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Abstract. A Toeplitz operator Ty with symbol ¢ in L (D) on the Bergman
space A%(D), where D denotes the open unit disc, is radial if ¢(z) = ¢(|z|) a.e.
on D. In this paper, we consider the numerical ranges of such operators. It is
shown that all finite line segments, convex hulls of analytic images of D and
closed convex polygonal regions in the plane are the numerical ranges of radial
Toeplitz operators. On the other hand, Toeplitz operators Ty with ¢ harmonic
on D and continuous on D and radial Toeplitz operators are convexoid, but
certain compact quasinilpotent Toeplitz operators are not.

Mathematics Subject Classification (2000). Primary 47A12; Secondary 47B35.

Keywords. Numerical range, radial Toeplitz operator, Bergman space, con-
vexoid operator.

The Bergman space A%(D) of the open unit disc D in the plane consists of
analytic functions f : D — C which are square-integrable with respect to the area
measure dA. It is a Hilbert space under the inner product

(f.9) = / / f(2)9()dA(z)  for fg € A2(D),

and has the orthonormal basis {e, }5°,, where

en(z) = 1/n+1z" for z € D.
77

For any (essentially) bounded function ¢ on D, the Toeplitz operator Ty with
symbol ¢ is the operator on A%(D) defined by

Tsf =P(of) for f € A*(D),

where P denotes the (orthogonal) projection from L?(ID) onto A%(D). T} or ¢ is
said to be radial if ¢(z) = ¢(|z|) for almost all z in D. Such operators have been
investigated intensively in recent years (cf. [8, 4, 9]). The purpose of this paper is
to study their numerical ranges.
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Recall that the numerical range of an operator A on the Hilbert space H is
the set W(A) = {(Ax,z) : x € H, ||z|| = 1}, where (-,-) and || - || denote the inner
product and its associated norm in H. The numerical range is always convex. For
other properties of the numerical range, the reader may consult [6, Chapter 22]
and [5].

We start with the general Toeplitz operators. The next proposition is all we
can say about their numerical ranges at the present time.

Proposition 1. If ¢ is a nonconstant function in L>°(D), then W (Ty) is contained
in the relative interior of the convex hull of the essential range of ¢.

The essential range Ry of a function ¢ in L>°(D) is the set of complex numbers
u for which {z € D : |¢(z) — u| < €} has (strictly) positive area measure for every
e > 0, the convex hull R" of a subset R of the plane is the smallest convex set
containing R, and the relative interior, Rel Int A, of a (nonempty nonsingleton)
convex subset A is its interior relative to the affine subspace generated by it.

Note that, in Proposition 1, W(T}) is in general not equal to the asserted
relative interior as the following example shows.

Example 2. If
(1 if]e <12,
‘b(z)_{ 0 ifl/2<|z <1,

then T}, has the matrix representation diag (1/4,1/16,...,1/22("+1 ) relative
to the standard basis {e,}32, of A%(D). Hence W(Ts) = (0,1/4], which is not
equal to the relative interior (0,1) of the convex hull of Ry = {0,1}. Note also
that the spectrum o (T}) of T} is equal to {1/22("+1) : n > 0} U {0}, which is not
contained in Ry.

Proof of Proposition 1. Let My be the multiplication operator Mygf = ¢f on
L?(D). Since T} dilates to My, we have

W(Ty) € W(My) = Ry

(cf. [6, Problems 81 and 216]). Assume that W (T}) is not contained in the relative
interior of Rj. Then we can find a real § and a unit vector f in A?(D) such that

<TRc (ei9¢)f, f> = max Rﬁc (9 ¢) = a.
Hence
<MRe (ei9¢)f7 f> = ma’XW(MRe (€i9¢)) = a,
from which we infer that (Re (e¢))f = af. The analyticity of the nonzero f
implies that the set {z € D : Re (e??®(z)) # a} has area measure zero. Hence
Re (e"¢) = a a.e. on D. This says that the essential range of ¢ is contained in
a line. Repeating the above arguments with Im (e??¢) replacing Re (e?¢) yields

that ¢ is constant, contradicting our assumption. Thus we must have W (T,) C
Rel Int R}. O
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If the symbol ¢ of a Toeplitz operator T, on A?(D) is (complex-valued)
harmonic, then W(Ty) has been considered by Thukral [10]. The next result,
though not stated explicitly, is essentially due to him.

Proposition 3. If ¢ is a nonconstant harmonic function in L (D), then W (Ty)
equals the relative interior of Rg.

Proof. By Proposition 1, W(T}) is contained in the relative interior of RQ. If they
are not equal, then W(Tge (ci0(p4c))) S Rel Int Rf, (19 ($4¢)) for some real 6 and
complex ¢, which is in contradiction to [10, Lemma 1 and Theorem 2]. O

The assertion in the preceding proposition is analogous to the corresponding
one for Toeplitz operators on the Hardy space (cf. [7]).

An operator A is said to be convezoid if W(A) = o(A)". Note that it is
unknown whether o(T,) = Ry holds for harmonic ¢ in L (D). If this is indeed
the case, then we would have the convexoidity of Toeplitz operators with harmonic
symbols. The following result is a partial confirmation of this.

Proposition 4. If ¢ is harmonic on I and continuous on D, then Ty is convezotd.

Proof. For a continuous ¢ on D, it is known that 0c(Ty), the essential spectrum of
Ty, equals ¢(9D) (cf. [1, Corollary 10]). Hence ¢(9D) C o(Ty). Next we show that
every extreme point of R = #(D)" is in ¢(OD). Indeed, if zy is an extreme point
of #(D)", then it is in d¢(D). Let the real fy and ro and the complex ¢ be such
that ¢o = €%¢ 4 ¢ satisfies ¢o(D) C {z € C : |z| < 7o} and |e?2 2 + co| = 7p.
Then ¢¢ is harmonic on I, continuous on D and e zy + ¢o in 0do (E) satisfies
et 20+co| = max |¢o(D)|. The maximum modulus principle says that €% zo+co =
¢o(ug) for some ug in OD. Hence zp = ¢(up) is in ¢p(0D). Therefore, the Krein—
Milman theorem implies that
R} = ¢(D)" C ¢(dD)" C o(Ty)".

This, together with Proposition 1 or 3, yields W(T}) C o(T,)". Since o(Ty)" C

W (T,) always holds (cf. [6, Problem 214]), the convexoidity of T} follows. O

We now consider the main topic of this paper: radial Toeplitz operators.
The following characterization of such operators is known in the literature (cf.
[9, p. 631]).

Proposition 5. Let ¢ be a function in L®(D). Then Ty has a diagonal matriz
representation relative to the standard basis {e,}°, of A%(D) if and only if ¢ is
radial. In this case, the asserted matriz representation of Ty is

1
diag (2(n + 1)/ 2 (r) dr.
0
The next corollary is an easy consequence.

Corollary 6. Let ¢ be a radial function in L=°(D). If $(17) = lim,_,1- ¢(r) exists,
then Ty is the sum of the scalar operator ¢(17)I and a compact operator.
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By Proposition 4, certain Toeplitz operators with harmonic symbols are con-
vexoid. The same is true for radial Toeplitz operators since they are normal and
normal operators are convexoid (cf. [6, Problem 216]). The next theorem gives
examples of nonconvexoid Toeplitz operators.

Theorem 7. If ¢ is a radial continuous function on D with ¢(1) = 0 and 3 is
a function in H> with ¢(0) = 0, then Tyy is compact and quasinilpotent. If, in

addition, ¢ is nonzero, then Tyy is not convezoid.

An operator A is quasinilpotent if its spectrum o(A) is the singleton {0}.
Note that the preceding theorem implies that a Toeplitz operator with continuous
symbol may not be convexoid.

Proof of Theorem 7. Let 1(z) =Y -, ai2* on D. For m,n > 0, we have

m / / O(=)u(2)=" 2" dA(z)
mzak/ﬂ ZTHETAAG)

bin =(Tppen, em) =

\_/

3

oo

m —+ 1 n+k+m+1 d ) ( °m i(n+k—m)9d0)
Z ak</ o(r)dr /0 e

2v/(n+ 1)(m+ 1)am—n T2m+1¢(7‘)d7‘ if m > n,
0

n—|—1

\_/

3

0 otherwise.

Thus A = [bynlp =0, the matrix representation of Ty, relative to the standard
basis {e,, } 72, is lower triangular with zero diagonals. For each j > 0, let A; be the
matrix obtained from A by replacing the b,,,,’s with m > j by 0. Since ¢ is radial
with ¢(1) = 0, the Toeplitz operator Ty is compact (cf. [8]). The same is true for
Tsyp = TyTy. Hence A; converges to A in norm and o(A) is totally disconnected.
It follows that o(A;) converges to o(A) in the Hausdorff metric (cf. [3, Corollary
3.4]). Because o0(A4;) = {0} for all j, we conclude that A is quasinilpotent and
hence s0 is Tyy. If ¢tp is nonzero, then W(Tyy) # {0} = o(Tpy)”, that is, Ty is
not convexoid. o

In the following, we show that many commonly seen convex subsets of the
plane are numerical ranges of radial Toeplitz operators. This we start with intervals
on the real line.

Proposition 8. If ¢ is a real-valued radial function in L>°(D), then

1
W(Ty) = [ 11;1(’) An, SUD )\n], where A\, = 2(n + 1)/ r?" L (r) dr for n > 0.
= n>0 0
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If, in addition, ¢(r) is (almost) nonconstant and increasing (resp., decreasing) in
r on [0,1), then

W (T,) = [2/01 ré(r) dr,qS(l_)) <7‘esp. <¢(1_),2/017‘¢(7‘) er.

An example of decreasing ¢(r) is given in Example 2.

Proof of Proposition 8. The first assertion is an easy consequence of Proposition
5 and the fact that normal operators are convexoid [6, Problem 216].

Now assume that ¢(r) is increasing in r. By the change of variable s = r
we have

2n+2
)

1 1
A, = / o(s1/@0+2) g > / (/M) ds = Ay
0 0

for n > 1. Moreover, if here the equality holds for some n > 1, then ¢(s'/(27+2)) =
B(sY/M) ae. or ¢(r) = ¢(r®+t1/™) a.e. on [0,1), which is impossible since ¢(r)
is nonconstant and increasing. Hence the \,’s are strictly increasing in n. Our
assertion for W (T,) follows immediately. Analogous arguments apply to decreasing

o(r). O

Some of our later results on the numerical ranges of radial Toeplitz operators
are proved based on the construction for the essential spectrum due to Grudsky
and Vasilevski [4]. These we summarize briefly below.

For any real t # 0, let

L ()" ifzeDandz#£0
(1) ¢i(z) = § T(1+it) ’
0 if z=0,

where T'(-) denotes the usual Gamma function. Then it was shown that the cor-
responding A\, = 2(n + 1)f01 r?"Fle(r)dr, n > 0, is given by (n + 1)7% (cf. [4,
Example 4]). Thus we can derive that W (T},) = DU{(n+1)"%:n > 0} for t # 0,
W(Tlm ¢1) = (_17 1) and W(Tlm ¢1+iIm qﬁ,,) = (—1, 1) X (—1, 1).

Theorem 9. Any finite line segment in the plane is the numerical range of some
radial Toeplitz operator.

Proof. We may assume that the finite line segment I is on the real line. If I = [a, b)
(resp., (a,b]), then it is the numerical range of Tj;, where

{ 4a — 3b if 2] < 1/2,

o) =1 if1/2 <z <1

(resp.,

[ 4b—3a if |2] <1/2,
(b(z)—{ a if1/2 <]z < 1)

(cf. Example 2 or Proposition 8).
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If I = (a,b), then I = W(Ty) for

a—>b a+b
¢=—Tlm¢1+ 5

where ¢; is the radial function given in (1).
Finally, consider I = [a,b]. Let r; and 75 be such that 1/v/2 < r < 1/2'/4
and 247 <1y < 1. If

1 if0<|s <,
o(z)=¢ —1 if r < |2 <o,
0 if rg < 2] <1,
then 2 fol ro(r)dr =2rf —r3 >0, 4f01 r3¢(r)dr = 2rf —rj <0, and

1
2(n + 1)/ L g(r) dr = 2722 272 0 asn — oo.
0

Thus W (Ty) is some closed interval [¢,d] with ¢ < 0 < d. If

a—1b bc — ad
V= c— d(b e a
then W (Ty) = [a, b], completing the proof. O

For convex sets in the plane with nonempty interior, we make use of the
radial functions ¢; in (1) to prove the following theorem.

Theorem 10. For any function f analytic on an open set containing D, there is
a radial function ¢ in L*°(D) such that 0.(Ty) = f(OD) and W(Ty,) = f(D)",
where ¢ (2) = |2|*™@(2) for z € D, for all m > 1.

Proof. Let f(z) = Y po,arz® on D. By our assumption on f, we have a =
lim supy_, o |ax|'/* < 1. Let 0 < t < —(2/7) Ina and

o0

Ak —2yitk .
E — (1 f D and 0
d(z) = k:OF(1+itk)(n|z| ) ifzeDandz#0,
0 if z =0.
Then

: ak Uk _ . 1/k 1 N —1/k

1 _— =1 1 (1 + itk

i sup | 5= | imsup ax| /% lim [D(1+ itk)|

= o lim (27T)—1/(2k)|e—itk(—1/k)||(itk>(itk+(1/2))(—1/k)|
k—o0

=q lim |e(~t— (/@) (n(th)+i(r/2)|
k—o0

— o lim e—(1/(2k) In(tk)+t(r/2)

k:—?oo

= ael™? < 1,
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where the second equality is a consequence of Stirling’s formula
. I'(l1+=2)
lim —_— =1,
|z]—o0 V2me—zz7+(1/2)

—mte<arg z<m—e

(cf. [2, p. 253, Section 34D]). This shows that the radius of convergence of the
power series >, (ax/T(1 +itk))z" is bigger than 1. Hence ¢ is a radial function in
L>°(D). For n > 0, we have

1
2 1 2n+1 =9 1 / 2n+1 1 —2\itk d
() [ dr = 2+ 2: e T

e} 1
_ ag —1/(n+1) itk : — p2(n+1)
= —— [ (Ins )" ds  (letting s =7 )
kZ:O T (1 + ith) /0

e>0

= Z ap(n+1)7"* = f(n+1)7").
k=0

Since the set {(n +1)7% : n > 0} is dense in ID, we obtain o.(T,) = f(ID).
3 For the numerica} range, we may assume that f(0) = 0. This is because if
f(z) = f(2) — ap and f(D)" = W(Ty) for some radial ¢ in L>°(D), then

FD)" = F(D)" + a0 = W(Ty) + a0 = W(Tyyaq)-
A computation as above with ¢ replaced by ¢,, yields that
n+1

1
2(n+1 2y (r)dr = ———
R R

Since 0 is in f(D) and {(n+m + 1)~% : n > 0} is dense in ID, the convexity of
f(D)” implies that W (Ty, ) = f(D)". O

f((n4+m+1)""%), n>o0.

Corollary 11. Any open elliptic disc is the numerical range of some radial Toeplitz
operator.

Proof. If E is an open elliptic disc, then let
¥(z) = (aRe z + blm 2z + ¢) + i(uRe z 4+ vIm z + w),

where a, b, ¢, u, v and w are real with av # bu, be an affine transformation which
maps D onto E. Theorem 10 says that D = W (T,) for some radial function ¢ in
L>(D). If n = ¢ o ¢, then 7 is radial in L>°(D) and

W(T,)) = W(p(Ts)) = p(W(Ty)) = (D) = E. U

The proof of Theorem 10 can be combined with the arguments for [4, Corol-
lary 3.10] to yield the following proposition, whose proof we omit.

Proposition 12. For any polynomial p (resp., trigonometric polynomial q), the con-
ver set p((—1,1) x (=1,1))" (resp., Int q(OD)") is the numerical range of some
radial Toeplitz operator.



588 Kuo Zhong Wang and Pei Yuan Wu IEOT

Note that if the assertion in Theorem 10 is true for any function analytic
on D and continuous on D, then, in view of the Riemann mapping theorem, every
nonempty bounded open convex subset of the plane is the numerical range of some
radial Toeplitz operator. Unable to prove this, we show that at least an asymptotic
version of it is indeed true.

Proposition 13. Let /A be a nonempty bounded open convexr subset of the plane.
Then there is a sequence of radial functions ¢, in L>®(D) such that W (Ty,) is
open for all n and increases to /\.

Proof. By the Riemann mapping theorem, there is an analytic function f(z) =
ZZOZO apz® on D which maps D onto A injectively. For each n > 0, let D,, =
{nz/(n+1): 2z € D} and fn(2) = >_p_, arz”. Since the boundaries 0f(D,,) are
compact and pairwise disjoint, we have d,, = dist (0f (D), 0f(Dp+1)) > 0 for all
n. Let {k,}5°; be a (strictly) increasing sequence such that

supq{|fx,(2) = f(2)| : 2 € D} < min{%,%}, n>1.

Since f(D,,) increases to A, from the construction of the k,’s, we derive that
fr, (Dy) also increases to A. By Theorem 10, each f, (D,)" is the numerical
range of some radial Toeplitz operator T, . We conclude that W (T, ) is open and
increases to A. O

Finally, we come to closed polygonal regions.

Theorem 14. Any compact convex polygonal region is the numerical range of some
radial Toeplitz operator.

To prove this, we need the following lemma.

Lemma 15. For any € > 0 and compler numbers Ao, A1,...,An—1, there is an
integer m >n — 1 and a function f of the form

1 k+1 1 k+1 1 k+1
@  s0=aw(y) +a(y) tere(me) o k20

such that f(k) = Xg for 0 <k <n—1 and |f(k)| <€ for all k > n.

Proof. Let A,,, m > 1, denote the (m + 1)-by-(m + 1) Vandermonde-type matrix
[1/27H7+H]_ . Since the determinant of A, equals the nonzero

UL 1 1
(M=) I (5w 55))
i=0 0<i<j<m

A,, is invertible. Let A1 = [@j]%;u Here the entries b;; depend on m (for the
sake of simplicity, we don’t add further indices to them). For a large m (to be
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determined later), let a; = Z?:_ol bijAj, 0 <i<m, and let f be defined as in (2).
If a and ¢ denote the (m + 1)-vectors

Ao
ag
ai
and )\"0_ o
A
L O -

respectively, then a = A, lc. Hence A,,a = ¢, which is the same as

[ f0<k<n-—1,
f(k)_{o ifn<k<m.

We now check that |f(k)| can be made arbitrarily small for any k > m. Indeed,
we have

u 1 (kt1
R <D lail (57)
=0
m n—1 1 _—
<> 10351121 (5777)
i=0 j=0
1

<
Il

To proceed further, we show that

m 1 m+1
Z|b”|<21ﬁ) —0 asm — o0
i=0

for any 7, 0 < j <mn — 1. Let the (Vandermonde interpolation) polynomial

— 3T .
pl(x):H 1 1 O§Z§m7
=0 ¥~ o
1#£1

be expanded as (1/271) 37 ¢ij27. Then

1 & 1)’ 1
WZF‘J‘(%) :pi<2ﬁ)=5ﬂ» O<i=zm,
7=0

which shows that ¢;; = b;; for all ¢ and j. Moreover, for each fixed ¢, the b;;’s have
()

i

alternating signs. This can be seen by computing the higher-order derivatives p
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of p; and noting that b;; = 2i+1p%) (0)/;1. Hence

m g 1 j 1 m+1
<325 0(-5) |(5#)
i=0 |j=0
m ‘ 1 1 m+1
_ i+1 _
2 (-3l
m m 1 1 m+1
3 i _+ T+1 1
-2y 2 [ 22|
i=0 I=027FT 21
I
m o m 1 1
. 14
_ 2 2l+1
=2 Z 1 — 92i—l
i=0 11=0
I£i
00 -1 m m-—1 1 1
-1
<2([Io-29) Y11 (5+5)
1=1 i=0 1=0
00 —1 1 1 m—1
<2 1-27" D=+~ 0 :
< (11:[1( )) (m + )<2+4> — 0 asm— oo
Hence for a large m > n — 1 we have |f(k)| < e for all & > n. O

We now proceed to prove Theorem 14.

Proof of Theorem 14. Let A be a compact convex polygonal region with n (> 3)
vertices Ag, A1,..., An—1. We may assume that 0 is in its interior. Let € > 0 be
such that the circular disc {z € D : |z| < €} is contained in A, and let

o(z) = Zaix[oJ/m]ﬂzD for z € D,
i=0

where m and the a;’s are as given in Lemma 15. Then ¢ is a radial function in
L>° (D) and

1 m 1/v/2i+1
2(k + 1)/ 2R (r)dr :Z a;2(k + 1)/ r2k L gy
0 o 0
“ 1 (k1
=Zai(2i+1) = f(k), k>0,

N
Il
=)

by (2). Since Lemma 15 says that f(k) = A\ for 0 <k <n—1and |f(k)| < € for all
k > n, the convex hull of the f(k)’s equals A, that is, W (Ty) = A as required. O
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We conclude this paper by asking which (nonempty bounded convex) subset
of the plane is the numerical range of a radial Toeplitz operator. One constraint
is that it can have at most countably many extreme points as is the case for any
normal operator (on a separable Hilbert space). In particular, is every nonempty
bounded open convex subset the numerical range of some radial 7,7 This seems
to be quite plausible although we don’t know how to prove it at present.
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