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Abstract. A Toeplitz operator Tφ with symbol φ in L∞(D) on the Bergman
space A2(D), where D denotes the open unit disc, is radial if φ(z) = φ(|z|) a.e.
on D. In this paper, we consider the numerical ranges of such operators. It is
shown that all finite line segments, convex hulls of analytic images of D and
closed convex polygonal regions in the plane are the numerical ranges of radial
Toeplitz operators. On the other hand, Toeplitz operators Tφ with φ harmonic

on D and continuous on D and radial Toeplitz operators are convexoid, but
certain compact quasinilpotent Toeplitz operators are not.
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The Bergman space A2(D) of the open unit disc D in the plane consists of
analytic functions f : D → C which are square-integrable with respect to the area
measure dA. It is a Hilbert space under the inner product

〈f, g〉 =
∫∫

D

f(z)g(z)dA(z) for f, g ∈ A2(D),

and has the orthonormal basis {en}∞n=0, where

en(z) =

√
n+ 1
π

zn for z ∈ D.

For any (essentially) bounded function φ on D, the Toeplitz operator Tφ with
symbol φ is the operator on A2(D) defined by

Tφf = P (φf) for f ∈ A2(D),

where P denotes the (orthogonal) projection from L2(D) onto A2(D). Tφ or φ is
said to be radial if φ(z) = φ(|z|) for almost all z in D. Such operators have been
investigated intensively in recent years (cf. [8, 4, 9]). The purpose of this paper is
to study their numerical ranges.
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Recall that the numerical range of an operator A on the Hilbert space H is
the set W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}, where 〈·, ·〉 and ‖ · ‖ denote the inner
product and its associated norm in H . The numerical range is always convex. For
other properties of the numerical range, the reader may consult [6, Chapter 22]
and [5].

We start with the general Toeplitz operators. The next proposition is all we
can say about their numerical ranges at the present time.

Proposition 1. If φ is a nonconstant function in L∞(D), then W (Tφ) is contained
in the relative interior of the convex hull of the essential range of φ.

The essential range Rφ of a function φ in L∞(D) is the set of complex numbers
u for which {z ∈ D : |φ(z) − u| < ε} has (strictly) positive area measure for every
ε > 0, the convex hull R∧ of a subset R of the plane is the smallest convex set
containing R, and the relative interior, Rel Int �, of a (nonempty nonsingleton)
convex subset � is its interior relative to the affine subspace generated by it.

Note that, in Proposition 1, W (Tφ) is in general not equal to the asserted
relative interior as the following example shows.

Example 2. If

φ(z) =
{

1 if |z| ≤ 1/2,
0 if 1/2 < |z| < 1,

then Tφ has the matrix representation diag (1/4, 1/16, . . . , 1/22(n+1), . . .) relative
to the standard basis {en}∞n=0 of A2(D). Hence W (Tφ) = (0, 1/4], which is not
equal to the relative interior (0, 1) of the convex hull of Rφ = {0, 1}. Note also
that the spectrum σ(Tφ) of Tφ is equal to {1/22(n+1) : n ≥ 0} ∪ {0}, which is not
contained in Rφ.

Proof of Proposition 1. Let Mφ be the multiplication operator Mφf = φf on
L2(D). Since Tφ dilates to Mφ, we have

W (Tφ) ⊆W (Mφ) = R∧
φ

(cf. [6, Problems 81 and 216]). Assume that W (Tφ) is not contained in the relative
interior of R∧

φ . Then we can find a real θ and a unit vector f in A2(D) such that

〈TRe (eiθφ)f, f〉 = maxR∧
Re (eiθφ) ≡ a.

Hence
〈MRe (eiθφ)f, f〉 = maxW (MRe (eiθφ)) = a,

from which we infer that (Re (eiθφ))f = af . The analyticity of the nonzero f
implies that the set {z ∈ D : Re (eiθφ(z)) �= a} has area measure zero. Hence
Re (eiθφ) = a a.e. on D. This says that the essential range of φ is contained in
a line. Repeating the above arguments with Im (eiθφ) replacing Re (eiθφ) yields
that φ is constant, contradicting our assumption. Thus we must have W (Tφ) ⊆
Rel Int R∧

φ . �
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If the symbol φ of a Toeplitz operator Tφ on A2(D) is (complex-valued)
harmonic, then W (Tφ) has been considered by Thukral [10]. The next result,
though not stated explicitly, is essentially due to him.

Proposition 3. If φ is a nonconstant harmonic function in L∞(D), then W (Tφ)
equals the relative interior of R∧

φ .

Proof. By Proposition 1, W (Tφ) is contained in the relative interior of R∧
φ . If they

are not equal, then W (TRe (eiθ(φ+c))) � Rel Int R∧
Re (eiθ(φ+c)) for some real θ and

complex c, which is in contradiction to [10, Lemma 1 and Theorem 2]. �
The assertion in the preceding proposition is analogous to the corresponding

one for Toeplitz operators on the Hardy space (cf. [7]).
An operator A is said to be convexoid if W (A) = σ(A)∧. Note that it is

unknown whether σ(Tφ) = Rφ holds for harmonic φ in L∞(D). If this is indeed
the case, then we would have the convexoidity of Toeplitz operators with harmonic
symbols. The following result is a partial confirmation of this.

Proposition 4. If φ is harmonic on D and continuous on D, then Tφ is convexoid.

Proof. For a continuous φ on D, it is known that σe(Tφ), the essential spectrum of
Tφ, equals φ(∂D) (cf. [1, Corollary 10]). Hence φ(∂D) ⊆ σ(Tφ). Next we show that
every extreme point of R∧

φ = φ(D)∧ is in φ(∂D). Indeed, if z0 is an extreme point
of φ(D)∧, then it is in ∂φ(D). Let the real θ0 and r0 and the complex c0 be such
that φ0 ≡ eiθ0φ + c0 satisfies φ0(D) ⊆ {z ∈ C : |z| ≤ r0} and |eiθ0z0 + c0| = r0.
Then φ0 is harmonic on D, continuous on D and eiθ0z0 + c0 in ∂φ0(D) satisfies
|eiθ0z0+c0| = max |φ0(D)|. The maximum modulus principle says that eiθ0z0+c0 =
φ0(u0) for some u0 in ∂D. Hence z0 = φ(u0) is in φ(∂D). Therefore, the Krein–
Milman theorem implies that

R∧
φ = φ(D)∧ ⊆ φ(∂D)∧ ⊆ σ(Tφ)∧.

This, together with Proposition 1 or 3, yields W (Tφ) ⊆ σ(Tφ)∧. Since σ(Tφ)∧ ⊆
W (Tφ) always holds (cf. [6, Problem 214]), the convexoidity of Tφ follows. �

We now consider the main topic of this paper: radial Toeplitz operators.
The following characterization of such operators is known in the literature (cf.
[9, p. 631]).

Proposition 5. Let φ be a function in L∞(D). Then Tφ has a diagonal matrix
representation relative to the standard basis {en}∞n=0 of A2(D) if and only if φ is
radial. In this case, the asserted matrix representation of Tφ is

diag (2(n+ 1)
∫ 1

0

r2n+1φ(r) dr.

The next corollary is an easy consequence.

Corollary 6. Let φ be a radial function in L∞(D). If φ(1−) ≡ limr→1− φ(r) exists,
then Tφ is the sum of the scalar operator φ(1−)I and a compact operator.
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By Proposition 4, certain Toeplitz operators with harmonic symbols are con-
vexoid. The same is true for radial Toeplitz operators since they are normal and
normal operators are convexoid (cf. [6, Problem 216]). The next theorem gives
examples of nonconvexoid Toeplitz operators.

Theorem 7. If φ is a radial continuous function on D with φ(1) = 0 and ψ is
a function in H∞ with ψ(0) = 0, then Tφψ is compact and quasinilpotent. If, in
addition, φψ is nonzero, then Tφψ is not convexoid.

An operator A is quasinilpotent if its spectrum σ(A) is the singleton {0}.
Note that the preceding theorem implies that a Toeplitz operator with continuous
symbol may not be convexoid.

Proof of Theorem 7. Let ψ(z) =
∑∞

k=1 akz
k on D. For m,n ≥ 0, we have

bmn ≡〈Tφψen, em〉 =

√
(n+ 1)(m+ 1)

π

∫∫
D

φ(z)ψ(z)znz̄mdA(z)

=

√
(n+ 1)(m+ 1)

π

∞∑
k=1

ak

∫∫
D

φ(z)zn+kz̄mdA(z)

=

√
(n+ 1)(m+ 1)

π

∞∑
k=1

ak

( ∫ 1

0

rn+k+m+1φ(r)dr
)( ∫ 2π

0

ei(n+k−m)θdθ

)

=




2
√

(n+ 1)(m+ 1)am−n
∫ 1

0

r2m+1φ(r)dr if m > n,

0 otherwise.

Thus A = [bmn]∞m,n=0, the matrix representation of Tφψ relative to the standard
basis {en}∞n=0, is lower triangular with zero diagonals. For each j ≥ 0, let Aj be the
matrix obtained from A by replacing the bmn’s with m > j by 0. Since φ is radial
with φ(1) = 0, the Toeplitz operator Tφ is compact (cf. [8]). The same is true for
Tφψ = TφTψ. Hence Aj converges to A in norm and σ(A) is totally disconnected.
It follows that σ(Aj) converges to σ(A) in the Hausdorff metric (cf. [3, Corollary
3.4]). Because σ(Aj) = {0} for all j, we conclude that A is quasinilpotent and
hence so is Tφψ. If φψ is nonzero, then W (Tφψ) �= {0} = σ(Tφψ)∧, that is, Tφψ is
not convexoid. �

In the following, we show that many commonly seen convex subsets of the
plane are numerical ranges of radial Toeplitz operators. This we start with intervals
on the real line.

Proposition 8. If φ is a real-valued radial function in L∞(D), then

W (Tφ) =
[

inf
n≥0

λn, sup
n≥0

λn

]
, where λn = 2(n+ 1)

∫ 1

0

r2n+1φ(r) dr for n ≥ 0.
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If, in addition, φ(r) is (almost) nonconstant and increasing (resp., decreasing) in
r on [0, 1), then

W (Tφ) =
[
2

∫ 1

0

rφ(r) dr, φ(1−)
) (

resp.
(
φ(1−), 2

∫ 1

0

rφ(r) dr
])
.

An example of decreasing φ(r) is given in Example 2.

Proof of Proposition 8. The first assertion is an easy consequence of Proposition
5 and the fact that normal operators are convexoid [6, Problem 216].

Now assume that φ(r) is increasing in r. By the change of variable s = r2n+2,
we have

λn =
∫ 1

0

φ(s1/(2n+2)) ds ≥
∫ 1

0

φ(s1/(2n)) ds = λn−1

for n ≥ 1. Moreover, if here the equality holds for some n ≥ 1, then φ(s1/(2n+2)) =
φ(s1/(2n)) a.e. or φ(r) = φ(r(n+1)/n) a.e. on [0, 1), which is impossible since φ(r)
is nonconstant and increasing. Hence the λn’s are strictly increasing in n. Our
assertion forW (Tφ) follows immediately. Analogous arguments apply to decreasing
φ(r). �

Some of our later results on the numerical ranges of radial Toeplitz operators
are proved based on the construction for the essential spectrum due to Grudsky
and Vasilevski [4]. These we summarize briefly below.

For any real t �= 0, let

(1) φt(z) =




1
Γ(1 + it)

(ln |z|−2)it if z ∈ D and z �= 0,

0 if z = 0,

where Γ(·) denotes the usual Gamma function. Then it was shown that the cor-
responding λn ≡ 2(n + 1)

∫ 1

0 r
2n+1φ(r)dr, n ≥ 0, is given by (n + 1)−it (cf. [4,

Example 4]). Thus we can derive that W (Tφt) = D∪{(n+1)−it : n ≥ 0} for t �= 0,
W (TIm φ1) = (−1, 1) and W (TIm φ1+iIm φπ) = (−1, 1) × (−1, 1).

Theorem 9. Any finite line segment in the plane is the numerical range of some
radial Toeplitz operator.

Proof. We may assume that the finite line segment I is on the real line. If I = [a, b)
(resp., (a, b]), then it is the numerical range of Tφ, where

φ(z) =
{

4a− 3b if |z| ≤ 1/2,
b if 1/2 < |z| < 1

(resp.,

φ(z) =
{

4b− 3a if |z| ≤ 1/2,
a if 1/2 < |z| < 1)

(cf. Example 2 or Proposition 8).
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If I = (a, b), then I = W (Tφ) for

φ = −a− b

2
Im φ1 +

a+ b

2
,

where φ1 is the radial function given in (1).
Finally, consider I = [a, b]. Let r1 and r2 be such that 1/

√
2 < r1 < 1/21/4

and 21/4r1 < r2 < 1. If

φ(z) =




1 if 0 ≤ |z| ≤ r1,
−1 if r1 < |z| ≤ r2,

0 if r2 < |z| < 1,

then 2
∫ 1

0 rφ(r)dr = 2r21 − r22 > 0, 4
∫ 1

0 r
3φ(r) dr = 2r41 − r42 < 0, and

2(n+ 1)
∫ 1

0

r2n+1φ(r) dr = 2r2n+2
1 − r2n+2

2 −→ 0 as n→ ∞.

Thus W (Tφ) is some closed interval [c, d] with c < 0 < d. If

ψ =
a− b

c− d
φ+

bc− ad

c− d
,

then W (Tψ) = [a, b], completing the proof. �

For convex sets in the plane with nonempty interior, we make use of the
radial functions φt in (1) to prove the following theorem.

Theorem 10. For any function f analytic on an open set containing D, there is
a radial function φ in L∞(D) such that σe(Tφ) = f(∂D) and W (Tφm) = f(D)∧,
where φm(z) = |z|2mφ(z) for z ∈ D, for all m ≥ 1.

Proof. Let f(z) =
∑∞

k=0 akz
k on D. By our assumption on f , we have α ≡

lim supk→∞ |ak|1/k < 1. Let 0 < t < −(2/π) lnα and

φ(z) =




∞∑
k=0

ak
Γ(1 + itk)

(ln |z|−2)itk if z ∈ D and z �= 0,

0 if z = 0.

Then

lim sup
k→∞

∣∣ ak
Γ(1 + itk)

∣∣1/k = lim sup
k→∞

|ak|1/k lim
k→∞

|Γ(1 + itk)|−1/k

= α lim
k→∞

(2π)−1/(2k)|e−itk(−1/k)||(itk)(itk+(1/2))(−1/k)|
= α lim

k→∞
|e(−it−(1/(2k)))(ln(tk)+i(π/2))|

= α lim
k→∞

e−(1/(2k)) ln(tk)+t(π/2)

= αet(π/2) < 1,
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where the second equality is a consequence of Stirling’s formula

lim
|z|→∞

−π+ε<arg z<π−ε

Γ(1 + z)√
2πe−zzz+(1/2)

= 1, ε > 0

(cf. [2, p. 253, Section 34D]). This shows that the radius of convergence of the
power series

∑
k(ak/Γ(1 + itk))zk is bigger than 1. Hence φ is a radial function in

L∞(D). For n ≥ 0, we have

2(n+ 1)
∫ 1

0

r2n+1φ(r) dr = 2(n+ 1)
∫ 1

0

r2n+1
∞∑
k=0

ak
Γ(1 + itk)

(ln r−2)itk dr

=
∞∑
k=0

ak
Γ(1 + itk)

∫ 1

0

(ln s−1/(n+1))itk ds ( letting s = r2(n+1))

=
∞∑
k=0

ak(n+ 1)−itk = f((n+ 1)−it).

Since the set {(n+ 1)−it : n ≥ 0} is dense in ∂D, we obtain σe(Tφ) = f(∂D).
For the numerical range, we may assume that f(0) = 0. This is because if

f̃(z) = f(z) − a0 and f̃(D)∧ = W (Tψ) for some radial ψ in L∞(D), then

f(D)∧ = f̃(D)∧ + a0 = W (Tψ) + a0 = W (Tψ+a0).

A computation as above with φ replaced by φm yields that

2(n+ 1)
∫ 1

0

r2n+1φm(r)dr =
n+ 1

n+m+ 1
f((n+m+ 1)−it), n ≥ 0.

Since 0 is in f(D) and {(n+ m + 1)−it : n ≥ 0} is dense in ∂D, the convexity of
f(D)∧ implies that W (Tφm) = f(D)∧. �

Corollary 11. Any open elliptic disc is the numerical range of some radial Toeplitz
operator.

Proof. If E is an open elliptic disc, then let

ψ(z) = (aRe z + bIm z + c) + i(uRe z + vIm z + w),

where a, b, c, u, v and w are real with av �= bu, be an affine transformation which
maps D onto E. Theorem 10 says that D = W (Tφ) for some radial function φ in
L∞(D). If η = ψ ◦ φ, then η is radial in L∞(D) and

W (Tη) = W (ψ(Tφ)) = ψ(W (Tφ)) = ψ(D) = E. �

The proof of Theorem 10 can be combined with the arguments for [4, Corol-
lary 3.10] to yield the following proposition, whose proof we omit.

Proposition 12. For any polynomial p (resp., trigonometric polynomial q), the con-
vex set p((−1, 1) × (−1, 1))∧ (resp., Int q(∂D)∧) is the numerical range of some
radial Toeplitz operator.
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Note that if the assertion in Theorem 10 is true for any function analytic
on D and continuous on D, then, in view of the Riemann mapping theorem, every
nonempty bounded open convex subset of the plane is the numerical range of some
radial Toeplitz operator. Unable to prove this, we show that at least an asymptotic
version of it is indeed true.

Proposition 13. Let � be a nonempty bounded open convex subset of the plane.
Then there is a sequence of radial functions φn in L∞(D) such that W (Tφn) is
open for all n and increases to �.

Proof. By the Riemann mapping theorem, there is an analytic function f(z) =∑∞
k=0 akz

k on D which maps D onto � injectively. For each n ≥ 0, let Dn =
{nz/(n+ 1) : z ∈ D} and fn(z) =

∑n
k=0 akz

k. Since the boundaries ∂f(Dn) are
compact and pairwise disjoint, we have dn ≡ dist (∂f(Dn), ∂f(Dn+1)) > 0 for all
n. Let {kn}∞n=1 be a (strictly) increasing sequence such that

sup{|fkn(z) − f(z)| : z ∈ Dn} < min
{
dn−1

2
,
dn
2

}
, n ≥ 1.

Since f(Dn) increases to �, from the construction of the kn’s, we derive that
fkn(Dn) also increases to �. By Theorem 10, each fkn(Dn)∧ is the numerical
range of some radial Toeplitz operator Tφn . We conclude that W (Tφn) is open and
increases to �. �

Finally, we come to closed polygonal regions.

Theorem 14. Any compact convex polygonal region is the numerical range of some
radial Toeplitz operator.

To prove this, we need the following lemma.

Lemma 15. For any ε > 0 and complex numbers λ0, λ1, . . . , λn−1, there is an
integer m ≥ n− 1 and a function f of the form

(2) f(k) = a0

(
1
2

)k+1

+ a1

(
1
4

)k+1

+ · · · + am

(
1

2m+1

)k+1

, k ≥ 0,

such that f(k) = λk for 0 ≤ k ≤ n− 1 and |f(k)| ≤ ε for all k ≥ n.

Proof. Let Am, m ≥ 1, denote the (m+ 1)-by-(m+ 1) Vandermonde-type matrix
[1/2i+j+1]mi,j=0. Since the determinant of Am equals the nonzero

( m∏
i=0

1
2i+1

)( ∏
0≤i<j≤m

(
1

2j+1
− 1

2i+1

))
,

Am is invertible. Let A−1
m = [bij ]mi,j=0. Here the entries bij depend on m (for the

sake of simplicity, we don’t add further indices to them). For a large m (to be
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determined later), let ai =
∑n−1

j=0 bijλj , 0 ≤ i ≤ m, and let f be defined as in (2).
If a and c denote the (m+ 1)-vectors




a0

a1

...
am


 and




λ0

...
λn−1

0
...
0



,

respectively, then a = A−1
m c. Hence Ama = c, which is the same as

f(k) =
{
λk if 0 ≤ k ≤ n− 1,
0 if n ≤ k ≤ m.

We now check that |f(k)| can be made arbitrarily small for any k > m. Indeed,
we have

|f(k)| ≤
m∑
i=0

|ai|
( 1
2i+1

)k+1

≤
m∑
i=0

n−1∑
j=0

|bij ||λj |
( 1
2i+1

)m+1

=
n−1∑
j=0

|λj |
( m∑
i=0

|bij |
( 1
2i+1

)m+1
)
.

To proceed further, we show that
m∑
i=0

|bij |
(

1
2i+1

)m+1

−→ 0 as m→ ∞

for any j, 0 ≤ j ≤ n− 1. Let the (Vandermonde interpolation) polynomial

pi(x) =
m∏
l=0
l �=i

x− 1
2l+1

1
2i+1 − 1

2l+1

, 0 ≤ i ≤ m,

be expanded as (1/2i+1)
∑m
j=0 cijx

j . Then

1
2i+1

m∑
j=0

cij

(
1

2l+1

)j
= pi

(
1

2l+1

)
= δil, 0 ≤ l ≤ m,

which shows that cij = bij for all i and j. Moreover, for each fixed i, the bij ’s have
alternating signs. This can be seen by computing the higher-order derivatives p(j)

i
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of pi and noting that bij = 2i+1p
(j)
i (0)/j!. Hence

m∑
i=0

|bij |
(

1
2i+1

)m+1

≤
m∑
i=0

2j
∣∣∣∣
m∑
j=0

bij

(
− 1

2

)j∣∣∣∣
(

1
2i+1

)m+1

= 2j
m∑
i=0

2i+1

∣∣∣∣pi
(
− 1

2

)∣∣∣∣
(

1
2i+1

)m+1

= 2j
m∑
i=0

2i+1

∣∣∣∣
m∏
l=0
l �=i

1
2 + 1

2l+1

1
2i+1 − 1

2l+1

∣∣∣∣
(

1
2i+1

)m+1

= 2j
m∑
i=0

∣∣∣∣
m∏
l=0
l �=i

1
2 + 1

2l+1

1 − 2i−l

∣∣∣∣

≤ 2j
( ∞∏
l=1

(1 − 2−l)
)−1 m∑

i=0

m−1∏
l=0

(
1
2

+
1

2l+1

)

≤ 2j
( ∞∏
l=1

(1 − 2−l)
)−1

(m+ 1)
(

1
2

+
1
4

)m−1

−→ 0 as m→ ∞.

Hence for a large m ≥ n− 1 we have |f(k)| ≤ ε for all k ≥ n. �

We now proceed to prove Theorem 14.

Proof of Theorem 14. Let � be a compact convex polygonal region with n (≥ 3)
vertices λ0, λ1, . . . , λn−1. We may assume that 0 is in its interior. Let ε > 0 be
such that the circular disc {z ∈ D : |z| ≤ ε} is contained in �, and let

φ(z) =
m∑
i=0

aiχ[0,1/
√

2i+1](|z|) for z ∈ D,

where m and the ai’s are as given in Lemma 15. Then φ is a radial function in
L∞(D) and

2(k + 1)
∫ 1

0

r2k+1φ(r)dr =
m∑
i=0

ai2(k + 1)
∫ 1/

√
2i+1

0

r2k+1dr

=
m∑
i=0

ai
( 1
2i+1

)k+1 = f(k), k ≥ 0,

by (2). Since Lemma 15 says that f(k) = λk for 0 ≤ k ≤ n−1 and |f(k)| ≤ ε for all
k ≥ n, the convex hull of the f(k)’s equals �, that is, W (Tφ) = � as required. �
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We conclude this paper by asking which (nonempty bounded convex) subset
of the plane is the numerical range of a radial Toeplitz operator. One constraint
is that it can have at most countably many extreme points as is the case for any
normal operator (on a separable Hilbert space). In particular, is every nonempty
bounded open convex subset the numerical range of some radial Tφ? This seems
to be quite plausible although we don’t know how to prove it at present.
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