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Abstract: Hydrologic regionalization is a useful tool that allows for the transfer of hydrological
information from gaged sites to ungaged sites. This study developed regional regression equations
that relate the two parameters in Nash’s IUH model to the basin characteristics for 42 major water-
sheds in Taiwan. In the process of developing the regional equations, different regression procedures
including the conventional univariate regression, multivariate regression, and seemingly unrelated
regression were used. Multivariate regression and seeming unrelated regression were applied because
there exists a rather strong correlation between the Nash’s IUH parameters. Furthermore, a vali-
dation study was conducted to examine the predictability of regional equations derived by different
regression procedures. The study indicates that hydrologic regionalization involving several depen-
dent variables should consider their correlations in the process of establishing the regional equations.
The consideration of such correlation will enhance the predictability of resulting regional equations
as compared with the ones from the conventional univariate regression procedure.
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1 Introduction

Rainfall-runoff modeling is an important aspect of hydrological investigation. It pro-
vides essential information needed for a variety of problems including watershed man-
agement, hydrological engineering design of hydraulic structures, and others. There
are numerous hydrological rainfall-runoff models of varying degrees of sophistication.
Among them, the unit hydrograph (UH) model, ever since its conception by Sherman
{1932}, is one of the most widely applied hydrological engineering tools for rainfall-
runoff analysis.

Methodologies to determine a discrete unit hydrograph (DUH) of a selected dura-
tion from storm events with deduced effective rainfalls and direct runoffs are abundant
(Singh, 1988). Recently, Zhao (1992) and Zhao et al. (1994) have conducted sys-
tematic investigations on the DUH and instantaneous UH (IUH) determination when
rainfall-runoff data from several storms occurring in a given watershed are available.
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Furthermore, methodologies to assess the uncertainties associated with the derived
UH were proposed (Yeh et al., 1993).

Frequently, rainfall-runoff analysis and modeling have to be performed for water-
sheds in which data are not available or existing data are too scarce. In such circum-
stance, hydrological regionalization is needed for the purpose of transferring relevant
hydrologic information. Although there are various types of techniques that have
been used in hydrological regionalization, this study, in particular, is limited to the
commonly used regression-type of regionalization procedure. Furthermore, without
being bogged down with deriving regional DUHs of various durations, this study fo-
cuses on the derivation of regional relationships for parameters in an IUH model.
Specifically, Nash’s IJUH model was adopted in this study. From the regional equa-
tions, the parameters in Nash’s IUH model are computed from which the ITUH and
DUH of any specified duration can be obtained. The primary objective of this paper is
to examine the performance of various regression techniques applicable to hydrologic
regionalization. When applying a developed regional equation, uncertainties exist in
the regionalization of a UH. The accompanying paper (Yeh et al., 1995) deals with
the uncertainties involved in regional regression equations for the UH characteristics.

2 Hydrological regionalization by regression analysis

When hydrological data is short in time, scarce in space, or nonexistent, regional-
1zation provides a mechanism for transferring hydrological information from where
records are long and/or available. Techniques for hydrological regionalization are
many {Cunnane, 1988; Stedinger et al., 1992). In general, techniques can be broadly
classified into those (1) substitute space for time, (2) identify model ‘structure’, or
(3) combination of the two.

Regression analysis is one of the most widely used approaches for hydrological
regionalization. The approach attempts to identify the ‘structure’ of a model that
describes the functional relationship between the hydrological parameters of interest
and physiographical/meteorological characteristics of a watershed as

y = g(Xth‘":eréugz,"'a@q) + €y (1)

in which y = the hydrological response of interest; g(-) = a general function relation
for y involving r basin physiographical/meteorological characteristics, represented by
xj, j=1,2,---,1; §'s are parameters that describe the model behavior; €, = model
error terms due to lack of fit to the observed system response y. Once the functional
relation is established, the developed regional regression equations can be applied to
estimate hydrological parameters of interest in ungaged watersheds or sites.

Although the selection of regional regression type is subjective, one often incorpo-
rates some physical justifications. For example, using logarithmic transform is only
applicable to variables that cannot be negative. Many hydrologic and physiographi-
cal characteristics of a watershed are nonnegative by nature. Sometimes, logarithmic
transform of a variable is used in regression analysis because of statistical reasons,
such as variance stabilization.

In general, the function g(-) and its parameter values are not known. The primary
task of the regression analysis is to identify the functional relation g(-) and to esti-
mate its parameters #’s that best describes the relation between the available basin
physiographical characteristics (x’s) and observed hydrological response {y). In other
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words, regression analysis is like system identification in which one attempts to esti-
mate the system throughput from the observed inputs to the system and output from
the system.

2.1 Univariate regression analysis and its drawbacks

In the univariate regression (UVR) analysis, one only deals with a single dependent
variable which could be related to several independent variables such as shown in
equation (1) Without losing generality, suppose that the regional regression equation
g(-) is linear and can be expressed as

Vi = /BO + ﬂlxil + ﬂZXiZ + -+ ﬂrxir+ Eiai = 1723 Y ¢ (2&)
with the subscript ‘i’ representing the i-th observation or, in matrix form, as

y = Xf+¢€ . (2b)

The ordinary least squares (OLS) estimation of unknown regression coefficients,
B’s, for equation (2b) is

b = (X*X) X'y
in which b is the vector of the OLS estimators of § and the superscript ‘t’ represents

the transpose of a matrix or vector. It has been shown (Montgomery and Peck, 1982)
that

E(b) = 8; C(b) = ¢*(X'X)™"); Ee = 0; C(b,e) = 0

in which E(-) = the expectation operator; C(-) = the covariance operator yielding a
covariance matrix; e=y-Xb, the estimated errors vector; 6% = the variance associated
with the error terms which can be estimated by s? as

: ele
T on-(r+1)°

If the errors are independent normal random variables with mean 0 and variance o2,
the following properties hold

b ~ Nr+1(,3, UZ(XtX)_l); ete ~ G2XI21—r—l . (3)

Equation (3) shows that, under the normality condition, the OLS estimators, b, are
multivariate normal random variables and the sum of error squared has a chi-square
distribution with (n-r-1) degrees of freedom.

For a given observation on independent variables, xo, the predicted dependent vari-
able, yo, has the mean and variance as the following

E(yolxo) = x'B {4a)

Var(yolxo) = o®[1 4 x§(X'X)"xq] . (4b)

After the regression coefficients are estimated, the resulting regression equation can
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be used for prediction. For a given xq, the mean and variance of yy can be estimated
by equations (4a-b) with 3 replaced by b, and o2 by s2.

In hydrologic regionalization, one frequently deals with several hydrological char-
acteristics simultaneously. For example, in defining the UH on a regional basis, an
engineer often relates the peak discharge, time-to-peak, and shape parameters to
basin and meteorological characteristics. In fact, parameters describing a UH are
often correlated. The conventional practice of univariate regression analysis treats
each UH parameter separately and, hence, does not take into account the correlation
among the UH parameters.

2.2 Multivariate regression analysis

In the multivariate regression (MVR) framework, one considers several correlated de-
pendent variables simultaneously in establishing the empirical relationships. It is an
extension of univariate regression of equation (2b). Suppose that there are m corre-
lated dependent variables Yy, Y2, -, Yy, which are functions of r regressors in a form
of equation (2b) as

Yoxm = an(r+1)B(r+1)xm + Epxm (5)

in which Y = (y1,¥2, *,¥m), a0 nxXm matrix containing vectors of m dependent
variables each with n observations; X = an nx(r+1) matrix containing (r41) val-
ues of regressors from n observations as defined previously in equation (2b); B =
(Bo, By, By -+, Be)*, a (r+1) xm matrix containing (r+1) row vectors of regression co-
efficients with §; being the vector of the j-th regression coefficients of the m different
regression equations; and E = (€3, €3, -+, €m), an nXm matrix containing vectors of
n residuals for the m dependent variables.

As indicated in equation (3), a multivariate regression model requires that all m
dependent variables have exactly the same regressors and the functional relationships
have the same form. Under the conditions that

E(€1) = O;COV(Gi,Ek) = opl, i=1,2,---,m

with oy representing the covariance between dependent variables y; and yx. The
covariance condition stated above indicates that the random error terms associated
with different dependent variables are cross-correlated. However, there is no corre-
lation among residuals for the same dependent variable. The OLS estimators, B, of
regression coefficients can be obtained as

B = (X‘X)”XtY .

Similar to the univariate regression, the following statistical properties for the OLS
estimators hold (Johnson and Wichern, 1992)

E(B) = B; C(by,by) = oun(X'X) ! fori,k=1,2,---,m

E(E) — o;E(—EtE—) = S = [ow); Clenby) = O,fori#k

n—r—1
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C(B) = S® (X'X)™ = | | | (6)

| o (XX o (XX - om(XEX)

in which S=[ry] an mxm covariance matrix of error terms associated with the m
dependent variables; ® = a Kronecker product operator; and C(B) = covariance
matrix of size m(r+1)xm(r+1) of the OLS regression estimators.

Given a set of observed regressors or independent variables, xq, the m predicted
dependent variables, yg, have the following expected values and the covariance matrix

E(yslxo) = x;B (7a)
C(yolxo) = [ou(l + x4(X*X) " Xo]mxn, for i,k =1,2, -, m (7b)

in which C(yo|%e) = an mxm covariance matrix for the m predicted dependent
variables. From the OLS estimation, the mean vector and covariance maitrix of yq
can be estimated by

B(yglxo) = xiB (8a)
Clyolxo) = [su(l + x(X'X) ™ XoJmxm, for i,k =1,2,-+-,m (8b)

in which sy = rysisy, the estimated covariance between the residuals of yg and yo
with 1y being the sample correlation between the residuals of yy and yoi, and s; and
sk being the standard errors associated with yo; and ygx, respectively.

2.8 Seemingly unrelated regression

The seemingly unrelated regression (SUR) is concerned with a model consisting of m
multiple regression equations which are not entirely identical in their functional rela-
tionships. It is a generalization of the MVK When the m multiple regression equations
have the same functional forms, the SUR and MVR are identical. A comprehensive
discussions on the subject of SUR are given by Srivastava and Giles (1987).

In matrix form, the i-th of the m equations under consideration by the SUR are

Yi = Xiﬁi+77i> fori=1,2,---,m (9)

in which y; = an nX1 vector of the i-th dependent variables: X; = an nxr; matrix
containing n observations of r; regressors; f; = a 1; x 1 vector of regressors; and 7; =
an nx1 vector of errors. Putting equation (9) together for all m equations, one has
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(vl (X% 0 - 01 [AT [m]
y2 0 X, - 0 Ba N2
= +
L ¥Ym L 0 0 "'Xm_ _,Bm_ L m |
which can be put in a compact form as
y = xB+7 (10)

where y = an nmx1 vector; X = an nmxR matrix, § = a Rx1 vector; and n = an
nmx1 vector with R= 3", ;.
In the SUR, the following assumptions about the error terms are made

E(m) = 0;E(mnj) = oyly fori,j=1,2,---,m (11a)

where I,, = an nxn identity matrix. More compactly, equation (11a) can be written
as

E(n) = 0
I 011111 0-12111 e gimIn ]
0211n 0'22111 T J?m]:n
C(n) = E(m') = =S@L) = ¥. (11b)
. UmIIn o-m2In e UmmIn i

To take into account the correlation among the m dependent variables, the gen-
eralized least square (GLS) method can be applied and the resulting estimators are
(Srivastava and Giles, 1987)

bers = XS RL)X]T'XY (ST L)y (12)

It can be shown that bgys is an unbiased estimators of § and the corresponding
covariance matrix is

C(bas) = [Cov(b;,by)] = XS @L)X]™. (13)

Srivastava and Giles (1987) show that the GLS estimator by equation (12) is better
than the OLS estimator because the determinant of the associated covariance matrix
is smaller or equal to that associated with the OLS one.
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Given a set of values of regressors, the predicted m dependent variables have the
means and covariance matrix as

Elyo|Xo] = Xof8 (14a)

C(yo) = XiC(bas)Xo + C(n) (14b)

3 Regionalization of Nash’s TUH parameters
3.1 Descriptions of rainfall-runoff data

To develop a regional UH, representative DUHs of various durations for a total of
42 watersheds in Taiwan were extracted from Huang (1992) and the corresponding
basin characteristics that have potential effects on the UH are listed in Table 1. The
basin characteristics in Table 1 are basin area (in km?), basin length (in km) which
is the distance between the stream gage and the most remote point on the watershed
boundary, basin slope (in m/m), and L, representing the distance along the main
channel between the basin outlet and the centroid of the basin.

3.2 Determination of basin-wide representative Nash’s I[UH parameters

In this study, the parameters in Nash’s IUH are considered to be the dependent vari-
ables which are related to the basin characteristics in Table 1. The regional regression
equations for Nash’s IUH parameters allow estimation of the IUH for ungaged water-
sheds.

Nash’s IUH model {Nash, 1957) is

N-1
U(t) = Efl('ﬁj (it?{) e/K >0 (15)

in which U(t) = the [UH ordinate at time t; K = model parameter representing the
storage coefficient; N = model parameter representing the number of hypothetical
reservoirs; I'(-) = gamma function. Once the parameters N and X are determined,
At-hour DUH can be approximated by

U(kAt|N,K) — U((k — 1)At|N, K)

k= ) (16)
in which Uy = the k-th ordinate in a At-hour DUH, k=1,2,-- -; U(kAt) = Nash’s IUH
ordinate at t=kAt.

Based on the representative DUH of known duration for each watershed, the two
parameters N and K for the watershed can be determined by the method of moment
(Bras, 1987) or some types of optimization techniques. Based on the previous study
(Yang et al., 1992), an optimization technique would yield a better fit between the
computed DUH and the given DUH. In this study, the downhill simplex search
algorithm developed by Nelder and Mead (1965) was used to determine the optimal
N and K for each watershed with the following objective function

M
Minimize " [Uk comp(N, K) ~ Uk repr)” (17)

k=1

N,K
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Table 1. Basin characteristics and Nash’s IUH parameters in Taiwan

STATION AREA LENGTH  Lea SLOPE

IDI  NAME (SQKM)  (KM) (KM)  (M/M) N K

1 SHIN CHI 146.46 25.35 6.33 0.001836  2.812  3.460
2 JAW SHIN 489.00 24.30 11.00  0.0372 2.040  3.804
3 SWAN TOU  282.89 51.00 2550  0.0278 4752 2.364
4 TUNGTOU 259.20 33.20 1870 0.02905 2245 1973
5 KWAN IN 338.00 34.38 1275 0.0471 1.766  4.865
6 DARLUKUN  247.28 27.00 8.80 0.0347 2246 2.298
7 LI SHAN 249.40 31.00 16.00  0.0592 4529 1391
8 SIN BEI 309.86 34.10 1410 0.0183 4702 1.231
9 YEIH MEY 539.52 91.55 4830 0.01420 4193 1.684
10 TZEN WEN 115746 123.50 60.80  0.0044 3714 2450
11 SIN YIN 226.66 39.45 25.30  0.00263 7.001  1.081
12 NUO CHOU  149.68 35.40 1410 0.0130 4016  0.733
13 BE GARN 597.46 52.00 22.00  0.0010 3.074  4.943
14 CHAN PAN 101.09 18.65 1075 0.0217 2453 0.962
15 SHIH GUN 676.50 96.70 4790 0.0017 3.807  2.383
16 DAGIN 360.20 63.45 27.09  0.01404 2.585  2.198
17 SIN JUN 90.50 28.00 1450 0.0022 4577 1418
18 MAR YUAN  85.49 17.22 9.70 0.07967 1.235  6.448
19 JEISHOU 94.75 23.00 1450 0.0865 2.960 1459
20 INPANCO 262.18 25.00 11.00  0.0526 3676  1.239
21 LIYITAN 53.45 23.00 1450  0.0296 9467  0.172
22 SINWULU  638.78 49.70 1551 0.0249 2.359  4.896
23 WAN LON 232.61 33.10 1591 0.0528 3424 1229
24 SIN HAU 321.70 31.50 1850  0.0065 4710 1178
25 SANDIMON  408.51 57.23 2545  0.01720 3137 1.609
26 TSO ZAN 121.31 24.50 1350  0.0036 6.063  0.821
27  CHU KO 83.15 10.65 745 0.01764 2.833  1.708
28 SHILOW 2988.00 162.30 59.50  0.00827 4505  1.701
29 GANZILIN 954.24 64.90 2200 0018288  1.931  4.041
30 SWENCHI 549.17 57.00 2790 0.0243 2073 1.149
31 YEN PING 476.16 60.00 2830 0.025 2536  2.878
32 HAU LAIN 1500.11 55.58 19.00  0.0092 2366  5.133
33 JOW CHU 3076.66 150.70 63.60  0.00780 4690  1.987
34 CHUN TE 139.62 37.00 1520 0.0027 6.792  0.846
35 YU TAIN 160.53 48.00 30.30  0.0042 2.043  2.233
36 PUZI 288.94 63.55 3170 0.0034 4248 2119
37 GIGI 2298.00 129.10 35.30  0.01014 4.320 1414
38 NAN PEI 408.00 50.50 24.25  0.0616 176 98.351
39 ERCUNPU 485.48 51.39 2200 0.0175 2995  1.296
40  TAI DONG 1584.29 94.40 35.08  0.00824 2.006 5728
41 LAN YANG  820.69 65.44 30.00  0.01777 1765 3.132
42 LAULONG  812.03 91.70 35.30  0.02097 3317 1.930
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in which Uy comp(IN,K) and Uy cepr are the k-th ordinates of the computed and repre-
sentative DUHs, respectively. The optimal values of N and K in Nash’s ITUH model
for the 42 watersheds are listed in the last two columns of Table 1.

3.8 Analysis of Nash’s IUH parameters

The summary statistics of N, K, and their logarithmic transform for the 42 water-
sheds are listed in Table 2. The means of N and K are both significantly larger than
their medians indicating that the distributions for N and K are positively skewed.
On the other hand, the mean and median for N and K in the log-space are very close,
indicating that they are approximately symmetric. Normal plots for N and K shown
in Figures 1(a)-(b) indicate that both parameters in their log-space are close being
normal random variables. Therefore, the two parameters N and K were treated as
log-normal random variables.

Table 3 shows the correlations between the two IUH parameters and the four basin
characteristics. Note that correlation coefficient indicates the strength of linear re-
lation between two random variables. To detect potential nonlinearity between two
variables, the rank correlation coefficient may be useful. In case that rank correlation
is significantly larger than the simple correlation coefficient, the existence of nonlin-
ear relationship between the two variables is pronounced. It can be observed that
basin length and Lc, possess a strong linear relationship. This indicates that one of
them would be redundant in regression analysis and, in fact, only one of the length
variables is used in the final regression equations presented later. Furthermore, there
exists quite large correlation among watershed area and the two length variables. In
the log-space, their correlations drop slightly as compared in the original space.

From Table 3, one also observes that.there exists rather significant correlation be-
tween N and K in both the original as well as log-spaces. In the log-space, correlation
between N and K is even stronger. Therefore, such correlation among’ dependent vari-
ables should be taken into account explicitly. Comparing the two simple correlation
matrices of N and K in Table 3(a) and (b) with the rank correlation matrix in Table
3(c) indicates that, in log-space, a linear relationship will generally suffice to describe
the relation between the two IUH parameters and basin characteristics.

3.4 Development of regional equations for parameters in Nash’s IUH

In this section, the developed regional equations using the three different regression
analysis for the two Nash’s IUH parameters are presented. The three regression anal-
ysis considered are univariate regression (UVR), multivariate regression (MVR), and
seemmgly unrelated regression (SUR). Descriptions of the basic theory for regres-
sion coeflicient estimation for the three methods are given previously. The statistical
package, SAS (Statistical Analysis Systems, 1989), was used to conduct the various
regression analyses.

Based on the above examination of N and K of the 42 watersheds, In(N) and In(K)
closely satisfy the normality assumption in regression analysis. The compliance of
normality condition facilitates further inferences about the statistical properties of
estimated regression parameters. In search of the functions that best describe the
relationships between N, K and basin characteristics, the following four functional
forms were used
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Table 2. Summary statistics of N, K, In(N), and In(K)

MEAN MEDIAN STDEV MIN MAX
N 3.520 3.105 1.658 1.235 9.467
K 2.475 1.951 1.760 0.172 8.351
In(N) 1.163 1.133 0.436 0.211 2.248
In(K) 0.676 0.669 0.716 -1.760 2.122

Table 3. Correlation matrices for involved variables

(a) Correlation matrix of variables in the original scale

N K Area. Length Leca
K -0.606
Area -0.018 0.120
Length 0.031 0.036 0.884
Lea 0.089 -0.081  0.731 0.936
Slope -0.295 0.259 -0.287 -0.389 -0.384

(b) Correlation matrix of log-transformed variables

In(N) In(K) In (Area) In (Length) In(Lca)
In (K) -0.753
In (Area) -0.141  0.416
In (Length) 0.070 0.222 0.870
In (Lca) 0.155 0.089 0.725 0.926
In {Slope) -0.392  0.048 -0.135 -0.298 -0.283

{c) Rank correlation matrix for the involved variables

N K Area Length Leca
K -0.675
Area -0.183 0.436
Length 0.022 0.280 0.857
Lca 0.128 0.156 0.718 0.918
Slope -0.391 0.072 -0.182 -0.394 -0.351




y = BotBixitfaxat -+ hxt & (18a)
vy = Bo+ Bilog(x1) + Balog(xz) + - - + Belog(xe)+ €y (18b)
log(y) = Bo+ fixs + BaXa + -+ + BiXet Erogy (18c)
log(y) = Bo+ Bilog(x1) + Balog(xz) + -+ - + Blog(xe)+ Erogy (18d)

Furthermore, quadratic terms with no interaction was incorporated to account for po-
tential nonlinearity that cannot be clearly detected from comparing simple correlation
and rank correlation.

The full model which incorporates all four basin variables and their squared terms
would result in nine unknown regression coefficient (including the intercept). Using
the full model, the F-statistics and coefficient of determination, R?, were used to com-
pare the relative significance among the four different functional forms of equations
(18a-d). The resulting statistics show that equation (18d) has the highest values of
F-statistics and R? indicating that it is the best among the four candidate models for
these 42 watersheds.

Once the ‘best’ empirical model is selected, it is simplified by gradually deleting
terms that are not statistically significant. The decision of deleting or retaining terms
of independent variables is often based on subjective judgement. In this study, the
deletion or retention of an independent variable term was based on simultaneous con-
siderations oft-ratios, adjusted R?, and standard error (SE) of the regression model.
The goal of the exercise is to include terms that maximize the value of adjusted R?
while minimizing the value of SE. With that, the resulting model would retain terms
with t-ratios exceeding one. Sometimes, terms with t-ratios slightly lower than one
are retained to improve the value of SE. Table 4 summarizes the regression coefficients
and the relevant statistical information for the final regional regression equations of N
and K for watersheds in Taiwan. The values in brackets are the standard deviations
corresponding to the estimated regression coefficients above them. In Table 4, the
terms with no regression coefficient given indicate that the corresponding estimated
regression coeflicient is statistically insignificant.

In a multivariate regression, it is required that all regression equations employ
the same independent variable terms. Because the intercept terms for N is signifi-
cant while it is not for K, two multivariate regression models were developed with
one containing intercept terms and the other does not. Detail SAS outputs by the
univariate regression (UVR), multivariate regression with intercept VRW), without
intercept (MVRWO), and seemingly unrelated regression (SUR) for N and K can be
found in Yeh and Tung (1994) and will not be presented herein.

By the UVR analysis, the development of regional regression equations for N and K
were made separately. From Table 4, one observes that basin length is not included
in the final regional regression equations. This is mainly because the two length
variables are highly correlated (see Table 3). Therefore, the use of only one of the
two length variables is sufficient. From the UVR, correlation between the residuals
of the two IUH parameters is not assessed in any way.

By the MVR analysis, the results are identical to the UVR if the independent
variable terms are the same. As shown in Table 4, the measures of goodness-of-fit
(such as R* and SE) associated with individual regional regression equation by the
MVR are slightly worse than those by the UVR. However, the main advantage of
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conducting the MVR is to allow an assessment of the correlation between residuals

associated with different regression equations.

Using the SUR, terms of independent variable in the regional regression equations
for N and K are identical to those in the UVR. As can be seen from Table 4, the
estimated regression coefficients by the SUR are quite different than those by the
UVR. By taking into account the correlation between the two IUH parameters, the
standard deviations associated with the regression coefficients by the SUR are smaller
than those by the UVR. The value of SE associated with the regional equation for
K by the SUR is slightly larger than that by the UVR, whereas the opposite occurs

for N.

Table 4. Summary of regression coeflicients and relevant statistics by
different regression procedures for In(N) and In(K) in Nash’s IUH model

Regr. Method UNR

Dep. Variable In{N) In{K) In{N) In{K)

Intercept 2.912057 HRERREEFE 1.672693 FHRERAAK
[2.065304] [1.30959]

In(Area) -1.156248 2.402552 -0.830733 1.661954
[0.603056] [0.751758] [0.43328] [0.383625]

In(Lca) 0.286432 -2.114992 0.287655 -0.459775
[0.159429] [1.465371] [0.15942] [0.232095]

In(Slope) -0.541320 1.961785 -0.669783 2.113411
[0.438287} [0.570128] [0.40582] [0.556811]

In(Area)? 0.077304 -1.52259 0.050120 -0.087751
[0.049942] [0.064107] [0.03559] [0.030613]

In(Lca)? KRHAAAK 0.279505 sk ook

[0.244349]

In(Slope)? -0.045117 0.209849 -0.058571 0.227697
[0.047114] [0.0682073] [0.04380] [0.060329]

SE 0.37989 0.55079 0.378352 0.553081

R-sq 0.3342 0.7286

Resid. Correl. 0.000000 -0.773258

Note: UNR-Univariate regression;

SUR-Seemingly unrelated regression.
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Table 4 {continued)

Method MVERW MVRWO
Dep. Variable In(N) In(K) In(N) In(K)
Intercept 2.912057 -2.333498 o Rk
[2.065304] [3.023451]
In{Area) -1.156248 2.27483952 -.391406 1.661953
[0.603056] [0.882829] [0.266991] [0.383625]
In(Lca) 0.286432 -0.457473 0.289305 -0.459775
[0.159429] [0.233393] 0.161531] [0.232005]
In(Slope) -0.541320 1.871538 -.843161 2.113410
[0.0438287]  [0.641620] [0.387523] [0.556811]
In(Area)? 0.077304 -0.138933 0.013431 -0.087751
[0.049942] [0.073111] 0.021305] 0.030613]
In{Slope)? 0.045117 0.202366 -.076728 0.227696
[0.047114] [0.068971] [0.041987] [0.060329]
SE 0.37989 0.55613 0.3849 0.553081
R-sq 0.3342 0.4709 0.915145 0.718700
Resid. Correl. -0.779628 -0.781939

Note: MVRW-Multivariate regression with intercept;
MVRWO-Multivariate regression without intercept.

4 Comparison of predictive performance of different regional regression
equations

4.1 Performance evaluation

From Table 4, some information with regard to the relative performance among the
different regression analyses can be extracted. However, the predictability of regional
regression equations by the different regression analyses is not entirely clear. For
this reason, an experiment was conducted to examine the relative predictability of
regional regression equations obtained by the different regression procedures.

The investigation was conducted in the following manner. The total of 42 water-
sheds shown in Table 1 were split into two subsets of equal size. Subset 1 consists
of the first 21 watersheds whereas subset 2 contains the remaining ones. To avoid
subjectivity involved in finding the ’best’ regression model, the experiment used the
full model in which all independent variable terms are included for both N and K.
Since both N and K have the same independent variable terms, the SUR is identical
to the MVR. TFurthermore, a linear model with 5 independent variable terms and a
quadratic model with 9 terms were used to fit the data in the investigation.
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In this investigation, one subset of data was used to develop the regional equations
for N and K by both UVR and MVR which, in turn, was used to predict the expected
values of N and K as well as their variances in the other data subset. Since the pre-
dicted N and K will be used to determine the IUH, the predictability of the resulting
regional equations by the UVR and MVR were judged on the basis of the predicted
IUH peak discharge and the time-to-peak. Knowing N and K for Nash’s [UH model,
the peak discharge (U,) and the time-to-peak (T,) can be obtained by

2.78

_ =N~} . 1){N-1)
Us = oy ¢ N ) (19)

T, = (N-1)K (20)

Note that, for any given watershed with known basin characteristics, the N and K
computed from the regional regression equations are estimated values possessing cer-
tain degrees of uncertainty. These uncertainties will be transmitted to the computed
Up and T}, resulting in uncertainty in peak discharge and time-to-peak. Under this
circumstance, a proper measure for the relative accuracy of estimated N and K by
the different regression procedures can be expressed in terms of the expected losses.

Consider, in general, that a system response W is related to several system in-
puts Ys through a functional relation, W(Y), in which the inputs Ys are estimated
involving certain degrees of uncertainty. For a set of estimated inputs, Y=y, the cor-
responding system response, w(y), may potentially deviate from the true response,
wo(¥o), incurring losses as

Liy) = Iwo(yo) = w(y)|" (21)

in which L(y) = the loss function corresponding to a specified input y; yo = the true
system inputs; and « > 1. Due to the fact that the system inputs Ys are subject to
uncertainty, the value of loss function is also random. Therefore, the expected losses
can be computed as

E(Lie) = Ey{lw(yo) - W(Y)|*} = /IW(Yo—W(Y)l"fY(y)dy (22)

in which E(L|a) = the expected losses over all possible values of system inputs Y;
fy(y) = a joint probability density function of stochastic inputs. To express the
measure of deviation in terms of a metric distance, E{L|a) can be modified into the
Minkowski distance as

D(e) = {Ey[Iw(yo) - W(Y)["}}/ (23)

When a=1 or a=2, D(«a) represents the well-known metropolitan distance and Eu-
clidean distance, respectively.

In the problem context of this study, the system inputs Y=(N, K), the system
response W could be U, or T, and fy(y) in equation (22) is the bivariate probability
density function of N and K. Based on equation (23), three error criteria associated
with predicting the true Uy, and Ty were considered in this validation study and they
are

BIASm(W) = Exx [Wo(No,Ko) — Wa(N,K)] (24)
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MAEq(W) = Enx [[Wo(No, Ko) — Wi (N, K] (25)

RMSEn(W) = {Enx [Wo(No,Ko) — Wa(N, K)|?] }/* (26)
in which BIAS,.(W), MAE,(W), and RMSE..(W) are bias, mean-absolute- error,

and root-mean-squared-error for the system response W by method m, respectively;
W could be U, or Tp; Wo(Np, Kp) is the true values of U, or T, obtained from the
observed N and K; and m represents the type of regression method used to estimate
N and K. In addition, the standard deviation of W,(N,K)} was calculated to indicate
the degrees of uncertainty associated with the estimated Uy and T, that is,

STDwm(W) = {Exk [WA(N,K)] — EX x [Wa(N,K)]}"/2 (27)

in which STD,(W) = standard deviation of Wi, {N,K).

In the validation study, the values of N and K in the subset used for validation
purpose were treated as the true values from which the true values of U, and T}, by
equations {19) and (20) were calculated. Furthermore, from the previous analysis
of N and K values for the 42 watersheds (Figures la and 1b), they are treated as
bivariate log-normal random variables with the means and covariance computed by
the regional regression equations under consideration.

Along with the MVR, two considerations were given to the results of UVR: one,
denoted as UVRO, considers that the estimated N and K by the UVR are uncorrelated
and the other, denoted as UVRI, treats them as bivariate lognormal random variables
having the sample correlation of N and K of the 21 watersheds used for estimation.

4.2 Results

Sample results of validation study based on the first half data set are shown in Tables
5-6 each corresponding to the use of linear model and quadratic model, respectively.
To shorten the presentation, results of validation study based on the second half data
set are not presented herein (see Yeh and Tung, 1994) but only discussed. Part (a)
of Tables 5-6 contains the observed and estimated mean and standard deviation of N
and K in the log-space for the 21 watersheds in the validation subset. In computing
the values of error criteria and the standard deviation associated with U, and T, of
Nash’s IUH, one recognizes that, from equations (19) and (20), the value of N must
be greater than or equal to one to ensure the existence of U, and T,. Consequently,
in this validation study, the values of U, and T}, were computed only when N>1. The
column (2) of parts (b)-(d) of Tables 5-6 contains the probability that N>1. It should
be pointed out that the values of error criteria and the standard deviation presented
in parts (b)-(d) of Tables 5-6, in fact, are the conditional BIAS, MAE, and RMSE
for N>1. Based on equatiouns (24)-(27), the conditional error criteria and standard
deviation of U, and Ty, can be expressed as

BIAS(WIN > 1) = Enk [Wo(No,Ko) — Win(N > 1,K)] /P(N > 1) (28)
MAEL(W|N > 1) = Exk [[Wo(No,Ko) = Win(N > 1,K)[] /P(N > 1) (29)

RMSEH(WIN > 1) = {Exx [[Wo(No,Ko) — We(N > L,K)?]}/2/P(N > 1) (30)
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STDR(WIN > 1) = {Enx [WA(N > 1,K)] — B} x [Wa(N > 1K)} /P(N > 1)
(31)

in which P(N>1) can be computed by integrating the joint log-normal probability
density function for N and K over the domain N>1, K>0.

As can be seen from Tables 5-6 and those not presented, without considering the
correlation between N and K would result in the least desirable predictability, espe-
cially on the time-to-peak. Using the results from the UVR, along with the sample
correlation yields significant improvement on the prediction accuracy. Interestingly,
all methods result in over-prediction on the time-to-peak as indicated by the negative
value of BIAS.T,. Between the MVR and UVRI for a given model type, except for
Table 5, the MVR results in more accurate prediction on Uy and Ty.

It is interesting to note that the use of a quadratic model does not necessarily yield
more accurate prediction of U, and T, than that of using a simpler linear model.
Comparing part (a) of Tables 5 and 6, one notices that, in the great majority of
the validation cases, the errors associated with the prediction of In(N) and In(X) by
using a linear model are smaller than that by using a quadratic model. However,
this observation is reversed when the second 21 watersheds were used for estimation.
More specifically, when the first 21 watersheds were used for estimation set, the values

Table 5. Validation results using the first 21 watersheds for estimation with linear model.

5(a) Observed N and K, their estimated means and standard devitaitons for watersheds in
validation subject

N K

Valid. Obs. Est. Est. Obs. Est. Est.

Case In(N) mn.InN std InN In(K) mn InK std InK

1 .858E-4-00 102E4-01 G70E+400 159E+01 108E401 T06E+00
2 .123E+01 757TE-+00 952E400 206E-4+00 O47E+00 .692E4+00
3 .155E+01 122E+01 954E+4-00 .164E-00 .532E400 .694E+00
4 114E401 105E+4-01 .889E+400 476E4-00 744E4-00 B4T7E400
5 180E-+01 150E4-01 .952E4-00 197E400 .169E4-00 .693E+00
6 J104E+01 989E-+00 105E4-01 535E+00 5T4E400 766 E+00
7 J151E401 115E401 .948E4+00 531E400 .968E+-00 .690E+00
8 .658E-4-00 .104E401 908E+00 .140E+01 103E401 .660E+00
9 729E+400 .894E4-00 .899E+00 139E-+-00 .89TE-+00 .654E-+00
10 931E+00 B17E+00 902E+00 106E+01 .855E+00 B56E-+00
11 .861E-+00 117E401 .994E4-00 164E-4+01 \104E401 723E4+00
12 .155E-+01 A11E4+01 990E~+00 B87TE00 955E400 T21E400
13 J192E+01 169E+01 .103E+-01 167E4-00 .103E+4-00 751E400
14 .714E+-00 .142E4-01 986E-+00 .803E400 .110E+00 JT1TE400
i5 .145E4-01 150E4-01 951E400 751E-+00 216E-+00 692E400
16 146E401 122E4+01 957E+00 .346E-4-00 J104E401 B97TE+00
17 ST0EA4-00 .672E4-00 961E400 212E-+01 J106E+01 .699E4-00
18 .110E+4-01 .104E4-01 877E4-00 .259E+-00 .831E+400 .638E+400
19 696E4+00 .119E401 .904E-+00 175E401 .898E~+00 .658E4-00
20 568E+00 .964E--00 891E+00 114E401 952E-+00 .648E+00

21 120E+01 996E-+00 913E+00 .658E-+00 915E+00 .655E+00
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Table 6. Validation results using the first 21 watersheds for estimation with quadratic model.

6(a) Observed N and K, their estimated means and standard devitaitons for watersheds in
validation subject

N K

Valid Obs. Est. Est. Obs. Est. Est.

Case In(N) mn.InN std.InN In(K) mnInK stdInK

1 -858E4-00 104E401 106401 159E4-01 A17E401 .824E-400
2 J123E401 -849E+00 101E+00 206E-+00 104E+01 JT85E4+00
3 1658401 .108E+401 104E+01 164E-4+00 .826E4-00 .819E4-00
4 114E401 .873E+00 .938E400 AT6E+00 576E4+00 .7T36E4-00
5 180E+01 150E+01 .966E+00 -197E4+00  .153E+00 T59E-4-00
6 104E401 133E+01 116E4+01 .535E+4-00 .799E-00 914E400
7 .151E401 143E+01 993E4+00 B31E+00 AT3E+00 .780E+00
8 .658E4-00 937E4-00 906E4-00 .140E+01 .104E-4-01 711E4-00
9 .7T29E+4-00 T24E+00 .H04E+4-00 139E400 956 E4-00 .T10E+4-00
10 931E-+00 T49E+00 .908E+4-00 106E4-01 810E+00 J713E400
11 .861E-4-00 S4TE+00 105E+01 164E+01 J183E+01 .825E+00
12 .165E+01 A31E4+01 .108E+01 687TE+00 O61E+G0 .850E400
13 192E401 183E+01 .105E401 -167E4+00  .193E-+400 .828E+00
14 714E+00 118E+01 107E4+01 .803E+00 -.303E-01 .839E+00
15 145E-+01 165E4+01 A07E+01 751E400 AT4E400 .837E400
16 146401 A31E+01 112E401 .346E4-00 .636E+00 .880E+00
17 570E+-00 .852E4-00 .108E401 212E+01 A37E4-01 849E+00
18 J110E+01 .866E4-00 .902E4-00 .259E+00 -802E+00 .T08E+4-00
19 696 E--00 115E4+01 910E4-00 A75E401 943E4-00 .T14E+00
20 .568E4-00 T49E+00 902E-+00 114E+01 .102BE401 7T08E400
21 120E+01 107E+01 .960E4+00 .658E+-00 T45E400 .T45E-+00
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of error criteria and standard deviation associated with the prediction of U, and T,
by the UVR indicate that the linear model outperforms the quadratic model. On the
other hand, the quadratic model is superior to the linear model when the second half
of the 42 watersheds were used as the estimation set. In both cases, the quadratic
model yields a more accurate prediction than the linear model when the MVR was
used. This indicates that the regional regression equations developed by the MVR
approach, when dependent variables are correlated, would consistently perform better
in prediction than that by the UVR.

5 Summary and conclusions

Hydrologic regionalization is a useful tool that allows transferring hydrological infor-
mation from gaged sites to ungaged sites. This study developed regional regression
equations that relate the two parameters in Nash’s IUH model, namely, N and K, to
the basin characteristics using data from 42 watersheds in Taiwan. In the process of
developing the regional equations, various regression procedures were employed. In
particular, the conventional univariate regression, multivariate regression, and seem-
ingly unrelated regression were considered. Multivariate regression and seemingly
unrelated regression were applied because, based on the previous study by the au-
thors, there exists rather strong correlation between N and K. The conventional
regression procedure does not take into account the correlation among the dependent
variables which is not theoretically sound. Based on the data from 42 watersheds in
Taiwan, a set of regional equations were developed using the various types of regres-
sion procedures.

To assess the relative performance of the regional equations derived by three dif-
ferent regression procedures, a numerical experiment was conducted in the study
using data splitting validation technique by which the 42 watersheds were divided
into two subsets of equal size each of which, in turn, was used for the estimation
purpose and validation purpose. The objective of the validation study was to exam-
ine the predictability of regional equations derived by different regression procedures.
The criteria used in the performance evaluation were the bias, mean-absolute-error,
and root mean-squared-error in predicting the peak discharge and time-to-peak of
observed IUH in the validation set.

Based on the study, the following conclusions are obtained:

1. Many of the statistical characteristics of a regional equation are readily avail-
able from statistical analysis packages which can be used for uncertainty and
reliability analysis of hydrologic and hydraulic designs.

2. In hydrologic regionalization involving several dependent variables, their correla-
tions should be considered in the process of establishing the regional equations.
Numerical experiment conducted in this study has indicated that the consid-
eration of such correlation will enhance the predictability of resulting regional
equations as compared with the ones from the conventional univariate regression
procedure.
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