
the constructor Object(), then instance.creation.actions-can be intercepted. However, there is no
way to replace the built-in class java.lang.Object ‘as the previous discussion. Hence, GIMA
exploits another way to do this. GIMA modifies the original inheritance relationships as Figure
4-9(a) shows by inserting a class org.gjma.application.GIMAObject as Figure 4-9(b) shows.
The superclass of the class org.gjma.application.GIMAODbject is the class java.lang.Object.
After the insertion, the constructor within the class org.gjma.application.GJIMAObject will be
called when every managed object is created and then the interception-related codes can be put

in the constructor.

-44 -

TestX Testl Object

insert

TestX Testl GJMAObject Object

(b)

¢+ L FTC TL7"T

Figure 4-9: Insert GIMAODbiject in the inheritance chaining

When the interception-related codes are executed, it implies a managed object is been creating
and the codes respond to send a creation command encoded in a GIMAMesg to the other
part’s object manager. When the object manager receives the GIMAMesg, the object manager
will create the corresponding complementary object. After the complementary object is built,
some initialization codes belonging:to the other censtructors in the constructor chaining will

be executed to complete all necessary initializations. The following serves as an example.

Figure 4-10(a) is the general case and the original Classes are placed on the same host. Figure
4-10(b) is the case after a deployment and the original classes are spread into two parts. In
order to make the discussion clear, some fields and methods are ignored. In Figure 4-10(a), if
ObjectX is created from ClassB, ObjectX will have three fields: fieldl, field2 and field3. This
obeys inheritance associations. If ClassA and ClassB are placed on the same host, there is no
trouble. In Figure 4-10(b), ClassA on HostB (GJMACIient) is replaced by its proxy class and
ClassB on HostC (GJMAServer) is also replaced by its proxy class. In Figure 4-10(b), if
ObjextY is created from ClassB, ObjectY will have only two fields: field2 and field3, because
of no fields in proxy classes. According to the previous definition, the missed field fieldl
should be in its complementary object in the other part. In the example, the complementary
object of ObjectY will be created from ClassB on HostC, and it will have one field: field1. This

means that a logical object may be divided into two parts physically. Traditionally, when an

-45-

object is created from a class, its constructor will be called and the constructor will call the
constructor of the superclass recursively. For example, in Figure 4-10(a), when an object is
created from ClassB, the constructor chaining is executed as following orders:
1. Constructor ClassB() is called and it calls the constructor ClassA().
2. Constructor ClassA() is called, and it calls the constructor Object().
3. Constructor Object() is called and it is the last constructor to be called. It will create
the object instance and then return.
4. Return to constructor ClassA(). The fieldl is initialized here and the remaining
initialization codes in the constructor are executed. After completion, the constructor
returns.
5. Return to constructor ClassB(). The field2 as well as field3 are initialized here and the
remaining initialization codes in:the constructor are executed. After completion, the

constructor returns and the object initialization.is'completed.

- 46 -

Object

+Object()

ClassA

+ClassA()
+method1()
+method2()

|

ClassB

-field2
-field3

+ClassB()
+method3()

(
I
I
I
I
I
I
I
I
I
I
| | [ietdx
I
I
I
I
I
I
I
I
I
I
I
I

We should notice that the initialization order has to be kept after replacing some classes with
proxy classes. Figure 4-10 (b) is an example after a deployment. When an object is created
from ClassB on HostB (GJMACIient), the initialization order is as follows: (The paragraph
starting with Arabic numerals is used to describe the actions taken place on HostB. The

paragraph starting with Roman numerals is used to express the actions taken place on

HostC.)

after deployment

—

Object Object
+Object() +Object()
GJMAObject GJMAODbject
-object_id -object_id
+GJMAODbject() +GJMAODbject()

+GJMAObject(GIMACIass)()

+GJMAObject(GIMACIass)()

ClassA

-field1

+ClassA()
+ClassA(GMACIass)()
+init_ClassA()
+method1()
+method2()

-field2
-field3

+ClassB()
+ClassB(GMACIass)()
+init_ClassB()
+method3()

HostB
(GMACIient)

HostC

Figure 4-10: Separate two associated-classes into two different hosts.

1. Constructor ClassB() is called and it calls the constructor ClassA().

2. Constructor ClassA() is called, and it calls the constructor GIMAODbject().

3. Constructor GIMAODiject()is called and it calls the constructor Object().

4. Constructor Object() is called and it is the last constructor to be called. It will create

-47 -

N -

the object instance and then return.
5. Return to constructor GIMAODbject (). The codes will send a creation command to the
object manager on HostC (GJMAServer).
I. The object manager on HostC receives the command. It calls constructor
ClassB(GJMApp) to create the complementary object.
Il. Constructor ClassB(GJMApp) is called and it calls the constructor
ClassA(GJMApp).
I1l. Constructor ClassA(GJMApp) is called and it calls the constructor
GJMAODbject(GIMApp).
IV. Constructor GIMAObject(GIMApp) is called and it calls the constructor
Obiject().
V. Constructor Object() is called-and it is the last constructor to be called. It
will create the abject instance.and.then return.
VI. Return to constructor GIMAODbject(GIMApp). The codes will set object id
and then return.
VII. Return to constructor ClassA(GJMApp). Do nothing and return directly.
VIII. Return to constructor ClassB(GJMApp). Do nothing and return directly. The
empty complementary object is completely created.
IX. Return to the object manager. It will store the relationship between the object id
and the complementary object reference and then send result to HostB.
6. Return to constructor GIMAODbject(). It will store the relationship between the object
id and the object reference and then return.
7. Return to constructor ClassA(). Because ClassA is a proxy class, it will invoke a remote
method init_ClassA(). The field1 will be initialized in its complementary object on HostC.
8. Return to constructor ClassB(). ClassB is not a proxy class so the field2 and field3 will be

initialized here by invoking the method init_classB(). After completion, the constructor

-48 -

returns and the object initialization is completed.

When an object is created from ClassB on HostC (GJMAServer), the initialization order is as
follows: (The paragraph starting with Arabic numerals is used to describe the actions taken
place on HostC. The paragraph starting with Roman numerals is used to express the actions
taken place on HostB.)
1. Constructor ClassB() is called and it calls the constructor ClassA().
2. Constructor ClassA() is called, and it calls the constructor GIMAODbject().
3. Constructor GIMAObiject()is called and it calls the constructor Object().
4. Constructor Object() is called and it is the last constructor to be called. It will create
the object instance and then return.
5. Return to constructor GIMAQDbject (). The:codes will send a creation command to the
object manager on HostC (GJMAServer).
I. The object manager-on :HostB_receives the command. It calls constructor
ClassB(GJMApp) to create the complementary object.
Il. Constructor ClassB(GJMApp) is called and it calls the constructor
ClassA(GJMApp).
I1l. Constructor ClassA(GJMApp) is called and it calls the constructor
GJMAODbject(GIMApp).
IV. Constructor GIMAObject(GIMApp) is called and it calls the constructor
Obiject().
V. Constructor Object() is called and it is the last constructor to be called. It
will create the object instance and then return.
VI. Return to constructor GIMAODbject(GJMApp). The codes will set object id
and then return.

VII. Return to constructor ClassA(GJMApp). Do nothing and return directly.

=49 -

VIII. Return to constructor ClassB(GIJMApp). Do nothing and return directly. The
empty complementary object is completely created.
IX. Return to the object manager. It will store the relationship between the object id
and the complementary object reference and then send result to HostB.
6. Return to constructor GIMAODbject(). It will store the relationship between the object
id and the object reference and then return.
7. Return to constructor ClassA(). ClassA is not a proxy class so the fieldl will be
initialized here by invoking the method init_classA(). After completion, it returns.
8. Return to constructor ClassB(). Because ClassB is a proxy class, it will invoke a remote
method init_ClassB(). The field2 and field3 will be initialized in its complementary object on

HostB. After completion, the constructor returns and the object initialization is completed.

It will be clear from these examples.that wherever the object is created on, the initializations
orders are similar to the original‘initialization.orders/but the original object is divided into two
objects (an object and its complementary. object) physically. So far, we have seen that creating

an object from ClassB on HostB is equivalent to creating an object from ClassB on HostC.

4.4.4. Deployment Process

According to the above discussion, there are three main functionalities in computing model
adaptation mechanism: class replacement, class modification and class generation. Thus, a
deployment process is designed to apply the computing model adaptation mechanism. Different
running modes require different deployment processes, as Figure 4-11 shows. Three important
components participate in the deployment process. They are preprocessor, the analyzer and the

deployer.

The preprocessor modifies the bytecodes within original classes and gerneate some wrapper

-50 -

classes for the un-managed classes. Every modified class and wrapper class is equivalent to the
original class, but bytecodes have small differences. Moreover, the analyzer generates proxy
classes and ObjMngr classes by analyzing the class file. Both preprocessor and analyzer exploit
a class file manuiplation tool, BCEL [62], to handle all class file modifications, including
bytecode modificaitons. The deployer packages necessary classes together. It will lookup
end-device database when deployment. The end-device database is consisted of two XML
documents : device profile and class profile. The former describes capabilities about
end-devices and the latter describes the requirements of classes. The deployer use information

in end-device database to choose suitable classes which can be original or generated classes.

I .
| | Source codes de&gntnne:
| (*.java) |
: L Original : Modified Proxy
I compiler classes preprocessor classes analyzer classes
| Library :
I'| (*.class;*.jar) I 1
| : End-device Jookup
———————————————————————— AP database < » deployer
deployer Y v A%
S
BROWtSER deployer 5;
repository , * 1 ﬁ
An end-device @-é?-‘-/-i-g?--%g-e---- MASTER-SLAVE An end-device
(STANDALONE mode) < repository (MASTER-SLAVE mode)

Figure 4-11. The GIMApp development flow.

The following discussion contains some notations which are defined as follows. If a GIMApp
named APP1 has only three classes, X, Y and GJMApp, it is represented by the notation
APP1={X, Y, GIMApp}. Moreover, notation X’ is used to represent the corresponding proxy
class of class X. Because some classes provided by GIMA have more than one implementation,
the implementation name is denoted by a superscript lowercase letter a, b, ¢ and so on, to
distinguish them. For example, X* and X" represent two different implementations for class X.

In other words, X? and X® have the same interface and functionalities, but have different

-51-

implementations. Because X* and X" have the same interface, they will have the same

corresponding proxy class X.

A GIJMApp can be deployed in three modes. Different modes or runtime environments may
require different GIMA class implementations, and deployers are responsible for choosing
correct and suitable classes by searching the end-device database. APP2={X, Y, Canvas,
GJMApp} is used as an example in the following. Canvas® is an implementation for BROWER
mode. Canvas® is another implementation for the STANDALONE and the MASTER-SLAVE
mode. GJMApp* is an implementation for the BROWSER mode. GIJMApp® is an
implementation for the STANDALONE mode. GIMApp® is an implementation for the slave

part and GIMApp* is an implementation for the master part in the MASTER-SLAVE mode.

If an application is deployed in the BROWSER-mode,-it does not need to be modified. Just put
the original class file within the application-to. BROWSER repository, because the default
implementation of GJIMA classes IS just for the -BROWSER mode. GJIMA classes for the
BROWSER mode will intercept all user interface actions and translate them into the
corresponding GJIMAMesgs. If APP2 is deployed in the BROWSER mode, the result is

APP2={X, Y, Canvas®, GIMApp® }.

If an application is deployed in the STANDALONE mode, it also does not need to be modified.
The deployer will replace some GIJMA classes with the correct class implementations. If APP2
is deployed in the STANDALONE mode, the result is APP2={X, Y, Canvas®, GIMApp",

Loader}. Loader is a frontend program to load the GIMApp.

If an application is deployed in the MASTER-SLAVE mode, the application must be modified

first, and then generate corresponding proxy classes and ObjMngr classes. In this mode, the

-52-

application is divided into two parts, and the deployer packages them. In the slave part, the
deployer will insert the ObjMngr class and replace some GIJMA classes with the correct class
implementations. The deployer will also replace some classes which cannot be executed by
end-devices with the corresponding proxy class. In the master part, the deployer will also add
the ObjMngr. If the slave part contains class X, the deployer will choose X’ to package the
master part. If the slave part contains class Y”, the deployer will choose Y to package the master
part. The master part and slave part are complementary. Furthermore, the class which can be
executed on end-devices depends on the end-device database. If APP2 is deployed in the
MASTER-SLAVE mode and Y cannot be processed by the end-device, the results are
SLAVE={X, Y’, Canvas”, GIMApp®, ObjMngr, Loader} and MASTER={X’, Y, Canvas’,

GJIJMApp?, ObjMngr}.
4.5. User Interface Adaptation Mechanism

In the STANDALONE and the MASTER-SLAVE mades, all classes related to user interface
are executed on end-devices. In these-two modes, user interface adaptation is achieved by
replacing user interface related classes within the application with suitable ones according to
the class profile in the end-device database. The remaining content in this section will focus on
user interface adaptation for the BROWSER mode, in which all classes related to user interface

are executed on GIMAServer.

A GIMApp developer does not need to know what kind of GIMACIient the application serves.
When a GJMApp runs in the BROWSER mode, it handles and generates GJIMAMesgs
regardless of the client type. To serve built-in browsers, the GIMA framework needs a
mechanism to translate GIMAMesgs to other content formats, such as WML or HTML, and

this mechanism is implemented in adaptive transport layer.

-53-

Section 4.1.1 introduces the CommMngr. One of the CommMngr’s missions is to create a user
process for a client. When a client sends a login request to the GIMAServer, CommMngr will
know what kind of end-device it serves. If the client is a built-in browser, a translator
component within the user process is combined with many convert functions and a layout

managetr.

A layout manager is used to intercept GIMAMesgs transferred to a GJIMACIient. When
receiving a GIMAMesgs, the layout manager processes the GIMAMesgs and keeps widgets in
tree structures, as Figure 4-12 shows. The layout manager knows how many and what kinds of
widgets are created by the GIMApp based on the trees. In addition, the layout manager can
arrange widget positions. Another function of the layout manager is to traverse the tree and call
the corresponding convert functions to translate widgets to specific content formats. When
serving a built-in browser, GIMAMesg are not.sent.to-directly to the client, but handled by the

layout manager.

Every convert function has a different capability to translate a Ul widget in the tree structure to
a corresponding widget of other content formats. Table 4-1 is a widget mapping among tree

element, WML and HTML.

Name:[]
Pass: [] [w

Crextbox O Ctextoox > button

Figure 4-12: A tree structure about user interface

-54 -

Table 4-1: The mapping table among tree element, WML and HTML

Tree element | WML HTML
Window <wml>+<card> <body>
canvas <wml> + <card> + <body> +
4 direction button+ 4 direction button +
listbox <select> <select>
button <a href> <a href>
textbox <input> <input>

4.6. Network Adaptation Mechanism

Because of the diversity of mobile devices, network capabilities are not always the same. Some
devices support TCP but some devices may support only HTTP. In order to hide these details
from mobile application developers, the GIMAServer exploits a loosely coupled design, and
the network adaptation is achieved by asynchronous message routing layer as well as adaptive
transport layer. In adaptive transport. layer, it defines a unified transport interface and all
implementation complied with the interface can be plugged into GIMA framework easily.

Currently, The GIMA framework supports TCP, UDP, and HTTP.

-55-

Chapter 5 GIJIMA Implementation Issues

5.1.

In GIMAServer, all GIMApps are loaded by the same Java Virtual Machine (JVM). It can
reduce resource consumption but may cause some problems. These GIMApps can be written
by different developers. Hence, these GIMApps may contain some different classes with the
same class name. Also, the same GJIMApp may be loaded more than twice to serve different
GJMACIients concurrently. Without independent running space, a GIMApp may inference

with other GIMApps, and may cause incorrect results. An example is given to demonstrate the

GJMACIassLoader

problems.

01
02
03

public interface InterfaceA {
public int get_next_id();
}

Listing-5-1: Inferace A source code

04
05
06
07

01 public class ClassA implements InterfaceA{
02
03 private static int id=0; //start with O
04
05 public synchronized int get_next_id(){ //get next id
06 return(id++);
o7 3}
08 }
Listing 5-2: ClassA source code
01 URLClassLoader loader = URLClassLoader._newlnstance(urls);
02
03 InterfaceA al=(InterfaceA)loader.loadClass(“ClassA’)_newlnstance();

InterfaceA a2=(InterfaceA)loader.loadClass(“ClassA™).newlnstance();

System.out.printin(al="+al.get_next_id()); //al=0
System.out.printin(f'a2="+a2._get_next_id()); //a2=1

-56 -

Listing 5-3: Use the same class loader to load ClassA twice

01 URLClassLoader loaderl URLClassLoader .newlnstance(urls);

02 URLClassLoader loader2 = URLClassLoader_newlnstance(urls);

03

04 InterfaceA al=(InterfaceA)loaderl. loadClass(“ClassA’).newlnstance();
05 InterfaceA a2=(InterfaceA)loader2.loadClass(“ClassA’).newlnstance();
06

07 System.out.printIn('al="+al.get_next_id()); //al=0

08 System.out.printIn(a2="+a2.get_next_id()); //a2=0

Listing 5-4: Use two different class loaders to load ClassA twice

If ClassA listed in Listing 5-2 is loaded twice by the same class loader as Listing 5-3 shows, the
result is unexpected. In Listing 5-3, ClassA is loaded just one time actually and its running
space is the same. Thus, calling the method associated to al may inference with the variable
value in a2. In other words, if twao. more GIMApps use ClassA and they use the same class
loader, these GIMApps will inference with each other. If ClassA is loaded twice by two
different class loaders as Listing'5-4 shows (assume that ClassA is actually loaded by the two
class loaders), al and a2 will ‘have. independent running space and then the code
al.get_next_id() and a2.get_next_id() both return 0. These results lead to the conclusion that

GJMA has to use different class loader to create different independent running space.

Therefore, GIMA can provide independent running space for every GIMApps to prevent them
from breaking in each other. In GIMA, AppMngr uses different class loader to load every
GJMApps and every GIMApp will own an independent space. As a result, the classes with the
same name loaded by different class loader will have different space and JVM treats them as

different classes.

-57-

(N\
BootStrapClassLoader

| sea rch: sun.boot.class.path
J

parent

<
ExtClassLoader

search: java.ext.dirs

parent

AppClassLoader
search: classpath

parent
parent parent

[GJMACIassLoaderl] [GJMACIassLoaderZ]

GJMAClassLoaderN
search: /app/aaa search: /app/bbb

search: /app/xxx

Figure 5-1: Class loader structures

It is helpful to describe how class loaders work in JVM before moving on to the main task.
After JVM initialization, there are three default class loaders: Bootstrap loader, ExtClassLoader
and AppClassLoader. In JVM, each:class loader owns a parent class loader except bootstrap
loader as Figure 5-1 shows. When a class loader triesto load a class, the load mission will be
taken by its parent class first. If its parent'class was failed to load, the load mission is then taken
by itself. Bootstrap loader is implemented by C/C++ and is used to load classes placed in the
path described in parameter sun.boot.class.path, such as rt.jar. ExtClassLoader is used to load
classes placed in the path described in parameter java.ext.dirs. AppClassLoader is used to load
classes placed in the path described in parameter classpath. Thus, in Figure 5-1, when a

GJMACIassLoader tries to load a class, the search sequence is expressed as follows.

1. Bootstrap loader will search the path described in parameter sun.boot.class.path. If failed,
next step continues. If successful, the class is loaded here.

2. ExtClassLoader will search the path described in parameter java.ext.dirs. If failed, next step
continues. If successful, the class is loaded here.

3. AppClassLoader will search the path described in parameter classpath. If failed next step

continues. If successful, the class is loaded here.

-58 -

4. GJMACIassLoader will search the path where the GIMApp is placed in. If failed,

ClassNotFoundException occurs. If successful, the class is loaded here.

If a class can be found in the first three steps, the class will be in the same running space
because the class is loaded by the same class loader. Thus, all classes within GIMApps have
been placed in the specific path and the path should not be described in parameters
sun.boot.class.path, java.ext.dirs and classpath. It will guarantee that all classes within
GIJMApps will be loaded by GIMACIassLoaders. Moreover, in GIMA, every GIMApp
instance is loaded by different GIMACIassLoader and each of them will own an independent

running space.

According to the discussion in section 4.3, the class GIMApp is responsible for initialization.
Thus, every GIMApps has to contain a GIMApp. class and the class has to be loaded by
GJMACIassLoader. It implies the three-default.class-loaders cannot find the class GIMApp.
Hence, AppMngr loaded by AppClassloader cannot access these GIMApp instances directly.
To solve the problem, class GIMApp has to implement an interface named GJMAppInterface
which can be located and loaded by the AppClassLoader and then AppMngr can control these

GJMApp instances by the interface as Listing 5-5 expresses.

01 URLClassLoader cl= URLClasslLoader.newlnstance(urls);

02

03 GIMApplInterface a=(GJIMApplInterface)cl.loadClass(“APP1”) _newlnstance();
04

05 a.start(); //start the GJIMApp

06 a.stop(); //stop the GIMApp

Listing 5-5: Use GIMAppInterface to control GIMApps

5.2. GIMAMesg Format

There are many GIMAMesg formats in GIMA and the base format of GIMAMesg is illustrated

-59 -

in Figure 5-2. In the base format, there are only two fields with fixed size and an optional
type-specific payload. Whatever the running modes is, the meanings of first two fields for
every GIMAMesg is the same. The length field contains the information about the total length
of the GIMAMesg and its data type is a short. By reading the length field, the boundary of the
GJMAMesg can be recognized. The type field contains the information about which command
the GIMAMesg represents, such as create a window (in the BROWSER mode), invoke a
method (in the MASTER-SLAVE mode), and so on. Moreover, the type field is also a short
and the most two significant bits represent which mode the command belongs to. The
remaining of the GIMAMesg is the type-specific payload. Its size and content depends on the
type field. For example, the invocationld field only appears in the type-specific payload when
the type field value represents a method invocation command. It must be noted that different
running modes use different format.to communicate. The variable GIMAMesg format makes

all information useful in a GIMAMesg and it reduces the size requirement for GIMAMesgs.

length (short) running modes command

emcane B 1 |
type (short) IZoomin>‘é‘411‘g‘%|1‘3‘9‘8‘7|6‘5‘4‘3‘2|1‘.O|
bits for running modes bits
00: system use

type-specific 01: BROWSER mode
payload(?) 10: MASTER-SLAVE mode

Figure 5-2: Base GIMAMesg format

5.2.1. GIMAMesg for System Use

There are several commands for system use, such as login, logout, start a GIMApp in the
BROWSER mode, start a GIMApp in the MASTER-SLAVE mode, stop a GIMApp, and so
on. Basically, different commands will need different values in the type-specific payload. For
example, the value should be the user id and password if the command is login, the value

should be the GIMApp’s name if the command is start, and the type-specific should be empty

-60 -

if the command is logout. In other words, GIMA will treat the type-specific payload value as

different meanings according to the type field value.

5.2.2. GIMAMesg for BROWSER Mode

The number of fixed fields in a GIMAMesg for the BROWSER mode is four. The first two
fields are the same as the fixed fields in the basic format. The appld (application id) field
contains the id of the destination GIMApp where the GIMAMesg will go. The widgetld field
contains the id of the target widget which the command will act on. Moreover, there are also
several commands for the BROWSER mode; such as create a form, create a text field, set the
window title and so on. In addition, some commands needs extra parameter and the necessary
parameter will be filled in the parameter field. For instance, the value in the parameter field

should be the window title if the command is setting the window title.

partial possible type values for BROWSER mode

CMDO1-CHANGE . DISPLAY: 0100000000000000b

length (short) CMDO1_KEY_UP: 0100000001000000b

CMDO1_KEY_DOWN : 0100000001000001b

type (short) [> CMDO1 "FORM_CREATE: 0100000010000000b

CMDO1_FORM_ADD_TEXT: 0100000010000001b

appld (short) CMDO1_FORM_ADD__ IMAGE: 0100000010000010b
widgetld (short)

. examples (every line is an example)
parameter(string) Window Title
TextField Value

Figure 5-3: GIMAMesg format for BORWSER mode

5.2.3. GIMAMesg for MASTER-SLAVE Mode

The number of fixed fields in a GIMAMesg for the MASTER-SLAVE mode is five. The first
two fields are the same as the fixed fields in the basic format. The appld (application id) field
contains the id of the destination GIMApp where the GIMAMesg will go. The invocationdld
field contains the id of the invocation. It is used to indicate which invocation the result is for.

The threadld field contains the id of the caller thread. It indicates which thread is used to

-61-

handle the action. Moreover, there are only three commands for the MASTER-SLAVE mode.
They are result, invoke and create commands. The action field contains the necessary

parameter and it is a string. The details about the action field will be described in section 4.3.

length (Short) possible type values for MASTER-SLAVE mode

CMD10_RESULT: 1000000000000000b
type (short) Ej‘> CMD10_INVOKE = 1000000000000001b
appld (short)

CMD10_CREATE: 1000000000000010b

invocactionld (short)

threadld(short)

examples (every line is an example)

. . Test1:51002; <—createan instance
action (Strmg) M1000:2001;0S1002; 150; <—call a remote method

S546; «— returnthe result

Figure 5-4: GIMAMesg format for the MASTER-SLAVE mode

5.3. Marshalling and Unmarshalling

When a remote method is called-or.a complementary object is created, the related parameters
have to be encoded into an action string..After the-remote method was completed or the
complementary was created, the result-is also.encoded into an action string. These encoding
actions are called marshalling. On the other hand, when receiving an encoded action string,
ObjMngr has to decode it first and the decoding action is called unmarshalling. In the
MASTER-SLAVE mode, marshalling and unmarshalling are taken place often, so a utility
class named ActionBuilder is implemented to help proxy classes do this. Currently, the
encoded format is plain string. In other words, all parameters and results are encoded into

strings and then these strings will be filled in the action field in GIMAMesgs.

-62-

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34 }

01 public class ActionBuilder{

public ActionBuilder(String action){//parse the encoded string}
public String toString(){//return the encoded string}

public GIMAClass getClass(){
//return class information encoded in the action string
//the class information contains class name and object id

}

public GIMAMethod getMethod(){
//return method information encoded in the action string
//the method information contains object id and method no.

}

public void init_create(String class_name, String object_ id){
//start to build an action for creation

}

public void init_invoke(String object_id, String method_id){
//start to build an action for invocation

}

public void init_result(){
//start to build an action for result

}

public void add_int(int a){//add a new parameter with type int}

public int get_int(int index){
//return the parameter encoded in the action string in the order index

}

Listing 5-6 is the partial code of the class ActionBuilder. In fact, there are many methods for
different parameters types. However, all methods cannot be discussed here for lack of space.

Basically, there are one pair methods for every data type in the class ActionBuilder. One is

Listing 5-6: The partial source code for ActionBuilder

used to encode and the other is used to decode.

5.3.1. Marshalling

GJMA can call methods belonging to the class ActionBuilder to build action strings on

-63-

demand. An action string is consisted of at least one section and these sections are separated
by semi-colon. The first section is the most important and all action strings own this section
because the action type is encoded in it. There are three possible action types: creation,
invocation and result. The creation type is used when creating a complementary object. The
invocation type is used when calling a remote method. The result type is used when returning

a result. Moreover, these three types need different extra information when used.

When building an action string to create a complementary object, GIMA has to know the
string represents a creation. Besides, GIMA has to know what class the complementary object
belongs to and GJMA has to set the same object id to the complementary object. Thus, the
first section in the creation action string should include the action type, class name and object
id. The information is separated by.«colon. The method init_create is implemented to do this.

The creation action string only has one section.

When building an action string to.call_a remote method, GJIMA has to know the string
represents an invocation. Besides, GIMA has to know the invocation is acted on what object
and method. Thus, the first section in the invocation action string should include the action
type, object id and method id. The information is separated by colon. The method init_invoke
is implemented to do this. The invocation action string may have other sections if the called
remote method needs other parameters. Each section represents a parameter and the sections
are appended one by one after the first section. These sections can be appended by calling the

methods listed in Table 5-2. Listing 5-7 shows a marshalling example.

When building an action string to return a result, GIMA has to know the string represents a
return. Thus, the first section in the return action only includes the action type, so it is a fixed

string. The method init_result is implemented to do this. The result action string should have

-64 -

two sections. The second section is used to represent the result and it can be appended by

calling the methods listed in Table 5-2.

Table 5-1: Methods to build the first section

string type | method the first section format
creation init_create create:{class name}:{object id};
invocation init_invoke invoke:{object id}:{method id};
result init_result result;

Table 5-2: Methods to build the sections other than the first section

data type method appended string format
byte add_byte B{value};
boolean add_boolean Z{value};
char add_char C{value};
short add_short S{value};
int add_int I{value};
float add_float F{value};
long add_long J{value};
double add_double D{value};
string add_string X{value};
object add_object O{value},
void add_void V,

-65-

07

10 }

01 int sum(int a, int b){
02 ActionBuilder invoke=new ActionBuilder(); //create an instance

03 invoke.init_invoke(object_id, 1001); //initialize invoke action
04 invoke.add_int(a); //add the first parameter into the action
05 invoke_add_int(b); //add the second parameter into the action

06 String action=invoke.toString(Q); //get the encoded action

08 //transfer the above action to the remote host and wait the result
09 //unmarshalling and return result

Listing 5-7: A marshalling example

5.3.2. Unmarshalling

When receiving a GIMAMesg with action filed, GIMA has to parse the action field first. The

first step is to use semi-colon as delimiter to break the action string into sections.

sections will be processed individually and the-processing results are stored in internal
structures. After parsing, GIMA.can.get the information about the action string by calling the

corresponding method listed in"Table 5-3.according-to the parameter types or return type.

Moreover, Listing 5-8 shows an unmarshalling.example.

Table 5-3: Methods to get parameter

data type method
byte get_byte
boolean get_boolean
char get_char
short get_short
int get_int
float get_float
long get_long
double get_double

- 66 -

Then these

string get_string

object get_object

01 ActionBuilder ab=new ActionBuilder(m.action); //parse action field
02 ab.get_int(0); //get the first parameters with type int
03 ab.get_int(1l); //get the second parameters with type int

Listing 5-8: An unmarshalling example

5.4. GIJMA Preprocessor

GJMA preprocessor has five main missions. The first mission is to generate necessary wrapper
classes. The second mission is to convert all possible actions to method invocation actions. The
third mission is to make classes capable of creating complementary object by modifying the
original constructors. The fourth mission-isto-wrap some special type such as array. The fifth
mission is to insert GIMAODbject into original constructor chaining. All works are made before
GJMA analyzer in two phases as:Figure 5-5'shows and make GJMA analyzer easier to handle
later. In the first phase, the input is original classes and the output is the necessary wrapper
classes. In the second phase, the input is original classes as well as the wrapper classes
generated in the first phase, and the output is the modified classes. In this section, how to

complete the five missions are discussed respectively.

Wrapper preprocessor
classes
: Modified
Original > Phase 1 Phase 2 > classes
classes I_>

Figure 5-5: Two phases in GIMA preprocessor

-67-

5.4.1. Generate Wrapper Class

Because replacement on some classes such as built-in classes is impossible, GIMA needs to
generate some wrapper classes to wrap these classes. Moreover, this work is done in the first

phase and the workflow is as follows.

1. Find all used classes which cannot be modified.

2. For each class found in step 1, generate its corresponding wrapper class.

The corresponding wrapper class of a class is similar to the original class. Both have the same
superclass and all methods in the original class can be found in the corresponding proxy class,
but the parameter types and the return type may need to be changed because some classes
cannot directly be used in the .MASTER-SLAVE 'mode. In addition, there are two more
differences between them. The codes in-these.methods are different and the field declarations
are different also. Because GJIMA cannot modify-the class loading order, the wrapper class
name should be different from the original class name. If both have the same class name
otherwise, the wrapper class may never be loaded and all efforts to generate wrapper classes are
meaningless. Hence, the different class name guarantees that the proper wrapper class will be
loaded when necessary. To maintain the relationships between wrapper class and original class

easier, a wrapper class naming convention is designed. The naming rule is simple. Just replace

. with character * ’

character in the original class name and then add a fixed prefix

“org.gjma.wrapper.”. Table 5-4 is an example.

-68 -

Table 5-4: Examples for wrapper class naming

Original class name

The corresponding wrapper class name

java.lang.String

org.gjma.wrapper.java_lang_String

java.util.Vector

org.gjma.wrapper.java_util_\ector

An example class test.Fool is given to illustrate how to generate its corresponding wrapper
class org.gjma.wrapper.test Fool. This work is directly made on Java bytecode level in

practical but its equivalent Java source code is used to make the explanation clear. The wrapper

generation steps are described as follows.

1. The wrapper class name is set to org.gjma.wrapper.test Fool. For source code view, it

means the package name and class name have to be changed. In the example, lines 1-3 in
Listing 5-9 are changed to lines 1=3in Listing 5-10.

. Add one field declaration used to store the wrapped object in the wrapper class. The field
type is the original class. In the example, line 6 in Listing 5-10 does this.

. All field declarations in original'class do not.appear in the wrapper class. Nevertheless, the
corresponding SETTERS/GETTERS are generated for these fields. In the example, line 6 in
Listing 5-9 does not appear in Listing 5-10 and lines 8-10 in Listing 5-10 are its
SETTER/GETTER.

. Add one static field declaration used to store relationships between all wrapper object and
wrapped object. In the example, line 12 in Listing 5-10 does this.

. Add a new static method named wrap in the wrapper class. The method functionality is to
wrap an instance of the original class to the instance of the wrapper class. In the example,
lines 14-21 in Listing 5-10 do this.

. Add a new static method named unwrap in the wrapper class. The method functionality is to
unwrap an instance of the wrapper class to the instance of the original class. The
transformation direction is contrast to the wrap method’s direction. In the example, lines

-69 -

23-26 in Listing 5-10 do this.

Add a new constructor which is only used by the wrap method. This constructor just assigns
the field added in the step 3 to an original object. In the example, lines 28-30 in Listing 5-10
do this.

Add all constructors in the original class to the wrapper class. For each added constructor,
the signature is the same as the original constructor but the codes are changed to delegation
codes. In the example, lines 32-34 in Listing 5-10 do this.

Add all methods in the original class to the wrapper class. For each added methods, the
signature is the same as the original method but the codes are changed to delegation codes.

In the example, lines 36-38 in Listing 5-10 do this.

01 package test;

02

03 public class Fool //original class name: test.Fool
04 extends Foo2 { //Fool’s superclass name: test.Foo2
05

06 int a; //field declaration

07

08 public Fool(jJava.lang.String a){ //the constructor

09 //business logic

10 %}

11

12 public java.lang.String toString({

13 //business logic

14 3}

15 }

Listing 5-9: The source code for test.Fool

-70 -

01 package org.gjma.wrapper;

02

03 class test_Fool //the wrapper class name

04 extends Foo2 {

05

06 test.Fool v; //the original class test.Fool
07

08 public int GET_a(Q{return v.a;}//GETTER for field a within v
09

10 public void SET_a(int value){v.a=value};//SETTER for field a within v
11

12 private static HashMap ref=new HashMap(Q); //object references
13

14 public static synchronized test_Fool wrap(test.Fool s){

15 test _Fool t=(test Fool)ref.get(s); //check existence

16 if(t==nul){

17 t=new test_Fool(s);

18 ref.put(s, t);

19 }

20 return(t);

21}

22

23 public static test.Fool unwrap(test_Fool o0){

24 if(o==null) return null;

25 return(o.v);

26}

27

28 private test Fool(test.Fool s){

29 V=S;

30 }

31

32 public test_Fool(Java.lang.String a){

33 v=new test.Fool(a);

34 3}

35

36 public java.lang.String toString(){

37 return(v.toString());

38 3}

39 }

Listing 5-10: The source code for test.Fool’s wrapper

Listing 5-10 is the fully source code of the wrapper class. It is worth to discuss what the method
wrap and unwrap do. Because GJIMA needs to keep original business logic after using the

wrapper class, it is designed to return the same wrapper instance when wrapping the same

-71 -

object. To achieve this, a field with type HashMap (line 12) is used to store relationships
between all wrapper object and wrapped object. When used to wrap an object, the wrap method
will check whether the object is ever wrapped before (line 15). If not (line 16), the wrap method
will create a new wrapper instance (line 17) and then store the relationship in the field (line 18).
Finally, whatever found or not found, the wrap method always return the wrapper instance (line
20). According to the design and implementation, the following two statements’ results should

be all true.

(1) obj==obj; (obj is an instance of test.Fool class)

(2) test_Fool.wrap(obj) ==test_Fool.wrap(obj);

After all necessary wrapper classes.are generated, GJIMA has to replace the instructions using
the wrapped-necessary classes. For._example, .if an instruction uses the java.lang.String, the
instruction has to be changed 0" use _org.gjma.wrapper.java_lang_String, because
java.lang.String cannot be replaced and-needs.to'be wrapped. The replacements may occur in

three portions in a class file. For every class within target GIMApp, do following steps:

1. Change the superclass to the corresponding wrapper class if necessary.
2. Change the field types to the corresponding wrapper class if necessary.
3. For each constructor and method, change the signature and instructions to use the

corresponding wrapper class if necessary.

Listing 5-11 is an example after replacement. The shaded portion represents the

modified-required parts.

-72 -

0l p
02
03 c
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 }

ackage org.gjma.wrapper;

lass test_Fool //the wrapper class name
extends test_Foo2 {

test.Fool v; //the original class test.Fool

public int GET_a(Q{return v.a;}//GETTER for field a within v

public void SET_a(int value){v.a=value};//SETTER for field a within v

private static HashMap ref=new HashMap(); //object references

public static synchronized test Fool wrap(test.Fool s){
test_Fool t=(test_Fool)ref._get(s); //check existence
if(t==nul){
t=new test Fool(s);
ref.put(s, t);

}

return(t);

public static test.Fool unwrap(test_Fool o){
if(o==null) return null;
return(o.v);

private test_Fool(test.Fool s){
V=S;

public test Fool(java_lang_String a){
jJava.lang.String pO=java_lang_String.unwrap(a);
v=new test.Fool(p0);

public java_lang_String toString(){
jJava.lang.String rO=v.toString();
jJava_lang_String rl=java lang_String.wrap(r0);
return(rl);

Listing 5-11: The source code for test.Fool’s wrapper after replacements

-73-

5.4.2. Convert to Method Invocation Actions

All actions have to be converted to method invocation actions. This subsection will discuss

how to do this and this processing takes place in phase 2.

5.4.2.1. Filed Manipulation Action

Everything occurring after an action took place is injected into respective constructor or method
in the previous two actions. However, the solution cannot be applied to intercept a field
manipulation action because there is no hook point about this action within the proxy class.
Using the proxy class without modifying the original class makes it hard to intercept field
manipulation actions. In GIMA systems, all field manipulation actions will first change to
SETTER/GETTER, like JavaBean; and all field-manipulation actions will be changed to
method invocation actions. This: change is made by-analyzing original Java bytecode, and
replacing putfield and getfield “instnuctions_with cerresponding invokevirtual/invokestatic
instructions as Figure 5-6 indicates: This change process is included in the preprocess step in

Figure 4-11. For every class within target GIMApp, do following steps:

1. Find all non-private fields in the class file.

2. Generate the corresponding SETTER and GETTER method for all fields found in the first
step. In other words, every non-private field will cause two method generations.

3. Find all putfield/putstatic instructions in the class file, and replace them with the
corresponding invokevirtual/invokestatic instructions which will invoke the corresponding
SETTER method.

4. Find all getfield/getstatic instructions in the class file, and replace them with the
corresponding invokevirtaul/invokestatic instructions which will invoke the corresponding

GETTER method.

-74 -

original class modified class

(1) int a; preprocessor inta;
ygkﬂpgthodl(ﬂ (2) | publicint GET_a(}{
la=1; | return a;
b }
JE 2
i aload_0 § (2) | publicvoid SET_a(intvalue){
Liconst_1 a=value;
(3) ~-putfield Test.a }
0 o] o = J :
taload_0 i | void method1(){
MiconSt_l —SET_a(1);
sinvokevirtual Test.SET_a Ly

Figure 5-6: Replace field manipulation action with SETTER/GETTER

5.4.2.2. Synchronized Action

In the Java language, a synchronized action acts en an object. Nevertheless, because of the
existence of remote objects, the synchronized semantics may become incorrect. In the
developer’s point of view, a synchronized-action.occurs on one object only. In GIMA, in fact,
the object may have the corresponding-remote.object, and the synchronized action may occur
on both objects at the same time. The problem is that both objects represent the same object
logically yet they are different objects physically. Like field manipulation action, there is no
hook point related to this action within the proxy class. Thus, in GIMA, all synchronized
actions will change to method invocation actions also. This change is made by analyzing the
original Java bytecode and replacing the monitorenter and monitorleave instructions with the
corresponding invokevirtual instructions. This change process is also included in the preprocess

step in Figure 4-11. For every class within target GIMApp, do following steps:

1. Insert a field named GJMA_LOCK into the class file with primitive type boolean. The
default value is set to false.

2. Generate two methods, GIMA_ENTER and GIMA_LEAVE. The codes within the two

-75-

methods are shown in Listing 5-12. GIMA_ENTER is like a barrier, and only one thread
can return from it at the same time if and only if GIMA_LOCK is false. The GIMA
framework uses these two methods to simulate a monitor, and it is equivalent to the original
monitorenter/monitorleave instructions.

3. Find all monitorenter instructions in the class file and replace them with the corresponding
invokevirtual instructions which will invoke the corresponding GIMA_ENTER method.

4. Find all monitorleave instructions in the class file and replace them with the corresponding

invokevirtaul instructions which will invoke the corresponding GIMA_LEAVE method.

void GIMA_ENTER(}
synchronizedithis){
while{GIMA_LOCK}{
wait();

void GIMA_LEAVE(X
synchronized(this){
GIMA_LOCK=false;
notifyAi{);

1 }
GHMA_ LCOK=truse; 1

Listing 5-12: The source codes for GIMA .ENTER and GIMA_LEAVE

5.4.3. Generate Code for Creating Complementary Objects

When an instance is created from a class, the instance’s field initialization is done explicitly in
the classes’ constructors. In other words, the field initialization instructions are placed in the
constructors. Besides the field initialization instructions, there are other initialization codes in
the constructors. In the MASTER-SLAVE mode, every managed object will have a
corresponding complementary object in the remote host. It implies that some codes are placed
in the remote host and the initialization process is handled by two threads instead of one thread.
It may break the initialization order. Hence, a few modifications have to be made on a class to
make it capable of creating an empty complementary object first. Then, all initialization

methods are called after the complementary object was created. This work is done in second

-76-

phase. For every class within target GIMApp, do following steps:

1. Add a special constructor with one parameter with type GIMACIass. This constructor does
nothing except to call its superclass’s constructor. The constructor is designed to create an
empty complementary object.

2. For each original constructor, create a new method and move all codes after the

invokespecial instruction within the constructor to the new method.

3. For each original constructor, its instructions are modified to call the new method added in

step 2.

original class

ClassA(){
//initial code

}

preprocessor

(3

2

)

)

modified class

ClassA(){
init_ClassA();
¥

void init_ClassA(}{
//original initial code

(1

~—

}

ClassA(GJMAClIass class){
//do nothing
}

Figure 5-7: Modify codes for creating complementary object

5.4.4. Convert Array Type to Class Type

After the previous discussion, a problem still remains when the return type or some parameter’s
type is array. GIMA cannot generate the corresponding proxy class because there is no concrete
original class for array type. To solve this problem, GIMA transfers all array types to class types
generated by GIJMA, changes all array manipulation instructions to new instructions or the
SETTER/GETTER mentioned above, and changes all method signatures and returns types

from array to object. For every class within target GIMApp, do following steps:

-77 -

Table 5-5: The array class naming convention

Original array type

Generating class name

Static method to create object

byte[] Byte Arrayl Byte Arrayl.createl(int s1)

byte[1]] Byte Array?2 Byte Array2.create2(int s1, int s2)
Byte_Array2.createl(int s1)

int[] Int_Arrayl Int_Arrayl.createl(int s1)

java.lang.String[[1[]

Object_Array3

Object_Array3.create3(int s1, int s2, int s3)

Object_Array3.create2(int s1, int s2)

Object_Array3.createl(int s1)

1. Find all array types in fields, method parameters and method return type.

2. Generate the corresponding class. The number of constructor parameters is equal to the

dimension of the array. Some examples.are shown in Table 5-5 to explain this step.

3. Find all newarray, anewarray, and multianewarray instructions in the class file, and replace

them with the corresponding ‘invokestaticrinstructions which will create the corresponding

object.

4. Find all caload, castore, iaload, iastore, saload, sastore, laload, lastore, faload, fastore,

daload, dastore, baload, bastore, aaload, and aastore instructions in the class file, and

replace them with the corresponding invokevirtual instructions which will invoke the

corresponding method. In this way the original code semantics will be completely

preserved.

5.4.5. Insert Code for Intercepting Instance Creation

According to

the previous

discussion, GIMA inserts

the

class

org.gjma.application.GIMAODbject into the original constructor chaining to intercept instance

-78-

creation action. When intercepting an instance creation action, GJIMA has to create the
corresponding complementary object in the remote host. Listing 5-13 is the partially source
code of the class org.gjma.application.GIMAObject. There are two constructors. The one
without any parameters (lines 5-7) is used to intercept method invocation actions because all
instance creation actions will always call this constructor. When this constructor is called, it
implies an object was created and the constructor does two things. First, the constructor will get
a unigue object id from the object manager (ObjMngr) and the object manager maintains an
object table to keep the relationship between the object id and the object reference. Second, the
constructor will build a GIMAMesg which contains the creation command, including class
name and object id. Then, the constructor sends the GIMAMesg to the remote host. The other
constructor which has one parameter (lines 10-12) is used to create complementary objects.
When the object manager received:a creation command, the object manager will create the
complementary object by using-this constructor. This constructor does only one thing. The
constructor makes the object manager:keeps.the relationship between the object id encoded in
the received command and the objectreference of the complementary object. In brief, an object
and its complementary object both have the same object id and they are in different hosts.
Besides the constructors, there are other methods overriding the methods in java.lang.Object to
guarantee that an object and its complementary object are the same logically. For example, the
method hashCode() acted on an object and on its complementary object have to return the same

results.

-79-

01 package org.gjma.application;

02

03 public class GIJMAObject {

04

05 public GIMAObject() { //used to intercept instance creation action
06 //1. make this object be managed by ObjMngr

07 //2. send create command to the remote host

08 }

09

10 public GIMAObject(GIMAClass c){//used to create complementary object
11 //make this complementary object be managed by ObjMngr

12 3}

13

14 public int hashCode(){ //override other methods in java.lang.Object
15 IT(GIMApp.is_slave_part){

16 return(super.hashCode());

17 Yelse{

18 //call the remote method hashCode()

19 }

20 }

21 }

Listing 5-13:,Fhe partially source-code for GIMAODbject

If a class’s original superclass ‘is java.lang.Object; GIMA preprocessor has to replace its

superclass with org.gjma.application.GIMAQODbiject. The steps are as follows.

1. Add anew entry with type CONSTANT_Class into the constant pool. The entry represents
a class named org.gjma.application.GJIMAODbiject.

2. Modify the superclass field in the class file. After the modification, the value of the
superclass field will point to the entry added in STEP 1.

3. Modify the bytecode within the constructors. There is an invokespecial instruction in the
beginning of every constructor. This instruction is dedicated to call constructors, which is a
special method with named “<init>". If an invokespecial instruction calls the constructor
belonging to java.lang.Object, the instruction has to be changed. After the modification, the

instruction will call the constructor belonging to org.gjma.application.GJIMAODbiject.

-80 -

5.5. GIJMA Analyzer

The main mission of GIMA analyzer is generating proxy classes and ObjMngr classes. The
generated proxy classes are used to intercept method invocation action and the generated
ObjMngr classes are used to reflect all intercepted actions to the practical remote classes and
remote methods. This sub-section includes two parts. The first part illustrates how to generate

proxy class and the second part describes how to generate ObjMngr.

5.5.1. Generate Proxy Class

When a method of the proxy class is invoked, it means the practical business logic is placed in
the remote host and the method invocation action has to reflect on the complementary object.
Hence, the codes of these methods within the proxy:-classes are responsible for delegating these
actions to the corresponding object. manager in the other side. For every class within target

GJMApp, do following steps:

1. Make a copy of the class. It implies the proxy’s class name is the same as the class’s class
name and the proxy’s superclass is the same as the class’s superclass.

2. For each method excluding constructors, replace the instructions within the method. The
codes within the proxy method are responsible to delegate the request to the object

manager in other host.

modified class proxy class

void method1(){ |2a"¥ze" | void method1(){
//business logic; :> //delegate the method1() to the ObjMngr

} }

Figure 5-8. How to intercept method invoke action

-81-

The delegation codes within proxy methods do following steps:

1.

2.

Create an ActionBuilder instance to do further marshalling.

Call init_invoke method with the instance created on step 1 to create an invocation action
string.

According to the method parameter types, call the corresponding methods to append
necessary parameters to the action string.

Call toString method with the instance created on step 1 to get the finally action string.
Then fill it into the action field in the GIMAMesg and send the GIMAMesg to the object
manager in the remote host.

Wait the result returns.

Parse the action string in the action field in the received GIMAMesg.

According to the method return.type, call the corresponding methods to get the result and

then return it.

5.5.2. Generate ObjMngr Class

The codes in an ObjMngr class can be divided into two parts. One part is fixed and all

ObjMngr implementations are the same in this part. This part provides codes to generate

unique object id and manage object references. The other part is generated in the deployment

time. This part includes two methods. One named create is used to create complementary

objects and the other named invoke is used to call a method. When ObjMngr received a

GJMAMesg with the action field, ObjMngr will do unmarshalling on the action field first.

After unmarshalling, ObjMngr will know which method has to be called, either create or

invoke as Figure 5-9 demonstrates.

-82-

if(cla;s_name.equal(...))

call create Jelse if(...{

received }
handle_request(GIMAMesg m){

GJMAMesg
|:> //parse the action field in the parameter m
//call either create or invoke method according to action type

}

select(method_id){
case 1001:

call invoke

case 1002:

}

Figure 5-9: How ObjMngr to process a received GIMAMesg

5.5.2.1.Generate the create Method

The most important part in a create method is'if-else structures. The structure is responsible

for comparing the class name=encoded: in"the received GIMAMesg and creating the

corresponding complementary object. The create method has a parameter. The only parameter

is an ActionBuilder instance created ‘in handle request method and the return type is a

GJMAODbiject instance. Moreover, the GIMA analyzer should generate codes to do following

steps.

1. Call getClass method with the received parameter to get the information about creation.
The information includes class name as well as object id, and it is encapsulated in a
GJMACIass instance.

2. Use if-else statements to compare the class name got in step 1. If a match occurs, create an
instance of the class by using the constructor responsible for creating a complementary
object. The GIMACIass instance got in step 1 is used as the constructor’s only required
parameter. After this step, GIMA will get an empty complementary object.

3. Return the GIMAODbject reference got in step 2.

-83-

5.5.2.2.Generate the invoke Method

The most important part in the invoke method is switch structures. The structure is
responsible for matching the method number encoded in the received GIMAMesg and calling
the corresponding method. Hence, every method within target GIMApp has to be assigned a
unique method number. The invoke method has two parameters. The first parameter is an
ActionBuilder instance created in handle_request method and the second parameter is a
GJMAODbject instance encoded in the received GJIMAMesg. Moreover, the return type is

String. The GIMA analyzer should generate codes to do following steps.

1. Call getMethod method with the first received parameter to get the information about
invocation. The information ineludes method id and it is encapsulated in a GIMAMethod
instance.

2. Use switch statements to match the-method. id got in step 1. If a match occurs, cast the
second received parameter to the specific.class which the calling method belongs to. Call
the corresponding method with the parameters which can be got from the first received
parameter according to the data types. After the method completed, do marshalling on

the return result and finally return a String.

-84 -

Chapter 6 Evaluation

6.1. Programming Framework Comparison

There are many technologies capable of deploying an application to distributed computing,
such as MPI (Message Passing Interface) [65] and Java RMI. However, in development time,
these technologies are not fully transparent to developers and developers have to handle some
extra codes for distributed purposes. In addition, these technologies may use different
semantics to handle remote method invocation. For example, a parameter with specific data
type may use “call by copy” in a remote method invocation, but the same parameter with the
same data type may use “call by reference” in a local method invocation. Hence, developers
have to know the differences prior to_developments to prevent incorrect semantics. Here, we
notice that which codes are remotely -are determined in development time in these
technologies and they are not suitable for GJIMA which makes the decision in deployment

time. To be precise, GIMA is fully-transparent to developers in development time.

6.1.1. MPI Programming Framework

The Message Passing Interface (MPI) is a language-independent communication protocol.
MPI is widely used in parallel computing and it is often used to implement distributed shared
memory. Applications in different hosts can communicate with each other by passing
messages. Listing 6-1 is a MPI sample code. It is worth to notice that some codes (with bold
font) other than business logic are used to communicate. In other words, developers have to

handle these communications by themselves.

-85 -

01 int main(int argc, char *argv[]){

02

03 //variable declarations

04

05 MPI_Init(&argc,&argv); //MPI initialization

06 MPI_Comm_size(MP1_COMM_WORLD,&numprocs);

07 MPI_Comm_rank(MP1_COMM_WORLD, &myid);

08

09 //business logic

10 MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD); //send
11 //business logic

12 MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat); //recv
13

14 MPI_Finalize(); //VWP1 finalization

15 return O;

16 }

Listing 6-1: A partial sample code for MPI.

6.1.2. Java RMI Programming_Eramework

The Java Remote Method Invocation (Java RMI) is aJava application programming interface
for performing the object equivalent of remote procedure calls. If developers want to use Java
RMI, they have to define interface as_Listing-6-2 shows first and then implement its
corresponding RMI server as Listing 6-3 demonstrates. The same as MPI mentioned above,

Java RMI still need developers to define interface and write some extra codes.

01 public interface SampleServer extends Remote{
02 public int echo(int a) throws RemoteException;
03 }

Listing 6-2: A sample interface for Java RMI.

01 public class SampleServerImpl extends UnicastRemoteObject
02 implements SampleServer{

03

04 public int echo(int a) throws RemoteException{

05 return a;

06 }

07 }

Listing 6-3: A sample RMI server implementation.

-86 -

6.1.3. GJMA Programming Framework

Developing a GIMApp is similar to developing a Java ME MIDP application as Listing 3-3
illustrates, but developers have not concerned about devices capabilities in GIMA
development process. In developers’ view, all classes within a GIMApp are logically run on
the same host. In this chapter, two examples are given to demonstrate how to develop a

GIJMApp.

6.1.3.1.Hello World

The simplest GIMApp is only consisted of one class implemented by developers. It implies
that developers only need to implement the main elass to complete the whole GIMApp. The
general GIMApp development flow.is shown in Figure 6-1. It is worth to notice again that the

main class has to be extended from GJMApp.class.

1. implement

logic and Ul parts | Javasource 2. compile
files

Javaclasses

Figure 6-1: The GIMApp development flow

A GIMApp which will show “Hello World” on screen is used to demonstrate the simplest
GJMApp. Listing 6-4 is the source code of the main class. The source used two classes
provided by GIJMA framework. The class GIMApp is used to initialize necessary resources

and the class Window is used to show something in the device screen. The important point to

-87-

note is that all programming is based on Java language in GIMA development framework. All
developers who are familiar with Java language can develop GIJMApps easily without

learning any other thing. Figure 6-2 shows snapshots of this example.

import org.gjma.application.GIMApp;
import org.gjma.ui.Window;

public class Main extends GJIMApp{
public void startApp(Q{ //be called when the application is started
//create a window ui widget
Window w=new Window();
//set window title
w.setTitle("Hello World™);

}

public void stopApp(){ //be called when the application is stopped
//do nothing in this example

}
}

Liisting 6-4: Hello World sample code

[Fam)
IHello world

Hello World

Refresh

b2,

Figure 6-2: The GIMApp (Hello World) accessed by different GIMACIient.
6.1.3.2.Web Services

Like Web services client development flow in Java SE, developers have to get WSDL
document which describes the Web services definition first and a tool (WSDL2Java) is used

to generate Java stub from the WSDL file. Then, developers can directly invoke the methods

-88 -

of the generated stub to access the Web service described in the WSDL document. The

development flow is shown in Figure 6-3.

. 2. WSDL2Java :
1. get WSDL document WSDL .| Web service

files E classes

,‘"'_”"'_""_”"'_”"'_"">
i invoke methods of the

i generated stub

3.implement

logic and Ul parts | Javasource 4. compile

files Javaclasses

Figure 6-3: The GIMApp using\Web services development flow

In addition, like the previous example, developers still:have to implement other business logic,
including user interface and main. class \which extends GJMApp class, to complete the
GJMApp. Listing 6-5 is the source code for a GJIMApp using Web services. The source used
several user interface related classes provided by GJMA framework. Moreover, the class
WeatherForecastSoap_Stub and the class WeatherForecasts are automatically generated by the
WSDL2Java tools. In addition, we should notice that some event listeners have to be
implemented to handle occurring events. In Listing 6-5, a listener is assigned to the button
(line 23). In runtime, when the button is pressed, the handler in the listener will be invoked. In
this example, the handler will invoke the Web services to get weather information according
to the post code got from the text field (lines 14-21). Figure 6-4 and Figure 6-5 show

snapshots of this example.

-89 -

01 import org.gjma.application.GIMApp;
02 import org.gjma.ui.>;
03 import weather.*; //stub for web service

04

05 public class Main extends GJIMApp{

06

07 public void startApp({

08 Window query=new Window(); //create a window

09 query._setTitle("'Query"); //set window title
10 Button ok=new Button("'OK™); //create a button

11 TextField f=new TextField("'PostCode', "11001'); //create a textfield
12

13 class OkListener implements GIJMAButtonListener{//define listener

14 public void actionPerform(){//invoke web service

15 WeatherForecastSoap_Stub service = new WeatherForecastSoap_Stub();
16 try {

17 WeatherForecasts wf = service.getWeatherByZipCode(f.getText());
18 text.setText(wf.getPlaceName()); //fill result to text widget
19 }catch(Exception e){}

20 result.show(); //show the result window

21 3}

22 1

23 ok.addListener(new OkListener()); //set listener for the ok button
24 query.add(field); //add a textfield to the query window

25 query.add(ok); //add a button to the query window
26

27 Window result=new Window(); //create a window

28 result_setTitle("Result'); //set window title
29 Button back=new Button("'BACK"); //create a button

30 Text text=new Text():; //create a text

31

32 class BackListener implements GIJMAButtonListener{ //define listener
33 public void actionPerform(){

34 query.show(); //show the query window

35 }

36 }

37 back.addListener(new BackListener());//set listener for the back button
38 result.add(text); //add a text to the result window

39 result._add(back) ; //add a button to the result window
40 query._show(); //show the query window

41 %}

42

43 public void stopApp(O{

44 //do nothing in this example
45 }

46 }

Listing 6-5: Web services sample code

-90 -

[F il REC B [Faml)
Query Result
PostCode |11001 | Location: FLORAL PARK
Mitr. Tetnp: 18

[IMax. Termp.: 30

|

I

|

|
I, OI{j b 2, BACK |

Figure 6-4: The GIMApp (Web services) accessed by GIMAppStandalone.

Query Result
F'l:ustCnde; Lacation:FLORAL PARK
Min. Temp.: 18
Max. Temp.: 30

Figure 6-5: The GIMApp (Web services) accessed by WAP browser.

6.2. Performance Evaluation

Because every GJIMApp is consisted of original class files (without modifications) in the
BROWSER mode and the STANDLAONE mode, the performance does not be influenced by

GJMA. Hence, this section only evaluates the performance in the MASTER-SLAVE mode.

01 TYPE echo(TYPE t){
02 return(t);
03 }

Listing 6-6: The test code template.

-91-

In the MASTER-SLAVE mode, some original method invocations are replaced with the
corresponding remote method invocations and these remote method invocations are the main
factor to influence on the performance. A test code template listed in Listing 6-6 is used to
evaluate the remote method invocation performance and the test environments is listed in
Table 6-1. In this dissertation, the authors compared the remote method invocation
performance between GJIMA and Java RMI. Moreover, different parameter types and return
types are applied to the test code template and Figure 6-6 shows the result. Every bar in

Figure 6-6 represents the elapsed time of every remote method invocation.

Table 6-1: Test environment.

Environment Description

CPU Intel Core 2 Duo 1.6 GHz
RAM 2G DDR2 667MHz
Network Loopback (127.0.0.1)

Java platform Java Standard Edition 1.6.0_01

For primitive data types (int, short, byte, boolean, char, long, float, double), Java RMI has
better performance. The reason is that GIMA exploits the asynchronous message delivery
mechanism to handle disconnection situation and Java RMI does not consider about this. In
other words, every command in GJIMA spends extra time passing from a queue to another
queue. For array data type and object data type, GIMA has better performance. The reason is
that all parameters are “call by reference” in GIMA to keep the original semantics regardless
of the class locations (remote of local). Moreover, Java RMI exploits “call by copy”
(serialization) to handle parameters with array data type and some object data types. The

serialization action takes long time and it may break the original application semantics.

-92-

0.7

0.6

0.5

03 1 mama

ORMI

Figure 6-6: Remote method invocation-performance evaluation.

6.3. Program Size Evaluation

In the BROWSER mode, end-users can use built;in browsers or GIMABrowser to access
GJMApps placed on a GIMAServer. If end-users use built-in browsers, no installation is
required and it costs 0 Kbytes. If end-users use GIMABrowser, it had been installed before
use and it costs 16 Kbytes (compressed). In the MASTER-SLAVE mode, some classes
(modified classes) are modified and some classes (proxy classes) are generated. How many
bytes will be increased in a modified class depends on how many constructors and fields the
corresponding original class owns. Every constructor in the original class will increase the
size about 250 bytes in the modified class and every field in the original class will increase the
size about 210 bytes in the modified class. Furthermore, the size of a proxy depends on how
many methods the corresponding original class owns and how many parameters these

methods have. A method with no parameter and no return costs about 76 bytes in a proxy file

-93-

and every parameter needs extra 30 bytes to do marshalling or unmarshalling actions.

-94 -

Chapter 7 Conclusion and Future Works

In this dissertation, a novel development framework GJMA, which is capable of tailoring
mobile applications to fit different end-devices and environments, is proposed and how it works
is discussed in the previous chapters. GIMA currently supports WAP and Java MIDP. In other
words, GJIMA can be used by almost all mobile devices. In addition, three adaptation
mechanisms are introduced to solve the problem about the diversity of hardware capabilities
and functionalities. To handle disconnection situation, the asynchronous message delivery
mechanism is designed and implemented. By using GJMA, when developing a mobile
application, developers do not need to concern about the computing power as well as
functionalities of the target end-devices and these resources will be effectively used. Moreover,
all necessary adaptations are made by GJMA automatically, including computing model
adaptation, user interface adaptation.and network adaptation. Besides, because XML document
is flexible and extensible, anyone can‘easy-to-extend the end-device database to support more
end-devices. Nevertheless, GIMA 'has some-issues for the moment. First, it is not fully
supported Java dynamic class loading. If a GIMApp uses dynamic class loading related codes,
the GJMA analyzer cannot recognize these codes and may cause some errors in runtime.
Second, remote method invocation action is the performance bottleneck in the
MASTER-SLAVE mode. To solve the performance issue, GIMA currently place all codes on
the client side unless the codes cannot be handled by the client. In others words, only codes
which cannot be executed by the client side will be placed on and handled by the server side.

It can reduce the number of necessary remote method invocation actions.

In the future, more user interface widgets will be designed and implemented. For example,
Java ME MIDP compatible library will be provided and then existent Java ME MIDP

application will be supported by GJMA without modifications. Moreover, the GIMAMesg

-05-

formats can be tuned and GJIMA may do second phase analysis during the deployment process
to make performance better. In addition, a GUI deployment tool will be provided and

developers can use the tool to control the deployment process.

-06 -

References

[1] G. H. Forman, J. Zahorjan, "The Challenges of Mobile Computing”, Computer, vol. 27(4), pp. 38-47, 1994
[2] M. Satyanarayanan, “Pervasive computing: vision and challenges”, IEEE Personal Communications, vol.
8(4), pp. 10-17, 2001

[3] M. Weiser, “Some computer science issues in ubiquitous computing”, ACM SIGMOBILE Mobile
Computing and Communications Review”, vol. 3(3), pp. 10-21, 1999

[4] WAP, http://www.wapforum.org/

[5] Java Micro Edition (Java ME), http://java.sun.com/javame/

[6] Microsoft .NET Compact Framework,
http://msdn.microsoft.com/netframework/programming/netcf/default.aspx

[71 N. Medvidovic, M. Mikic-Rakic, N. R. Metha, S. Malek, “Software Architectural Support for Handheld
Computing”, Computer, vol. 36(9), pp. 66-73, 2003

[8] 3GPP TS 22.057 V6.0.0. Mobile Execution Environment (MEXE) service description; Stage 1, 2004,
http://www.3gpp.org/ftp/Specs/html-info/22057.htm

[9] Attribute programming, http://msdn2.microseft.com/en-us/library/dcy94zz2.aspx

[10] M. Butler, F. Giannetti, R. Gimson, T.Wiley, Device indépendence and the Web", IEEE Internet
Computing, vol. 6(5), pp. 81-86, 2002

[11]W. Mueller, R. Schaefer, S. Bleul, Znteractive multimodal user interfaces for mobile devices", Proc. of the
37th Annual Hawaii International Conference on‘System Sciences, 2004

[12] J. Plomp, R. Schaefer, W. Mueller, H."¥li-Nikkola, "Comparing Transcoding Tools for Use with Generic
User Interface Format", Extreme Markup Languages, 2001

[13] J. Grundy, J. Hosking, "Developing adaptable user interfaces for component-based systems™, Proc. of the
1st Australian User Interface Conference, pp. 175-194, 2002

[14] J2ME Polish, http://www.j2mepolish.org/

[15] Tzu-Han Kao, Shyan-Ming Yuan, "Designing an XML-based context-aware transformation framework for
mobile execution environments using CC/PP and XSLT", Computer Standards & Interfaces, vol. 26(5), pp.
377-399, 2004

[16] Tzu-Han Kao, Shyan-Ming Yuan, "Automatic adaptation of mobile applications to different user devices
using modular mobile agents", Software Practice and Experience, vol. 35(14), pp. 1349-1391, 2005

[17] J. Jing, A.S. Helal and A. EImagarmid, “Client-server computing in mobile environments”, ACM
Computing Surveys, vol. 31(2), pp. 117-157, 1999

[18] J. P. Kanter, Understanding Thin-Client/Server Computing, Microsoft Press, 1998

[19] K. Read, F. Maurer, “Developing Mobile Wireless Applications”, IEEE Internet Computing, vol. 7(1), pp.
81-86, 2003
[20] J. Hunter and W. Crawford, Java Servlet Programming, O'Reilly, 2001

[21] D. Sklar, Learning PHP 5, O’Reilly, 2004

-97-

[22] J. Liberty, D. Hurwitz, Programming ASP.NET, O’Reilly, 2003

[23] Wireless Markup Language (WML) Specification, http://xml.coverpages.org/wap-wml.html

[24] XHTML™ 1.0 The Extensible HyperText Markup Language, http://www.w3.org/TR/xhtmi1/

[25] NTT DoCoMo i-mode, http://www.nttdocomo.com

[26] Compact HTML (C-HTML) for Small Information Appliances,
http://www.w3.0rg/TR/1998/NOTE-compactHTML-19980209

[27] Extensible Markup Language (XML), http://www.xml.it:23456/XML/REC-xmI-19980210-it.html

[28] XHTML Basic, http://www.w3.0rg/TR/xhtml-basic

[29] XHTML Mobile Profile, http://www.wapforum.org/tech/documents/WAP-277-XHTMLMP-20011029-a.pdf
[30] W3C, XSL Transformations (XSLT), http://www.w3.0rg/TR/xslt

[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, 1995

[32] M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams, J. Shuster, “UIML.: an appliance-independent
XML user interface language”, Computer Networks, vol. 31(11, 17), pp. 1695-1708, 1999

[33] J. Grundy and B. Yang, “An Environment for Developing Adaptive, Multidevice User Interfaces”, Proc. of
4th Australasian User Interface Conference, Australian Computer Society, vol. 18, 2003, pp. 47-56

[34] M. Bisignano, G. D. Modica, O. Tomarchioy ¢ Dynamic User Interface Adaptation for Mobile Computing
Devices”, Proc. of the 2005 Symposium on:Applications and the Internet Workshops, pp. 158-161, 2005

[35] T. Ziegert, M. Lauff, L. Heuser ,“Device tndependent Web Applications - The Author Once - Display
Everywhere Approach”, Proc. of 4th International Conference on:Web Engineering, pp. 244-255, 2004

[36] V. Cardellini, M. Colajanni, R. Lancellotti; PrS7Yu:r“A Distributed Architecture of Edge Proxy Servers for
Cooperative Transcoding”, Proc. of the 3rd JEEE Workshaop o' Internet Applications, 2003

[37] Binary Runtime Environment for Wireless (BREW), http://brew.qualcomm.com/brew/

[38] Symbian, http://www.symbian.com/

[39] T. Lindholm , F. Yellin, Java Virtual Machine Specification, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 1999

[40] Java Enterprise Edition (Java EE), http://java.sun.com/javaee/

[41] Java Standard Edition (Java SE), http://java.sun.com/javase/

[42] Java Specification Request (JSR), http://jcp.org/en/jsr/all

[43] CORBA, http://www.cs.wustl.edu/~schmidt/corba-overview.html

[44] Java RMI, http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

[45] W3C, Web Services Architecture, http://www.w3.0org/TR/ws-arch

[46] N. A.B. Gray, “Comparison of Web Services, Java-RMI, and CORBA service implementation”, Proc of . 5th
Australasian Workshop on Software and System Architecture, 2004

[47] Yue-Shan Chang, Min-Huang Ho, Shyan-Ming Yuan, “A unified interface for integrating information
retrieval”, Computer Standards & Interfaces, vol. 23(4), pp. 325-340, 2001

[48] Yue-Shan Chang, Ruey-Shyang Wu, Kai-Chih Liang, Shyan-Ming Yuan, Magic Yang, “CODEX:
Content-Oriented Data EXchange Model on CORBA”, Computer Standards & Interfaces, vol. 25(4), pp.
329-343, 2003

-08 -

[49] JavaParty, http://svn.ipd.uni-karlsruhe.de/trac/javaparty

[50] D. Caromel, W. Klauser, and J. Vayssiere, “Towards Seamless Computing and Metacomputing in Java”,
Concurrency: Practice and Experience, vol. 10(11-13), 1998, pp. 1043-1061

[51] J. Kawash, A. El-Halabi and G. Samara, “Utilizing Object Compression for Better J2ME Remote Method
Invocation in 2.5G Networks”, Journal of Computing and Information Technology, vol. 14, pp. 255-264, 2006
[52] T. Richardson, Q. Stafford-Fraser, K. R. Wood, A. Hopper, “Virtual network computing”, IEEE Internet
Computing, vol. 2(1), pp. 33-38, 1998

[53] VNC2Go, http://www.freeutils.net/vnc2go/index.jsp

[54] G. Canfora, G. D.Santo, E. Zimeo, “Developing Java-AWT Thin-Client Applications for Limited Devices”,
IEEE Internet Computing, vol. 9(5), pp. 55-63, 2005

[55] G. Canfora, G. D. Santo, E. Zimeo, “Toward Seamless Migration of Java AWT-based Applications to
Personal Wireless Devices”, Proc. 11th IEEE Working Conference Reverse Engineer, IEEE CS Press, pp.
38-47, 2004

[56] Canoo Engineering AG, “Ultra Light Client: Technology White Paper”,
http://www.canoo.com/ulc/developerzone/ULCWhitePaper.pdf

[57] IBM AlphaWorks, Thin-Client Framework (TCF), http://www.alphaworks.ibm.com/tech/tcf

[58] W3C, Cascading Style Sheet (CSS), http://www:w3.0rg/Style/CSS/

[59] NanoX, http://www.microwindows.org/

[60] Ming-Chun Cheng, Shyan-Ming Yuan, "An-Adaptive-Mobile Application Development Framework", LNCS
3824, pp. 765-774, 2005

[61] N. Mansfield, The Joy of X: An Overview:oftheX*Window: Systems, Addison-Wesley, 1993

[62] M. Dahm. “Byte code engineering with the BCEL API”;:Technical Report B-17-98, Freie Universitat Berlin,
Institit fur Informatik, 2001

[63] S. Liang , G. Bracha, “Dynamic class loading in the Java virtual machine”, Proc. of the 13th ACM
SIGPLAN conference on Object-oriented programming, pp. 36-44, 1998

[64] G. T. Sullivan, “Aspect-oriented programming using reflection and metaobject protocols”, Communications
of the ACM, vol. 44(10), pp. 95-97, 2001

[65] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing
Interface, The MIT Press, 1999

-909 -

