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Abstract—This paper presents a new SRAM cell using a global
back-gate bias scheme in dual buried-oxide (BOX) FD/SOI CMOS
technologies. The scheme uses a single global back-gate bias for
all cells in the entire columns or subarray, thereby reducing the
area penalty. The scheme improves 6T SRAM standby leakage,
read stability, write ability, and read/write performance. The basic
concept of the proposed scheme is discussed based on physical
analysis/equation to facilitate device parameter optimization for
SRAM cell design in back-gated FD/SOI technologies. Numeri-
cal 2-D mixed-mode device/circuit simulation results validate the
merits and advantages of the proposed scheme.

Index Terms—FD/SOI device, mix-mode simulator, read stabil-
ity, substrate bias.

I. INTRODUCTION

S RAMS ARE key components in processor and SoC ap-
plications. Due to the increased portion of SRAM arrays

in the total chip area, device dimensions in SRAM must be
continuously scaled. SRAM cells use very short channel and
narrow-width devices under the simultaneous constraints of
stringent design rule, tight physical pitch, and cell aspect ratio
determined by internal device beta-ratio and bit-line (BL)
timing requirement. Consequently, the intrinsic device fluctu-
ations and random mismatch among adjacent devices increase
significantly due to random dopant fluctuations (RDFs), line-
edge roughness, short-channel effects (SCEs), and narrow-
width effects. Thus, the stability of SRAM degrades with
technology scaling. The RDF is a major source of variation
for SRAM. The use of lightly doped or undoped body in
FD/SOI and FinFET devices significantly reduces the RDF
effect. The RDF effect can be further mitigated with back-gate
biasing to modulate VT and reduce SCE in FD/SOI and FinFET
devices [1]–[3]. However, individual back-gating schemes add
process complexities and significantly degrade SRAM density
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[4], [5]. In independent-gate controlled FinFET technologies,
the limit and quantization of fin height significantly increase
the area, particularly in multiple-fin devices [4]–[6]. In back-
gated FD/SOI technologies, fabrication of self-aligned back
gate is a formidable technology task [5]. Furthermore, a thin
buried oxide (BOX) is needed for effective back-gate biasing,
which increases the BL capacitance and degrades the read/write
performance of SRAM. The advanced body-bias controlled
SOI SRAM and a thin BOX SOI with a single metal gate were
reported [7], [8].

This paper presents a novel back-gate bias scheme to
achieve the desired selective back gating in dual-BOX FD/SOI
CMOS technologies. The proposed scheme minimizes the
area overhead compared with other back-gate biasing schemes
to facilitate a very dense cell layout. The standby leakage,
read static noise margin (RSNM), write ability, and read/write
performance can be significantly improved without degrading
leakage/dynamic power and area/density. Two-dimensional
mixed-mode TCAD simulations [9] using physical models
validate the merits of the proposed scheme and illustrate the
advantages over conventional schemes.

II. PROPOSED SELECTIVE BACK-GATE BIAS SCHEME

In FD/SOI devices, wide-range VT can be offered by the
back-gate bias due to the electrical coupling of front and back
gates through the depleted body in thin Si film and thin BOX
structures [10]. The effect improves with device scaling due
to stronger gate-to-gate coupling with thinner Si film and/or
thinner gate oxides [10]. As reported in [10] and [11], the
physical equation for the threshold voltage (VT ) of FD/SOI
devices with depleted body can be written as

VT = VT0 − rVBG (1)

where VT0 is the VT when the back-gate voltage (VBG) is
grounded and r is a gate–gate coupling factor which can be
expressed as

r = ((εSi/εox)Tox) / ((εSi/εBOX)TBOX + TSi) (2)

where εox, εBOX, εSi, Tox, TBOX, and TSi are the permittivities
and thicknesses of front-gate oxide, back-gate oxide, and Si
film, respectively [10], [11]. Fig. 1(a) shows the conventional
FD/SOI device structure. The VT modulation effect is very
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Fig. 1. (a) Conventional SOI structure. (b) MEDICI-predicted CBOX versus
TBOX characteristics.

significant with thin TBOX. As TBOX increases, the gate–gate
coupling [r in (2)] is reduced, and larger VBG is required to
achieve a noticeable modulation of VT . We used a 2-D device/
circuit simulator (MEDICI) [9] for an SRAM column having
16 cells for brevity, considering wire and device parasitics.
Fig. 1(b) shows the MEDICI-predicted CBOX versus TBOX

characteristics [10], [11]. With thin TBOX, the BOX capac-
itance CBOX (= εox/TBOX) increases. The BL capacitance
(CBL) is an important factor of SRAM read/write delay (e.g.,
τRead = CBL/IRead, where IRead is the read current though
the cell access and pull-down devices). CBL can be expressed
as CBL = Cwire + CBOX + Cov + Cj , where Cwire is the BL
wire capacitance, Cov is the gate-to-drain overlap capacitance
of the access devices, and Cj is the drain-to-body junction
capacitance of the access device. Therefore, thin BOX for the
access nFETs increases the BL capacitance due to increased
CBOX, while thin BOX for the pull-up pFETs does not add
capacitance to the BLs.

We propose a new FD/SOI device structure and a 2-D array
structure of SRAM cells with dual BOX as shown in Fig. 2.
Thick BOX is used for nFETs, thus reducing the BL capaci-
tance to enhance the read/write performance. Thin BOX is used
for pFETs, thus allowing adaptive back-gate bias to optimize
standby leakage, read/write margin, and write performance.
The scheme employs a single global back-gate bias to reduce
the area overhead. Selective back-gating capability is achieved
through the use of dual BOX. The back-gate bias has essentially
no effect on nFETs due to their thick BOX [as shown in

Fig. 2. (a) Proposed FD/SOI device. (b) 6T SRAM structures with dual BOX.

Fig. 3. Global back-gate bias control method.

Fig. 1(b)], while pFETs experience significantly VT modulation
due to their thin BOX. This “selective” back-gating effect can
be exploited to improve the standby leakage, RSNM, write
ability, and write performance of SRAM.

The use of undoped body for pFET reduces RDF effects and
facilitates effective back-gate biasing. For nFET, a doped body
is preferred as it reduces the sensitivity to the back-gate bias.
The use of a common back-gate bias for nFETs and pFETs of
cells in the entire columns or subarray results in a very dense
layout. Fig. 3 shows the global back-gate bias control method.
In standby mode, the back-gate voltage (VBG) is set to “High”
to increase VT of pFETs, thereby reducing the leakage current.
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Fig. 4. MEDICI-predicted IDS–VGS characteristics at VDS = −1.0 V with
varying VBG in the proposed FD/SOI pFET.

The trip voltage (Vtrip) of the cell inverter (i.e., the switching
voltage of the state) can be physically derived as

Vtrip =
VT (n) + vsat(p)Wp

vsat(n)Wn

(
VDD + VT (p)

)

1 + vsat(p)Wp

vsat(n)Wn

(3)

where VT (n) and VT (p) are the threshold voltages of nFET
and pFET, vsat(n) and vsat(p) are the saturation velocities of
nFET and pFET, and Wn and Wp are the device widths of
nFET and pFET [12], [13]. Higher Vtrip improves the SNM.
During read operation, VBG is set to “Low” (i.e., grounded
on the substrate) to reduce VT of pFETs and skew/raise
Vtrip, thereby improving the read stability. The read delay
is determined by the pull-down nFET and access nFET and
is not affected. In write operation, VBG is set to “High” to
increase VT of pFETs, thereby improving the write ability and
write performance. Note that the proposed scheme suffers no
area/performance penalty in FD/SOI technology while improv-
ing the standby leakage, read stability, write ability, and write
performance.

III. ANALYSIS OF PROPOSED SCHEME

The proposed scheme is analyzed using MEDICI [9]
based on 45-nm FD/SOI devices with parameters and perfor-
mance consistent with ITRS roadmap [14]. The “conventional”
FD/SOI device has a gate length of 25 nm, front-gate oxide
thickness of 1 nm, BOX thickness of 100 nm, and doped
(5 × 1018 cm−3) Si film thickness of 10 nm. For the proposed
scheme, all cell nFETs, including pull-down and access de-
vices, are the same as those in the conventional thick BOX
FD/SOI devices. However, pull-up pFET devices have thin
BOX (TBOX = 10 nm) and undoped body, and other device
parameters are the same (Tox = 1 nm and TSi = 10 nm) as
the conventional case. Fig. 4 shows the MEDICI-predicted
IDS–VGS characteristics of the proposed FD/SOI pFET at
VDS = −1.0 V for VBG = 0 and 1.0 V. With VBG = 0 V, ION

can be increased by 2.14 times due to the significantly reduced
VT . In read mode, stronger pFET is preferred as it increases
the cell inverter trip voltage, thus improving the read stability.
In write operation, VBG is switched to “VDD” to increase
VT of pFETs, thereby improving the write ability and write
performance. In standby mode, VBG stays at VDD to reduce the
leakage current. Note that, due to the use of very thick BOX in

Fig. 5. MEDICI-predicted RSNM for the proposed and conventional
schemes.

nFETs for the proposed scheme, the VBG will not change all
nFETs in the cell.

To demonstrate and validate the advantages of the scheme,
mix-mode device/circuit simulations are performed. Fig. 5
shows MEDICI [9]-predicted RSNM for the conventional and
proposed schemes. The terminology “conventional” (counter)
that we used means the circuit technique without using the
back-gate biasing method and dual-BOX technology. The
RSNM for the proposed scheme is significantly improved
(205 mV versus 150 mV for the conventional counterpart) due
to the reduced VT of pFETs, which increases the trip voltage of
cell inverters. Notice that the mixed-mode feature of MEDICI
simulator was used without any combination with external
circuit simulator (such as SPICE) and/or model/equation/table-
based approach [6]. With the circuit analysis advanced appli-
cation module of MEDICI, we are able to embed multiple
numerical device simulations within a single SPICE-like circuit
simulation. In the module, the Kirchhoff equations describing
the circuit and the semiconductor equations describing the
devices are solved as a coupled set [6], [9]. Therefore, mix-
mode device/circuit simulations can capture specific device
physics of each transistor in the circuit.

The read stability of the proposed scheme is quite immune
to variations of TSi and TBOX. Figs. 6 and 7 show TCAD-
simulated results for RSNM with 20% variation of TSi and
TBOX for the proposed scheme. As TSi decreases, the pFET VT

increases due to the reduced SCEs. On the other hand, the back-
gate bias has more significant VT modulation/reduction effect
for thinner TSi as shown in the physical equations (1) and (2).
Hence, the back-gate bias reduces the sensitivity of VT to TSi

variation. Similarly, as TBOX decreases, VT increases due to the
reduced drain fringing field from BOX to the region underneath
the channel, while the back-gate bias becomes more effective
as shown in (1) and (2) and in Fig. 1(b). Thus, the back-gate
bias also reduces the sensitivity of VT to TBOX variation. Our
study illustrates that the proposed SRAM cell can be very stable
against the major sources of FD/SOI device variations such as
RDF, TSi, and TBOX.

It is indicated that the undoped Si body is theoretically ideal
in the nanoscale double-gate technology [15]. However, such a
design is unwieldy in present and upcoming technologies due
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Fig. 6. MEDICI-predicted RSNM for the proposed scheme with 20% varia-
tion of TSi.

Fig. 7. MEDICI-predicted RSNM for the proposed scheme with 20% varia-
tion of TBOX.

to the gate-material issue/integration for proper VT . Note that,
even in the undoped silicon channel, RDF effects are still signif-
icant particularly in narrow-width devices used in SRAM cells
[16]. We analyze the conventional and proposed schemes with
40% variation of body-dopant density in pull-down and access
devices in the worst case corner. Fig. 8 shows the MEDICI-
predicted RSNM for the conventional and proposed schemes.
The RSNM for the proposed scheme is significantly improved
(175 mV versus 110 mV for the conventional counterpart).
Note that the relative improvement becomes larger under the
RDF effect compared with Fig. 5. Note also that RSNM of the
proposed scheme under the RDF effect is even higher than that
of the conventional scheme without RDF effect. This indicates
that the proposed scheme can be more beneficial as variations
of device and process are more significant.

We have studied other significant factors in SRAM circuits
which are write ability, leakage power, and access time. Fig. 9
shows the MEDICI-predicted write margin comparisons for the
conventional and proposed schemes. Write margin can be esti-

Fig. 8. MEDICI-predicted RSNM for the proposed and conventional schemes
with 40% variation of Nbody of the pass-gate and pull-down devices in the
worst case stability corner (where Nbody is 3 × 1018 cm−3 for a pass-gate
device and 7 × 1018 cm−3 for a pull-down device).

Fig. 9. MEDICI-predicted write margin for the proposed and conventional
schemes.

mated as maximum BL voltage that can flip the cell for BLb =
VDD. It is observed that a very noticeable improvement (42.5%)
can be achieved by the proposed scheme due to the reduced IDS

for pull-up pFET by the back-gate control during write opera-
tion as shown in Fig. 3. In the standby mode, the leakage current
of pull-down pFETs is reduced for the proposed scheme, and it
is estimated that 33% of leakage power saving can be achieved
in the entire SRAM cells. The access time for SRAM circuits
can be estimated as in (4), shown at the bottom of the next page,
where VBL and CBL are the BL voltage and capacitance, Nrow

is the number of rows in a column, Cwire, CBOX, Cov,
and Cj are wire, BOX, overlap, and junction capacitances,
Cinput(access) is the input capacitance of the accessed device, and
ION(access) is the ON-state current of the accessed device [12].
From equation (4), the estimation of CBL in Fig. 1(b), and
typical values for other capacitances, we can evaluate 19%
lower Tcell when 16 cells are in a column for the proposed
scheme, compared with the conventional counterpart. Hence,
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Fig. 10. Two examples of simplified process flows for dual-BOX SOI struc-
ture [17].

the proposed selective back-gate bias technique can improve the
standby leakage, read stability, write ability, and access delay.

IV. IMPLEMENTATION AND LAYOUT

OF PROPOSED SCHEME

Process methods to fabricate dual-BOX SOI devices have
been reported previously [17]. Fig. 10(a) and (b) shows exam-
ples of the basic process flow to form a dual-BOX SOI sub-
strate. As shown in Fig. 10(a), first oxygen ions are implanted
into the substrate to form a first continuous layer of oxide under
the surface of the substrate. Then, a photoresist mast pattern
is formed on the surface of the substrate where a thin BOX is

desired, and second higher energy oxygen ions are implanted
into the region where a thick BOX is desired. After removing
the mask, heat treatment is performed, followed by polishing
to planarize the substrate. An alternative example is shown in
Fig. 10(b). First, a mask is formed over the substrate, and etch-
ing process is performed to make isolated trenches (for the thick
BOX regions). Then, after masking off, the trenches are filled
with oxide. The surface is then planarized. The top substrate
can then be made on the top of the BOX (e.g., through bonding
process) and etched (thinned) down to the desired (silicon film)
thickness. As described in the two process flows, the dual-BOX
structure can be realized with a traditional BOX process with
the additional steps. Notice that the thickness control of the
thin BOX is crucial for adequate back-gate control, whereas the
thickness control of the thick BOX is quite forgiving as long as
it is thick enough to suppress the gate-to-gate coupling. Thus,
the process needs to be optimized only for the thin BOX.

We adapt thin BOX pFETs and thick BOX nFETs for
the proposed scheme. In the selective biasing method of the
proposed scheme, the regulator for the back-gate bias can
be implemented with divider, bandgap reference, or constant
gm-bias method. The appropriate output supply level (VGND
or VVDD) can be selected for each mode using a voltage MUX
such as design examples shown in [18] and [19]. Note that
peripheral circuits [12] can also benefit from the back-gate bias-
assisted Vt reduction. The final stages of word-line drivers are
usually quite large in the traditional SRAMs because of the
many SRAM cells on the word line and long wires. Word-
line timing is usually one of the critical paths in typical array
designs. The availability of modular VT control allows us to use
small device sizes and achieve a more compact layout, thereby
improving the overall array area efficiency, in additional to the
improved active and standby power efficiency. During standby,
power-down, or low-performance modes, the higher VT set-
ting can be employed to minimize leakage power. Word and
bit decode circuits, which select respective word lines or bit
columns, are timing critical but usually do not occupy very large
peripheral area. These circuits can be left at high current mode
all the time without additional overhead of back-gate control
circuitry. Since VT matching is important for sense amplifiers,
common centroid layout style and symmetry (i.e., analog style
layout) [12] are required for best circuit performance for both
front and back gates (to reduce the sensitivity of VT and IDS

to process variations). It is suggested that the entire readout
circuit block can be put in one common back-gate enclosed
region.

Note also that the assist circuit that controls the subarray
back gates is required to synchronize with the word-line high
period. It is desirable to apply the assist technique in a fine-
grained fashion [12], i.e., the assist mode is only enabled for the
active subarrays where the local BL is selected. This reduces
the power overhead when write assist is applied. Since the

Tcell
∼=

VBL

(
CBL + (Nrow − 1)(Cwire + CBOX + Cov + Cj) + Cinput(access)

)

ION(access)
(4)
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Fig. 11. Proposed SRAM layout at the edge of (a) two columns and (b) subarrays; the cell layout is inserted in (a).

subarray bank (seeing the common local BL for each column)
is the natural granular building block for each assist region,
only one assist control circuit is needed, which would reside
alongside the sense amplifier (or the equivalent local evaluation
circuit for the large-signal domino design style) and timing
interlocked with the sense amplifier. We estimate the area
overhead to be comparable to the front-gate style assist control
circuit. The overall assist circuit area penalty should not exceed
10% of the peripheral circuit area to maintain array efficiency
competitiveness. The area penalty is less for arrays with longer
access time because the assist circuit on/off slew rate is more
relaxed; therefore, driver size and timing requirement are more
relaxed as well.

Fig. 11(a) and (b) shows the SRAM layouts at the edge of
two columns and a subarray, respectively. It can be observed
that there is no increase in cell area. A single global back-
gate bias can be applied with only one contact for all cells in
entire SRAM columns or subarray to reduce the area penalty.
In such a case, VT for nFETs can be controlled by channel
dopants to reduce SCE, and VT for pFETs can be controlled
by back-gate biasing to minimize SCE (and RDF). The pro-
posed scheme can be applied to other applications. When
circuits are in power-down mode, the scheme can keep circuit
blocks at low-leakage state using a single back-gate bias. The
scheme can be extended and implemented with nFET, pFET, or

mixed back-gate regions depending on area and circuit property
considerations.

V. CONCLUSION

We have proposed a selective back-gate bias technique for
FD/SOI SRAM using dual BOX to improve standby leak-
age, read stability, and write ability and to enhance subar-
ray access speed while preserving the overall area efficiency.
Physics-based analysis and numerical simulations showed that
substrate/back-gate voltage effectively modulated Vt in pull-
up pFETs without changing the device characteristics of pull-
down and pass-gate nFETs in SRAM cells. Due to the enhanced
current drive in read mode, the inverter trip voltage signifi-
cantly increases, and nominal RSNM was noticeably improved.
TCAD-simulated results showed that RSNM can be increased
by 37% by the proposed scheme. It is demonstrated that RSNM
of the scheme was quite immune to process variations such
as RDF, TSi, and TBOX. Leakage power and write ability
were significantly improved to reduced Vt of pFETs. Compact
physical model-based analysis showed that subarray speed can
be significantly improved due to the reduced BL capacitance
for thick BOX of pass-gate devices in the proposed scheme.
Area efficiency was also demonstrated by layout analysis.
Compact process flow for the scheme was discussed. Due to
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improved stability, lower sensitivity to parameter variations,
lower area overhead, and feasible fabrication, the proposed
design technique can be very suitable for high-performance
on-chip cache and SOC embedded applications beyond 45-nm
FD/SOI technologies.
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