RO T

iR

17 T e g ek
I/Ej?ﬂ_,ﬂ;fﬁ ﬁkﬁ%‘il’ﬁ:

A Generic Software Framework for the Software System Architecture
Design and Implementation of Handset Devices

T PRSP = R B R

A Generic Software Framework for the Software System Architecture Design
and Implementation of Handset Devices.

Frod i Es Student : Po-Chang Liu
R mEE £L Advisor : Deng-Jyi Chen,
¥ HzEL Yi-Shiung Yeh
B2 7
TWFAEIR TR
AL o~
A Thesis

Submitted to Degree Program of Electrical Engineering and Computer Science
College of Electrical. Engineering and Computer Science
National'ChiaoTung University
in Partial Fulfitlment of the Requirements
for the Degree of
Master of Science
in
Computer Science
January 2005
Hsinchu, Taiwan, Republic of China

PEARAY e -

http://dpeecs.nctu.edu.tw/professor/p4.html

L A =] R R

2 ¥ é I EER mEE BL a4

Rzid ~FTWFE R Fagfe (P19 i

5 e

E%ﬁf%@”ﬁEW@m%ﬁr,@#ﬂT”*wzwm@PFm@@o_p
ﬁ‘.ﬂ‘eﬁ% SRR - R (PR ORR A P ST ,}{ﬁ/f%ﬂéniﬁ

i -

AT ;F[Ljﬁf{i}g @g,{%ﬁj‘ y CISEHE SR L — ﬁﬁjﬁaﬁﬁiﬂiwu v‘ﬂ’,fﬁjgl W5
W ARV fERER)rpl%ﬁlﬁ”m u;éﬁglﬁ R e l’*ﬂ?ilqu
ﬁ'f'” o H e éﬁ*'ﬁi?ﬂﬁ”vﬂﬁ Al ﬂdﬁﬁ/lﬁlwﬁiﬁimﬁfﬂﬂjﬁ JE

Tt FI%‘E‘@“ ;’TE'IEI'U‘;Q?{- I uﬁj»iﬁﬂggﬁﬁml T TR A AU T EC
AP RV e Bp s BT MBI BAEAI(Generic Software Framework) »
(e iy =I5 ﬁf«*ﬁﬂfrﬁjﬂ rmﬁl W E Jﬁf« PRAZATEE] R [22 R Y UL AREE i e
ﬁ A R E AR U

G o U E Rl S TN e (| RS A KN I o U Akl [gt =
A FARTEIRE (TP UL S - 2o bt PR R 2 VR e

A Generic Software Framework for the Software System
Architecture Design and Implementation of Handset Devices

Student: Po-Chang Liu Advisor: Dr. Deng-Jui Chen, Dr. Yi-Shiung Yeh

Degree Program of Electrical Engineering Computer Science
National Chiao Tung University

Abstract

The traditional approach to develop user interface for handset devices has limited
flexibility on the Ul requirement.changes. Once the UL requirement changed, programmers
have to change their handcrafted application-once again. This change may occur repeatedly
until the Ul requirement under consideration 1s satisfied.

The Software Engineering Laboratory in NCTU has developed a Visual Requirement
Authoring and Program Generation Methodology. This methodology helps programmers to
develop the user interface for handset devices, and allows programmers to migrate their
program to new platform quickly. Based on this methodology, we quest for a generic software
framework to incorporate the proposed methodology for developing user interface to alleviate
the problems mentioned above.

From our study, there are some similarities exist among user interface and software
framework in different handset devices. In this research work, we propose a generic software
framework for the system architecture design of handset devices. Specifically, the software
framework generated based on the generic software framework will be much easier for
maintenance and management compared with the traditional approach. In addition, the
software framework that is instantiated from the generic software framework can be
incorporated into the visual requirement authoring system for user interface development.

In this thesis study, we design and construct a simulator to demonstrate the

applicability and usefulness of the software framework generated by the proposed generic
software framework.

I

211l

=i

¢Ww%%ﬁW®¥WWFﬁW%W¢W®HWQﬁ¢
R R BT (R o S PTHREY WAL

ﬂﬁE'@%ﬁi FH AGE B DIEIS o J L s FHME i F[["E’&ﬁl}
m?/‘ oA TSRS + (S R PT - B - S B)
%j :E;kaiitEZW‘ a:jiyl@;’FﬁEALfF’lj’ bi; EYRENE li Eﬁ,ﬁﬂi
(e

[L
]
[a95Y

!
r

ﬁl&c ’ ’:3‘%1'% I& %%Iyﬂjxj rJ§($J > | L?F%FHBEEL , "'FIJ:&FH;LT%EH??;;F}J , E&E
il - St

I

#% B ittt ettt ettt ettt ettt et et et a e |
AN o E T I A O I
== I
LT v
e E T et VI
CHAPTER 1 INTRODUCT ION . ..ttt ittt ettt ettt te s s e tea et s een e eeneenees 1
L1 MIMIEOVEIVIBW ...ttt st sttt et st ts s sttt st s st e st esesesssststsestatasasesasaeseseressasasassesesesesesesesaes 1
1-2 Problem Statements & MOTIVALION.............c.c.oeueveeree ettt ees oo eseseseessses st sttsses s asaesesesesesesessssesses 1
1-3 Overview Of thiS theSIS...........oeveeeee et ettt 3
CHAPTER 2 SOFTWARE FRAMEWORK'FOR HANDSET DEVICE AND
RELATED WORK ..ot i e i s e e e ettt e e e e e 4
2L FTAMEWOTK ...t ettt o D L oo e o fu ettt s e ettt sa et s st s e et sssassesssesaesstssaeaesssas 4
2-2 The current software framework for NANASELABVICESo.oeeeeeeeeeeee e eeeeee et eeeeeeeeeeseesseesens 5
2-2-1 Man-Machine INterface (MIMII) ..ottt ns 6
2-2-2 Real-time operation SYStEM (RTOS)........cviiiiieeiieiesieeee ettt sesae s 6
2-2-3 GSIM SUDSYSLEIMooviiiiieieiieeeeestee sttt ettt bt a st a et as sttt et et s s st s st sranaesssanans 7
2-2-4 Hardware deVICES @NU IIVETS.............c.ovveeeieeiereeeeeeeeseeseeeese e tes s et seese e st saessssaessseseesssssessesssasaesssssaesens 7
2-2-BSHONAL.....oeeeeeeeeee ettt sttt et s ettt ettt ettt ae et er et e s e s e s tenetes et et et ettt enasanes 8
CHAPTER 3 THE VISUAL-BASED SOFTWARE CONSTRUCTION APPROACH
AND GENERIC SOFTWARE FRAMEWORK ... 9
3-1 The visual-based AUTNOTING SYSLEIM.............cooiiiiriieeeee ettt sttt sttt sttt sttt s st ssaneas 9

3-2 Methodology for using a software design framework to create software applications for handset devices11
3-3 Architecture of the generic Software frameWOTK..............c..ccviiiiiiieiceee e 12

3-4 A comparison between software framework and generic software framework.............ccocoovvecreveveoreeenennn. 15

CHAPTER 4 SOFTWARE FRAMEWORK GENERATION BASED ON GENERIC
SOFTWARE FRAMEWORK ..o 18

4-1 Software framework generation based on the generic software frameworkcccccoevevvevvcieriennen, 18

I\Y%

4-2 Generic Kernel INterface (GKI) ..ottt s st ss s sasa s sasans 19

G220 TASK ettt et et e et et et et e e et et e ettt e s eeeeea et eeese s et e et et eseaeaeat e anee et ene et et e et e teteeeneatateeenenenenaeaen 20
A-2-2 MIIDOX ..ottt ettt st ettt sttt ettt aee 21

A-B GSIMASK ...ttt ettt a bbbt ettt et ettt et ettt aeben s s 22
A-BKEYPAA ISR ...ttt ettt sttt a ettt et st e 23
4-5 The created SOTIWAIE TTAMEBWOIK.............c.ccoeviveeeieereee ettt sttt sss e sttt es s e oot sesesesesssssssssaeas 23
CHAPTER 5 SYSTEM DESIGN AND IMPLEMENTATION ..o 25
5-1 Design and Implementation of Generic Kernel INterface (GKI)ooooeeeeeeeeeeeeeeeeeeeeeeeeee e 25
B-L-L SHGNAL.c.ece et a et et a ettt s e et Rt s s r et r s aes 27
BmLm2 TASK ..ottt et et e e e e e eee et eeeu e et et et et et ea et et e s eaeaeet e et eaeeee et et et et eeeaeat et e et et eteeeeeetateteaeteeeneann 30
BL-B3 IMIAITDIOX ...ttt ettt et a et s et s et st et ettt esesaeseaeseseseses et aset et et sesetn st ntatanatneraenene 34

B2 UTTASK ...ttt ettt ettt sttt sttt ettt bbbt e ettt e b s et e et et b ettt ntetetaes 36
53 MM KEINEITASK........voeeeeeeeeeeeeee ettt ettt s s s s s et s s ss s e s s s s e s esssasaesesasaesesesssasaesssasaesees 38
B GSIMABSK ...ttt e et et et et et e s esesea et eeee et ee et et aeeseeeseatataseaesese e et e s et et eeeseneneat et eeenenenenaeaen 40
DD DSC ASK ...t s tes st ses el et seuesesesesessesestssat st seseeaeaesenteesaeesaeteneneneseseneeseataeae 42
5-6 Keypad ISR ..o B hsee e et e e bbb bbb 43
5T DISPIAY AP ...t it b e saasr e Pt ienatatss s s s sagBie s e sassessssssssessesassssssassesasssassasassesassnaesassesassansns 44
CHAPTER 6 SIMULATION AND-APPLICATION EXAMPLES ... 45
6-1 INtrOdUCEION OF the SIMUIALONcoeeeeeeeeeeeee ettt ettt sttt ettt et se et seat st ss s saesenesesenons 45
6-2 The design and implementation 0f the SIMUIALOTo.oee ettt eeeeene 46
6-2-1 The software architecture 0f the SIMUIALOTc.oeeeeee et e ettt ee e eeeeees 46

6-2-2 The design and implementation Of the SIMUIBLOTocoveeeeieee ettt ettt ene 47

6-3 APPLICALION EXAMPIES ..ottt bbbt a bbb a bbbttt bbb s st tns 48
6-2-1 MaKiNg @ PRONE CAIL...........cooivierieceeeee ettt nas st 49
B-2-2 INCOMING CAIL.........ooeeeeeeee ettt ettt ettt e st ss s s s e s s e s e st s seaenesssesesens 50
B-2-3 ACCEPL A CAlL ...t ettt ettt bt bttt a et 51
CHAPTER 7 CONCLUSION AND FUTIRE WORKS ...t 52
REFERENCES ... oottt ettt e et e e e e e e e e e e e e eenreenns 54

ENYAE S

TABLE. 1 A COMPARISON BETWEEN SOFTWARE FRAMEWORK AND GENERIC SOFTWARE

FRAMEWORK ...ttt et sse e s e e e e 16
PROGRAM SAMPLE 1 ...ttt sttt sttt st st st 20
PROGRAM SAMPLE 2viiiiiiiniisisi et et e e 20
PROGRAM SAMPLE 3 ...ttt s e e e 26
PROGRAM SAMPLE 4 ..ottt e e e e e e 32
PROGRAM SAMPLE 5 ...ttt et e e e s e e e 33
PROGRAM SAMPLE 6 ..ottt sttt s sest sttt st sttt 33
PROGRAM SAMPLE 7 ...ttt s e e 33
PROGRAM SAMPLE 8ouiiiiiiiiiiiiniisieieieiie e s e e e 37
PROGRAM SAMPLE 9 ...ttt s e e e e 37
PROGRAM SAMPLE 10 ...ttt sttt s ssane 41
PROGRAM SAMPLE 11 ..ottt sst sttt st st 42
PROGRAM SAMPLE 12 ..ottt e e s 44

VI

lﬁlﬁl%&

FIG. 1 FRAMEWORK OF UI DESIGN PATTERN GENERATOR AND......c.cccceviiieierererererreneneesesenseseesenaens 2
FIG. 2 THE CURRENT SOFTWARE FRAMEWORK FOR HANDSET DEVICES ..o 5
FIG. 3 THE OF UI DESIGN PATTERN GENERATOR AND VISUAL BASED SOFTWARE CONSTRUCTION
MODBEL....ovitiistitiiette ettt st s s 9
FIG. 4 THE GENERIC SOFTWARE FRAMEWORKcccoiiiiiinininieieeie e 13
FIG. 5 SIGNALING PROTOCOL DECOUPLES THE SOFTWARE COMPONENTS OF THE GENERIC
SOFTWARE FRAMEWORK ..ottt sss s sse e nsees 14
FIG. 6 THE SIGNAL-FUNCTION TABLE OF GSM TASK.....eceueieerererereenereeeeneneisesseis e esseseseane 22
FIG. 7 THE SOFTWARE ARCHITECTURE OF THE CREATED SOFTWARE FRAMEWORK........cccccocnevneuniunnn. 23
FIG. 8 THE GENERIC SOFTWARE FRAMEWORKcociiiiiriininieieieeie e 25
FIG. 9 CLASS DIAGRAM OF SIGNAL.....coeiiiieereeererere ettt sssssenes 27
FIG. 10 A SEQUENCE DIAGRAM OF MAKING A PHONE CALLcooiiererererereseseieseiseeseieeieeeesee e 28
FIG. 11 A SEQUENCE DIAGRAM OF INCOMING CALL......ccceuiererererererereereitieeneseiseiseis e esseseseane 29
FIG. 12 A CLASS DIAGRAM OF TASKS BASED ON THE TEMPLATE METHOD PATTERN........ccccocoveuneuninnnen. 30
FIG. 13 MAILBOX DESIGN PATTERN BASED ON THE STRATEGY PATTERNccccoovivivinirirrieicieens 34
FIG. 14 SEQUENCE DIAGRAM: TASK1 SEND A SIGNAL TO TASKZcvirririrerenrerereseeieeieeee e 35
FIG. 15 SEQUENCE DIAGRAM: TASK2 FETCH A SIGNAL FROM ITS MAILBOXcccooviviviniriniriererenene 35
FIG. 16 COLLABORATION DIAGRAM: UL TASKcoutiiiriiriiniiriiriineineistiseiseesreesiesiesiesie e eissassesssessesssssessessessessessenne 36
FIG. 17 COLLABORATION DIAGRAM: MMI KERNEL TASKcoveitiieieineritncneneneiseiseiseiseesese e 38
FIG. 18 INTERNAL STATES OF MMI KERNELTTASKE S5 ..o esissesee s s ssessesanes 39
FIG. 19 COLLABORATION DIAGRAM: MAKING A PHONE'CALLccoveniiririirererenieieiseseieeieeee e 41
FIG. 20 COLLABORATION DIAGRAM:TAKE ASNAP SHOT G.....cooooeeeecrereeeeeeeee e 42
FIG. 21 STATES DIAGRAM OF KEYPAD ISR ... ittt ittt seeseesesesseesese e ssessensensenes 43
FIG. 22 THE LOOK AND FEEL OF THE SIMULATOR ... i it 45
FIG. 23 THE SOFTWARE ARCHITECTURE QETHE SIMULATOR..........ccoeiiicrreceeeeeene 46
FIG. 24 CREATE A SOFTWARE DESIGN FRAMEWORK FOR SIMULATOR.........cveririrrnrereeeeeiesieeees 47
FIG. 25 THE PROGRAM GENERATOR COMBINES THE-USER LOOK AND FEEL WITH THE DESIGN
SOFTWARE FRAMEWORK ..o et L e nsees 43
FIG. 26 THE SIGNAL FLOW OF DIALING A CALL....cveiiiriieirieintiistieiienesissessssis s ssesssssessssseseans 49
FIG. 27 THE SIGNAL FLOW OF INCOMING CALLcccsiiieiririninieieiieieieieieseie e ssesss oo 50
FIG. 28 THE SIGNAL FLOW OF ACCEPTING A CALLovoviriririeiieiieiirieienenieniere oo ssesseseessessessessessessnns 51

VI

Chapter 1

Introduction

1-1 MMI overview

The mobile device has become more and more popular in our daily life. In 2003, five
hundreds million of handsets are sold. This number is increasing both in the year of 2004 and
2005 [2]. This big market attracts so many companies to join into this competition.

Each handset device has its own Man-Machine Interface (MMI), which allows users to
operate on it. The Man-Machine Interface of a hand-held device is the “layer” that separates
the machine and users [3]. A well-designed MMI can let people quickly understand the
functionalities of the handset, and-operate the handset-easily. Hence, the look-and-feel of the
MMI of a machine makes great impression on users. It-is an important consideration for most

users to choose a new handset.

1-2 Problem Statements & Motivation

The most of effort spent on the handset devices development is the MMI design and
implementation. For those handset manufacturers, the user look and feel of the device is also

an important consideration for new model release.

The current approach for creating MMI has limited flexibility to the changes of look
and feel requirements. The current approach for creating MMI includes the following three

processes:

1. Define the MMI requirements. Deliver the Ul requirement specification to

programmers.

2. Implementation. Programmers implement the MMI according to the scenarios,
and create a ROMable application.

3. Verification. Verify the behaviors of MMI on handset device.

The Ul designer usually describes the MMI requirement in the text-based format.
Sometimes, both system designer and programmer have difficulty in understanding the
requirement specification. The operative MMI cannot be seen until the Ul system program
has been implemented. In addition, once the Ul requirement is changed, programmers have to
change their handcrafted application code again.

There are some approaches proposed to ease Ul design and implementation. In [1], an
authoring tool can help Ul designers to develop the MMI of a handset device. It provides a
visual requirement authoring system and a program generation methodology to develop
MMI for handset devices [1]. In this thesis, we propose a generic software framework to
generate a software framework for the system.architecture design of handset devices. The
program generator glues the generated software framework with the user look and feel
generated by the authoring tool-and.the application function generated by the function

generator framework. Fig. 1 shows the cancept.diagram of this approach. We will discuss the

details of this approach in chapter.3.

Ul Template Generic
b T [—
Constructor Ul Template Ut dasiyner

) Generatad Program Generatad
Ul Tesmplate Wisusl Ul i 4 o s
B [TT™| Autharng Systarm user look ¥ Generator [% Software Simulator
Manager and feel Program
LI Design Pattern l / I l
Generator e T
— Gansrated Genarated Harndware
LI_:::}[IGIGSE goftwang function library

a e

design companent |
—— frarmework

¥

Genenc
termplate
software ;’;T;;:’
Tramework
for pervasive
devics

Generic

function

Fig. 1 Framework of UI Design Pattern Generator and

Visual Based Software Construction Model

1-3 Overview of this thesis

In Chapter 1, we introduce the concept of Man Machine Interface and describe the
motivation of this research. Chapter 2 describes the related researches of the concept of
software framework, the current software framework of handset devices, and the current
method for creating MMI for handset devices. In Chapter 3, we propose a generic software
framework that can be used to generate the software architecture of handset devices. In
chapter 4, we will discuss how to instantiate a software framework from the generic software
framework. Specifically, we create a software framework and construct a simulator. In
chapter 5, we discuss the design and implementation of the generic software framework. In
chapter 6, we will give several application examples to verify the feasibility and the
applicability of the generic software framework. We implemented a software simulator for PC

simulation. In chapter 7, we will summarize the study of this thesis.

Chapter 2

Software Framework for Handset Device and Related Work

In this chapter, we will introduce the related work of software framework, the concept
of the software framework, and the current software framework of handset devices. We will
elaborate each building block in the framework and address the current method for creating

MMI.

2-1 Framework

A framework is a reusable, “semi-complete” application that can be specialized to
produce custom applications for specific user domain [4]. It is not a finished work, but rather
than a semi-finished software system that intended:to be instantiated. A framework defines
the architecture for specific application domain and provides the basic building blocks to

create them [5].
In [6], it gives a good definition and explanation on framework and is recalled here:

A framework consists of frozen spots and hot spots:

® Frozen spots define the overall architecture of a software system. For all
instantiation of the application framework, the basic building blocks and the
relationships between them remain unchanged (frozen).

® Hot spots are designed to be adapted to the needs of the application under
development. When the programmer instantiates a software system from a
software framework, he/she must specialize the hot spots of the software

framework according to the specific needs and requirements of the system.

One of the primary benefits of software frameworks is "Inversion of control™. The

framework reacts with external events. When events occur, the dispatcher of the framework

invokes the user-defined function to handle the event. This is also known as the Hollywood

Principle: "Don’t call us, we’ll call you." [7].

2-2 The current software framework for handset devices

In the current development method, the building blocks in the design software
framework can be schematized as Fig. 2:

1. Man-Machine Interface (MMI) and relative functions

2. Real-time OS (RTOS) and Kernel Interface (KI)

3. GSM sub-system includes protocol stack and layer 1 driver.

4

Hardware devices and device drivers

Man-Machine Interface

GSM Protocol

SO dwI [edy
20eLIAU] [AULID

CPU/DSP

Fig. 2 The current software framework for handset devices

The responsibility of each building block is described in the following subsections.

2-2-1 Man-Machine Interface (MMI)

The MMI reacts with external events. It accepts input events and executes corresponding
functions. External event include:
1. User input — key press.
2. Connection — originate a call, incoming call.

3. Handset status — battery status, antenna status, timer, etc.

The MMI also has the responsibility to represent the MMI scenarios on the display
device of handset. The MMI includes a set of scenes. Icons, buttons, and pictures compose
each scene. The external events trigger the changeover of scenes according to the current

scenario.

2-2-2 Real-time operation system(RTOS)

The RTOS provides resource management services to application system. These
services include:

1. Multithreading management.

2. Communication — mailbox, queue.

3. Synchronization — event, semaphore, mutex.

4

Interrupt service routines.

In a good system design, one usually forbids the application system to accesses the OS
resource services directly. Instead, application system accesses the OS resource services via a
wrapper — the Kernel Interfaces. The kernel interface is a set of predefined functions, which
abstract the implementation details of OS services, and provides a stable interface to
application system. Using this approach for system implementation will be easy for porting to

another OS platform.

2-2-3 GSM subsystem

The GSM sub-system in the framework handles the communication task of the
handset. The European Telecommunications Standards Institute (ETSI) defines standards of
the GSM cellular phone system [8]. All GSM protocol must conform to the GSM standard to

ensure the communication functionalities.

The ETSI also defines standards to extend the ITU-T Recommendation V.250. In the
ITU-T Recommendation V.250, it codifies the most common commands used by DTE to
control DCE with asynchronous DTE-DCE connections [9]. This is as known as "AT
command set", because each command is started with "AT". PC uses the AT command to
control its modem. For example, PC dials a phone by sending a string "ATD4125678" to

modem.

These standards define a simple interface to control the GSM system. Any software
can use the AT command to control the GSM system regardless of the complexity of GSM

specification.

2-2-4 Hardware devices and drivers

Hardware device drivers included in the framework depend on the functional features
provided by the handset device. The most common handset devices incorporated in the

current cellular phone include:

1. Panel (display device).
2. Keypad (input device).
3. Digital camera (image capturing device).

The panel is the main display device of a handset. Application of the handset calls the
panel drivers to draw on the panel. When the design of a handset device phases in a new type

of panel, the programmers have to modify the program that relative to panel drivers.

The keypad is a basic input device of a handset. The interrupt service routine (ISR) of
the handset is installed to the interrupt vector table of the target system. When the user press

the key of handset, the processor of the target device will execute the keypad ISR.

The digital camera provides the function for capturing digital images. The digital
camera for handset devices has various kinds of specifications. Programmers have to modify

the relative program when the design of digital camera has been changed.

In the current software framework for handset devices, the signaling protocol
decouples the relationship between the device drivers and the software applications. We will

briefly describe the signaling protocol in next subsection.

2-2-5 Signal

The signaling protocol decouples the software application and the hardware devices.
In the current framework for handset devices; we design several tasks to handle the hardware
devices. Each task is a software component that provides an interface to access the hardware
services. The interface is signaling protocol.-The software applications of a handset device do
not access the device drivers directly, but.send-signals to the relative task to request for
hardware services. The task handles these requests by executing the corresponding driver

functions.

Chapter 3
The Visual-based Software Construction Approach

And Generic Software Framework

In chapter 2, we have stated the problems of current development method for creating
MMLI. In this chapter, we will discuss how the authoring system and the generic software

framework help programmers to develop the software application for handset devices.

3-1 The visual-based authoring system

In this section, the framework of a Visual Based Software Construction Model [10] is

recalled and a Ul design pattern generator IS shown in-Fig. 3.

Ul Template Generic |
shrc T
Constructar Ul Tamplata Ul dTigrer
F s Generaled Program Generated
L» Ul Template |_Lg, anri:srt:"-‘j-ls'm wsar ook » Gewgrmor —» sSoftware Simulator
Ma . Syt and feel Program
U1 Design Pattern 1 / \ I l
Generalor andware
i FerE— Gonerated FHardware
User look softwarne funiction librany
and feel DB design campanent |
e franmesork

Genenc
termplate
software ?;T-ﬁ;:'
Tramework ;
N unckion
far pervasine
device

Genearic

Fig. 3 The of UI Design Pattern Generator and Visual Based Software Construction Model

The Visual Based Software Construction approach supports a Visual Requirement
Authoring system for Ul designers to produce GUI based requirement scenario and
specifications. It also supports a Program Generator to generate the target application system

as specified in the visual requirement representation. The programmer can produce the target

application system base on the function binding features provided in the program generator to

bind each GUI component with the associated application function [10] [11].

This visual-based construction approach includes the Visual Ul Authoring System,
which is used to edit the visual representation; the Program Generator, which is used to
generate the source code for target platform according to the visual representation generated
by the visual Ul authoring system; and the Simulator, which is used for software simulation.

The main components of this system are described as follows:

Visual Ul Authoring System: It is a visual-based editor. The Ul designers use the Visual
Ul Authoring System to create a prototype of user look and feel. Then one can edit this
prototype by adding more text or buttons. The Ul designers can preview the prototype and
modify it. After the authoring is completed, the Ul designers have generated the target Ul

system.

Program Generator: A function:binding.system generates the program for target system.
When the design of user look and. feel is satisfied, the Ul designers use the program
generator to produce the source code of application.-The program generator produces the
source code according to the visual representation generated by the Visual Ul Authoring
System. The program generator glues the Ul'‘components to the software design framework,
and binds function library component with each Ul component defined in the generated

visual representation.

Software design framework: The program generator applies the software design
framework to generate the source code. A software framework is a platform for
representing the visual representation that is generated by the authoring system.
Programmers can instantiate a software framework from the generic software framework.

We will discuss the generic software framework in section 3-2.

Function library component: It is a set of pre-defined library. Programmers implement this
function library according to the hardware specification. The program generator applies the
function library to produce source code for MMI. The function library component is
generated by generic template for API function that will be elaborated in [12].

10

Simulator: It is used to simulate the functionalities of the generated target application
software on the target cellular phone. Programmers can verify the requirement of the
generated software application on PC. If the requirement of the generated software
application is fulfill, then one can build the firmware for the target system, download the

firmware to the target device, and verify the behavior of the application on target platform.

The Ul designer can use the Visual Ul Authoring System to edit the user look and feel.
He or she can author the user look and feel to produce a visual representation for the target
platform. Then the program generator produces the source code for target platform according
to the produced visual representation. It generates source code by gluing the software design

framework to the library functions. Finally, one uses the simulator to do software simulation.

This visual Ul authoring system is especially suitable for the Ul designer. The Visual-
based authoring system helps the Ul designers to create a prototype of MMI in an efficiency
way. The designers can edit and preview this prototype and verify its functionality on PC.
After the design of MMI is frozenthe Ul designer can apply this authoring system to produce
the target Ul program without writing any textual code. The authoring system uses the code
generator to translate the visual representation to source code. The code generator resolves the
relationship between the MMI and:the functions of device drivers. It applies the designed

framework and function library in code generation phase.

3-2 Methodology for using a software design framework to create software

applications for handset devices

In this section, the methodology for using a software design framework to create

software applications for handset devices is recalled [1] here:

The user look and feel and the application function are glued with the instantiated
software framework in the code generation phase. When the design of user look and feel is
satisfied, the programmer can use the AP function and Ul binder and the Application
system program generator to generate the software application program for target platform.

The code generation has two phases:

11

1.

AP function and Ul binder:
The AP function and Ul binder glues the application function with the instantiated
software framework. After the visual representation has met the requirement of user
look and feel, the programmers choose function library components to complete the
function binding. A function library component is a software component that provides
an interface to drive the specific hardware devices. The programmers bind the actor of

a scene with the selected function of a function library component.

Application system program generator:
The program generator glues the user look and feel with the instantiated software
framework. When the function binding is completed, the program generator translates
each scene of the user look and feel to code snips. The program generator collects
these code snips and glues them with the program of instantiated software framework.

After the function binding and program.generation are completed, the program for

target platform is generated. To verify the,conformance of the program that was generated
from the program generator, the programmers have to-compile the program and make an

executable image for the target platform.

In this research work, we focus in'the program generator. Specifically, a generic

software framework for handset devices is proposed to generate the target software design
framework. In the following section, we present the architecture of the generic software

framework.

3-3 Architecture of the generic software framework

The generic software framework for handset devices is a multitasking, event-driven

system. There are eight parts in the generic software framework, as shown in Fig. 4: the

signaling protocol is the inter-task communication interface for software component; the Ul
task represents the MMI scenarios; the MM kernel task listens to events and dispatches
events to corresponding tasks; the GSM task handles the GSM-related events and provides
communication services; the DSC task handles the digital camera; the keypad ISR report

12

keypad event to the MMI kernel task; the Display API defines a set of functions which the Ul
task use to draw on panel; the GKI class library provides the functionalities to create these

tasks and defines the interface of signaling protocol.

The MMI kernel task acts as the *headwaiter’ in the generic software framework. The
other tasks act as ‘waiters’: they accept request signals sent from MMI kernel task and

perform services by executing application functions.

Ul task

1gnal
Class library 1 signa

ﬁ MMI kernel task

1 signal J'function t signal t signal
Keypad gl Display GSM
ISR APIs task task

Fig. 4 The,generm'soﬁware framework

Signaling protocol is an inter-task communication and synchronization mechanism in
the generic software framework. There are four tasks in the generic software framework: Ul
task, MMI kernel task, GSM task and DSC task. Each task is a software component that
provides pre-defined services. A task accesses the other task’s services via an interface, the
signaling protocol. The MMI kernel task requests hardware services by sending signals to
other tasks. Note that the MMI kernel task does not call the driver functions directly. This
means the generic software framework provides a hardware-independent platform for
software applications. The signaling protocol decouples the interfaces and implementations of

the hardware devices, as shown in Fig. 5:

13

[. Signal 15 lunction
) GSMT&&IS'« SIG_DSC_PREVIEW | dscPrwviaw!)
scSnapShoh

S5IG_DSC_SNAPSHOT

SIG_DSC_SAVE_PIC

signal

(more signals) (more functions)

| I Signal I function
DSCTaSk SIG_GSM_AaL gsmlaall)

SIG_GEM_HANGLP gsmHangUpl)

S51G_G5M_ANSWER asmanswar |

{more signals) {more functions)

Fig. 5 Signaling protocol decouples the software components of the generic software framework

Each task has a mailbox for storing signals. The interfaces of sending and receiving

signals to each other are the same. The behavior to process signal depends on each task.

The Ul task represents the M"MI scenarios that generated by the program generator. It
displays the contents of the current scene on pa_n‘él. The MMI kernel task request the Ul task
to change the scene by sending s‘ig‘,nals.”The Ul task processes these signal by redrawing the

content of the current scene on the panel ™ ===

The MMI kernel task acts as an “event listener” and “event dispatcher” in the generic
software framework. It listens to external events and dispatches events to corresponding event
handlers, such as Ul task, GSM task and DSC task. The MMI kernel task dispatches jobs to

these tasks by sending signals to them.

The GSM task is a software component that handles the GSM sub-system and
provides a stable interface via the signaling protocol. The MMI kernel task requests for the
GSM services by sending signals to GSM task. The GSM task reports the communication
status by sending signals to MMI kernel task. The interface of the GSM task and GSM-sub-
system is the AT command interface, which is defined in [8] and [9]. The GSM task must

conform to the signaling protocol to provide the services of GSM sub-system.

The DSC task is a software component that handles the digital camera hardware. It

controls the DSC module to perform the services of preview, snapshot, and so on. The DSC

14

task must conform to the signaling protocol of the generic software framework. The details of
DSC can be found in [12].

The Keypad ISR handles the key press events and reports it to MMI kernel task.
The keypad is a basic input device of a handset. The keypad ISR is registered to the interrupt
target system. When a user presses the key, a hardware interrupt triggers the CPU to execute

the keypad ISR to send a signal to MMI kernel task.

The Display API is a set of service routine that implements the drawing functions on
the panel of handset device. The Ul task uses these functions to draws pictures, buttons and
icons on panel. The implementation of Display API depends on the hardware device. A

complete study of Display API is beyond the scope of this thesis.

The Generic Kernel Interface (GKI) is a class library that wraps the OS. It
encapsulates the implementation of OS, such as multitasking, inter-task communication and
synchronization, and provides a stable interface forSoftware application. When the
programmers port the application-to.another OS, they do not need to modify the software
application, but only need to rewrite the GKI library. Each task in the generic software
framework is a sub-class of GKI Task class. The GKI class library implements the

functionality of signaling protocol.

In the next section, we present a comparison study between the software framework

and generic software framework.

3-4 A comparison between software framework and generic software

framework

A software design framework is a reusable architecture for creating software
applications for handset devices. A generic software framework is a template of software
design framework. A software design framework is specialized to target OS and hardware
device, where the generic software framework defines these interfaces and left the

implementation issues for software framework.

15

The generic software framework provides a template for implementing the software

design framework for specific OS and hardware device. It defines the algorithm to access the

services of OS and hardware device drivers. The software design frameworks overwrite to

provide concrete behaviors. Table. 1 gives a comparison between software framework and

generic software framework from different aspects:

Table. 1 A comparison between software framework and generic software framework.

Software Framework

Generic
Software Framework

Software
architecture

<TEVIM>TMD

Keypad Display DSC GSM
ISR APIs

. tsiglml
ass

(7]
& ? MMI kernel task
1brary

1.~aig1ml ll'lmcliml tsignxll tsignnl

Keypad @l Display DsSC
ISR APIs task

=y

task task

Concept A reusable software architecture /| A generic template of reusable

for handset deviees. . | software architecture for handset
i devices.

Flexibility Provides an OS-dependent and Defines the generic methods to access
hardware-dependent platform for the services provided by OS and
handset devices. hardware devices.

Components Tasks, signaling protocol, GKI Same.

class library.

Implementation
Issues

Porting the GKI class library to

target OS.

Implement the tasks, keypad ISR
and Display API for target device.

Provides the porting guidelines of
GKI and tasks.

GKI Specialized to the target OS Provides generic methods to access
platform. the services of OS.

Keypad ISR Implemented for the keypad device | Defines the behaviors of keypad ISR
of target system. for the MMI kernel task.

Display API Implemented with the functions of | Defines the drawing functions for Ul
the target panel device. task.

DSC task Performs DSC services by Defines the generic behavior of DSC
executing the functions of DSC devices.
device drivers.

GSM task Performs communication services | Defines the generic behaviors of

by handling AT commands.

GSM sub-system.

16

The visual-based Ul authoring system helps to create the application based on the
prerequisites of software design framework. The authoring system does not need to know the
implementation details of OS and hardware device. The details are encapsulated behind the

software design framework.

A more details treatment on the generic software framework for handset devices will
be given in chapter 4 and chapter 5.

17

Chapter 4
Software Framework Generation

Based on Generic Software Framework

In chapter 3, we outline the structure of a generic software framework and present the
major components description in generic software framework. In this chapter, we will discuss

how to instantiate a software framework from the generic software framework.

4-1 Software framework generation based on the generic software

framework

To create a software framework for handset device, the generic software framework
must be specialized for target OSand hardware devices. The unresolved components headed

to be instantiated in the proposed generic software framework include:

Generic Kernel Interface (GKI).
GSM task.

DSC task.

Keypad ISR.

Display API.

a ~ W DN

The details of DSC task can be found in [12], thus it is not elaborated here.

In addition, a complete treatment for the Display API is beyond the scope of this thesis.
In the simulator, we use the Borland Visual Component Library (VCL) to implement the

Display API for simulation purpose.

The program generator takes the generated software design framework to produce the

target platform for the application program. A software design framework is a “user-defined

18

specialization” instance of generic software framework. A software framework is specialized

for a specific OS and hardware device after the following actions are taken:

1. Porting the GKI library to the target operating system. In the proposed generic
software framework, in this case, the programmer need to overwrite the Task
class to carry out this duty. We will give a porting example of Win32 platform in
the chapter 5.

2. Porting the Keypad ISR for the keypad device of target handset. The Keypad ISR
handles the key input events and report events by sending signals to MMI kernel
task.

3. Porting the Display API for the panel device of target handset. The Display API
allows application to draw image and text on panel.

4. Implement the GSM task according to the signaling protocol. The
communication request and.report.of the status to MMI kernel task will be
defined here.

5. Implement the DSC-task according to the signaling protocol. The DSC task that
handles the DSC madule will-be defined here. The details can be found in [12]

In following sections, we will discuss how to instantiate the generic software framework

to create a target software framework.

4-2 Generic Kernel Interface (GKI)

In this section, we will explain how to port the GKI class library to a target OS. At first, we
briefly introduce how to create a thread. The Task composites a Mailbox to store signals. We
will discuss the implementation principle of mailbox. After the Task create a thread, it is able
to send signals and receive signals. The sendSignal and recvSignal are introduced at
last. Here we give examples that porting the GKI to the Win32 OS platform. We implement

all samples in this section in C++ language.

19

The Generic Kernel Interface is designed to adapt the application to different OS
platform. There are three major steps in this porting process:

1. Implement the Task class for multi-tasking.

2. Implement the Mailbox for sending and receiving signals.

3. Overwrite the sendSignal and recvSignal methods of Task class.

4-2-1 Task

To create a thread on Win32 platform, one has to prepare the entry function
start_address for thread execution and the parameter argl i st for entry function.
Then call the _beginthreadex to create a thread [13]. According to C++ specification,
when we assign a method of Task to start_address, the method must be static, as shown

in the following Program sample 1.

unsigned long _beginthreadex(
void *security,
unsigned stack size,
unsigned (__stdcall *start_address)(void *),
void *arglist,
unsigned initflag,
unsigned *thrdaddr);

Program sample 1

We call the _beginthreadex in the Task: :start method [14] [15]. Here we
pass “this” to the _beginthreadex as the parameter of entry function, as shown in

Program sample 2:

bool Task::start()

hThread = _beginthreadex(NULL, O, entryFunc, (LPVOID)this,
0, &dwThreadlD);

Program sample 2

20

When the start method of the Task class is invoked, it will call the OS service
routine to create a thread for the current application program. The thread will take the pointer

of the Task object as parameter (this) and execute the entry function entryFunc.

Porting the Task class to another OS is in the same manner. Call the OS API to create

a thread in the Task: - start method, and keep the thread handle for later manipulation.

4-2-2 Mailbox

The mailbox is a common concept among RTOS. Most RTOS has ready-made
solution of mailbox. If there is not a suitable solution for mailbox, it is still easy to implement

a Mailbox class. Here is the guideline to implement a mailbox:

1. A mailbox provides methods foroperating signals:
bool empty(void);
Signal * front(void);
void push(Signal *);
void pop(void);

2. A mailbox composites a queue to hold signals:

gueue<Signal *> signalQueue;

3. The mailbox provides a wa it method to prevent from pooling signal queue. When
the wait method is called, the calling task will be blocked until a signal is

available:
void wait(void);

4. Anatomic-lock guards the signal queue to prevent from synchronous access.

21

4-3 GSM task

The GSM task is a software component that provides the GSM communication
services in the generic software framework. It encapsulates the GSM sub-system and provides
GSM service via the signaling protocol. All signals send to GSM task will be processed in the
processSignal method. To implement a GSM task to handle the target GSM module, one
has to overwrite the processSignal method of the GSM task. We will illustrate the

concept of overwriting the processSignal method of GSM task in Fig. 6.

GSMTask: :processSignal (Signal * =sig) |

switch { sig-»id) {

case SIG_GSM_DIAL:
gsmDial{ sig) . .
break; Signal ID function

case 5IG GSM HRNGUP:

gsmHangUp ()} ;
break:

SIG_GSM_DIAL gsmDial()

SIG_GSM_HANGUP | gsmHangUp()

case SIG_GSM ANSWER:
gsmAnswer) ;

break; SIG_GSM_ANSWER | gsmAnswer()

(more signals) (more functions)

Fig. 6 The signal-function table of GSM task

To overwrite the GSMTask: - processSignal, we have to pair the corresponding
device functions for each kind of incoming signal. There exists a relationship between the
type of signal and the corresponding function. Each kind of signal stands for a corresponding
GSM service. We show the signal-function as a table in the right hand side of Fig. 6.
Programmers can provide more services to GSM task by adding more signals and functions in
the GSMTask: : processSignal method. The parameters for calling the functions are
attached in the context of signal. The GSM task retrieves the parameters from the signal and

pass these parameters to the AT command interface.

22

4-4 Keypad ISR

The Keypad ISR is executed on the key press interrupt. Each time the key is pressed,
the processor executes the Keypad ISR to send a signal to MMI kernel task. To create a
keypad ISR for target software framework, one must implement the keypad ISR and register
the keypad ISR on the interrupt vector table of the target system.

4-5 The created software framework

When the GKI class library is ported to the target OS, and the GSM task, DSC task,
and keypad ISR are all implemented for a specific hardware device, the hot spots of the

generic software framework are resolved, thus, a software framework is created. Fig. 7

schematizes the overview of the software architecture of the created software framework:

MMI scenarios

UI task

MMI kernel task

Keypad Display DSC GSM
ISR APIs task task

Fig. 7 The software architecture of the created software framework

The created software framework provides a platform for representing the MMI
scenarios generated by the visual-based Ul authoring system. The GKI class library wraps the
operating system and provides the functionalities for creating tasks and signaling protocol.
The Ul task can represent the MMI scenarios generated by the visual-based Ul authoring

23

system. The MMI kernel task interacts with input events and dispatches signals to other tasks.
The Keypad ISR is invoked to report the key press events when user presses the keypad. The
Ul task uses the Display API to draw images on panel. The DSC task handles the DSC
module. The GSM task controls the GSM sub-system.

24

Chapter 5

System Design and Implementation

In chapter 4, we have discussed the software architecture of generic software
framework. In this chapter, we describe the design and implementation details of the generic
software framework. The design and implementation of GKI class library, the Ul task, MMI

kernel task, GSM task, DSC task, and Keypad ISR are discussed in the following sections.

The software architecture of the generic software framework is recalled and is shown
in Fig. 8.

Ul task

ignal
Class library T HEnd

]
a <) MMI kernel task

"‘Signal l'function t signal tsi gnal
Keypad @ Display DSC GSM
ISR APIs task task

Fig. 8 The generic software framework

5-1 Design and Implementation of Generic Kernel Interface (GKI)

GKI is a class library that provides functionalities of multitasking, inter-task
communication, and synchronization that are implemented by the synchronized objects. The

synchronized objects - such as mutex, critical section, lock, and semaphore - are platform-

25

dependent. In this study, we use C++ to implement the multitasking, threads, and thread
safety [16].

We implement these synchronized objects as the wrapped objects for the platform
independent consideration. In this study, when we need to port the program to another
platform, we will not need to restructure our codes, but only need to rewrite these

synchronized classes.

We implement several synchronized objects to construct the GKI class library:

1. Signal - Tasks communicate to each other via signals.
2. Task - GKI provides the Task class to create tasks. The implementation details
for creating tasks on different OS are encapsulated in the Task class.

3. Mailbox - Stores signals. Each task has its own mailbox.

Each Task in the GKI has a-mailbox te store signals. Both the sendSignal and
recvSignal of the Task class-are relevant tormailbox. The following Program sample 3

shows the relationship between Task, Mailbox and Signal:

Task: :sendSignal (Signal * si1g)

{
mai lbox.push(sig);

Signal * Task::recvSignal()

{
mai lbox.wait();// wait until a message is received.
Signal * sig = mairlbox.front();
mai lbox.pop();
return sig;
by

Program sample 3

26

5-1-1 Signal

In the generic software framework, signals are used for tasks to communicate and
synchronize to each other. The MMI kernel task coordinates event invocations and event
executions by using signals. When an external event is triggered, a signal is constructed and
sends to MMI kernel task. The MMI kernel task will process these signals and dispatch them

to other task.

Signals are stored in the mailbox of a task. Each task has a public method
sendSignal for other task to send a signal to itself. The private method recvSignal

fetches a signal from mailbox.

There are several kinds of signals in the generic software framework. Each type of
signal is a sub-class of the Signal class. The Mailbox provides a method to push a signal
into its internal queue and fetch a sighal from quete. The Mailbox treats all kinds of signals in

the same manner. We illustrate the Signal and the sub=class of Signal in Fig. 9.

Fig. 9 Class diagram of Signal

27

Mailbox e Signalld { [E
- gueue : Queue
i SIG_KEY_GROUP = 00100,
+ push(sig_: Signaly :void SIG_KEY_PRESE,
*pop : void SIG_KEY_LONG_PRESS,
+ fronty) : Signal SIG_KEY_RELEASE
+emptyd) - boolean = = g
+ it - woid
SIG_GSM_GROUP = 0x0300,
SIG_GSM_DAIL,
1 i SIG_GSM_HANGUP,
SIG_GSM_INCOMMINGCALL,
Queue Signal SIG_GSM_COMNMNECTING,
—— . SIG_GSM_ONHOOK,
+ pushisiq - Sighal | vold +id : Signalld SIG GSM RESET,
+ popl void o1 . . F--=-- _ = o .
: ﬁoﬁ% Soinat oo | Tsionaloiveid [T SI6_GSM_ANSWER,
+ empiyD) : boolean + ~Bignaly ; void 5IG_GSM_SENDFILE,
SIG_GSM_GETFILE,
? SIG_GSM_SENDSMS,
SIG_DSC_DROUP = 0x0400,
SIG_DSC_SMAPSHOT,
SIG_DSC_UPLOAD,
MMiSignal UlSignal SIG_MMI_GROUF = 0x0500,
+ command : String + command ; String SIG_MMI_LUPDATEINPEUF,
+ key sint
SIG_UI_GROUP = 020600,
SIG_UI_GOTOSCENE,
KeypadSignal DSCSignal GSMSignal :
+ key sint + cammand ; String +command : String

In order to represent each kind of external events, we define several types of signal,
such as KeypadSignal, MMISignal, DSCSignal, UlISignal and GSMSignal. These
signals derive from the Signal class and overwrite the virtual destructor that is defined in
base class. The Signal class defines the pure virtual destructor which derive classes provide a
concrete implementation. When program deletes a signal, the destructor of the signal is
invoked to release the resources contained in the signal.

A sub-class of Signal has a Signal 1d data field for identification and several data
fields for storing messages. When a task receive a signal, it identifies the signal identification

to decide what action to take, and obtains the parameters of functions from the messages.

Here we give two examples to explain the usage of signals.

The first example, as shown in Fig. 10, illustrates how signals are used to make a
phone call. When user dials several numbers, the.Keypad ISR sends a series of key-press
signals to MMI kernel task. The MMI kernel task will send signals to trigger the Ul task to
update the current scene and redraw the scene on panel. After user press the OK key, the MMI

kernel task will receive the signal, and send another.signal to GSM task to make a phone call.

O CWMkTask CUITask CGSMTask

1. pressd

1.1 sendSianal(

2 zendSignalisig=UpdateScens)

|

|

i

|
1
-
|

|

|

|

|

F— —

3 pressd

3.1 sendSignal)

4 sendSignalisig=UpdateSeene) |

1

|
|
5: sendSignalisig=0iah

T

- ——

Fig. 10 A sequence diagram of making a phone call

28

Another example is given in Fig. 11 to show the sequence diagram of incoming call.
When the GSM task is notified by incoming call, it sends an INCOMMING_CALL signal to
MMI kernel task. MMI kernel task will send another signal to inform Ul task to update the
MMI scenario. After the user press the OK key to accept the call, a hardware interrupt is
happened, and the corresponding interrupt service routine (ISR) is triggered to send a
KEY_PRESS signal to MMI kernel task. Again, the MMI kernel task sends another signal to

inform Ul task to update the MMI scenario.

| | |
I

1 sendSignal(sidzlncnmhingt}all)
|

:
I
I
i
I
I
I
I
I
I
I
I
I
I

% O hitdlTask UITask CGEMTask
Actard :Kemad ISR
I

2. sendSignalizig=UpdateScene)
T

1
I
I
I
I

3 press(accept

H—Pm 3.1 sendSignal(

4. zendSignalizig=UpdateScene)
T

1

o sendsignal(sidzAcceFtCall}

T ——

1

Fig. 11 A sequence diagram of incoming call

29

5-1-2 Task

The Task class gives a skeleton for common behavior on multitasking, inter-task
communication and synchronization. There are four tasks in the generic software framework,
Ul task, MMI kernel task, GSM task and DSC task. Each task is a sub-class of Task class. We
use the Template Method pattern [17] to design the Task class and these sub-classes. Fig. 12

shows the design pattern of tasks using the Template Method pattern.

Task void Task:rung {
- Signal® sig;
recignalo signal |- ____ [l Temirateay
processSignal]) | void sig = recvSignall;
processSignalisig);
[l}‘ 1
}
[]
GSMTask MMKTask
processSignallsig : Signal) - waid + processSignal{sig Sianaly waid
GEMTask processSignal{Signal * sia) { &N MMk Task processSignal(Signal ™ sig) {
switch | sig-=id)
case SIG_GEM_DIAL: UpdateStatesig);
gzmbialf sig); hreak;
case SIG_GSM_HAKGLIP: dispatchSignalisia);
gsmHangUp; break; '
}

Fig. 12 A class diagram of tasks based on the Template Method pattern

The Task provides a template for those tasks defined in the generic software
framework. It defines concrete methods that subclass can choose to reuse or overwrite; it
defines primitive methods that the subclasses of Task must implement. The implementation

policy of these primitive methods varies with OS and hardware device.

The Task class provides these methods:

1. bool start();

2. virtual void run(Q);

3. public void sendSignal(Signal * msg);
4. protected Signal * recvSignal(void);

5. protected virtual void processSignal(Signal * msg) =

|
o

6. protected virtual void destroySignal(Signal * msg)

I
o

30

The start is a concrete method that creates a thread for the current application.

The run is a template method that receives signals and process signals. Successors of
Task may choose to overwrite this method and insert the code that should be executed, or

reuse the default implementation.

The sendSignal is a concrete method that pushes a signal to its internal mailbox.

The recvSignal is a concrete method that fetches one signal from the mailbox. The
recvSignal is a private method. This is because each task has its own duty to process signals,

and this internal information need to be encapsulated into a task.

The processSignal is a primitive method that processes the signal that was sent to
the task. The subclasses of Task must override this abstract virtual function based on the

behavior of processing signal.

The destroySignal is a primitive method that releases the memory that is
allocated for the signal. The subclass of Task must override this abstract virtual function to
release the resources allocated for signals.

The concrete methods, sendSignal and recvSignal, provide the common

interfaces to send and receive signals.
The abstract methods, processSignal and destroySignal, are left for derived

classes to provide concrete implementations. The behavior to process signals depends on the
requirement of each derived class.

31

When the start method is invoked, a thread is created. Here we give a program

example to illustrate the algorithm of start method:

bool Task::start()
{
hThread = _beginthreadex(

NULL,
0,
entryFunc,
this,
0,
&dwThreadlD);

Program sample 4

The created thread will take the pointerof Task object as parameter and call the
entryFunc. The entry function Task: :entryFunc is a static method that accepts an
argument - this, which is the only point-to distinguish one task from the others. After the

thread is created, the OS will execute the static entryFunc method in the context of thread.

In the Task: - entryFunc, the program references the pointer of the Task object.
After initialization, the program enters run method. When the task has completed its job, the
program calls the exit to cleanup. The following program example illustrates the algorithm of

entryFunc method:

unsigned __ stdcall Task::entryFunc(LPVOID IpParameter)
{

Task * pTask = reinterpret_cast<Task*>(lpParameter);

pTask->initialize();
pTask->run();
return pTask->exit();

32

Program sample 5

The run method contains the user-defined program for the Task. The implementation
of run method provides a default design for subclass of Task. In run method, tasks receive
signals from its mailbox, and process signals in their primitive processSignal, here is a

program example:

void Task::run(Q)
{
Signal * sig;
while (! terminate){
sig = recvSignal();
processSignal (msg);
}
}

Program sample 6

Programmers can choose to reuse this.implementation or have another implementation
for the subclass of Task. In Ul task; GSM task, and . DSC task, we choose to reuse the default
implementation of run method defined in Task class. In the MMI kernel task, we choose to
overwrite this default implementation. Following program example explains the overwritten

run method of MMI kernel task:

void MMITask::run()

{
Signal * sig;
while (! terminate){
sig = recvSignal();
updateCurrentState(sig);
dispatchSignal(sig);
by
e

Program sample 7

33

5-1-3 Mailbox

Every task in the generic software framework has a Mailbox to store signals. The

mailbox provides interfaces to push and retrieve signals. We use the “Strategy” pattern [17] to

design and implement the Mailbox class. Fig. 13 shows the strategy pattern consists of a

Mailbox class and a set of Oueue strategy classes:

Mailbhox

- queLE Guele

Cueue

+ pushisig : Signaly ;woid
+ popd void

1

=R Aushisin Signal ©wolid
+ ol ol

T

HucleusQueue

Win32Queue

mailbo - MU_MAILB O

+ pushisig : Signal) : void
+ popd void

0 Wector
lock : AtomicLock

+ pushisig : Signaly ;woid
+ popd void

]
L]
1

{

H

MucleusQueue: pushiSignal sig)

MLU_Send_To_Mailboxi &mailbox, sig, O;

{

H

WindZoueue:pushi{Signal sig) S

lock.enter);
0.pushisio;
lock leavel;

Fig. 13 Mailbox design pattern based on the Strategy pattern

The Mai1 Ibox (Context) composites a reference to a Queue object. The Queue is an

abstract class (Strategy) which defines the common interface to all strategies. The

Win32Queue and NucleusQueue are subclasses of Queue (Concrete Strategy) that are

implemented for different OS. Sub-classes of Queue have similar behaviors and provide

various implementations strategies for Mailbox. This design makes it easy to port the GKI

Mailbox on different OS.

34

The Mailbox class composites a queue and delegate the duty of storing signals to its
queue. It provides methods to push, to fetch and to pop signals. The Mailbox provides a
"walit" method to prevent from pooling its queue, which can greatly save lots of computing

time. The Mailbox maintains atomic-access mechanism to access its queue.

Here we give examples to explain how the Mailbox is used to store and retrieve
signals. Fig. 14 illustrates the sequence of sending a signal to a task. The receiver task pushes
the signal into its mailbox. The mailbox of the receiver task delegates this duty to the internal

gueue object.

taskl - Task taskd - Task task2 mailbox : Mailbox taski mailbox.gueus : Queue

[I |
| 1: sendSignal{zig:Signal |

1.1 pushizig:Sianal) |

111 pushisig:Signal

Y

Fig. 14 Sequence diagram: task1 send a signal to task2

Fig. 15 depicts the sequence of fetching a signal from a mailbox. The task2 is waiting

for a signal after it calls the wa 1t method. When a signal is available, the task2 fetch the

signal by calling the front method and disposes this signal by calling pop method.

taskd Task taskZ mailboy : Mailbox taskd mailbox.gueds : Queue

| I
| 1: wait) I

| l

2 frontd

|
I
|
I
— ’_!_ 2.1 front))Ilj
T |
I
I
|

3. pop{) |
. g 3.1 popid

Fig. 15 Sequence diagram: Task?2 fetch a signal from its mailbox

35

5-2 Ul task

The Ul task maintains a set of scenes that was generated from the visual-based Ul

authoring system. Each scene is composed with icons, buttons and pictures. The MMI kernel

task sends signals to Ul task to trigger the changeover of scenes.

The Ul task applies the State pattern to maintain the transition of scenes, as shown in

Fig. 16.

1: sendSignal{sig-=id = 5IG_UI_GOTO_SCENE)

20 initithis)

—»

ChithdkTask

cUITask

—>

i
¢
¢
/

!
L
¢
¢
¢

i
switch (sig-=id) {

I Look up for next scene
i Initial this scene,
I redrawy,

hreak;

t

}

UlTask:processSianaliSignal *sia) S

case SIG_LI_GOTO_SCERME:

3 addUlCompaonentsiiterm)

UITask: redraw)

i

far_each itern in the tahle:
iterm-=drami);

.Siene

l I

|
Sceneint{LITask *uitask)

{

for_each itern in this scene:
witask-=addUICompanent{itemn);

k]
L]

UTask:addUIComponent{UICamponent *item)
i

ifpush a itern to table.

!

Fig. 16 Collaboration diagram: Ul task

36

The program generator translates the visual Ul requirement into code snips for Ul task.

We will illustrate the implementation of Ul task by the following pseudo code:

UlTask: :UlTask()
{
// the program generator inserts the Ul scenes:
entry.first = "'Scene223";
entry.second = Scene223::Instance;
mSceneMap. insert(entry);
// .._(more Ul scenes)

// The program generator inserts the control scenes:
entry.first = "IncommingCallScene";

entry.second = IncommingCallScene::Instance;
mSceneMap. insert(entry);

// . ._(more control scenes)

Program sample 8

The program generator inserts the MMI'scenes and the control scenes into the program
of the Ul task. The Ul task will execute these code snips at run time. When the Ul task
receives a signal with the identification set ta SIG_UIl GOTOSCENE, it handles this signal
by 1: look up for next scene; 2: update the current scene; and 3: redraw the panel for the
current scene. Here we give the pseudo.code to.explain how the Ul task handles the
SIG_Ul_GOTOSCENE signal:

void UlTask: :processSignal(Signal * sig)
{
switch(sig-—>i1d) {
case SIG_UIl_GOTOSCENE:
// Tind the next scene in the lookup table
// update the current scene
// redraw the current scene
break;
}
b5

Program sample 9

37

5-3 MMI kernel task

The MMI kernel task is an “event listener” and “event dispatcher” in the generic
software framework. It handles events by dispatching these events to other task. This is
especially important for a user responsive system. When an event requires a long time to be
handled, the MMI system can still keep the event highly responsive. User may want to know
the progress of event or cancel the event that was launched before. With the responsive
listener, the system can react to external events quickly. The design of MMI kernel task is
based on the "Active Object" pattern [18], which is shown in Fig. 17:

1: sendSignal() 2. engueled

o _—* i

mimkTask : MkTask signalGueue

evpad SR Keypad SR

3 4—

3 degueue

Mk Task onRunningd S
1
while {13
Signal * sig = recwSignald;
updateStatedsio);
dispatchSignal(sio);
1

}

/) MidkTask dispatchSignal(Signal * sig) S
4: sendSignald /

switch | sig-=id 1
case SIG_GSM_DIAL:
gsmTask-=sendSignalisio);
hreak;

nemTask GSMTask 1
i

Fig. 17 Collaboration diagram: MMI kernel task

The MMI kernel task listens for external events and reacts to them. It maintains its
states and reacts to events according to the current status. When a signal (as event) is fetched

from the signal queue, the MMI kernel task processes this signal in the following order:

> W

Recognize the type of the signal.

Look up for the event handler.

Update the current state with this signal.

Dispatch this signal to the dedicated task to handle this signal.

Fig. 18 is the state diagram that represents the internal states of MMI kernel task for

handling the events in GSM sub-system:

Ml Task internal states.

Code: MMITask.cpp,

Ref- Design Pattern, "State" pattern

ABTYangimmSkeletomstatemachine™.cpp, *.h

Wiraiting

SIG_GSM_Reset

Crommaetiom ™

Cannection

S1G_GEM_IncommingCall

SIG_GSM_Dail

.,

SlG_GEEM_Hanallp

SlG_GEM_Connect

Talking

[IncaommingCall

—

SlG_GSM_Answer

et

Fig. 18 Internal states of MMI kernel task

39

5-4 GSM task

The GSM sub-system handles all communication events and provides the mobile
communication services such as to dial a phone, to hang up a call, to indicate an incoming call,

and to accept a call, and so on.

We model the GSM sub-system as a modem, and design the GSM task to handle the
GSM sub-system. With the AT command interface [8], the GSM task can control the GSM

sub-system and simulates the GSM communication features.

The GSM task waits for incoming signals from MMI, decides the action to be taken,
and sends the AT command to GSM module. The GSM task provides three kinds of GSM
communication services:

1. Originate a call
2. Answer a call

3. Hangupacall

Each service is invoked by a corresponding sighal, as below:
1. SIG_GSM_DAIL
2. SIG_GSM_ANSWER
3. SIG_GSM_HANGUP

In addition, the corresponding functions to perform these services are listed below
respectively:
1. dialQ
2. answer()
3. hangUp(Q)

The GSM task inherits from the Task class and overwrites the processSignal
method. In processSignal, we pair the corresponding device functions with signals. Here
we use a switch-case statement to discriminate the action needed to handle these signals. In

addition, the pseudo-code of the GSM task is list as below:

40

void GSMTask: :processSignal(Signal * msQg)

{
switch (sig->id) {
case SIG_GSM_DAIL :
dial(Q;
break;
case SIG_GSM_ANSWER :
answer();
break;
case SIG_GSM_HANGUP :
hangUp() ;
break;
}
}

Programi sample 10

Here we give an example:to explain‘how-the MMI kernel task requests the GSM task
to make a phone call. When the MMI kernel task decides to make a phone call, it sends a
signal to GSM task to perform this service. The sending signal contains the phone number to
dial and the signal identification is set to SIG_GSM_DIAL. When the GSM task receives this
signal, it executes this request by sending an AT command to the GSM module. Fig. 19

illustrates the concept of this dialing process:

Chh kT ask

i 1: sendSignalisig = (SIG_GSM_DIAL, "112"))

2 sendATecommandATD112"

—»

CGEMTask GEM module

Fig. 19 Collaboration diagram: Making a phone call

41

5-5 DSC task

The DSC task provides functions of digital camera. When the user requests the DSC
module to take a snapshot The MMI kernel task processes the request by sending a signal to
DSC task. The DSC task processes the request by calling corresponding drivers to perform

the service. The detail design of DSC task and the device drivers can be found in [12].

Here we give an example to elaborate how the MMI kernel task and the DSC task
cooperate to perform a snapshot. When the MMI kernel task decides to make a snapshot, it
creates a signal, set the identification field to SIG_DSC_SNAPSHOT, and send to DSC task.
When DSC task receives this signal, it executes the corresponding driver function to drive the
DSC module to make a snapshot. Fig. 20 shows the collaboration diagram of taking a snap
shot.

1: sendSignal(sig:Signal)

—>

C) L hMETask
eypad ISR

L 2 sendSignal(sig-=id = SIG_DSC_SMNAPSHOT)

DSCTask I I DSC driver |

Fig. 20 Collaboration diagram: Take a snap shot

Here we explain the implementation of the DSC task by giving the following pseudo

code:

void DSCTask: :processSignal(Signal * msg) {
switch (msg->sid){
case SIG_DSC_SNAPSHOT:
// perform snapshot
break;

Program sample 11

)

5-6 Keypad ISR

The keypad ISR sends signal to MMI kernel task on key press events.

The processor of the handset device executes the Keypad ISR on the key press
interrupt. Each time the key is pressed, the processor is triggered by a hardware interrupt.

Then the processor executes the Keypad ISR to send a signal to MMI kernel task.

The MMI kernel task need to distinguish two kinds of keypad events: "press” or "long
press”. Consider the ‘cancel’ key of a handset. In most case, this key is designed to have two
meanings: one is for canceling the current operation, and the other is for powering off the
handset. Therefore, the Keypad ISR has to distinguish the difference between the normal
“press” and the “long press”, and send different signal to MMI kernel task. Both types of
signals have different meanings, and the way to.handle these two signals depending on the
design of MMI scenarios. The Keypad ISR will keep the states and report the key pressed

events according to the current state. The states diagram of the keypad ISR is described in Fig.

21:

press

count = threadshold

released long pressed]

dofcount=10 l:_: relegse entry ! count = thread J

Fig. 21 States diagram of keypad ISR

43

The following pseudo code explains the algorithm of the keypad ISR:

void KeypadlSR(void)

{
// scan the keypad to get the pressed code
int key = hw_scankey();

if ('bLongPress && (0 == iKeyPress)) {
// perform key press event
KeypadSignal *sig = new KeypadSignal;
sig->sid = SIG_KEY_PRESS;
sig->mKey = key;
MMITask->sendSignal (sig);

}

iKeyPress++;

if (LONG_PRESS THRESHOLD == iKeyPress) {
// perform long press event
bLongPress = true;
iKeyPress = O;
KeypadSignal *sig’'= new KeypadSignal;
sig->sid = SIG_KEY_LONG-PRESS;
sig->mKey = key;
MMITask->sendSignal (sig);

Program sample 12

5-7 Display API

The Display API is a set of functions that draw images on panel. A complete study of
the Display API is beyond the scope of this thesis. In this study, we use the Borland VCL
[19] to emulate the Display API. A detailed treatment on this subject can be found in [20].

44

Chapter 6

Simulation and Application Examples

In this chapter, we explain the run time behavior of the generic software framework. In
order to verify the generic software framework and the user look and feel that generated from
the authoring system, we implemented a software simulator that can be executed in PC

environment.

6-1 Introduction of the simulator

The simulator helps us to verify the design of the MMI scenarios. It can accept key
press, display the operation status, and execute the corresponding functions. We show the
look and feel of the simulator in Fig. 22:

Handset simulsior

- |
FBEARE

035206486

R R [E
o tes LI ® Ho
R LI C
1 2 3
7 8 El

] #

Fig. 22 The look and feel of the simulator

We can originate a call or accept a call on the simulator. When we press the buttons on
the simulator, the Ul task will display a series of numbers on the panel of the simulator.

45

6-2 The design and implementation of the simulator

In this section, we will make a tutorial on the design and implementation of the
simulator. The simulator has several components that will be elaborated in 6-2-1. We collect
these software components and compile to an executable program. The simulator is executed
on PC and it controls the external devices, the DSC module and the GSM module, via the data

cable.

6-2-1 The software architecture of the simulator

The software architecture of the simulator includes GKI class library that was
specified to Win32 OS platform; a software design framework that was specified to
simulation environment; a set of MMI scenarios that was generated by the visual-based Ul
authoring system; and a graphic user_interface (GUI) to stand for the keypad and the panel.

The software architecture of the simulator
i =

,IJ”“"

is hown as Fig. 23.

MMI scenarios
Ul task
MMI kernel task

000ZUIAL
<TEWM>TMD

Fig. 23 The software architecture of the simulator

The simulator combines a graphic user interface (GUI) with a software design
framework. On the left hand side of Fig. 23 is the GUI of the simulator. The GUI has a panel

on the top and a keypad on the button. The simulator displays Ul to the panel and handles
user input from the keypad. When user presses the keypad, the Keypad ISR reports the key-
pressed events to MMI kernel task, and the Ul task represent the MMI scenarios on the panel.
Here we use a real handset to stand for the GSM sub-system and a DSC evaluation board to

stand for a DSC hardware device.

46

6-2-2 The design and implementation of the simulator

We create a software design framework from the generic software framework to fulfill
the requirement of simulation. The generic software framework is specialized to Win32 OS

platform and hardware devices. Fig. 24 illustrates the creation of the software design

framework.

UI task

fsignal
Class

o I
library

ISR APIs task task
‘r signal 'l,ﬁmction 3 signal tsignnl .
Keypad @ Display DSC
ISR APIs task

Fig. 24 Create a software design framework for simulator

UI task

MMI kernel task

000TUIM
<TEUMIM>IID

Keypad Display DSC GSM

The GKI of the software desngn fra,n]\ework |s specific to Win32 platform. We
implement the GKI class library for W|n32 OS platforrh The methods for porting GKI class
library are mentioned at 5-1 De3|gn and lmp+¢mentatlon of Generic Kernel Interface (GKI).

The keypad ISR of the simulatofﬂi"s' irﬁﬁullerhented as an event handler of the GUI. When
user presses the keypad, the event handler is invoked to report this event to MMI kernel task.

In this thesis, we do not implement the Display API but use the Borland Visual
Component Library (VCL) to perform this service instead. By the help of VCL, each actor in

the MMI scenarios has a method to draw itself on the panel.

The GSM task interacts with the GSM sub-system via AT command interface. A serial
port is opened to transact the AT commands and response between software design

framework and GSM sub-system.

The DSC task and the DSC evaluation board are connected by a USB cable. The DSC
task sends commands to DSC module via the USB data cable. The DSC module processes

commands and response the execution result to DSC task.

47

6-3 Application examples

The program generator glues the MMI scenarios with the software design framework.

Fig. 25 depicts the process flow of program generation:

Visual Ul
Representation
(User look and feel)

~output-

Design Framework Design Framework

OS Hardware

OS Hardware
<Win32> devices

Fig. 25 The program generatot,éomﬁi.ﬁéﬁhgfuse,rribok and feel with the design software
. " framework

<Win32> devices

L& i

Here we explain how the user look and feel is combined with the application function.

The Ul designer uses the visual-based authoring system to edit the Ul requirement and
produces user look and feel. The Ul designer uses the function binder to combine the
application functions with the user look and feel. Then the program generator translates the
relationship between application functions and user look and feel into code snips, and adds
these code snips to the program of Ul task. After the program generation is completed, the
programmer compiles the program to a software application for handset devices.

When the handset application is running, the MMI kernel task accepts external events
and dispatches event to corresponding task. When the MMI kernel task receives a signal, it
will look up for the next scene in the MMI scenarios, update the current scene and send
signals to Ul task to update the current scene. Then the Ul task will redraw the panel to

represent the current scene. The MMI kernel will also send signals to request the DSC task

48

and/or GSM task to perform application services. The DSC task and/or the GSM task will

handle the request signal by executing the corresponding application functions.

We will demo three examples in the following sub-sections. Each demo explains the

runtime signal flow of the software framework .

6-2-1 Making a phone call

The Fig. 26 shows the signal flow of dialing a call. When user press the button of the
simulator, the keypad ISR is triggered (see Fig. 26 step 1) to report the key press event to

MMI kernel task (step 2). The MMI kernel task handles this event by triggering the Ul task to
update the current scene (step 3). After user press ten numbers and press the “yes” key, the
simulator will make a phone call by sending a signal to GSM task to request a dial service

(step 4). The GSM task handles this iigmal@y.:{_sggqmg an AT command to the external GSM

.

module (step 5). b

MMI scenarios

Ul task
3. signal

MMI Kernel task

AT035206486”

Fig. 26 The signal flow of dialing a call

49

6-2-2 Incoming call

We use Fig. 27 to illustrate the signal flow of an incoming call in the software

framework. When the GSM sub-system receives a call, it sends an AT command “RING” to
indicate the GSM task (step 1). The GSM task processes this indication by sending a signal to
MMI kernel task (step 2). The MMI kernel task process this signal by updating the current

state and dispatches this signal to Ul task to update the current scene (step 3).

MMI scenarios

Ul task

MMI Kernel task

Fig. 27 The signal flow of incoming call

50

6-2-3 Accept a call

We illustrate the signal flow for accepting a phone call in Fig. 28. When user presses
keypad to accept the incoming call, a hardware interrupt 1s triggered to execute the keypad ISR
(step 1). The keypad ISR reports this event to MMI kernel task (step 2). The MMI kernel task
dispatches this signal to UT task (step 3) and GSM task (step 4). The GSM task process this event

by sending an AT command “ATA” to GSM sub-system to accept this call.

MMI scenarios

UI task

3. signal

MMI Kernel task

5. "ATA”

Fig. 28 The signal flow of accepting a call

51

Chapter 7

Conclusions and Future Work

The development process for creating MMI is a time-consuming task. The
programmers take the main role to develop the software. The visualize-programming tool can
help programmers to create MMI quickly. This methodology relies on the prerequisite of a
software framework for handset devices. This framework has responsibility to provide a
platform for MMI scenarios that was generated by authoring tool. It provides a platform to
represent the MMI scenario. The framework also encapsulates the implementation details of

OS and hardware devices, and provides a stable interface for software application.

A generic software framework for the handset device is proposed in this thesis study.
The generic software framework is.atemplate of software architecture for handset devices.
When a specific target platform réquires a software design framework, programmers can
instantiate one from the generic software framework. The generated software framework
provides an OS-independent and hardware-independent platform for the MMI requirement
that authored by Visual Ul Authoring system. The‘program generator produces the target

program of handset device using the generic software framework as system architecture.

It has some efforts to instantiate a software framework from the generic software
framework. The hotspots of the generic software framework include the GKI and the tasks
that control the hardware devices. Programmers implement these functions depend on each

version of OS and different type of device drivers.

In this thesis study, we do not have complete study on the topic of the display API.
According to the 2ME MIDP, it defines the model of the user interface for the handset panel.
We may have a further study in the MIDP and try to use this approach to create an approach

to implement the display API.

In addition, we do not analysis the runtime performance of the software framework,

which is an important issue for a handset device. We implement the simulator to make the

52

conformance analysis to proof our approach, and we can apply our approach to a real handset

to prove the runtime performance.
The generic kernel interface adapts the application and the operating system. The

performance issue is highly related with the RTOS, and we can try to port the GKI to another

OS platform to make certain of this approach.

53

References

[1]1 Shang-Ting Yang, "User look & Feel Design for Handset Devices Based on Visual Requirement Authoring
and Program Generation Methodology", N.C.T.U Taiwan, Master Thesis, 2004

[2] {4, hitp://www.topology.com.tw

[8] WIKIPEDIA, http://www.wikipedia.org/

[4] Ralph Johnson and Brian Foote. "Designing Reusable Classes”. Journal of Object-Oriented Programming.
SIGS, 1, 5 (June/July. 1988), 22-35

[5] Buschmann, F. “Pattern-oriented software architecture: a system of patterns”. Chichester; New York, Wiley.
1996

[6] Pree, W. "Meta patterns - a means for capturing the essentials of reusable object-oriented design". in M.
Tokoro and R. Pareschi (eds), Springer-Verlag, proceedings of the ECOOP, Bologna, Italy: 150-162. 1994

[71 Larman, C. "Applying UML and patterns: an introduction to object-oriented analysis and design and the
unified process". Upper Saddle River, NJ, Prentice Hall PTR. 2002

[8] ETSI, AT command set for GSM mobile equipment (ME), ETS 300 642 (GSM 07.07) editions, 1996

[9] ITU-T Recommendation V.250

[10] Deng-jyi Chen, Ming-Jyh Tsai, Jia-chen Dai, and David TK Chen, "Visual Based Software Construction:
Visual Requirement Authoring tool and Visual Program generator”, International Conference Proceedings,
ICS. 2004

[11] ---, W.C. Chen, K.M. Kavi, "Visual requirement representation”, The Journal of Systems and Software 61,
2002, pp. 129-143

[12] Chien-Chung Lin, "A Generic Software Framework for DSC module”, N.C.T.U Taiwan, Master Thesis,
2005

[13] Microsoft MSDN Library.

[14] Emad Barsoum, "Template Thread Library", http://Awww.codeguru.com/Cpp/W-
P/system/threading/article.php/c5687,2003

[15] Ryan Teixeira, “Designing a Thread Class-in|C++",
http://www.geocities.com/SiliconValley/Heights/6038/dthreads.html

[16] Danny Kalev, ANSI-ISO C++ Professional Programmer's Handbook, Macmillan Computer Publishing,

1999
[17] E.Gamma, R. Helm, R. Johnson, and.J. Vissides; f}"JffFEi[mF%?r L, BOUPTRY (R L R
2003/5

[18] R. Greg Lavender, Douglas C. Schmidt, "Active Object: An Object Behavioral Pattern for Concurrent
Programming”, ISODE Consortium Inc., Austin, 1996

[19] Visual Component Library Reference of Borland C++ Builder

[20] J2ME Mobile Information Device Profile (MIDP); JSR 37, JSR118

[21] Mohamed Fayad, Douglas C. Schmidt. "Object-Oriented Application Frameworks". Communications of
the ACM, Special Issue on Object-Oriented Application Frameworks, Vol. 40, No. 10, October 1997

[22] Douglas C. Schmidt, Ralph E. Johnson, Mohamed Fayad. "Software Patterns”. Communications of the
ACM, Special Issue on Patterns and Pattern Languages, Vol. 39, No. 10, October 1996

[23] ---, "Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplexing and Event Handler
Dispatching", in Pattern Languages of Program Design (J. O. Coplien and D. C. Schmidt, eds.), Reading,
MA: Addison-Wesley, 1995

[24] ---, "Experience Using Design Patterns to Develop Reuseable Object-Oriented Communication Software",
Communications of the ACM Special Issue on Object-Oriented Experiences, Vol. 38, N0.10, October,
1995

[25] ---, Paul Stephenson, "Experience Using Design Patterns to Evolve Communication Software Across
Diverse OS Platforms", Department of Computer Science Washington University

[26] XM fh > PIEF R pIAEEE. CRIEEER - FAS - A7 - 7™ 1998

[27] Bjarne Sroustrup, C++ A=V ZI= FRAIET=IN ﬁé%ﬁ%‘ FHS, Bk 4 'F"[j“i 2001

[28] Jeffery Richter, % * Windov&s'%@?“l,%ﬁ', F=op e, A, T 145, 1997

54

http://www.topology.com.tw/
http://www.wikipedia.org/
http://www.codeguru.com/Cpp/W-P/system/threading/article.php/c5687,2003
http://www.codeguru.com/Cpp/W-P/system/threading/article.php/c5687,2003
http://www.geocities.com/SiliconValley/Heights/6038/dthreads.html

	摘要
	Abstract
	誌 謝
	目
	表
	Chapter 1
	Introduction
	1-1 MMI overview
	1-2 Problem Statements & Motivation
	1-3 Overview of this thesis

	Chapter 2
	Software Framework for Handset Device and Related Work
	2-1 Framework
	2-2 The current software framework for handset devices
	2-2-1 Man-Machine Interface (MMI)
	2-2-2 Real-time operation system (RTOS)
	2-2-3 GSM subsystem
	2-2-4 Hardware devices and drivers
	2-2-5 Signal

	Chapter 3
	The Visual-based Software Construction Approach
	And Generic Software Framework
	3-1 The visual-based authoring system
	3-2 Methodology for using a software design framework to cre
	3-3 Architecture of the generic software framework
	3-4 A comparison between software framework and generic soft

	Chapter 4
	Software Framework Generation
	Based on Generic Software Framework
	4-1 Software framework generation based on the generic softw
	4-2 Generic Kernel Interface (GKI)
	4-2-1 Task
	4-2-2 Mailbox

	4-3 GSM task
	4-4 Keypad ISR
	4-5 The created software framework

	Chapter 5
	System Design and Implementation
	5-1 Design and Implementation of Generic Kernel Interface (G
	5-1-1 Signal
	5-1-2 Task
	5-1-3 Mailbox

	5-2 UI task
	5-3 MMI kernel task
	5-4 GSM task
	5-5 DSC task
	5-6 Keypad ISR
	5-7 Display API

	Chapter 6
	Simulation and Application Examples
	6-1 Introduction of the simulator
	6-2 The design and implementation of the simulator
	6-2-1 The software architecture of the simulator
	6-2-2 The design and implementation of the simulator

	6-3 Application examples
	6-2-1 Making a phone call
	6-2-2 Incoming call
	6-2-3 Accept a call

	Chapter 7
	Conclusions and Future Work
	References

