
國 立 交 通 大 學

資訊科學研究所

博 士 論 文

設計與實作一個新的物件導向

規則式知識庫平台

Design and Implementation of a New Object-oriented

Rule Base Platform

研 究 生：林耀聰

指導教授：曾憲雄 博士

中 華 民 國 九 十 三 年 六 月

 i

設計與實作一個新的物件導向

規則式知識庫平台

學生：林耀聰 指導教授：曾憲雄 博士

國立交通大學電機資訊學院

資訊科學系

摘要

近年來，用來模擬專家決策與思考的專家系統，被廣泛的應用在許多電腦資

訊系統中，而專家系統所提供的知識處理能力，也成為下一個世代的資訊系統中

相當重要的一項特徵。而在專家系統的範疇中，規則式知識庫（Rule Base）的技

術，則是應用相當廣泛的一種手法，在這類規則式知識庫系統中，專家的知識被

表示成容易理解與管理的規則，而規則式知識庫提供了這類資料儲存的功能，以

及依據事實推論規則的能力；專家系統的開發者藉著此類工具，便可以在系統中

提供知識處理的功能。

 本篇論文中，我們提出了一個新的物件導向規則式知識庫平台（New

Object-oriented Rule Base Platform，NORBP），並在其中提供一個更為彈性，有

效率，容易維護，以及更有意義的知識表示法；同時也提供對應此種知識表示法

所需的各類機制。在 NORBP 中，定義了這個平台中專屬的知識表示法

（Knowledge Representation）與其對應的推論法、知識擷取法（Knowledge

Acquisition）、知識探勘法（Knowledge Discovery）、以及知識融合法（Knowledge

Fushion），藉由這些機制，提供更為完整的知識庫平台。

 ii

針對知識的表示與推論，本論文提出了一個新的物件導向式規則模式（New

Object-oriented Rule Model，NORM），藉由物件導向的觀念，定義知識模組之間

的關係。而在知識擷取方面，我們提出了基於語意距離的概念學習與知識擷取機

制（Concept Learning from Cases based on Semantic Distance for Knowledge

Acquisition）；對於知識的探勘，則以資料探勘的技術為基礎，設計了針對使用

者行為紀錄找出隱藏知識的知識探勘法（Knowledge Discovery）。對於利用知識

探勘所找出來的知識，最後我們可以利用知識融合的技術（Knowledge Fusion），

將之與現有的知識加以融合，加強知識的結構並減少知識重複的狀況，藉此提昇

知識庫中的知識品質。經過這幾個階段不斷的精練，可以讓利用此知識平台所建

立的專家系統更為精確有效，提昇專家系統的效率與品質。

在本論文最後，我們實作了 NORBP中各項的機制，並且進行相關的實驗，

同時為了驗證整個系統的實用性，我們以電腦輔助教學（Computer Assisted

Learning，CAL）與網路入侵偵測（Network Intrusion Detection，NID）為領域，

設計兩套對應的專家系統作為本論文的實例說明。其中針對網路入侵偵測部分所

實作的網路入侵偵測專家系統（NID-ES），包含了整套 NORBP架構的各項機制，

藉此實作整套專家系統發展維護的生命週期（Lifecycle），並驗證本論文所提出

架構在實際應用上的完整性。

關鍵詞：規則式知識庫，知識管理，知識表示，知識擷取，知識探勘，知識融合

 iii

Design and Implementation of a New Object-oriented

Rule Base Platform

Student: Yao-Tsung Lin Advisor: Dr. Shian-Shyong Tseng

Department of Computer and Information Science

National Chiao Tung University

Abstract
In recent years, Expert System, the system to model expert’s decision making process

and help to build up knowledge systems, becomes more and more important in

Computer Science domain for next generation computer systems. For constructing an

Expert System, Rule Base is a widely used approach, where knowledge and expertise

are represented as rules, a well-known logical knowledge representation. An inference

engine is also part of a rule base, which can be used to process the rules of knowledge

and inference as a human expert. It is easy to construct knowledge system using rule

base since the representation of knowledge, the storage of knowledge, and the

processing of knowledge are well designed in rule base system.

In this thesis, a New Object-oriented Rule Base Platform (NORBP) is proposed,

which is designed to provide more flexible, efficient, maintainable, and meaningful

knowledge representation, and also correspondingly knowledge systems mechanisms

based on the lifecycle of an expert system we defined. In NORBP, several

corresponding mechanisms are designed to provide a complete knowledge platform,

including knowledge representation, knowledge acquisition, knowledge discovery,

 iv

and knowledge fusion. In NORBP, the New Object-oriented Rule Model (NORM) is

designed to represent knowledge according to Object-oriented concept, and

knowledge relations are defined to construct the knowledge model. In order to

provide KA methodology in NORBP, Concept Learning from Cases based on

Semantic Distance for Knowledge Acquisition is proposed based on NORM concepts.

Moreover, to acquire the knowledge of users daily behaviors, Knowledge Discovery

mechanism is used for extracting knowledge from huge amount of user activities.

Newly discovered knowledge in Knowledge Discovery mechanism may be redundant

or conflict to existing knowledge, and Knowledge Fusion mechanism in NORBP is

proposed to fuse different knowledge sources for the same knowledge domain,

resolve the conflict and redundant of knowledge, and reconstruct the knowledge

model in more meaningful structure.

Some implementations and experiments for NORBP are also done in this work. A

Computer Assisted Learning Expert System (CAL-ES) and a Network Intrusion

Detection Expert System (NID-ES) are proposed as case studies for NORBP. In the

NID-ES, the mechanisms for complete NORBP lifecycle are designed, in which four

systems, including Two-Layer Network Intrusion Detection System, Intrusion

Detection Knowledge Acquisition System, Intrusion Detection Knowledge Mining

System, and Intrusion Detection Knowledge Bases Fusion System, are implemented

according to each phase in NORBP.

Keywords: Rule Base, Knowledge Management, Knowledge Representation,

Knowledge Acquisition, Knowledge Discovery, Knowledge Fusion

 v

誌 謝
畢業不是結束，而是新的研究生涯的起點。在這篇博士論文完成的同時，

我更能深刻體認到自己在學術領域的渺小，並期許以此警惕自己隨時保持謙虛內

斂的心情，不要因為這一點點的學術成就而自滿，更不要因此懈怠，忘記自己在

研究這條路上的初衷。而畢業之後，雖然離開了交大這個朝夕相處的學術殿堂，

但這碩博士七年來殷殷學風的薰陶，所帶來的影響將不僅止於此時此刻，更是深

刻雋永的人生歷練。

回首來時路，當初自己在碩士畢業、邁入博士研究前所給自己的期望「不

僅在學術領域上有所突破，更從而培養些許的領袖氣質」，現在看來，這博士研

究五年生涯，所獲得的收穫更不只於此；如果說自己達成這了一點點的成就，首

先就必須歸功於我的指導教授 曾憲雄博士，由於他的指導，不單單讓我自己在

學術上奠定下一點點的根基，更重要的是，在待人處世方面，他更提供了一個良

好的典範，而在事務的處理上，更讓我在不斷的磨練與指導修正中，學習如何成

功的經營工作與人生；這些一切的收穫，遠遠超過完成博士論文，取得博士學位

所帶來的意義；溢於文字外的心情僅能在此致上最深的感激。

此論文的完成，也非常感謝從論文研究計畫、校內口試到校外口試一路給

予我許多論文修改建議的 孫春在教授與 袁賢銘教授；在校內口試中，從不同
領域觀點給予我指導的 施仁忠教授；以及在校外口試中就目前相關研究現況，
給予我寶貴意見的清華大學 蘇豐文教授、中央大學 李允中教授、中央研究院
陳孟彰博士與暨南國際大學 黃國禎教授，由於他們的協助，讓此論文最後的成
果能夠更加完整及契合主題。

當然更不能忘記的，是知識工程實驗室的夥伴們，在這五年中的交誼、討

論、切磋、指教，都是我能夠順利走到這裡的助力；而後續的研究工作，更有賴

於這些夥伴們不間斷的合作與努力。

當初毅然決定攻讀博士學位時，一直支持我的家人們，則是我持續向前的

原動力。包括一路陪我走來，在我沮喪時支持我，在我忙碌時耐心等候的女友 雅
婷，隨時給我所有需要的支持與關心的姊姊 苑宜，爸爸、媽媽，以及女友的父
母、家人們。在感激之外，我也要把這一點點成就的榮耀，與他們一起分享。

 vi

Contents
Abstract (In Chinese)... i

Abstract .. iii

Acknowledgement ... v

Contents .. vi

List of Figures .. viii

List of Tables ... x

List of Algorithms .. xi

Chapter 1 Introduction... 1

Chapter 2 Related Works ... 6

2.1 Object-Oriented concept ... 6

2.2 Knowledge base maintenance... 7

2.3 Knowledge Engineering.. 8

2.4 Ontology ... 10

2.5 Rule Base System ... 11

Chapter 3 A New Object-oriented Rule Base Platform... 13

3.1 Lifecycle of an Expert System.. 13

3.2 A New Object-oriented Rule Base Platform ... 14

Chapter 4 New Object-oriented Rule Model (NORM).. 17

4.1 Aerial View ... 18

4.2 New Object-oriented Rule Model (NORM) ... 22

4.3 Relation-based Inference mechanism ... 32

4.4 Modeling a Knowledge Base .. 35

Chapter 5 Knowledge Acquisition... 42

5.1 Case Clustering Step ... 46

 vii

5.2 Concept Relationship Constructing Step .. 53

5.3 Knowledge Extracting Step .. 55

Chapter 6 Knowledge Discovery ... 57

6.1 Preprocessing Phase.. 58

6.2 Two-Layer Pattern Discovering Phase (2LPD) .. 64

6.3 Pattern Explanation Phase... 69

Chapter 7 Knowledge Fusion... 70

7.1 Relationship Graph and Partitioning Criteria ... 71

7.2 Knowledge Fusion Framework... 78

Chapter 8 Implementation and Experiments... 89

8.1 Implementation of NORM.. 89

8.2 Implementation of KA mechanism ... 91

8.3 Implementation of KF mechanism.. 95

8.4 Case Study: Computer Assisted Learning (CAL) Expert System 99

Chapter 9 A Network Intrusion Detection Expert System (NID-ES)................. 108

9.1 The Architecture of Network Intrusion Detection Expert System (NID-ES)108

9.2 Knowledge Representation and Detection Engine Design in NID-ES..........111

9.3 Knowledge Acquisition in NID-ES .. 117

9.4 Knowledge Discovery in NID-ES .. 122

9.5 Knowledge Fusion in NID-ES.. 125

9.6 Disscuss of NID-ES .. 128

Chapter 10 Conclusion ... 130

Reference ... 134

 viii

List of Figures

Figure 3.1: Lifecycle of knowledge management...13

Figure 3.2: Architecture of NORBP..15

Figure 4.1: The learning activity...19

Figure 4.2: Binding the new and existent knowledge in learning activity..................20

Figure 4.3: The behavior of pondering over known information21

Figure 4.4: New Object-oriented Rule Model (NORM)...23

Figure 4.5: The knowledge class in a Rule-Base...24

Figure 4.6: A Reference relation example...29

Figure 4.7: The Reference relation and the Extension-of relation..............................30

Figure 4.8: The forward relation-based inference scheme..32

Figure 4.9: The Trigger action and Acquire action ...34

Figure 4.10: A transformer example ...34

Figure 4.11: The cooperation of KCs with different types of knowledge38

Figure 5.1: The phases of Concept Learning ..45

Figure 6.1: The Concept Diagram of Our Method. ..58

Figure 6.2: Data Flow of Preprocessing Phase. ..63

Figure 6.3: The Concept of 2LPD Phase ..64

Figure 7.1: A relationship graph G1 ..74

Figure 7.2: Part of the shared vocabulary ontology..77

Figure 7.3: The relationship graph G2...77

Figure 7.4: The knowledge fusion framework..79

Figure 7.5: The un-partitioned relationship graph ..83

Figure 7.6: The un-partitioned, pseudo-rules-added relationship graph.....................83

Figure 7.7: The relationship graph G3, before removing the pseudo rules85

Figure 7.8: The relationship graph G3...85

Figure 7.9: Ontology of RuleClass c1 ...88

Figure 8.1: DRAMA Console ...89

Figure 8.2: DRAMA Knowledge Extractor ..90

Figure 8.3: DRAMA Rule Editor..90

Figure 8.4: The shared vocabulary ontology built by the domain expert...96

Figure 8.5: The execution time of the algorithms...98

 ix

Figure 8.6: The memory usage of the algorithms ...98

Figure 8.7: Components for Learning Content Selection System100

Figure 8.8: The architecture of prototype system ...104

Figure 8.9: Login page of the NORM based Learning Management System106

Figure 8.10: Selecting Learning content. ..107

Figure 9.1: The concept of NID-ES..109

Figure 9.2: The architecture of NID-ES ...110

Figure 9.3: The architecture of Two-Layer Intrusion Detection System112

Figure 9.4: MDE Server..115

Figure 9.5: Received IDML event. ..115

Figure 9.5: The architecture of prototype system ...119

Figure 9.5: Some screen shots of prototype system..120

Figure 9.5: The concept hirearchy of DoS..120

Figure 9.6: DRAMA editor ...121

Figure 9.7: Using DRAMA extractor..122

Figure 9.8: Intrusion Detection Knowledge Mining System....................................123

Figure 9.9: Intrusion Detection Knowledge Bases Fusion System...........................126

Figure 9.10: The screenshots of the prototype system..128

 x

List of Tables

Table 6.1: The Format of Standard Log Information..60

Table 7.1. The calculated semantic distances ...77

Table 7.2: The classes and relationships of the generated ontology87

Table 8.1. The experimental datasets of randomly selected categories94

Table 8.2. The experimental result for the dataset in Table 794

Table 8.3. The datasets with different numbers of categories contained94

Table 8.4. The experimental result for the dataset in Table 995

Table 8.5: Original categories and number of rules ..95

Table 8.6: The partitions and rules ({k, l}={1.0, 0})...96

Table 8.7: The partitions and rules ({k, l}={1.0, 1.0})..97

Table 8.8: The partitions and rules ({k, l}={2.0, 2.0})..97

Table 9.1: KDDCUP selected features..124

 xi

List of Algorithms

Algorithm 5.1. Knowledge Feature Clustering Algorithm ...52

Algorithm 5.2. Knowledge Map Design Process..54

Algorithm 6.1: ReNumberSort algorithm, ReNumSort(Ei) ..61

Algorithm 6.2: Preprocessing Algorithm, Preprocess(E) ...63

Algorithm 6.3: Behavior Clustering Algorithm:...66

Algorithm 6.4: Sequential Pattern Mining Algorithm: ...67

Algorithm 6.5: Algorithm of Two-Layer Pattern Discovering68

Algorithm 7.1: Relationship Graph Construction Algorithm80

Algorithm 7.2: Relationship Graph Partitioning Algorithm84

 1

Chapter 1 Introduction

In recent years, Expert System, the system to model expert’s decision making process

and help to build up knowledge systems, becomes more and more important in

Computer Science domain for next generation computer systems. For constructing an

Expert System, Rule Base is a widely used approach, where knowledge and expertise

are represented as rules, a well-known logical knowledge representation. An inference

engine is also part of a rule base, which can be used to process the rules of knowledge

and inference rules as a human expert. It is easy to construct knowledge system using

rule base since the representation of knowledge, the storage of knowledge, and the

processing of knowledge are well designed in rule base system.

In this thesis, the lifecycle for a rule base knowledge system construction is first

introduced, and the mechanisms in different phases of the lifecycle are also defined.

There are four phases in the lifecycle, including knowledge representation/processing,

knowledge acquisition, knowledge discovery, and knowledge fusion. To construct an

expert system, the representation of knowledge must be first designed and decided,

and also corresponding knowledge processing mechanism (inference engine). In order

to prepare the knowledge required for constructing an expert system, a knowledge

acquisition mechanism is useful to extract knowledge from expert. However, not only

expertise should be considered in the expert system, but also the knowledge

embedded in user’s daily behavior is also the key for building a successful expert

system; hence a knowledge discovery mechanism based on some data mining

approach can be used. After that, for all the knowledge collected from knowledge

acquisition, knowledge discovery, or got from other knowledge system, a knowledge

 2

fusion mechanism fuse all the knowledge from different sources for expert system

further usage.

According to the lifecycle defined, a New Object-oriented Rule Base Platform

(NORBP) is proposed, which is designed to provide more flexible, efficient,

maintainable, and meaningful knowledge representation, and also the knowledge

systems mechanisms required for building a knowledge system. In NORBP, several

corresponding mechanisms are designed to construct a complete platform for

knowledge system. For knowledge representation and processing in NORBP, a New

Object-oriented Rule Model (NORM) is designed to represent knowledge according

to Object-oriented concept, and knowledge relations, including reference,

extension-of, trigger, and acquire, are defined to construct the knowledge model. In

order to process the knowledge represented in NORM knowledge model, an inference

engine is also designed; thus NORM knowledge model has the abilities for knowledge

base builder to represent, store, and process the expert knowledge.

In order to acquire knowledge from expert in NORBP, Concept Learning from Cases

based on Semantic Distance for Knowledge Acquisition is proposed. In this

mechanism, concept hierarchy information is used to extract ontology of the domain,

and grouping domain cases into groups according to their semantic relatedness. These

groups corresponding to NORM knowledge classes, and the interrelations of these

groups will be constructed as the domain ontology. According to the ontology

constructed, multi-layer knowledge acquisition mechanism will be used to extract the

knowledge from expert by repertory grid approach.

As we have mentioned, knowledge can be not only extracted from experts by

 3

knowledge acquisition, but also retrieved from user daily behaviors. In NORBP, a

Knowledge Discovery mechanism based on Data Mining approach is proposed, which

can be used to extract knowledge from huge amount of massive data. In this

mechanism, there are three phases including Preprocessing phase, Two-Layer Pattern

Discovering Phase, and Pattern Explanation Phase. In these three phases, the user

behavior features will be first prepared as a feature vector, and then grouping user

behaviors using clustering algorithm. After that the user behavior pattern will be

mined using sequential pattern mining algorithm, where the pattern is related to the

grouped user behaviors, and the mined patterns will be explained according to the

signatures of different user behavior group. The explanation will be translated into

rules using the patterns and signatures found.

The Knowledge Fusion mechanism in NORBP is used to fuse the knowledge from all

different sources, including the knowledge extracted in Knowledge Acquisition phase

and Knowledge Discovery phase. Hence, an Ontology-Based Knowledge Fusion

Mechanism Using Graph Partitioning is proposed for this purpose. In this phase,

rule-formatted knowledge from different sources will be fused by calculating several

criteria, including Structural Succinctness Criterion, Intra-Cluster Semantic Clustering

Criterion, and Inter-cluster Semantic Clustering Criterion, in which those two

semantic criterion are calculated with some concept hierarchy and ontology

information. With these criteria, the knowledge are fused not only considering the

structural dependency of rules, but also considering the semantic relation of rules to

keep the modularity of knowledge for better maintenance and performance.

Some prototypes of these mechanisms are designed and implemented, and also

corresponding experiments are done to show the usability of these proposed

 4

algorithms and mechanisms. Moreover, some NORBP mechanisms are used to design

a Computer Assisted Learning Expert System, which can be used to solve the issue of

adaptive learning in CAL domain. In this CAL-ES, knowledge about how to selection

appropriate learning materials are organized as NORM knowledge model, and the

inference of these knowledge are also handled by a NORM rule base system –

DRAMA, which is a production system implemented according to NORM knowledge

model.

A Network Intrusion Detection Expert System (NID-ES), which is designed based on

NORBP concepts and utilities, is also proposed in this work to show the practical

usage of NORBP. In NID-ES, the corresponding systems for complete lifecycle

defined in NORBP are designed and implemented. A Two-Layer Network Intrusion

Detection System is first designed to detect the possible intrusion behaviors on the

network, in which the rules for intrusion detection are represented in NORM

knowledge model, and processed the knowledge using DRAMA rule base system. We

also design an Intrusion Detection Knowledge Acquisition System use the knowledge

acquisition mechanism in NORBP, with WordNet and DDoS concept hierarchy to

calculate the similarities of domain terminologies. According to the network features

proposed in KDDCUP 1999, the feature vector for Knowledge Discovery in NORBP

is defined, and hence the data mining algorithms designed in Intrusion Detection

Knowledge Mining System can be applied for discovering user and intruder behavior

patterns, and translated the patterns into rules. Finally, the DDoS concept hierarchy

used in Knowledge Acquisition mechanism is also used in Intrusion Detection

Knowledge Bases Fusion System to calculate the semantic criteria between rules and

hence build the rule classes between the knowledge to be fused. With these four

systems, an NID-ES can be constructed according to the lifecycle defined in NORBP.

 5

The rest of thesis is organized as follows. Chapter 2 surveys the background

knowledge of this work. Chapter 3 describes the whole architecture and introduces

four parts of knowledge management in NORBP. From Chapter 4 to Chapter 7, the

details of Knowledge Representation, Knowledge Acquisition, Knowledge Discovery,

and Knowledge Fusion, are described respectively. The implementation and

experiment of NORBP utilities are described in Chapter 8. In Chapter 9, NID-ES

designed based on NORBP is introduced. Chapter 10 gives conclusions of this work.

 6

Chapter 2 Related Works

2.1 Object-Oriented concept

The object-oriented technology provides a way to analyze problem effectively.

Although this technology is independent of programming language, various languages

that adapt this idea have been designed, e.g., C++, Smalltalk and so on. With those

language tools, users can more easily focus on the problem itself without paying too

much attention to the language syntax. In addition, some properties of the

object-oriented technology, e.g., encapsulation, inheritance, dynamic binding, may

improve the maintainability, reusability, and adaptability of software.

Most knowledge systems exploit the object-oriented technology. Based on the

object-oriented concepts, knowledge can be divided into some classes. Only the

required classes are loaded for inference. Thus, the requirement of system resources

can be reduced and the performance can be improved.

The knowledge representation schemes with properties of object-oriented technology

are effective on the maintainability of KBS. The property of encapsulation means that

only the interface can be used to access the functions or data within a class. Similarly,

there is an interface to access the rules or data that are encapsulated in a class of

knowledge. Because the details of the knowledge are hidden, this feature can benefit

managing a large knowledge base. Based on inheritance, knowledge base system

provides the reusability. Moreover, the ability of dynamic binding allows knowledge

representation more flexible.

 7

2.2 Knowledge base maintenance

For most knowledge systems, maintaining knowledge is a very important task to keep

the systems working properly. For example, when new knowledge comes into a

knowledge system, how to combine it with existing knowledge, how to resolve

conflicts and redundancies, and how to maintain modularity, etc, are the problems to

be considered as the system grows. There are some researches [LT03][TSA02] focus

on solving these related issues; hence the knowledge base can be maintained from

time to time. When a knowledge system grows, the following issues should be

considered:

1. Modularity: Group knowledge into proper units (classes) according to the

corresponding knowledge concept; highly modularized knowledge can be

managed properly.

2. Confliction: Avoid the confliction inside the knowledge, the confliction of

knowledge may cause the process result of a knowledge base to be uncertain.

3. Redundancy: Reduce redundant knowledge contained in the knowledge base;

redundant knowledge can lower the performance of the knowledge base.

4. Incomplete: Ensure the knowledge to be complete, which means for any given

facts and problem, there is always some results can be obtained.

 8

5. Complexity: Simplify the inter-relation between knowledge; complicated

knowledge relationship makes the inference and explanation of knowledge to be

harder.

To the best of our knowledge, there are some efficient algorithms have been proposed

to deal with confliction, redundancy, and incomplete issues. However, for the

modularity and complexity issues, it still lacks a systematic approach. It seems

analyzing the knowledge and partitioning knowledge into less complex and more

modular structure will be very helpful in the knowledge system maintenance.

2.3 Knowledge Engineering

Knowledge Engineering is the process of structuring, preparing, formalizing, and

optimizing information and knowledge. Many topics related to process knowledge is

so-called Knowledge Engineering. In this work, several specific types of knowledge

engineering process are involved, including Knowledge Representation, Knowledge

Acquisition, Data Mining and Knowledge Fusion.

Knowledge Representation is the way to representing and structuring knowledge into

computer compliant data structure, and also provides corresponding mechanism to

process the data structure of knowledge. There are several general types of knowledge

representation, including Rules, Cases, and other special models (Decision Tree,

Neuron Nets, etc). Many researches proposed different approaches to deal with all

these different kinds of knowledge representation, and good knowledge representation

 9

considering the performance, maintenance of the knowledge is always a major

research area of the domain.

Knowledge Acquisition (KA) is a process to extract knowledge from experts or other

knowledge sources and transfer the expertise into well-structured form to be used in

knowledge based systems. There are quite many different kinds of KA approaches

proposed in many researches [RH03][HW03][HY02][NF02][TL99][WW99],

including interviewing with experts, Repertory Grids, machine learning, etc. As we

know, Knowledge Engineer (KE), who is responsible for executing the process of KA,

plays a major role in KA process to elicit the knowledge from experts and transfer the

knowledge into structured format; and the preparation done by KE may obviously

influence the KA result.

Data Mining is also a research area of knowledge engineering. Mining knowledge

from huge amount of data is much more important in recent years since computer

systems are widely used in many different areas and hence generate lots of

transactions and log information. Quite many data mining researches focus on

retrieving deep knowledge contained inside massive raw data, and hence using data

mining in knowledge engineering area is becoming be a more and more important.

Expert systems are more and more popular in recent years, and the knowledge for the

same domain may be implemented in different expert systems. For example, many

Network Intrusion Systems are implemented based on knowledge base technologies,

and many of them may have the knowledge for detecting the same intrusion behavior.

Researches of Knowledge Fusion are proposed to help knowledge engineer combine

the knowledge from different sources. Two main categories of approaches are applied

 10

to the knowledge fusion problem: the hierarchical approaches and the

non-hierarchical approaches. Hierarchical approaches include EPAM [FS84],

COBWEB [FIS87], CLUSTER/2 [MSD81], CLUSTER/S [SM86], RESEARCHER

[LEB86], CLASSIT [GLF90], LABYRINTH [TL89], AutoClass [TL91], SUBDUE

[JHC00], and so on. Non-hierarchical approaches include the common subgraph

approach [MG95] and the concept lattice approach [GMA95]. The common subgraph

approach based on Sowa’s conceptual graph and knowledge space [SOW84][SOW00]

is efficient and accurate. The concept lattice approach provides an efficient way for

knowledge fusion based on the formal concept analysis.

2.4 Ontology

The term ontology is borrowed from philosophy, where an Ontology is a systematic

account of Existence [GRU03]. In computer science area, ontology is a

conceptualized data structure to be used in knowledge systems or artificial intelligent

systems. Based on the same ontology, different systems can communicate with each

other, or the knowledge inside computer systems may be structured and presented

more accurately.

In recent years, due to the increasing requirement for inducing domain knowledge

into computer systems [HY02][NS01][KM03], many researches [AS03][MS01]

[FF99][ERI03][VAR01][SBA04][CTL03] were proposed to discover, represent, and

use of ontology. Especially in knowledge based systems, ontology becomes a key to

build a successful knowledge base; with ontology, more meaningful and accurate

knowledge content for the users can be presented and used. Thus, building up the

 11

ontology for knowledge system before developing the knowledge content helps lots in

the knowledge acquisition process.

2.5 Rule Base System

Rule is a natural knowledge representation, in the form of the “IF … Then…”

structure and Rule Base System (RBS) is popular for real applications among expert

systems. RBS consists of two components, inference engine and assertions. The

assertions can be divided into a set of facts and a set of rules that can be fired by

patterns in facts. The inference engine, an interpreter of an RBS, uses an iterative

match-select-act cycling model. In act phase of the cycle, a fired rule may modify or

generate some facts.

CLIPS [CLI98], one of the most successful expert system shell, which allows a

knowledge base to be partitioned into modules, provides a feature called defmodule,

and provides a more explicit method for controlling the execution of a system. Each

module is able to inference sequentially and independently by inference engine.

Different domain knowledge can be placed in different modules created by defmodule

functions. Logically, related rules and facts can be collected into one module, which

provides better maintenance and performance.

RBS has many advantages [REI91]. The first is naturalness of expression since

experts rely on rules rather than on textbook knowledge. The second is modularity

that permits RBS easy to construct, to debug, and to maintain. Restricted syntax and

ability of explanation are also the advantages of RBS. Although RBS is powerful

 12

enough in many applications, it has several disadvantages in maintenance and

construction, e.g., the weak ability of incremental construction of knowledge [LO96].

Accordingly, many researches aim to integrate object-oriented and rule-based

programming paradigms to take advantage of OO technology. There are two

paradigms on the integration of objects and rules: incorporating rules into objects and

embedding objects into rules. Knowledge objects are an integration of the

object-oriented paradigm with logic rules [WU00]. Furthermore, many rule-base tools,

which cooperate with OO technology, have been developed, e.g., COOL (CLIPS

Object-Oriented Language) [CLI98].

 13

Chapter 3 A New Object-oriented
Rule Base Platform

3.1 Lifecycle of an Expert System

In recent years, Expert System, the system to model expert’s decision making process

and help to build up knowledge systems, becomes more and more important in

Computer Science domain for next generation computers systems

[GR89][NEG85][ROE88][SF02][TT02]. Rule Base System is a widely used approach

to construct Expert System, in Rule Base System, the expertise is represented as rules,

a well-known logical knowledge representation, and the Rule Base System provides

the ability to process the knowledge and provide decisions or advices as human expert

according to the facts of the environment.

Knowledge Representation Knowledge Acquisition

Knowledge Discovery

Knowledge Fusion

Knowledge Processing

Figure 3.1: Lifecycle of knowledge management

Figure 3.1 shows the lifecycle of Knowledge Management for a Rule Base System.

There are four phases for Knowledge Management, including Knowledge Process,

 14

Knowledge Acquisition, Knowledge Discovery, and Knowledge Fusion. In this

lifecycle, the way to process and representation knowledge is first selected, and the

Knowledge Acquisition (KA) mechanism can be used to retrieve domain knowledge

from experts. Also, for a running expert system, Knowledge Discovery mechanism

can be used to extract knowledge may be embedded in user’s behaviors. For different

knowledge sources, e.g., the knowledge retrieved by KA process, the knowledge

extracted in Knowledge Extraction process, Knowledge Fusion mechanism can be

used to merge the knowledge and make them consistency for Knowledge Processing

mechanism to use.

3.2 A New Object-oriented Rule Base Platform

In this thesis, a New Object-oriented Rule Base Platform (NORBP) is proposed,

which is designed to provide more flexible, efficient, maintainable, and meaningful

knowledge representation, and also correspondingly knowledge systems mechanisms.

In NORBP, several corresponding mechanisms are designed to construct a complete

knowledge platform, including knowledge representation, knowledge acquisition,

knowledge extraction, and knowledge fusion, and the architecture of the knowledge

platform is shown in Figure 3.2:

 15

New Object-oriented
Rule Model

Knowledge System
Applications

NORM Knowledge
Processor (DRAMA)

Ontology Based
Knowledge Fusion

Ontology Discovery and
Utilization in KA

Rule Based Knowledge
Discovery

User activities
log

Discovered
Knowledge

Fused
Knowledge

Base

Knowledge
Representation

Figure 3.2: Architecture of NORBP

In NORBP, the New Object-oriented Rule Model (NORM) is designed to represent

knowledge according to Object-oriented concept, and knowledge relations are defined

to construct the knowledge model. By using NORM, knowledge can be organized and

structured in more meaningful way according to the natural of human knowledge

[DEE65][KIN70][GAG85][GLA87]. However, since NORM is a new designed

knowledge model comparing to traditional knowledge model, and the knowledge

structure in NORM can not be acquired in traditional knowledge acquisition approach.

In NORBP, Concept Learning from Cases based on Semantic Distance for Knowledge

Acquisition is proposed to help construct knowledge concepts, extract knowledge

relations between concepts, acquire knowledge content in each knowledge concept,

and build up the knowledge model of the selected knowledge domain.

Except extract knowledge from expert by KA methodology, for the knowledge hidden

in our daily behaviors, machine learning and data mining approaches are usually used

 16

for extracting knowledge from huge amount of massed data. The Knowledge

Extraction mechanism proposed in NORBP is designed based on both machine

learning and data mining approaches, and provides an efficient and useful

methodology to extract patterns from the system records about user behavior, for

example, exacting knowledge from the web access log or the user consuming

transactions, etc. The patterns discovered are the knowledge about user behaviors and

interests.

Even for the same knowledge domain, the knowledge are always increasing due to

new discoveries and ideas, and Knowledge Discovery in NORBP provides an efficient

way to retrieve new knowledge without re-acquiring knowledge from experts, which

reduce the time for learning new knowledge and speedup the life cycle of knowledge.

However, sometimes new knowledge extracted may be redundant or conflict to

existing knowledge, and also the knowledge model should be re-constructed if the

knowledge content is frequently updated; Knowledge Fusion mechanism in NORBP

is proposed to fuse different knowledge sources for the same knowledge domain,

resolve the conflict and redundant of knowledge, and reconstruct the knowledge

model in more meaningful structure.

NORBP provides a definition of life cycle for knowledge management, and the

mechanisms designed in NORBP are good tools for each process of knowledge

management. In the following chapters, those NORBP tools designed will be

detailedly described.

 17

Chapter 4 New Object-oriented Rule
Model (NORM)

Recently, knowledge management has become increasingly popular [CL02] [EA02].

Knowledge or expertise of experts in numerous domain should be extracted, managed

and reused to improve the performance and reduce human resources needed for

difficult tasks. In most cases, knowledge needs to be constructed incrementally no

matter what type the knowledge is, and hence maintainability for knowledge base

system (KBS) is very important since KBS needs to be updated frequently. According

to the above considerations, the following features are important for knowledge

maintenance and management. A simple and clear knowledge model with these

features is proposed in this chapter.

Modularity

Modular knowledge elements can be used sequentially and independently by

inference engine. Modular knowledge representation benefits the maintenance of a

KBS because of its localizing the effects of specifying flows of information between

modules.

Abstraction

Abstraction is an approach that helps us deal with complexity by emphasizing

relevant characteristics and suppressing other details. In most knowledge-based

applications, the details of knowledge are not cared about.

Reusability

 18

Knowledge reusability provides the facility of using original knowledge to build new

knowledge. The property of inheritance is useful for knowledge reusing, yet a

mechanism to reduce the knowledge conflict is needed.

Sharability

Sharable knowledge can be used to build up applications on various platforms. In

another aspect, different knowledge-based system can also cooperate through the

knowledge sharing.

Uncertainty reasoning

Uncertainty is an integral part of the world. If the ability of inexact reasoning is

integrated into knowledge representation, the representation will be more natural

[SAL93].

In order to increase the reusability, sharability and satisfy modularity and abstraction

for knowledge base, a new model, New Object-oriented Rule Model, is proposed for

managing rules under object-oriented paradigm.

4.1 Aerial View

Various kinds of knowledge are defined in psychology [GAG85][GAG84]; however

expert system mainly deals with the procedural and declarative knowledge excluding

motor skill, attitude, etc. Knowledge is constructed by lots of concept blocks, for

example, the concept about identifying a bird, a fish and so on. By building ontology

to connect different concept, a complete conceptual knowledge model to solve a

 19

problem can be built. According to how people learn knowledge and ponder, three

major kinds of relationships are defined between knowledge concepts. Thus, we

define a clear knowledge framework and build a corresponding knowledge base

system.

4.1.1 Human Learning

Learning is the most significant knowledge activity in our lives. A topic is required

before people start the learning activity, for example, “To learn how to identify a bird”

is the topic before we learn what a bird is. Knowledge about the topic will be built

after successfully studying about the topic as shown in Figure 4.1.

Figure 4.1: The learning activity

4.1.2 Knowledge Class

In this work, Knowledge Class (KC) is used to describe each concept. Learning is to

study piece of knowledge, e.g., a domain concept, and to convert the knowledge into

a KC. All the new knowledge is built upon the original knowledge according to

educational psychology. In other words, learning is an activity to construct the

 20

relationship between different KC, as shown in Figure 4.2 [DEE65] [KLA71].

Figure 4.2: Binding the new and existent knowledge in learning activity.

Association

As we build domain knowledge inside our mind, association with existing knowledge

is used to reduce the difficulty of learning. This kind of knowledge model is widely

used in human knowledge processing. This relationship between domain concepts is

seen as reference, i.e., to refer some existing knowledge.

Modification and Extension

Modification of knowledge is also a similar activity. Efficient learning is absorbing

the existing knowledge and experience from other people, but these knowledge

contents may be modified or corrected according to user’s experience or some new

definitions of knowledge. On the other hand, extension is similar to modification

except that the knowledge can be not only overrided but also extended under

 21

extension relation.

4.1.3 Inferring

Figure 4.3: The behavior of pondering over known information

As shown in Figure 4.3, when human gets facts through sensor, the facts will be

inferred with a specific concept in a domain and other three concepts can be

associated according to their relationships. However, people may not consider all

relevant knowledge at the same time, since too much effort may be required to solve

the problem. Some inference skills are widely used in human thoughts to improve the

performance of knowledge inference.

Transference

Sometimes, a problem can be transformed to another problem according to some

 22

conditional judgment. For example, we may consider how to save water if we detect

that climate will be drought. The transference is the activity of triggering thinking for

another concept. On the other hand, a problem can be partitioned into some

sub-problems when certain conditions are matched. For example, when a student is

bad at mathematics, and then the knowledge of planning an extra mathematics course

will be included; otherwise, the knowledge will not be included. This relation

between two concepts is treated as acquirement.

Fact transform

In addition, the fact might have different name or meaning among concepts. For

example, in different knowledge concepts, the fact, “the temperature of the body”,

could be represented in adjective as “fever” or in degrees centigrade as “39℃”. So

fact transformations may be attached to transference between two concepts.

4.2 New Object-oriented Rule Model (NORM)

A knowledge model, New Object-oriented Rule Model (NORM), is proposed

according to the above ideas in this section. There are various subjects of domain

knowledge in mind, but a knowledge system is often concerned with only one domain.

However, a subject may contain various concepts.

Because rule is the natural and common representation of knowledge, rule is chosen

to represent knowledge of each concept. As shown in Figure 4.4, a rule base is defined

as a container that deals with domain knowledge and contains various knowledge

classes; hence, related facts collected from real world can be used for inference within

 23

a knowledge class of corresponding concept.

Facts

Rule-base

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

Knowledge
class

dependence

Figure 4.4: New Object-oriented Rule Model (NORM)

4.2.1 Facts and Fact-Collection

The facts represent all kinds of appearance in real world and are used when

inferring. During inference process, the rules use facts to obtain reasonable

conclusion. A fact consists of name, value, and possibility. A general expression for

fact is as follows:

 F: n = v (p)

Where

 n: the name of fact, which is used to identify a fact

 v: value

 p: possibility

 24

The value of a fact could be any type including string, integer, float, date, Boolean

value. If the value or type of a fact is unknown, it can be set as NULL. In order to

support uncertainty reasoning, the possibility represents degree of belief of a fact.

The possibility value is confined to the interval [0, 1]. An activation of 1 is

interpreted as “highly positive”, and zero as “uncertain”.

Fact Collection (FC)

Fact collection (FC) is a set of facts and contains the meaningful facts for inferring.

An FC performs as working memory and every inference process should own an

independent FC. In other words, the FC is a temporary run-time component and

will not be stored in a knowledge base system.

4.2.2 Knowledge Class

Rule-Base (Knowledge-Classes)

Knowledge Class
Knowledge-Class

Rule

Condition

Action

Rule

Condition

Action

Relation

Relation Knowledge-Class

Knowledge-Class

reference

extension-of

Acquire / Trigger

Required
facts

Respondent
facts

Facts DeclarationFacts Declaration

Figure 4.5: The knowledge class in a Rule-Base

A Knowledge Class (KC) represents a kind of concept. It consists of rules, relation

with other KCs and fact declarations as shown in Figure 4.5. After aggregating

 25

adequate facts in an FC, the facts could be inferred with a specific KC. During

inferring, facts in an FC might be modified or generated. Finally, the conclusion

could be drawn from the generated facts.

The fact declarations define which information is meaningful for a KC. There are

two types of facts, the respondent facts and the required facts, included in the facts

declared. The required facts are prerequisites for inferring under a concept, and on

the other hand, the respondent facts are the interests of the conclusion. In other

words, required fact is seen as input and the respondent fact as output.

A fact declaration consists of the name of fact and default value. If an FC does not

contain some required facts before inferring, these facts should be initiated with the

default value. On the other hand, if some respondent facts are not generated after

inferring, these facts will be obtained with the default value as well. Thus, the fact

declarations could be used to represent declarative knowledge.

4.2.3 Rule

A rule is the basic knowledge element in a rule-based system. The general

formulation of a rule is shown as follows:

 R: IF c THEN a (CF=µ), t, w

Where

 c: condition part of a rule

 a: action part of a rule

 µ: certainty factor of a rule

 26

 t: threshold

 w: weight

Weight

The weight property allows the user to assign the priority to a rule. The rule with

the highest priority will be fired first. The weight value should be an integer. If

unspecified, the weight value for a rule defaults to zero.

Certainty-factor (CF)

In order to support uncertainty reasoning, the certainty factor model, which was

first used in the medical expert system MYCIN (Shortliffe & Buchanan, 1975), is

adopted. In CF model, the certainty factor decides the degree of belief of a rule in

matching phase and its value is confined to the interval [-1, 1].

Condition

A condition is a Boolean expression, which are the criteria for a piece of knowledge.

Various operators can be used in the expression such as arithmetic operator,

Boolean operator, etc. In rule matching phase, the result of the Boolean expression

is evaluated, i.e., estimating the degree of confidence of a rule. The value is

affected by several factors including logical operation and possibility of used facts.

Finally, the degree of confidence of a rule has to be multiplied by CF of the rule

[GR89]. However, a rule is fired only when the degree exceeds a user-defined

threshold t. For example,

 F1: color = “red” (0.9)

 27

 R1: IF color = “red” THEN a, (CF = 0.8), 0.2, 0

Then the result of evaluating reliability is 09 * 0.8 = 0.72 and R1 will be fired since

0.72 is larger than the threshold t, 0.2.

Action

An action represents the effect when the criterion of a rule is matched. The action

of a rule should be one of following four types:

Assignment

This action is to assign value to fact or to generate a new fact. Before assigning

value to a fact, the possibility of the new value is considered first, which is the

result of the minimal possibilities of facts in condition expression multiplying

the CF of the matched rule. The assignment is executed only if the new

possibility given to assigned fact is equal to or higher than current possibility of

the fact, and the possibility of assigned fact will be modified as new possibility,

too. For example, if the reliability of a rule is 0.8, and its action is to assign

some value to a fact whose possibility is 0.9, the action will not perform. On the

other hand, if the objective is a fact whose possibility is 0.7, the Assignment

action will be completed successfully.

Trigger

The conditional transferences are divided into two kinds of actions: Trigger and

Acquire. In Trigger relationship, it triggers another KC with current facts as

knowledge transfer. In other words, the remnant knowledge in original KC

 28

should not be considered. During inferring, present inference process of the FC

aborts, and a new inference process will start with the triggered KC.

Acquire

The second action of transference is Acquire that represents the acquirement

relation. After Acquire process, the original inference process will continue and

only facts predefined in the acquired KC will be carried back. At the same time,

the possibility of these returned facts is multiplied by CF of the fired rule.

4.2.4 Relation

The relationships between KCs are divided into two kinds - dynamic and static. The

relationships mentioned including Trigger relation and Acquire relation are

dynamic because they are activated conditionally in the action part of a rule.

Two new relations, including Reference and Extension-of, will be defined as static

relations. These two relations are designed according to the natural of building

knowledge of human. Since a KC may refer several KCs, the topology of all KCs is

a directed graph.

Reference

Reference is used to represent the associations between different concepts. Through

the Reference relation, the knowledge contained in referred KC is regarded as the

base knowledge and it will be taken into consideration together with the knowledge

defined in the KC. On the other words, Reference can be thought as an

unconditional acquire relation between KCs.

For example, as shown in Figure 4.6, suppose we learn “wild goose” via the some

 29

features of “goose” and the property, flyable, of “swallow”. Before considering

whether the present facts indicate “wild goose”, the inference process first

considers whether these facts conduct the property of “flyable” under concept of

“swallow” and other properties under “goose”. Thus, the initial facts could be

automatically generated. Therefore, Reference relations should be declared between

KC of “wild goose” to KCs of “goose” and “swallow”.

swallow

Initial
fact

Is
swallow

Initial
fact

Initial
fact

Inferred
fact

wild goose

Flyable
Is wild
goose

Initial
fact

Inferred
fact

Some
features

Reference

goose

ReferenceInferred
facts

Is
swallow

Initial
fact

Flyable

Figure 4.6: A Reference relation example

Extension-of

 30

Facts Rules

KCA

Facts Rules

KCB

Extension-of

Figure 4.7: The Reference relation and the Extension-of relation

As shown in Figure 4.7, Extension-of is different from the Reference relation, a

new KC may include all the knowledge contents of an existing KC through

Extension-of relation. The activities of Extension-of relation include extension and

modification. Therefore, it must support the overriding mechanism, including the

overriding of Fact and Rule. For example, in Figure 4.7, if a knowledge class KCB

is extension of KCA, and then KCB will own respondent facts and required facts

that KCA owns. However, if there is a duplicate definition of fact in KCB, the type

and value of the fact will be based on the definition in KCB. Overriding of rules in

NORM is different from that of facts, which is defined as logical overriding. In

logical overriding, if the rules in KCA have the same action with KCB, e.g., to

assign value to the same fact, the action of KCB will be taken instead of that of

KCA.

Finally, the relationships between KCs are not necessarily accurate and there may

be some uncertainty of the fact declarations and the rule assertions in the relations.

Relations can be asserted a certainty factor to reduce the degree of belief of default

 31

facts and rules in the referred KCs. The detail of this process will be discussed in

the next section.

4.2.5 Transformer

The transformer is used to transform the facts between two KCs, because the fact

might be expressed in different measures. For example, the “temperature” may be

measured in Fahrenheit or Celsius for different knowledge concepts. Therefore, the

transformers may be attached to the relations between KCs.

4.2.6 Rule-base

In this model, a Rule-Base (RB) records various knowledge concepts in a specific

domain and each Knowledge Class (KC) in the RB represents different concept of the

domain knowledge.

In addition, RB is a unit of knowledge exchange and the meta-data of KCs supply

relevant information for knowledge reuse, e.g., author, purpose, and so on.

Inferring

In cognitive structure of human [CQ69][KIN70][TUL83][TT73], there is a

complex mechanism to map perceived facts to the concept of long time memory,

and use the knowledge of the concept for solving problems. However, the ideal

mechanism can not be easily implemented. In NORM knowledge model, a KC that

contains the control knowledge, which is the knowledge about considering which

kind of knowledge should be used to solve problem, must be specified before using

the knowledge in NORM. For example, in the knowledge system about medical

diagnosis, a KC contains the control knowledge of determining which type of

 32

diagnosis KC, e.g. KC for Internal Medicine or Surgery, should be used.

4.2.7 Inference Process

The inference process with the model is described as follows. The first step is to select

a Rule-Base. Because a knowledge system cannot contain all types of domain

knowledge, specifying a knowledge domain, e.g., internal medicine diagnosis, travel

planning and so on, is necessary before inferring. The second step is to collect the

facts and specify a KC containing the corresponding control knowledge for the

problem to be solved. According to the specified KC, the inference engine will

perform the reasoning process. Finally, interesting information can be obtained from

final fact value. Furthermore, the order of fired rules and causal relationship between

those rules can be retrieved for explanation mechanism.

4.3 Relation-based Inference mechanism

In order to deal with the various relationships under NORM, the relation-based

inference mechanism is proposed. A forward relation-based inference mechanism

shown in Figure 4.8 includes following five modules.

Knowledge
Objects
Integrator

Reference
Verifier

Reasoning
Services

Transference
mechanism

Start
Explanation
mechanism

Forward Inference Scheme

Figure 4.8: The forward relation-based inference scheme

 33

4.3.1 Knowledge Class Integrator

This module integrates the rules and fact declarations through the Extension-of

relations between KCs. Before inferring, it rewrites the action part of integrated rules

and adjusts the certainty-factor value of these rules according to the Extension-of

relation declaration. Similarly, it also combines the fact declarations of knowledge

classes.

This module also creates the relation tables about the interaction between rules and

facts, including what facts are used in condition part of a rule and what facts or KCs

are affected by the action part of a rule. The tables can help to increase the efficiency

of the rule matching in reasoning.

4.3.2 Transference Mechanism

This mechanism mainly performs the Trigger or Acquire during reasoning process. An

FC is KC-dependent to a KC if if the FC is inferred with the KC. This module

performs transference with changing the KC-dependence of an FC. In other words, it

causes the FC to be KC-dependent to another KC, and restarts the inference process.

As shown in Figure 4.9, for Trigger action, the original inference process will be

terminated. Unlike Trigger, the action of Acquire copies the current FC to begin a new

inference process with the target KC. After the new process, facts are returned to

original FC according to the fact declarations in the target KC, and the original

inference process will continue.

 34

FC

RC1
Inference Process

1, Original Inference
Process

RC2

3. Inference Process
After Trigger

2. Trigger Process

FC

RC1
Inference Process

1. Original Inference
Process

RC2

3. Inference
With FC�

2a. Acquire Process

FC�

2b. Clone FC to FC�

Inference Process

4b. Copy Values in FC?to FC

4a. End Inference of RC2

5. Resume RC1
Inference

a) Trigger b) Acquire

Figure 4.9: The Trigger action and Acquire action

Transformer

The transformer consisting of TO and FROM performs in transference mechanism.

Before the transference, the specific facts were assigned new value according to the

TO part of a transformer declaration. If there is a fact that owns the same name as the

assertion of Source-Fact, the fact will be replaced or removed before the new

inference process. Besides, for the Acquire action, the values of facts will be

responded, and the facts will be changed according to operations defined in the part of

FROM. For example, in Figure 4.10, while the action executes, the fact F of an FC is

first converted into the fact C and then removed. After the action, the fact C will be

transformed to F as well.

Figure 4.10: A transformer example

 35

4.3.3 Reference Verifier

This module deals with the Reference relations between KCs. When an inference

process initiated, Reference Verifier verifies the prerequisite of referenced KC and

includes all the rules and facts of the KC through Reference relation. Included rules

and facts will be used as a part of the knowledge to be processed during the inference

process.

4.3.4 Reasoning Service

This module is used to do the actual inference process within the rules and facts from

previous mechanisms. The rules will be matched according to the given facts, rule

actions except the transference actions will be taken, and new fact value is assigned or

generated. All the above steps will be recorded for explaining the inference process by

Explanation Mechanism.

4.3.5 Explanation Mechanism

This module arranges conclusion in systematic form and provides the ability of

explaining the conclusion. The conclusion is represented in three parts: the list of facts

that are modified or generated during inferring, the cause relation between fired rules

and facts, and the order of all fired rules. Thus, the inferring result can be explained.

4.4 Modeling a Knowledge Base

Modeling a knowledge base [CL02][RW02] contains several processes, construction,

 36

maintenance, reuse and refinement. In the life cycle of KBS, KB maintenance and

refinement repeat recurrently. In this section, the methodologies of modeling a

knowledge base under NORM will be described.

4.4.1 Construction

The first process of modeling a knowledge base is construction, i.e., transforming the

domain knowledge of experts into knowledge representation format of NORM. In this

section, a construction procedure is proposed to construct the knowledge

systematically. In knowledge base construction, it is assumed that no prior knowledge

of the similar domain exists, and Extension-of relation will not be used in

construction process. The construction procedure is divided into the following six

steps.

1. Select a knowledge domain to be modeled

Before designing a knowledge base, the domain of the KB must be first selected. If a

large system is built, the domain of the system may be divided into several

sub-domains.

2. Identify concepts in the domain and model the concepts

This phase is to analyze what concepts are contained in one domain, similar to the

use-case analysis in OOA/OOD. A concept in knowledge base is used to solve a

problem as use-case.

In cognitive psychologist, the knowledge can be divided into three categories:

declarative, procedural and strategic [AND95][GLA87]. Declarative knowledge is

 37

used to judge if the present facts correspond to things that the concept represents, and

finally the result is obtained from the value of facts, e.g., deciding whether an entity is

a bird according to the facts about its features.

Procedural knowledge contains the discrete steps or actions to be taken and the

available alternatives to perform a given task. Thus a procedural concept is based on

the visible facts to proceed planning for the concept, e.g., how to fix a bicycle. A plan

may be generated from this kind of knowledge to solve a problem.

Strategic knowledge is used to decide course of action and regards the

interrelationships and interdependencies among concepts. Strategic knowledge

consists of reasoning strategy and control rules [KIN70]. In NORM, the control rules

decide which KC will be used.

Figure 4.11 is an example to show the relations betweens the KCs containing one of

the three types of knowledge. Procedural KC may acquire result inferring by other

procedural or declarative KCs, or trigger a control KC. The Control KC can decide

which KC will be used with existing facts. However, an inference process can start

with any type of knowledge class.

 38

Procedural
knowledge

Control knowledge

Procedural
knowledge

Procedural
knowledgeA

T T

Procedural
knowldege

T

declarative
knowledge

declarative
knowledge

T

Start

Start

Start

T

A

A

A

A: Acquire
T: Trigger

Figure 4.11: The cooperation of KCs with different types of knowledge

In this step, the type of concept to be modeled must be decided, and each concept

must be mutual exclusive from each other.

3. Identify the relationships among concepts

Next, according to the exclusive relation of concepts, the type of their knowledge

relation in NORM model must be found according to following basis. The concept

with generalization is defined as Reference relation; the concept with causal

relationship is defined as Trigger relation; at last, through further analysis, the sub

problem or sub concept can be defined as Acquire relation.

4. Identify the features of each concept.

In this step, according to perception of experts, the features that affect each concept

will be defined, and the facts in each concept will be used in designing corresponding

KC.

Facts can be divided into two categories, respondent facts and required facts.

Respondent facts possess the function of output, which means all of the relevant

 39

features generated through inferring the basic information, can be categorized as

respondent facts. On the other hand, all necessary basic information for inferring with

KC is a type of required facts.

5. Design the transformer

When a KB is constructed from several KCs, the transformer may be needed between

KCs to transform useful facts. A transformer should be designed if the format

requirements of cognominal feature facts between two KCs are different. The

transformer will be assigned to the relation between KCs except Extension-of

relation.

6. Acquire knowledge of each concept

Because rules are chosen to represent knowledge of each concept in NORM, the

knowledge should be transformed into rule form. According to the relations between

KCs analyzed in previous steps, this step acquires the knowledge of experts about

each KC. The acquisition process for one KC can rely on some developed KA

methodology such as repertory grid. However, the rules dealing with Trigger and

Acquire relation between KCs should be asserted.

In order to avoid redundant design of the rules, the knowledge of a KC can be

acquired if the KC is the top of relationship hierarchy between KCs, i.e., it does not

refer other KCs.

 40

4.4.2 Maintenance and Reuse

There are some differences between maintenance and reuse of existing knowledge in

NORM. Maintenance means the modifier is the originator of a knowledge base

system, but reuse means that someone else uses existing KC and modifies it.

Therefore, reusing an existing RB could be proceeded by building Extension-of

relation.

Understanding an existing rule-base is the prerequisite to reuse or maintain it, which

means user has to know the domain problem solved in the rule base, the concepts of

KCs contained in the rule base, and the declarations of each fact in KCs. Thus, the

process could be proceeded as follows.

1. Analyze the relationship of the new concept with original KCs.

In order to add a new concept to a rule-base, the relationships between new concept

and original KCs must be known. In most cases, Reference is used to describe the

relation between two KCs, which cooperates to solve a problem. Extension-of may be

used if one KC is a modification of another KC and they have similar concept or

solve the similar problem.

2. Identify the facts of the new KC.

According to the Extension-of or Reference relation, the key facts of new KC could

be identified. In addition, the new concept may use features that are not declared in

the referred KCs, and those feature facts should be declared in new KC.

3. Check conflict of fact definitions and design the transformers

The names of facts in two KCs should be unified. For example, if a KC use “fever” to

 41

express a rise in the temperature of the body, the other KC shouldn’t use “pyrexia” to

express the same concept. However, if needed, the transformer can be designed

according to type of fact value and the meaning of facts.

4. Acquire knowledge of the new concept

The step is similar to Step 6 in Section 4.1.

4.4.3 Refinement

Knowledge acquisition can be divided into two phases, initial phase and refinement

phase, in which the initial knowledge base is refined to produce a high performance

system [GWP88] [KIN01]. In this phase, the knowledge base should be corrected

through a debug process and the relationships between KCs may be refined, e.g., the

common concept of KCs can be extracted into an independent KC.

 42

Chapter 5 Knowledge Acquisition

With the growth of the usage of information systems, more and more information and

data are collected and summarized as cases, for example, the list of system

vulnerabilities [CERT04], the bugs of operation system [MIC04], etc. Many of them

collect the cases as a list or dictionary for user to browse, and may provide some

search functions for users to retrieve the desired information. However, the

knowledge behind these cases may be not well structured; it means when users try to

access the information, they have to extract the information by comprehending the

information.

Building a knowledge base provides more than a dictionary, it can provide the

capability to process the knowledge for solving the issues raised by uses; for example,

an expert system, a type of knowledge system, may provide the service for users to

request for solutions of a given problem, and inference the knowledge base behind to

find appropriate answers.

Knowledge engineering is a process to build up knowledge system, and Knowledge

Engineers (KE) play a very important role for building a successful knowledge system.

One of the most important jobs for KE when building a knowledge system is to

acquire knowledge from expert, which is usually so called a Knowledge Acquisition

process. However, the KE is not necessary a domain expert since the major ability for

a KE is to analyze and design the knowledge system systematically, and that means

we can not expect a KE to have the ability to design the tools, e.g., the domain

specific repertory grid, for acquiring knowledge from expert to build a successful

 43

knowledge system.

In order to solve such problem, Concept Learning from Cases based on Semantic

Distance Calculation for Knowledge Acquisition mechanism is proposed in this work.

The basic idea is to provide a mechanism to extract concept information from

previous work, including the list of information, the article or description about the

domain information, as cases, in which the concept information is useful for building

ontology to be used in knowledge acquisition process [LW02][CS99]. The

information may be already filed or summarized in some information system as cases

but can not be directly used as knowledge since most of them are just text information,

but that doesn’t mean there is no knowledge inside the information, our goal is to find

useful knowledge from it as a base for KE to execute the knowledge acquisition

process.

In this work, the mechanism proposed consists of Case Clustering, Concept

Relationship Constructing, and Knowledge Extracting Steps. In Case Clustering step,

we firstly collect all the cases of the domain for KA, e.g., the list of system

vulnerabilities. And then Knowledge Feature Clustering Algorithm (KFCA) is

proposed to group cases of text into knowledge concepts. In Concept Relationship

Constructing step, the correlation between these concepts obtained in previous phase

will be acquired from domain experts; hence, the desired domain ontology can be

constructed. Moreover, in Knowledge Extracting step, experts will be asked to fill in

the grid for each concept with their domain knowledge. The knowledge contained in

these grids with their implicit meaning will be finally extracted by EMCUD[HT90]

and TpKA [TT02] algorithms.

 44

To evaluate the performance of our mechanism in building up the domain concept, an

experiment based on categorized intrusions information has been done. In the

experiment, the category information is used to evaluate the accuracy of the clustering

result.

In this work, a mechanism for Concept Learning from Cases is proposed to construct

the concepts of ontology; moreover, the process for acquiring concept relations and

extracting the knowledge of concepts is also designed. In the entire flow, a Case

Clustering Step is first applied to assist knowledge engineers to find concepts from

cases of text information. Based on the discovered concepts, the knowledge engineer

may design the knowledge acquisition mechanism to retrieve the required concept

relations in Concept Relationship Constructing Step; and in Knowledge Extracting

Step, the concept knowledge is also acquired from expert by repertory grid approach.

Figure 1 shows two phases in our KA methodology:

 45

C
ases

C
oncept

hierarchy

D
ata Source

Case

Case

Case
Collecting cases

Cases

Cases
Cases

Clustering

Concept

Concept

Concept

Knowledge Interface

Knowledge Interface

Constructing
relationships

Experts

Filling Repertory
Grids

RULES

IF A THEN B
IF C THEN C

Obtaining rules

Case Clustering Step

Knowledge Extracting
Step

NORM
Knowledge

Model
Generating

knowledge model

Concept Relationship
Constructing Step

Concept Learning
Process

Figure 5.1: The phases of Concept Learning from Cased based on Semantic
Distance Calculation

In Case Clustering Step, the domain cases collected will be clustered into clusters

 46

according to the semantic similarities of cases. In Concept Relationship Constructing

Step, the concept meaning of the clusters generated in previous step will be identified,

and also the relationships between concepts will be acquired from expert by filling a

relationship table; NORM(New Object-oriented Rule Model) [LT03] is used as the

representation for concept relations and concepts. The knowledge about each concept

obtained will be acquired using repertory grid approach in Knowledge Extracting Step,

in which EMCUD [HT90] and TpKA [TT02] approaches are used to extract

knowledge together with the implicit meaning of them.

5.1 Case Clustering Step

In this step, the knowledge engineer is responsible for collecting the domain

information for concept construction. As mentioned before, many information system

or web site provide some domain information as cases, for example, CERT provides

and profiles the system vulnerabilities information, Book review and description, Bug

Lists of software, etc. However, the list can be huge and hence hard to be used even

search function provided. A knowledge system to help user retrieve the information

(e.g., help to find appropriate books from user requirement) or take use of the implicit

knowledge (e.g., diagnosis system vulnerability) will be helpful to improve the usage

of such information.

A Knowledge Feature Clustering Algorithm (KFCA) is then proposed to cluster

the knowledge, and also help construct the knowledge concepts in these cases. KFCA

works along with the concept hierarchy information representing the relationships

 47

between vocabularies, for example, e.g., WordNet [WOR03]. KFCA will use the

concept hierarchy to calculate the similarity between cases. Once the similarity

between cases is determined, each cluster consisting of similar cases can be obtained

by KFCA.

In Knowledge Collection stage, the cases and corresponding descriptions are collected.

In order to calculate the semantic similarity between these cases, the keywords in the

descriptions for cases will be first extracted as features of the case using the concept

hierarchy for calculating semantic relatedness, since only the keywords contained in

the dictionary is useful for semantic calculation. After this process, the keywords used

to represent the features for cases will be extracted. And then the semantic distances

between different features will be calculated in order to get the similarities between

cases.

The semantic distance [BH01] is utilized to measure the semantic heterogeneity

between keywords. For two vocabularies v, v’, the semantic distance is given by Sv(v,

v’) = “the number of links from v to v’ in the shared vocabulary concept hierarchy” +

0.5 * ”the number of changes of directions”.

Definition 1: Semantic Distance of two vocabularies

The semantic distance function we use is based on the Hirst and St-Onge’s measure of

semantic relatedness [HS98], and is defined as follows:

Dv(v1, v2) = path_length + c * direction_change, ∀ v1,v2∈V,

where path_length is the length from v1 to v2 in the shared vocabulary ontology,

 48

direction_change is the number of changes of direction in the path, and c is constant,

which is set as 0.5 in this work. If the path does not exist, the function returns

“infinity”. Dv(v1, v2) = 0 if and only if v1=v2.

Example 1: : Semantic Relatedness Calculation

Given a concept hierarchy for network intrusion related vocabularies as following:

ids

traffic protocol

hl pps spps tcp icmp

then the semantic distance between tcp and pps will be path_length + 0.5 *

direction_change = 4 + 0.5*1 = 4.5.

Heuristic 1: Similarity of vocabularies calculated from semantic distance

The similarity of vocabularies will be defined base on the semantic distance

calculation, and two assumptions are given here: First, the similarity between two

vocabularies deceases in half when the distance increase by 1. Second, the similarity

value should be limited between 0 to 1. Hence, the similarity function is defined as

following formula:

),(2),(yxDvyxSv −=

 49

Also, since the distance between two vocabularies without connected path is defined

as “infinity”, the similarity used here can prevent the infinity value dominate the result,

which can occur when using distance instead of similarity.

And hence we would like to define the similarity function of cases as following

definition.

Definition 2:Case Similarity

For two case A and B, assume the keywords extracted to represent A={a1,

a2, … ,am} and B={b1, b2, …,bn}, the Case Similarity KS is the average similarity

between all pairs of keywords of A and B:

nm

yxS
KS

m

x

n

y
v

BA ×
=
∑ ∑
= =1 1

,

),(

Example 2: : Case Similarity Calculation

Assume there are three cases which describe three different kinds of network

intrusions.

IIS Memory Leakage: A Flaw that may allow a malicious user to consume all

available memory by sending lots of HTTP request to cause heavy load (hl).

ICMP flood: By sending lots of unreal ICMP packet, the victim host will get heavy

load (hl) and busy in responding the ICMP request.

 50

Ping of death: The machine crashed when doing ICMP echo pinging with corrupted

fragmented packet.

With keyword extraction mechanism, we may get the keywords for these cases as A =

IIS Memory Leakage = {HTTP, hl}, B = ICMP flood = {ICMP, hl}, and C = Ping of

death = {ICMP, corrupted}. And hence the similarities between these cases can be

calculated according to Definition 3.2:

KSA,B =
nm

hlhlSICMPhlShlHTTPSICMPHTTPS vvvv

×
+++),(),(),(),(

=
22

2222 05.45.45.2

×
+++ −−−−

=0.3163

KSA,C =
nm

corruptedhlSICMPhlScorruptedHTTPSICMPHTTPS vvvv

×
+++),(),(),(),(

=
22

2222 5.45.2

×
+++ −∞−−∞−

=0.055

Definition 3: The Similarity Matrix for cases

Since the case similarity calculation is repetitively resource consuming during

clustering, the Similarity Matrix, which contains the similarity between all pairs of

cases, is calculated first. Assume we have n cases to cluster, t1 to tn, the Similarity

Matrix SM will be:

 51





















=

nn

n

n

tt

tttt

tttttt

KS

KSKS
KSKSKS

SM

,

,,

,,,

222

12111

MO

L

L

Since the distance between two keywords in the concept hierarchy is symmetric,

SM is represented as an upper triangular matrix.

In this work, the data to be clustered is non-numeric so the cluster center can not

be calculated as the numeric center. Hence, we propose a heuristic here to provide a

fast and simple approach to calculate the center of a cluster.

Heuristic 2: For each case in a cluster, the sum of similarity values from it to all the

other cases will be calculated, and the cluster center will be the case with maximum

sum of similarity values.

Definition 4: The standard deviation of case cluster

The following formula is used to calculate the standard deviation of a cluster of

cases.

i

Ct Cofcentert
C C

KS
SD i i

i

∑
∈ −−=

2

,

)1(

Based on the definitions and heuristics, the clustering algorithm we used here to

group cases is given as follows:

 52

Algorithm 5.1. Knowledge Feature Clustering Algorithm
Input: Cases to be clustered.

Output: Case clusters

Step 1. Calculate the Similarity Matrix of all cases.

Step 2. Select k as 2. Randomly find k cases as the initial cluster centers, cluster each case to the

nearest cluster center.

Step 3. Find the new cluster center approximately by:

Step 3.1. For cluster Ci, i = 1 to k,

Step 3.2. Select sub-matrix, only rows and columns of the cases included in Ci from

Similarity Matrix.

Step 3.3. Sum the value of each row, and select the case with the largest sum as the cluster

center.

Step 3.4. Calculate the standard deviation of each cluster.

Step 4. Refine Cluster number and clusters by ISO-DATA approach.

Step 5. Go to Step 3 until no more changes.

Example 3: As in Example 2, the Similarity Matrix of those three cases is shown
below:

















1
261.01
055.03163.01

XX
X

C
B
A

CBA

In this example, two clusters C1 { A, B } and C2 {C } can be easily obtained.

All cases selected by knowledge engineers to represent the domain will then be

clustered into groups with similar cases, and each group corresponds to a specific

 53

knowledge concept.

5.2 Concept Relationship Constructing Step

In order to construct the complete ontology of the knowledge domain, the

knowledge clusters we extracted in previous stage must be connected with meaningful

knowledge relations. In this stage, the relations between knowledge concepts will be

extracted. To represent the knowledge model built in this stage, a New

Object-oriented Rule Model (NORM) [LT03] is used. In NORM, knowledge relations

can be constructed, including Reference, Extension, Trigger, Acquire. NORM

provides more systematic and efficient representation for domain knowledge; hence

experts are asked to construct knowledge model based on these relationships.

Definition 5: Relation Table

The Relation Table defines the relationship between knowledge concepts.

Assume that we have n knowledge concepts, and the Relation Table for these

knowledge concepts may look like:

 Concept 1 Concept 2 ⋯ Concept n

Concept 1 X Reference
Concept 2 Trigger X ⋯ Extension
⋯ ⋯ ⋯ X ⋯

Concept n Acquire ⋯ X

For slot (Concept i, Concept j) in this table, the value will be the NORM

relationship for Conecetp i to Concept j. Before acquiring the relationships between

knowledge concepts, the cases in each knowledge concept must be reviewed and

 54

redundancies in the concepts must be resolved. Since then, the knowledge engineers

should ask the domain expert to design the relations between knowledge concepts.

The procedure to be taken for design the relationships is described as follows:

Algorithm 5.2. Knowledge Map Design Process

Input: The case clusters come from previous stage.

Output: Relation Table between k knowledge concepts, and the meta knowledge of each relation.

Step 1. Resolve or eliminate the redundancies within knowledge concepts, and identify the

meaning of each knowledge concept.

Step 1.1. Check each knowledge concept, and eliminate redundant cases.

Step 1.2. Explain the meaning of each cluster, and name the clusters with corresponding

concept.

Step 2. Define the interface cases for each knowledge concept:

Step 2.1 Construct an empty relationship table.

Step 2.2 Fill in the knowledge relations according to NORM knowledge relations by

experts.

Step 2.3 Ask experts to design the meta-rules to link and interact between knowledge

concepts for each relation between knowledge concepts.

Step 3. Construct the ontology of knowledge concepts.

The procedure in this stage can help construct the knowledge concept

relationships; in other words, the relations between knowledge concepts construct the

ontology of the domain. As we have mentioned, NORM is used here to represent the

ontology, hence we will use the Rule Class in NORM to represent concepts, and use

those four kinds of relationships to build up the concept ontology.

 55

5.3 Knowledge Extracting Step

So far, not only the ontology between knowledge concepts but also the cases of

each knowledge concept are defined. In this stage, the knowledge engineers can

design the grid for extracting knowledge from experts, and once the grid for

extracting knowledge is designed, experts will be asked to fill in its appropriate values.

The column header of the grid is the cases to be identified in a concept, and the row

header of the grid is the union of keywords (features) of cases. For example, a grid for

extracting knowledge about some different types of intrusions may be like Table 1.

Table 1. An example grid used for knowledge acquisition
 Ping of Death ICMP flood IIS memory leakage

ICMP YES YES NO

TCP NO NO YES

… …

Heavy Load NO YES YES

Corrupted Packet YES NO NO

Crashed YES NO YES

From the filled grid, rule as the knowledge can be obtained. For example, one of

the rules generated from above grids is shown as:

IF “ICMP” and “Corrupted Packet” and “Crashed”

then “Ping of Death”

For extracting the rules with embedded meaning, Embedded Meaning Capturing and

Uncertainty Deciding (EMCUD) knowledge acquisition [HT90] based on Personal

Construct Theory is used in this stage. Since ontology is discovered in previous phase,

 56

the information about the relation and hierarchy between knowledge concepts is

included in our knowledge extraction stage. Hence, Two Phase Knowledge

Acquisition (TpKA) [TT02] mechanism is used to extract the knowledge with given

concept relations and to find more meaningful and accurate knowledge content. With

TpKA, the embedded meaning and certainty factor of knowledge will be reviewed

according to the knowledge hierarchy built in previous phase.

 57

Chapter 6 Knowledge Discovery

Rule base system is usually used in designing a knowledge based system, which is

used to provide suggestions on decision making as a domain expert. However, since

the knowledge in a rule base is usually acquire from one or few experts, that means

there are many cases that the knowledge is generated according to their own

experience, and some knowledge may be not included due to lack of experience. In

order to make the rule base system to be more complete and smart, the knowledge of

general users should also be discovered and used to refine the rule base system in

knowledge systems.

In modern computer systems, user activities are usually recorded by system log

information, which means there is some information regarding the user behaviors

hidden in the log information. In our knowledge discovery mechanism, the log

information of computer systems will be used to find the pattern of the user behavior,

which can be the user knowledge for system operating, problem solving.

The input format of our method is the user activities records or logs sorted by the time.

As shown in Figure 6.1, there are several phases in our method including

Preprocessing Phase, Two-Layer Pattern Discovering Phase, and Pattern Explanation

Phase. At first, the Preprocessing Phase could select activities logs stored in the data

storage and aggregated these activities logs into a feature vector, which represents the

behavior during a short period for further analysis. Furthermore, each user’s behavior

can be presented as a sequence of feature vectors. In Two-Layer Pattern Discovering

Phase, there may be millions of distinct feature vectors, which will be first clustered

 58

into several clusters. In this phase, two heuristics are proposed to detect outliers,

which are quite different from normal behaviors, and these outlier clusters can be

explained in Pattern Explanation Phase. Accordingly, some feature vectors which are

similar in representing the same behavior may be grouped into one cluster. In other

words, each feature vector can be mapped to a cluster label by a mapping function,

and each user’s behavior can be transformed into a sequence of cluster labels. Next,

we are also concerned about patterns of single user’s behaviors and common patterns

of all users’ behaviors to mine the patterns of users’ behaviors. Since each pattern is

represented as a sequence of clusters and each cluster has its own property set, the

pattern discovered in previous phase can be represented as a sequence of property sets,

can be determined to be normal or abnormal, and can be feedbacked into knowledge

base in Pattern Explanation Phase.

P
r
e
p
r
o
c
e
s
s
i
n
g

Feature
Vectors

T
w
o
-
L
a
y
e
r

P
a
t
t
e
r
n

D
i
s
c
o
v
e
r
i
n
g

P
a
t
t
e
r
n

E
x
p
l
a
n
t
i
o
n

Packets K
n
o
w
l
e
d
g
e

B
a
s
e

Known
Patterns

PatternsA
c
t
i
v
i
t
i
e
s

L
o
g

D
a
t
a
b
a
s
e

Figure 6.1: The Concept Diagram of Our Method.

6.1 Preprocessing Phase

Before presenting our method, the notations used in this paper will be defined in this

section. For transforming original activities logs into a feature vector, which contains

more useful information, the RENUMBER SORT ALGORITHM and the

PREPROCESS ALGORITHM are also discussed in this section.

 59

6.1.1 Definitions of Original Activity Log Database

Assume there are n users u1, u2, …, un. Each uq can be represented by a unique ID,

e.g., the user id of a web system or the customer ID of a shopping center, and let U =

{u1, u2, …, un}.

T = [t0, t0+wc] is the time interval concerned to collect activities logs where c is a

constant, t0 = 0, ti = ti-1 + c, and Ti = (ti-1, ti], 1 ≤ i ≤ w.

Ei = < iii
i

eee α,...,, 21 > is a sorted sequence of activities logs in time order during Ti and

we assume |Ei| = αi ≤ α, for each i.

‘•’ is a concatenation operator, i.e., E1•E2 = < 11
2

1
1 1

,...,, αeee , 22
2

2
1 2

,...,, αeee >.

E = E1•E2•…•Ew is the whole activities logs we are concerned in T.

e-id is the event identifier which is defined by the triple fields <unique ID, action

target, action>, where unique ID ∈ U, and action target is the target of the user

activities, e.g., the item to sale, and the action is the action taken by the user, e.g.,

POST, GET.

ID(e i
j) is an extracting function to extract the e-id of e i

j .

6.1.2 Renumber Sort Algorithm

Since the information of single activities is not sufficient enough to represent the user

behavior, several activities with same e-id selected from Ei are first aggregated during

Ti and then transformed into a feature vector. However, when we do aggregation in

this phase, if a User A do GET action to web page X, and the other action user A

taken is POST web page Y, these two actions cannot be treated as the same event.

 60

Notations:

i
jf = ReNumSort(Ei) is the jth distinct e-id during Ti.

Si < iii
i

fff β,...,, 21 > is a sequence of feature vectors during Ti, where βi ≤ αi.

Fi = { i
jf | for 1 ≤ j ≤ βi}, and F = U

w

i

iF
1=

.

i
qS is a subsequence of Si for q ∈ U.

vq = < w
qqq SSS ,...,, 21 > is a behavior vector of uq.

V = {vq | for q ∈ U}.

Table 4.1 presents the format of general activities log. The Time field indicates the

occurred time of log. The UID field and TARGET field indicate unique ID for each

user and the target item performing actions, respectively. The ACTION field indicates

the action taken in the activity, for example, in network traffic, the ACTION may be

the destination port, which implies the service has been requested by the user, e.g.,

FTP port is 21, Telnet port is 23, and HTTP port is 80. The information may contains

in the activities log is different from applications to applications, for example, for

consuming activities, maybe the sale amount, quantity will also be included, and the

information can be also used in our algorithm.

Table 6.1: The Format of Standard Log Information.

Time UID TARGET ACTION … … … … …

In aggregating the activities into feature vector, we first sort the original activities

database by RENUMBER SORT ALGORITHM to get the distinct e-id during Ti,

 61

saying i
jf . For each activity during Ti, if there exists a previously defined feature

vector entry is equal to the e-id of the activity then replace it by aggregating the

information for the same e-id. Otherwise, create and define a new feature vector entry.

The RENUMBER SORT ALGORITHM is shown as follows.

Algorithm 6.1: ReNumberSort algorithm, ReNumSort(Ei)

Input: Ei

Output: Fi, Si

Step1. Fi = φ, Si = < >, DistinctFlag = True, βi = 0.

Step2. For j = 1 to αi,

Step2.1. If DistinctFlag = True,

βi ++,

i
i

f β = ID(i
je), Set DistinctFlag = False.

Step2.2. For k = 1 to βi,

If ID(i
je) ≠ i

kf , Set DistinctFlag = True.

Else

Replace i
kf by merging i

je and i
kf , Set DistinctFlag =

False,

EXIT.

Step3. For j = 1 to βi,

Put i
jf into Fi, Si = Si • i

jf .

Step4. Return Fi, Si

 62

In Step2.2, the aggregation process to construct feature vector is specified by domain

expert, which is designed based on the application and information we have in the

activities log. For example, if the activities log we are mining is the consuming log of

customers of a shop, we may aggregate the price user spent on the target item, the

quantity of the items, and also the other information can be aggregated. The way to

aggregate the information can be decided according to the knowledge of the domain

expert who design the mining process.

6.1.3 Preprocessing Phase

As defined above, the feature vector is aggregated from the selected activities with

same e-id during Ti, so the feature vector is also identified by the e-id. The feature

vector i
jf can be treated as a user behavior event, which represents the user’s

behavior during Ti. Therefore, the behavior of the user uq during T can be represented

by a sequence of feature vectors with time order.

In Table 6.1, the Time field indicates the starting time of the aggregated feature vector

i
jf . The Duration field indicates the interval between first and last activities with i

jf

during Ti. The UID, TARGET, ACTION fields are with the same definition in activity

log information, and all the other fields are aggregated from ReNumberSort

algorithm, which are the important information to represent the behavior user taken,

for example, the count of the activities, the cost user spent, the quantity user taken, etc,

any useful information which can also be calculated by aggregation algorithm are

included.

 63

As shown in Figure 6.2, the preprocessing phase has two major stages: the first stage

is to select the packets from activities log database during time window Ti and second

stage is to calculate the feature vectors Fi during Ti by aggregating the activities with

i
jf , for 1 ≤ j ≤ βi. Thus, we can have the sequence of feature vectors Si and each

user’s behavior during Ti. Therefore, each user’s behaviors during T can be

represented as vq = < w
qqq SSS ,...,, 21 >, for each q ∈ U.

Select
Activities in Ti

Establish
Feature Vector

Packet

Activity Log
Database

Stage 1 Stage 2

Feature
Vectors

Figure 6.2: Data Flow of Preprocessing Phase.

Algorithm 6.2: Preprocessing Algorithm, Preprocess(E)

Input: E

Output: F, V

Step1. F = φ, V = φ, vq = < >.

Step2. For i = 1 to w,

Select Ei from E,

(Fi, Si) = ReNumSort (Ei),

F = F ∪ Fi, vq = vq • i
qS .

Step3. For q = 1 to n,

V = V ∪ {vq}.

 64

6.2 Two-Layer Pattern Discovering Phase (2LPD)

In this section, the concept of Two-Layer Pattern Discovering Phase (2LPD) to

discover unknown patterns will be first introduced. The related notations and

algorithms of this phase will be next introduced.

6.2.1 Concept of 2LPD Phase

After the preprocessing phase, the original activities logs are already transformed into

feature vectors F, and the user behaviors have already been represented by V. All of

them will be treated as input in our 2LPD Phase including Behaviors Clustering Stage

and Sequential Pattern Mining Stage to provide three detection strategies. Without

loss of generality, we assume there are at most m clusters. The concept in Behaviors

Clustering Stage is to group similar feature vectors into a cluster. And then user’s

behavior can be represented as a sequence of cluster labels in User’s Sequence

Transforming Stage. Therefore, the sequential patterns which are hidden in these

users’ patterns can be mined in Sequential Pattern Mining Stage. The concept of

Two-Layer Pattern Discovering Phase is shown in Figure 6.3.

Cluster
Behaviors

Mine
Sequential
Pattern

Transform
User's BehaviorFeature

Vectors

Stage 1 Stage 2

Patterns
Cluster
Result

Figure 6.3: The Concept of 2LPD Phase

Notations:

 65

C = {C1, C2, …,Cm} is a set of clusters where Ci is a subset of F and 1 ≤ i ≤ m.

OC, a subset of C, indicates the outlier cluster set.

SELq(Ci) is a selecting function to select the feature vectors of uq from Ci.

M(i
jf) = Ck if i

jf ∈ Ck.

M(Si) = <M(if1), M(if 2), …, M(i
i

f β)>.

M(i
qS) is a subsequence of M(S i) for q ∈ U.

M(vq) = <M(1
qS), M(2

qS), …, M(w
qS)> is a sequence of cluster labels of uq during T.

M(V) = {M(vq)| for q ∈ U}.

6.2.2 Behavior Clustering Stage

As we know, there are millions of feature vectors with different values. The Behavior

Clustering Stage is then proposed to group the similar feature vectors for the further

mining. Since the number of clusters cannot be predicted in advance, a clustering

alorithm with the capability of dynamic adjusting the number of clusters is used, e.g.,

ISODATA.

In general, the special patterns which happened not frequently and performed only by

few users are usually treated as outlier and are interesting in data mining field; two

heuristics of outlier clusters are proposed as follows:

Heuristic 3: A cluster is treated as an outlier cluster if the number of its members is
smaller than a threshold θ1.

Heuristic 4: A cluster is treated as an outlier cluster if the ratio of | SELq(Ci)| and

 66

|Ck| is greater than a threshold θ2.

Since the system is starting with no priori knowledge about intrusion, thresholds θ1,

θ2 are set loose; e.g., θ1 = αw/m, θ2 = 0.5. θ1 will gradually decrease and θ2 will

gradually increase according to the patterns discovered in knowledge base.

After the execution of this phase, there may exist some outlier clusters containing

information about outlier behaviors or outlier users. All of these discovered outlier

clusters can be further analyzed in following phase.

Algorithm 6.3: Behavior Clustering Algorithm:

Input: F, k, θ1, θ2

Output: C, OC

Step1. Randomly choose k initial seeds as cluster centers.

Step2. Run ISODATA clustering algorithm to generate a number of cluster C= {C1,

C2, …, Cm}.

Step3. For i = 1 to m,

If |Ci| ≤ θ1, put Ci into OC.

If |SELq(Ci)|/|Ci| ≥ θ2, put Ci into OC.

Step4. Return (C, OC).

6.2.3 User’s Sequence Transforming Stage

As mentioned above, each user’s behavior during T can be represented as a sequence

 67

of features vectors vq = < w
qqq SSS ,...,, 21 >. Moreover, these feature vectors are grouped

into several groups and each feature vector belongs to a unique cluster. Therefore,

each user’s behaviors can be transformed into a sequence of cluster labels M(vq) =

<M(1
qS),M(2

qS), …, M(w
qS)>.

6.2.4 Sequential Pattern Mining Stage

Since all user patterns are concerned in this mining algorithm, not only the user

patterns happened in general users, but also the subsequence of each individual user

should be also mined and discovered. Therefore, all the patterns of embedded users’

behaviors will be mined in Sequential Pattern Mining Stage. As each user has a

sequence M(vq), a symbolic sequential mining algorithm, e.g., Agrawal and Strikant’s

mining algorithm [AS95] will be used to mine patterns from all users’ sequence of

behaviors.

Algorithm 6.4: Sequential Pattern Mining Algorithm:

Input: M(V), sup1, conf1, sup2, conf2, d

Output: The subsequences of single user’s behaviors and the subsequences of all

users’ behaviors

Step1. For q =1 to n,

According to M(vq), generate <M(1
qS), M(2

qS), …, M(d
qS)>, <M(2

qS),

M(3
qS), …, M(1+d

qS)>, …, <M(1+−dw
qS), M(2+−dw

qS), …, M(w
qS)>,

 68

Run Agrawal and Strikant’s Mining Algorithm to obtain the subsequence of

single user’s behavior with (M(vq), sup1, conf1).

Step2. Run Agrawal and Strikant’s Mining Algorithm to obtain the common

subsequences of all users’ behaviors with (M(V), sup2, conf2).

Step3. Return the subsequences of single user’s behaviors and the subsequences of all

users’ behaviors.

The window size d defined by domain expert for difference objects is suggested to be

150 to tradeoff between the accuracy of user patterns and efficiency of the algorithm.

d is set to be large if we address long terms sequence of a user’s behavior. Otherwise,

we chose a small d.

Algorithm 6.5: Algorithm of Two-Layer Pattern Discovering: 2LPD(F, M(V), k, θ1,
θ2, sup1, conf1, sup2, conf2, d)

Input: F, M(V), k, θ1, θ2, sup1, conf1, sup2, conf2, d

Output: C, OC, and the subsequences of users’ behaviors

Step1. M(V) = φ.

Step2. (C, OC) = Cluster (F, k, θ1, θ2).

Step3. For q = 1 to n,

Transform vq into M(vq),

Put M(vq) into M(V).

Step4. Obtain all subsequences = SEQUENTIAL(M(V), sup1, conf1, sup2, conf2, d).

 69

6.3 Pattern Explanation Phase

The goal of the Pattern Explanation Phase is to explain the meaning of the discovered

pattern about user behavior, and transform the patterns into meaningful knowledge

content for knowledge system. Since the heuristic used in behavior cluster is to cluster

the similar behaviors, each cluster may have some properties, which can be extracted

by analyzing the feature vector space related to each dimension. Using the property of

standard derivation evaluation, the most significant attributes of the cluster can be

obtained. For example, if the standard derivation value of an attribute of all feature

vectors in a cluster is relatively small, the attribute is treated as a significant attribute

and can be used as a property of the cluster. On the other hand, the value of this

attribute with large standard derivation value will not be used since the distribution of

attribute values may be sparse. Therefore, each cluster may be represented as a set of

properties and domain expert can explain the meaning of the pattern. These

discovered patterns can then be incrementally feedbacked to knowledge base. Hence,

with this incremental learning and feedback mechanism the well-known patterns in

knowledge base can be increased.

 70

Chapter 7 Knowledge Fusion

In this paper, we try to provide structural and semantic knowledge fusion, represented

by rules, using ontologies by hybrid approach. We can thus define our problem in

more detail: Given a shared vocabulary ontology and a set of rule-based knowledge

bases from different systems with different ontologies, the goal is to fuse all the

knowledge bases to one with new ontology and to optimize the structural and the

semantic meanings of the fused knowledge base.

Our goals are as follows: (1) Fuse multiple rule-based knowledge bases. The output of

our proposed approaches should be a new knowledge base and a new ontology. (2)

Optimize the structural and the semantic meanings of knowledge contained in

knowledge base. (3) Use only shared vocabulary ontology for facilitating the fusion

process.

There will be several criteria defined in the knowledge fusion mechanism proposed,

including Structural Succinctness Criterion, Intra-Cluster Semantic Clustering

Criterion, and Inter-cluster Semantic Clustering Criterion. For improving the rule

structure to reduce the dependency between knowledge classes, the Structural

Succinctness Criterion can be used. In order to group more related rules into one

knowledge class, the Intra-Semantic Clustering Criterion calculates the semantic

relations between rules in a knowledge classes for the fusion process to optimize. For

better knowledge classes partitioning, the semantic distances between knowledge

classes, which is so called Inter-cluster Semantic Clustering Criterion, will be

calculated in the knowledge fusion process.

 71

7.1 Relationship Graph and Partitioning Criteria

In this section, the intermediate knowledge representation relationship graph is

introduced. The criteria to partition the relationship graph are also discussed in detail.

7.1.1 Definitions

We propose a representation, relationship graph, for expressing the structural and the

semantic meanings of first-order logical rule bases. Before describing the

representation, we firstly give some basic definitions, partly borrowed from the syntax

of first-order logic [RN95][SOW00]. Assume that a first-order logical rule base

contains n variables and m rules which are classified into t rule classes (partitions),

where a rule class is a set of rules in the rule base which can be grouped by a given

concept.

．TRUE = the logical constant representing “always true”.

．FALSE = the logical constant representing “always false”.

．EMPTY = the logical constant representing “empty”.

．V = {v1, v2, …, vn} is the set of all first-order logical variables in the rule base, where

vi is the first-order logical variable of the rule base, where 1 i n≦≦ .

．s = a first-order logical sentence, composed by variables and logical connectives.

．VAR(s) = {vi | s contains vi}.

．R = {r1, r2, …, rm} is the set of all rules of the rule base, where ri is a rule of 2-tuple

(LHSi, RHSi), 1 i m≦≦ The LHSi is the left-hand side (condition) sentence of ri, and

 72

RHSi is the right-hand side (action) sentence of ri .

．C = {c1, c2, …, ct} is the set of all partitions of the rule base. ci, a rule class, is a

subset of R, and U
ti

ic
≤≤1

=R, cj∩ck = φ, if j≠ k

．B = a first-order logical rule base of 3-tuple (V, R, C).

Assume that there are u links in the relationship graph. Now we give the definitions

about relationship graph.

．li = a link of 3-tuple (Vi, CAUSE_RULEi, EFFECT_RULEi), Vi⊆V, 1 i≦≦u,

CAUSE_RULEi = rj, where Vi⊆VAR(LHSj),

EFFECT_RULEi = rk, where Vi⊆VAR(RHSk).

．L = {l1, l2, …, lt} is the set of links of the relationship graph.

．P = {p1, p2, …, pt} is the set of all rule classes of the rule base, where pi is a

partition, U
ti

ip
≤≤1

=R, pj∩pk = φ, if j≠ k.

．IN(pi) = { lj | lj∈L, CAUSE_RULEj∉pi, EFFECT_RULEj∈pi} is the set of incoming

links of a partition pi.

．OUT(pi) = { lj | lj∈L, CAUSE_RULEj∈pi, EFFECT_RULEj∉pi} is the set of

outgoing links of a partition pi.

．V(pi)= { lj | lj∈L, CAUSE_RULEj∈pi or EFFECT_RULEj∈pi} is the set of all links

related to a partition pi .

．I=incoming variables of a relationship graph, I⊆V, I=)(U
i

iLHSVAR -)(U
i

iRHSVAR ,

where 1 i m≦≦ .

．O=outgoing variables of a relationship graph, O⊆V, O=)(U
i

iRHSVAR -)(U
i

iLHSVAR ,

where 1 i m≦≦ .

 73

．G = a relationship graph of 6-tuple (V, R, P, L, I, O).

A rule base has one-to-one mapping to a relationship graph. A rule class of a rule base

has one-to-one mapping to a partition of a relationship graph. A rule ri is connected to

a partition pj if there exists an incoming link or an outgoing link between ri and pj,

1 i m≦≦ , 1≦j≦t. We illustrate the definitions mentioned in Example 3. The rules in

Example 3 are about the TCP SYN Flood Attack, in such attack the intruder sends

huge TCR SYN packets to the victim computer, making the network of the victim

unavailable.

Example 4

 In this example, five variables relevant to the TCP SYN Flood Attacks are

introduced: pps (packets per second), hl (heavy loading), spps (SYN packets per

second), sf (SYN Flood), and alert(alert of the intrusion detection system). Therefore,

the variables of the rule base are V = {pps, ht, util, hl, spps, sf, alert}. Assume that the

rules of the rule base are R = {r1, r2, r3}, as follows:

r1: If GreaterThan(pps, 30000) Then ht

r2: If hl ∧ GreaterThan(spps, 100) Then sf

r3: If sf Then alert

Assume that the rule classes of the rule base are C1 = {c1, c2}, c1 = {r12}, c2 = {r2,

r3}and the rule base is B1 = (V, R, C1). The relationship graph corresponding to B1 is

G1 = (V, R, L, P1, I, O), which is illustrated in Figure 7.1. The links (which is

represented by arrows) are L = {l1, l2} ,l1 = ({hl}, r1, r2), l2 = ({sf}, r2, r3). IN(p1) = φ,

 74

OUT(p1) = {l1}; IN(p2) = {l1}, OUT(p2) =φ. r1 is connected to p2, r2 is connected to p1,

but r3 is not connected to p1. The partitions of G1, corresponding to the C1, are P1 =

{p1, p2}, p1 = {r1}, p2 = {r2, r3}. The incoming variables of G1 is I = {pps, spps}, and

the outgoing variable is O = {alert}. The virtual links connected to I and O are

represented by dotted arrows.

r2 r3

I

O

hl

pps spps

sf

alert
p1

r1

p2

Figure 7.1: A relationship graph G1

For each rule class in the rule base, there is exactly one mapping partition in the

relationship graph. Note that the logical meaning of the rules is eliminated, because

the relationship graph is used for an intermediate representation for partitioning

(which will be introduced in the Section 4.2), not for logical inference.

7.1.2 Criteria of Relationship Graph Partitioning

As discussed before, the partitions of relationship graphs represent exactly the rule

classes of rule bases. Therefore, “good relationship graph partitioning” means “good

rule class classification”. We define two criteria for “good partitioning” according to

our second goal, optimizing the structural and the semantic meanings, respectively.

 75

The first criterion is to optimize the structural meanings of a relationship graph, or

minimize the links cut by the partitioning if possible [KK98]. That is, for a

relationship graph, the average inter-partition links (incoming links and outgoing links)

should be minimized. Assume that a relationship graph G contains t partitions, {p1,

p2, …, pt}, each partition pi contains |IN(pi)| incoming links and |OUT(pi)| outgoing

links. Let Lp(pi) be the total number of the incoming and outgoing links of pi; that is,

Lp(pi) = |IN(pi)| +|OUT(pi)|. Let LG(G) be the average number of the incoming and

outgoing links of G; that is,

LG(G) = ∑
≤≤ ti

ip pL
1

)(/ t (1)

Therefore, the criterion about optimizing structural meanings is defined as follows:

Definition 6: Structural Succinctness Criterion

For a relationship graph G, minimize LG(G) if possible.

The second criterion is to optimize the semantic meanings of a relationship graph, or

minimize the intra-partition semantic heterogeneity. The semantic distance [BH01] is

utilized to measure the semantic heterogeneity. For two variables v, v’, the semantic

distance is given by Sv(v, v’) = “the number of links from v to v’ in the shared

vocabulary ontology” + 0.5 * ”the number of changes of directions” (this definition

will be explained in Section 5.2.1). For a partition pi with u variables, the average

semantic distance is given by

Sp(pi) = ∑
≠≤≤ kjukj

kjv vvS
,,1

),(/ C(u, 2) (2)

Let SG(G) be the average semantic distance of G; that is,

 76

SG(G) =)(
1
∑
≤≤ ti

ip pS / t (3)

Therefore, the criterion about optimizing semantic meanings is defined as follows:

Definition 7: Intra-Cluster Semantic Clustering Criterion

For a relationship graph G, minimize SG(G) if possible.

Except calculate the distance of links (facts) inside a cluster, we can also calculate the

semantic distances between links of a cluster to that of all the other clusters, which is

so called inter-cluster semantic clustering criterion. For better maintenance purpose,

to separate the links (facts) which are quite different in the semantic meaning is

helpful to distinguish the differences between clusters. Based on this idea, an

Inter-cluster semantic clustering criterion is proposed to effect our clustering process

to separate more irrelative links. For two clusters c1 and c2, inter-cluster semantic

clustering criterion from cluster c1 to cluster c2 is given by I(c1, c2) = “The average

semantic distance from all links in c1 to all links in c2”, where the semantic distances

from link to link is calculated as that is defined in Criterion 2. First, the Inter-cluster

semantic distance is given by:

∑
∑ ∑

≠≤≤

≤≤ ≤≤

×−
=

ijtj ji

pVx pVy
yxv

ip pVpV

vvS

t
pI i j

,1

)(1)(1

)()(

),(

1
1)(, where)(ix pVv ∈ , and)(jy pVv ∈ .

and hence the I(G) is defined as:

∑
≤≤

=
tj

jG pI
t

GI
1

)(1)(

Definition 8: Inter-cluster Semantic Clustering Criterion

 77

For a relationship graph G, maximum IG(G) if possible.

ids

net react

hl pps spps sf alert

Figure 7.2: Part of the shared vocabulary ontology in the intrusion detection
domain

Table 7.1. The calculated semantic distances

 pps hl spps sf alert

pps 0 2.5 2.5 4.5 4.5

hl 2.5 0 2.5 4.5 4.5

spps 2.5 2.5 0 4.5 4.5

sf 4.5 4.5 4.5 0 2.5

alert 4.5 4.5 4.5 2.5 0

r2 r3

I

O

hl

pps spps

sf

alert
p1

r1

Figure 7.3: The relationship graph G2

 78

Example 5

Let relationship graph G2 = (V, R, L, P2, I, O), P2 = {p3}, p3 = {r1, r2, r3}, as in Figure

7.2. The partitions of G2 are different from those of G1 in Example 3. Assume that the

shared vocabulary ontology about the variables in V is shown in Figure 7.3. In the

ontology mentioned above, the first three variables are in the category net (network

signatures), the last two variables are in the category react (intrusion reaction), and all

variables are above the category ids (intrusion detection system) category. For all of

the variables in V, the semantic distances are given in Table 1. We evaluate the

partitioning situations of G1 and G2 based upon the following three criteria:

．Criterion 1: LG(G1) is (2+3) / 2 = 2.5, and LG(G2) is (3) / 1 = 3.

．Criterion 2: SG(G1) is ((2.5/1) + (23/6)) / 2 = 3.17, and SG(G2) is (37/10) / 1 = 3.7.

．Criterion 3: IG(G1) is ((25.5/8)+(25.5/8)) / 2 = 3.19, and I(G2) is 0 / 1 =0.

In the example above, we conclude the partitioning of G1 is better than that of G2

according to Criterion 1,Criterion 2, and Criterion 3. These three criteria are used

later in our partitioning algorithm for optimizing the structural and the semantic

meanings.

7.2 Knowledge Fusion Framework

The process of our proposed approach consists of three phases: the preprocessing

phase, the partitioning phase, and the ontology construction phase. The whole process

is illustrated in Figure 7.4. Firstly, the preprocessing phase deals with syntactic

problems such as format transformation and rule base cleaning, and construct the

 79

relationship graph according to the cleaned, transformed flat rule base. Secondly, the

relationship graph is partitioned according to Criterion 1 and Criterion 2 in the

partitioning phase. Finally, the new ontology of the flat rule base is constructed using

the partitioned relationship graph in the ontology construction phase. The three phases

can be described in detail in the rest of this section.

Relationship Graph

Old RBs
Old RBs

Old RBs

Transformation /
Cleaning Flat RB

Relationship
Graph

Construction
Relationship Graph

Pseudo Rule
Generation

Relationship
Graph Partitioning

Pseudo Rule
Removal

Ontology
Construction

Partitioned Graph

New Ontology

Shared Vocabulary
Ontology

Preprocessing
Phase

Partitioning
Phase

Ontology
Construction

Phase

Figure 7.4: The knowledge fusion framework

7.2.1 Preprocessing Phase

The preprocessing phase consists of format transformation, rule base cleaning, and

relationship graph construction. The format transformation of the source rule bases

consists of two steps: one is to transform the rules to first-order logic, and the other is

to remove the ontologies of the rule bases. In this paper, we assume that the syntactic

heterogeneity is solved by ODBC, HTML, XML, and other related technologies

 80

[VSV+01]. After preprocessing, the rules from all rule bases are then stored into a flat

rule base. There is currently no ontology about the flat rule base. The ontology will be

built in the relationship graph partitioning phase.

After all rules of the original rule bases are logically preprocessed, we should put all

rules together and perform knowledge cleaning, such as validation and verification.

The problem with rules includes redundancy, contradiction/conflict, circularity and

incompleteness [GR89][RN95]. Directed Hypergraph Adjacency Matrix

Representation [RSC97] is used to validate and verify the rules for completeness,

correctness, and consistency. This cleaning step provides a basis for the relationship

graph construction.

After cleaning the flat rule base, the construction of the relationship graph can be

performed. The algorithm we proposed is as follows:

Algorithm 7.1: Relationship Graph Construction Algorithm

Input: A rule base B = (VB, RB, CB)

Output: An un-partitioned relationship graph G = (VG, RG, P, L, I, O)

Step 1. Set VG = VB, RG =s RB.

Step 2. For each two rules r1, r2∈RG, let S be the intersection of the variables of RHS1

and the variables of LHS2, add the link (S, r1, r2) to L.

Step 3. Set I as the variables of all LHS sentences of all rules.

Step 4. Set O as the variables of all RHS sentences of all rules.

 81

7.2.2 Partitioning Phase

Before introducing our proposed algorithm, we take a brief discussion about shared

vocabulary ontology, semantic distance function, and pseudo rules in the following

sections.

7.2.2.1 Shared Vocabulary Ontology and Semantic Distance Function

The shared vocabulary ontology can be constructed either by domain experts or by the

general lexical reference system, such as WordNet [MBF+90]. If the knowledge

sources to be fused are in the same or related domains, the customized shared

vocabulary ontology for the domains is more proper than general one.

The semantic distance function we use is based on the Hirst and St-Onge’s measure

of semantic relatedness [HS98], and is defined as follows:

Sv(v1, v2) = path_length + c * d, ∀ v1,v2∈V, (4)

where path_length is the length from v1 to v2 in the shared vocabulary ontology, d is

the number of changes of direction in the path, and c is constant. If the path does not

exist, the function returns “infinity”. Sv(v1, v2) = 0 if and only if v1=v2.

7.2.2.2 Pseudo Rules

Before partitioning the relationship graph, we should firstly transform the incoming

variables and outgoing variables of a relationship graph into two set of pseudo rules,

Pseudo Incoming Rule Set and Pseudo Outgoing Rule Set, respectively. These pseudo

 82

rules add connections among rules and help for dealing with shallow knowledge, of

which the connected rules may be too few for generating partitions. Each of the

incoming variables is transformed to a Pseudo Incoming Rule by the following

format:

If TRUE Then <An_Incoming_Variable>

Similarly, each of the outgoing variables is transformed to a Pseudo Outgoing Rule by

the following format:

If <An_Outgoing_Variable> Then EMPTY

The pseudo rules should be eliminated after partitioning the relationship graph. The

removal of the pseudo rules is simply to discard all pseudo rules of all rule classes. If

a rule class is empty after the removal, remove the rule class too.

Example 6

In this example, we start with the un-partitioned relationship graph from G1 and G2, as

illustrated in Figure 7.5. The rules are the same as those in Example 3. After the

transformation, three pseudo rules are generated:

s1: If TRUE Then pps

s2: If TRUE Then spps

s3: If alert Then EMPTY

 83

The un-partitioned, pseudo-rules-added relationship graph for G1 and G2 is illustrated

in Figure 7.6.

r2 r3

I

O

hl

pps spps

sf

alert

r1

Figure 7.5: The un-partitioned relationship graph

r3 r4
hl

pps spps

sf

alert

r1

s1 s2

s3

Figure 7.6: The un-partitioned, pseudo-rules-added relationship graph

7.2.2.3 The Partitioning Algorithm

After the un-partitioned relationship graph (including pseudo rules) is constructed, the

partitioning process can be performed. Combining Criterion 1, Criterion 2 and

Criterion 3, the following function for a partition pi is used for the partitioning

process:

 84

Fp(pi) = Lp(pi) + k * Sp(pi) – l * Ip(pi), (5)

where k and l are defined before algorithm running, represents the weight of the

importance of three criteria. The following algorithm is proposed based on the greedy

growth concept.

Algorithm 7.2: Relationship Graph Partitioning Algorithm

Input: An un-partitioned relationship graph G, pseudo rules added.

Output: A partitioned relationship graph G’, pseudo rules not removed yet

Step 1. Randomly select a rule from rules of G, and add it to a new partition p.

Step 2. Select rule r from G which is connected to p, p’=p+{r}, with minimal Fp(p’).

Step 3. If Fp(p’) ≦Fp(p), p = p’.

Step 4. If there is any rule that is connected to p, go to Step 2.

Step 5. Add p to G’.

Step 6. If there is any rule in G, go to Step 1.

Example 7

In this example, we continue with the un-partitioned, pseudo-rules-added relationship

graph from G1 and G2, as illustrated in Figure 7.7. Let k=0.5 and l=0.5 in the semantic

distance function and c=1 in the algorithm. For the shared vocabulary ontology

illustrated in Figure 7.3 (of which each path of any two nodes contains only one

“change of directions”), the values of semantic distance function are the same as

Table 1.

 85

r3 r4
hl

pps spps

sf

alert

r1

s1 s2

s3

Figure 7.7: The relationship graph G3, before removing the pseudo rules

r2 r3

I

O

hl

pps spps

sf

alert

r1

Figure 7.8: The relationship graph G3

Firstly, we select r2 randomly, and add it to a new partition p4; Lp (p4) = 2 + 1 = 3, Sp

(p4) = (2.5 + 4.5 + 4.5) / 3 = 3.83, Ip(p4)=0, Fp (p4) = Lp (p4) + Sp (p4) - Ip(p4)= 6.83.

Consider three partitions p5 = {r2, r1}, p6 = {r2, r3}, and p7 = {r2, s2}. Fp (p5) = 6.5, Fp

(p6) = 6.83, and Fp (p7) = 4.83. Therefore, p7 is chosen to be the only one partition

now. Consider partition p8 = {r2, s2, r1} and p9 = {r2, s2, r3}; Fp (p8) = 4.17, Fp (p9) =

4.5; p8 is chosen. Now consider p10 = {r2, s2, r1, s1}, p11 = {r2, s2, r1, r3}; Fp (p10) =

3.75, Fp (p11) = 4.35; p10 is chosen. Then consider p12 = {r2, s2, r1, s1, r3}; Fp (p12) =

3.9 > Fp (p10); p10 is retained. Since all rules connected to p10 are checked, p10 is the

 86

finally obtained partition.

Now we pick s3 as p11. Fp (p11) = Lp (p11) + Sp (p11) – Ip(p11) = 1 + 0 - 4 = -3.

Consider partition p12 = {s3, r3}; Fp (p12) = 1 + 2.5 – 3.69 = -0.19; p11 is confirmed.

Since there is only one rule r3 left, it is a partition itself, p13. Therefore, three partitions

are generated, as illustrated in Figure 7.7. The final result of the algorithm, G3, is

illustrated in Figure 7.8. G3 = (V, R, L, P3, I, O).P3 = {p10, p13}, p10={r1, r2}, p13={r3}.

The evaluations of G3 by the three criteria are as follows. The result G3 is better than

G1 and G2, by both criteria.

．Criterion 1: LG(G3) = (2+3) / 2 = 2.5, which is the same as G1 but smaller than G2.

．Criterion 2: SG(G3) = ((21/6) + (2.5/1)) / 2 = 3, which is smaller than G1 and G2.

．Criterion 3: IG(G3) = ((29.5/8) + (29.5/8)) / 2 = 3.69, which is larger than G1 and

G2.

7.2.3 Ontology Construction Phase

The final phase of our proposed framework is to construct ontology according to the

partitioned relationship graph. Ontology includes many aspects of conceptualization

[HPH01][RN95][SOW00]. Among them, two important aspects are discussed in our

work: classes and relationships.

Three classes are generated by the relationship graph: Variable, Rule, and RuleClass,

which map to the variables, rules, and partitions, respectively. The name of a

RuleClass is given arbitrarily but uniquely. Table 2 shows the classes and

relationships of the generated ontology.

 87

Table 7.2: The classes and relationships of the generated ontology

Relationships (Properties) Class
Property Type Description

Variable Name Unique Text The name
Name Unique Text The name of a rule
Rule
Class

Rule Class
Name

The rule class belonged

Ante. Var. Set of Variable The LHS variables
Rule

Cons. Var. Set of Variable The RHS variables
Name Unique Text The name

Rules Set of Rule
Name

The rules contained

Key. Var Set of Variable The key variable
In. Var. Set of Variable The incoming variables

Rule-
Class

Out. Var. Set of Variable The outgoing variables

Three kinds of relationships, represented by properties, are generated by the

relationship graph: the Rule-RuleClass relationships, the Rule-Variable relationships,

and the RuleClass-Variable relationships. The Rule-RuleClass relationships map to

the members of the partitions, and are represented by the properties belongTo and

hasRule of Rule and RuleClass, respectively. The Rule-Variable relationships

hasLHSVariables and hasRHSVariables represented by the corresponding properties

of rule are gained from the involved variables of LHS and RHS of the rules

respectively. The RuleClass-Variable relationships hasIncomingVariables and

hasOutgoingVariables represented by the corresponding properties of rule class are

gained from the incoming variables and outgoing variables of the partitions

respectively. In addition to the name, incoming and outgoing variables, a RuleClass

contains another semantic relevant property, hasKeyVariables. The hasKeyVariables

property is a set of the names of the lowest super-ordinates (most specific common

subsumers) of all terms involved in the rule class in the shared vocabulary ontology.

This property indicates that the key variables of a RuleClass, can briefly summarize

the semantic meanings of a RuleClass.

 88

Example 8

For the relationship graph G3 in Example 6 (Figure 7.8), a RuleClasses c1, represented

by DAML+OIL[HPH01], is shown in Figure 7.9.

Figure 7.9: Ontology of RuleClass c1

 89

Chapter 8 Implementation and
Experiments

8.1 Implementation of NORM

DRAMA, a NORM based rule base platform, is a product of Coretech Inc [DRA03],

Taiwan, which is developed in cooperation with Knowledge and Data Engineering

Laboratory (KDB Lab.) of National Chiao Tung University, Taiwan. DRAMA is

implemented using Java, and it includes DRAMA Server, DRAMA Console,

DRAMA Knowledge Extractor, DRAMA Rule Editor.

Figure 8.1: DRAMA Console

DRAMA Server is implemented to manage rule bases, which is used to contain and

process knowledge, and provide rule base services. NORM-modeled knowledge can

be contained in DRAMA Server and inferred according to user given facts. DRAMA

Console is a command mode interface for user to access DRAMA Server.

 90

Figure 8.2: DRAMA Knowledge Extractor

DRAMA Knowledge Extractor is implemented by repertory grid mechanism [HT90]

[TT02] a knowledge acquisition mechanism, to extract and retrieve knowledge from

experts. The extracted knowledge will be transformed into NORM rules which will be

used in DRAMA Server.

Figure 8.3: DRAMA Rule Editor

For the knowledge already defined in rule format, DRAMA Rule Editor with a GUI

interface is provided for editing NORM knowledge class and rules. Differ from

traditional rule base building tools, DRAMA Rule Editor is a user friendly GUI with

 91

drag and drop operations.

Also, Application Programming Interface (API) to access DRAMA server is also

provided for developing DRAMA integrated systems.

8.2 Implementation of KA mechanism

In order to evaluate the performance of our KFCA algorithm, a set of DoS

intrusions and corresponding descriptions is used as the experimental data. Since the

dictionary we used in the experiment is categorized, we can evaluate the accuracy of

our experimental results by comparing. The cases used in the experiment is

categorized as Table 4 and the concept hierarchy used to calculate semantic distance is

shown as Figure 4:

Table 4: DoS Intrusion dataset
Category Description # of

intrusions
Using system command Attacking the system with system level operations, for

example, gaining access to root account by some system
commands.

11

Using packet content Attacking the system with specific packet content, for
example, WindowsNT PPTP flood denial add ^D
(control-d) in the packet to crash remote PPTP host.

17

Using protocol vulnerability Attacking the system by not following protocol definition,
for example, ping of death attack using corrupted ICMP
packets to attack the system.

21

Using system vulnerability Attacking the system by taking advantage of system
vulnerability, for example, Cisco DoS attack send data to
specific port 7161 to crash the router.

15

Using service vulnerability Attacking a service by taking advantage of any service
specific vulnerability, for example, FTP ServU CWD
overflow, which issue a CWD command followed by long
argument.

46

Using hardware vulnerability Attacking a specific hardware to crash it, for example,
+++ATH0 modem hangup attack send ICMP request to
hangup remote modem to disable the connection.

6

Consuming resources Attacking system by trying consuming all the resources to 14

 92

provide service, for example, ICMP flood attack, which
sends lots of ICMP packet to make the system busy
responding the request and can not provide service
anymore.

Using application properties Attacking system by taking advantage of an application
specific vulnerability, for example, ICQ Denial of Service
attack the remote client by sending specific request to an
application CGI.

57

Internet

ProtocolContentApplication Hardware OS Environment

Service Network

HTTP FTP SMTP DNS SSLSMBPort

TCP UDP ICMP IP

⋯⋯⋯

Traffic CPU Memory Conn.

pps bps

Overload Thrashing

Leakage Overflow

Spoofing Occupied

Command Request Packet

CorruptedNull len.Long len.Spec. lenOption

URLURICWDGETLogin

Invalid Overflow String

System Device

PhoneModemSwitchRouter

SystemGeneral

FirewallMail

Comm.Entertain

MSNICQ

LinuxWindosMS/DOSMacOSUNIX

Figure 4: The concept hirearchy of DoS

In order to evaluate the performance of our knowledge clustering method, two

indexes, purity and distribution, are defined to represent the accuracy of clustering

result. One cluster can consist of different categories of cases, and the majority

category of a cluster is defined as the category with most number of cases in this

cluster comparing to other categories. Purity is the ratio of the majority category in a

cluster, which is calculated for each cluster to represent how pure a cluster is. The

distribution is calculated for each category, which is used to identify how cases of a

category is distributed in different clusters; in other word, the distribution of a

category is the number of clusters each of which contains at least one case of the

 93

category. The formula to calculate these two indexes are shown below:

}{
}{ max

T
T

Purity = , where {Tmax} is the set of cases which belongs to the majority

category in a cluster.

},{ CATcategoryoftermscontainsCclusterwhereConDistributi CAT = , where {C}

is the set of clusters each of which contains at least one of the case of category CAT.

Based on the above indexes, experiments have been done to show the accuracy

of our clustering algorithm with different dataset and to see the influence of

increasing variety of data, where the result of ISO-DATA based clustering is

compared with that of K-MEANS based clustering.

In the first experiment, for any two categories selected, some of the cases are

sampled as shown in Table 7. In additional to the ISO-DATA algorithm we used in the

algorithm, K-MEANS algorithm is also implemented for comparing, thus we can not

only show the index values for ISO-DATA based algorithm, but also K-MEANS

based algorithm can be compared. After applying these data to our prototype system,

the results are obtained as Table 6. It shows that the average purity values of all

clusters for ISO-DATA based is 0.934 and higher than K-MEANS based algorithm.

But for distribution value, ISO-DATA tends to divide the samples into smaller clusters,

because ISO-DATA tries to improve the performance by splitting the clusters to

reduce the standard deviation of clusters. For example, in Dataset 1, ISO-DATA

clusters sample data into four clusters.

 94

Table 8.1. The experimental datasets of randomly selected categories

Category 1 Category 2

Category Category

Dataset 1 System command Consume Resource

Dataset 2 Packet Content System Vulnerability

Dataset 3 Service Vulnerability Application Vulnerability

Dataset 4 Hardware Vulnerability Protocol Vulnerability

Dataset 5 Protocol Vulnerability Service Vulnerability

Table 8.2. The experimental result for the dataset in Table 7

ISO-DATA Based K-MEANS Based Dataset
Purity Distribution Purity Distribution

1 1 2 0.72 2
2 0.93 3.5 0.71 2
3 0.85 4 0.77 2
4 1 2.5 1 2
5 0.89 3 0.79 2

In second experiment, ten percent of testing data are selected from different

number of categories as shown in Table 7. After applying these data to our prototype

system, the purity is shown in Table 8. The experimental result shows that as the

number of categories of test data increases, the purity value for ISO-DATA based

algorithm, unlike K-MEANS based algorithm, does not obviously decrease; and also

as comparing to previous experiment, the purity value does not obviously decrease

when the number of categories grows.

Table 8.3. The datasets with different numbers of categories contained

 # of categories # of Intrusions

Dataset 1 2 38

Dataset 2 3 53

 95

Dataset 3 4 67

Dataset 4 5 78

Dataset 5 8 187

Table 8.4. The experimental result for the dataset in Table 9

ISO-DATA Based K-MEANS Based Dataset
Purity Purity

1 1 0.738
2 0.941 0.752
3 0.925 0.713
4 0.913 0.671
5 0.852 0.563

All of these experiments show the worst purity value for ISO-DATA based

algorithm is more than 0.8. It means more than 80% of cases are within the same

category for each cluster obtained in our algorithm, and hence can be explained

corresponding to a category. We also provide these clustering result to domain expert

to review, and generally it was told that the result shows our algorithm clustering the

cases into meaningful structure which can be useful for KA process about DoS

knowledge.

8.3 Implementation of KF mechanism

In this section, we describe our experiments of the proposed knowledge fusion

framework in the domain of network intrusion detection system, of which the

ontologies vary dramatically and the real-time responses are required. The

implementation is realized in Java (jdk1.3.1) on Intel Celeron 1G with 512MB RAM.

Table 8.5: Original categories and number of rules of two intrusion detection

 96

systems

 Snort Pakemon Total
CGI 99 55 154
DOS 16 7 23
DNS 18 2 20
FTP 30 4 34
IIS 82 8 90
RPC 32 1 33
SMTP 19 14 33
Total 296 91 387

Figure 8.4: The shared vocabulary ontology built by the domain expert

We use the knowledge bases of two network intrusion detection system: Snort 1.8.1

[ROE99] and Pakemon 0.3.1 [TAK02]. In our experiment, we utilize only the

intersection parts of rules of two intrusion detection systems. The categories and

numbers of rules are shown in Table 3. Since Snort rules contain more information

than Pakemon, for experimental purpose, the rules of snort will be transformed and

simplified to the format similar to Pakemon rule format as following:

If <protocol> <src_port> <dst_port> <content> Then <intru_type> <intru_name>

As illustrated in Figure 8.9, the shared vocabulary ontology about network intrusion

detection system created by domain experts is quite simple, but is enough for the

partitioning work. In the three experiments we made, the constant c is set to 0.5, and

the constants {k, l} are set to {1.0, 0}, {1.0, 1.0}, and {2.0, 2.0} respectively. The

results of these three experiments are shown in Tables 4, 5, 6, (the major category of

each partition is shown in bolder form).

Table 8.6: The partitions and rules ({k, l}={1.0, 0})

 97

Rules Partitions Rule composition in each partition

288 1 CGI*154,IIS*43,FTP*22,DNS*20,RPC*20,D
OS*14,SMTP*15

99 1 IIS*47, SMTP*18, FTP*12, RPC*13, DOS*9

Table 8.7: The partitions and rules ({k, l}={1.0, 1.0})

Rules Partitions Rule composition in each partition

225 1 CGI*154, IIS*33, DNS*18, RPC*7, DOS*6,
SMTP*4, FTP*2

67 1 IIS*65, CGI*1, DOS*1
30 1 SMTP*28, DNS*1, RPC*1
29 1 RPC*21, FTP*5, DOS*3
28 1 FTP*27, SMTP*1
9 1 DOS*7, IIS*2
5 1 RPC*4, DOS*1
3 1 DOS*3

Table 8.8: The partitions and rules ({k, l}={2.0, 2.0})

Rules Partitions Rule composition in each partition
67 1 CGI*66, IIS*1
31 1 IIS*30, SMTP*1
27 1 FTP*27
20 1 DNS*20
17 1 SMTP*17
8 1 RPC*8
6 1 IIS*6
5 1 RPC*5
4 1 DOS*4
3 3 DOS*3 / DOS*3 / IIS*3
2 7 (omitted)
1 179 (omitted)

When k = 1.0 and l = 0, the structural criterion dominates the results; therefore only 2

partitions are generated but the rules of the same category are not classified into the

same partition. When k = 1.0 and l = 1.0, the semantic criteria, including intra-cluster

and inter-cluster criterion, dominate the results, the classification of each partition is

more clean (only few categories in a partition, and there is a majority category for a

partition) but many 1-rule partitions are generated. But for the first cluster (the largest

 98

cluster), inter-cluster criterion has no effect since there exists no other cluster in that

time. When k = 2.0 and l = 2.0, the classification of each partition is even more clean.

For lower semantic criterion weights, including k and l values, the partitions are fewer,

but is more or less not quite clean. For higher semantic criterion weights, the

partitions are more clean, but too much small partitions generated. The selection of k

and l value can seriously effect the clustering result.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

Number of Rules

E
x
e
c
u
t
i
o
n

T
i
m
e

(
S
e
c
.
)

k=1,l=0

k=1,l=1

k=2,l=2

Figure 8.5: The execution time of the algorithms

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500

Number of Rules

M
e
m
o
r
y

U
s
a
g
e

(
K
B
)

k=1,l=0

k=1,l=1

k=2,l=2

Figure 8.6: The memory usage of the algorithms

 99

The execution time and memory usage are illustrated in Figure 8.10 and Figure 8.11,

respectively. For lower k and l values (lower semantic criterion weights), each

partition is bigger; therefore more time and more space are required to compute the

three criterion values. And when semantic criteria get higher weights, each partition is

smaller, and less time and less space are required.

8.4 Case Study: Computer Assisted Learning (CAL) Expert

System

In CAL systems and researches [BS99][CHO96], Adaptive Learning is an important

issue to be solved, and selecting appropriate learning content for different students is

an important feature in Adaptive Learning. For different students in different learning

situations, teachers want to provide different learning content to students to improve

their learning performance. Therefore, processing teaching strategy which contains

the knowledge about selecting learning content is important in CAL systems.

However, traditional computer technologies like database query, which only select

information according to some criteria of data instead of considering all of the factors

influence learning achievement, is not suitable for expressing the knowledge of

teachers to select learning content. Hence, Knowledge base system (KBS) is used in

these systems for learning content selection purpose.

 100

Learning
Content

SCORM
Interface KBS Teaching

Strategy

Knowledge
Edition
Tools

Learner Profile

Learning
Management

System

Learning
Content

Selection

Figure 8.7: Components for Learning Content Selection System

As shown in figure 8.12, a Learning Content Selection System, which used to select

appropriate learning content for students, consists of three components, including

Learning Strategy, Student profile/records, and Learning Object. Each of these

components should be managed by a specific system. In order to create, store, reuse

and manage learning content, a Learning Content Management System (LCMS) is

required. A Knowledge Base System is required for managing and processing the

learning strategies, and a teaching platform is also required for monitoring and

recording students’ behaviors as learning profile.

Students are always different according to their learning achievements and learning

behaviors even they study the same learning content. In order to improve their

learning performance, teachers should prepare different learning content for different

students, for example, teachers should provide easier learning content for the student

with lower learning achievement. However, it is tedious and time consuming for a

 101

teacher to prepare different learning content for all students, and a systematic and

efficient mechanism to help selecting appropriate learning content for students is

required. In our experiment, NORM knowledge model and DRAMA, is used in

designing and implementing KBS for a CAL system to select appropriate learning

content for learner, and solve the problem for teachers to prepare the learning content

for different students.

In the following sections, the experiment including the usage of NORM rule base is

introduced. First, the learning achievement of student and corresponding features is

introduced, and then the meta data of the learning content, which contains the

information and properties of learning content, is also designed. Finally, the platform

to use NORM rule base to manage and process teaching strategy edited by teacher for

selecting learning content is described.

z Design student profile format and KC template

According to previous studies of CAL [BS99] [CHO96], students’ learning activities

and corresponding learning achievements are important to find appropriate learning

material for student to learn; for example, if a student is not good in mathematics

according to the grades in exams, learning content about basic mathematics theorems

should be included when we plan the topics for this student to learn; otherwise, these

basic learning content should not be included.

In our prototype, following attributes are included in the learning profile of each

student to represent his/her learning achievement of a learning topic:

Topic: The topic of the course to be recorded, for example, Mathematic, English, etc.

Grades: The grades got of the corresponding course or learning topic.

Progress: The progress of a course or a learning topic, maybe represent in percentage.

 102

Learning Status: The learning status of a student in the corresponding course or learning topic, for

example, study hard or normal.

Hence, a student’s learning profile can be thought as a set of records to represent as

the learning history of the student.

z Design SCORM compliant data format

According to the definition of SCORM Metadata, many information can be contained

in the metadata for LCMS to understand and manage the learning content. For the

LCMS system in this work, SCORM metadata is used for managing system imported

learning content and finding appropriate learning content for student. However, not all

the information contained in SCORM metadata is useful for learning content

managing and retrieving, and following information is selected as managing

information for our LCMS:

Title: The title of the learning content.

Keywords: The keywords of the learning content.

Version: The version of the learning content, useful to track the evaluation of the learning content.

Status: The status of the learning content, which maybe Draft, Final, etc.

Content Type: The content type of the data included in the learning content, which may be the data

format of the learning content.

Requirements: The technical requirements to view the learning content, for example, Browser,

Operating System, etc.

Interactive Type: The type of interaction between student and the learning content.

Interactive Level: The level of interaction between student and the learning content.

Learning Resource Type: The type of learning resource contained in the learning content.

End User: The type of the end user to use the learning content.

Fee: Indicate if fee is required to use the learning content.

Classification: The classification of the learning content.

As SCORM learning content needed to be managed, the above information contained

 103

in the MANIFEST file of the SCORM learning object will be retrieved and stored into

LCMS managing mechanism, and provide learning object searching, exchanging, and

planning functionalities.

z Find a teaching domain and collect learning content

In our experiment, we select high school mathematic as the teaching domain, and

learning content about high school mathematic are stored in the system and ready to

provide to users of the system.

z Design the architecture

In order to provide learning content selection service based on teacher-defined

strategy, the architecture of a prototype system is designed as shown in following

figure:

 104

Modified
ADL SCORM RTE

SCORM Metadata
Parser

SCORM
Learning
Content

SCORM Package

Teaching Strategy
Interface

NORM
Teaching
Strategy

Teaching Strategy
Rule File

NORM DRAMA
Rule Editor

Student Profile

Appropriate Learning
Content

Inference

Metadata Editor

NORM DRAMA
Server

Figure 8.8: The architecture of prototype system

In this architecture, we use ADL SCORM Sample RTE (Sharable Content Object

Reference Model (2003)) as the basic architecture to build an LCMS. ADL SCORM

Sample RTE (Runtime Time Environment) is a basic LMS (Learning Management

System) provided by ADL which satisfies SCORM RTE 2.0 standard. In SCORM

Sample RTE, administrators can import SCORM packaged courses for learners of the

system to study, and learners can register courses to start learning. However, currently

there is no information for learners to understand what included in a course, how

difficult the course is, etc. As the number of courses grows in this RTE, there will be a

problem for learners to find appropriate course to study.

 105

The metadata contained in SCORM packaging courses may include information about

the course, which will be useful for learners to understand and select the course. Since

the metadata of SCORM courses is formatted in XML, a SCORM Metadata Parser is

implemented in the prototype to extract the meta information. On the other hand, the

metadata for SCORM courses is generated using SCORM Meta-Data Generator Pro

1.2.0.

As we have mentioned, the selection of learning content considered not only the

course information, but also the profile and learning history of learners must be

considered. For this purpose, we also design a learner profile input interface for

teachers to input students grades in each field, and will be used when learners trying

to find appropriate learning content according to some learning content selection

strategy defined by teachers.

In this prototype system, the learning content selection strategy (teaching strategy) is

defined using NORM DRAMA rule editor as a rule file, and we designed a new

function in the RTE for teachers to import new teaching strategy from rule file. When

learners try to find appropriate learning content for him/her to study in some fields,

they can use an imported teaching strategy and then select suitable learning content

according to the meta information of courses and learner’s learning profile. In order to

process the knowledge included in teaching strategy, a NORM DRAMA Server is

installed on the server, and when the RTE trying to process the teaching strategy, the

prototype system will connect the NORM DRAMA Server and give corresponding

facts for the server to infer. The result of the inference process will be used to select

the learning content.

 106

Currently, the server is hosted in “http://e-learning.nctu.edu.tw/norm” with high

school mathematic learning material, and expect to be extended to all fields of high

school education. Following are some snapshots of the NORM based Learning

Management System.

Figure 8.9: Login page of the NORM based Learning Management System

 107

Figure 8.10: Selecting Learning content by inferring knowledge in DRAMA rule
base.

 108

Chapter 9 A Network Intrusion
Detection Expert System (NID-ES)
on New Object-oriented Rule Base
Platform

9.1 The Architecture of Network Intrusion Detection Expert

System (NID-ES)

In designing an intrusion detection system, three issues, including the representation of

intrusion patterns, the tradeoff between complexity of detection process and system resources

required, and the maintenance of expert knowledge, must be considered. To solve all these

issues, a Network Intrusion Detection Expert System (NID-ES) based on the New

Object-oriented Rule Base Platform is thus proposed. According to the definition of NORBP,

there are four subsystems are designed, including Two Layer Network Intrusion Detection

System, Intrusion Detection Knowledge Acquisition System, Intrusion Detection Knowledge

Mining System, and Intrusion Detection Knowledge Bases Fusion System, and these four

subsystems provide all the mechanisms required in the knowledge management lifecycle. The

following figure shows the concept of NID-ES:

 109

NID-ES

Knowledge
Processing

Two Layer Network
Intrusion Detection System

Knowledge
Acquisition

Intrusion Detection
Knowledge Acquisition

System

Knowledge
Discovery

Intrusion Detection
Knowledge Mining System

Log Files

Knowledge Fusion
Intrusion Detection

Knowledge Bases Fusion
System

Other IDS
KBs

Newly
Discovered
Knowledge

Figure 9.1: The concept of NID-ES

As shown in this figure, the four subsystems of NID-ES are designed according to the

lifecycle of knowledge management and construct a complete knowledge platform.

Where Two-Layer Network Intrusion Detection System is designed to process the

knowledge for intrusion detection and monitor the network environment to find

possible intrusion behaviors. NORM rule base and inference engine are used as the

kernel of Two-Layer Network Intrusion Detection System. To Acquire the knowledge

of intrusion detection from experts, an Intrusion Detection Knowledge Acquisition

System, is designed to retrieve the knowledge we need for intrusion detection

according to the Concept Learning from Cases based on Semantic Distance for

Knowledge Acquisition process. To keep the system growing and being useful for

new intrusion behavior, a knowledge discovery system, Intrusion Detection

Knowledge Mining System, which follows the knowledge discovery process proposed

in this work is used to extract new knowledge from user behaviors. For the newly

 110

discovered knowledge and existing knowledge bases of other intrusion detection

systems, the Intrusion Detection Knowledge Bases Fusion System will try to merge

all knowledge and make it consistent. The fused knowledge base can be used for the

intrusion detection engine to find new intrusions by improving the capability of the

intrusion detection system; hence, the system can be improved and adapted to the new

intrusions or challenges.

The following figure shows the detailed flow and relations between sub-systems of

the NID-ES:

Intruders

Experts
Experts

Internet

Network Services

E-Commerce Serivces

Intruders

Attacks Two Layer
Intrusion

Detection System

Administrat
or

System Log

Intrusion Detection
Knowledge Mining

System

Intrusion Detection
Ontology Discovery

System

Intrusion Detection
KB

Temporary
Knowledge Storage

Experts

Intrusion Detection
Knowledge Bases

Fusion SystemOther
IDS KBs

Fused Knowledge

Ontology &
Knowledge

Knowledge

Knowledge

Acquisition

Knowledge

Application
Layer

Knowledge
Engineering

Layer

Figure 9.2: The architecture of NID-ES

In NID-ES, Two-Layer Intrusion Detection System is used to monitor the network

behavior and find suspected intrusion behaviors. On the other hand, Intrusion

 111

Detection Knowledge Acquisition System is used to extract the knowledge about

network intrusion behavior from domain experts, all the knowledge acquired will be

saved for other systems to use. At the same time, the Intrusion Detection Knowledge

Mining System will use the system log of Two-Layer Intrusion Detection System to

find embedded and interesting intrusion behavior patterns, and translate the patterns

into rule formatted knowledge. After all, the Intrusion Detection Knowledge Bases

Fusion System will use the knowledge from multiple sources, including the

knowledge extracted from expert, the knowledge mined, and the knowledge of other

intrusion detection knowledge bases, and merge them with meaningful structure for

the intrusion detection engine to use. In the following sections, these sub-systems will

be introduced detailedly.

9.2 Knowledge Representation and Detection Engine Design

in NID-ES

In NID-ES, a Two-Layer Network Intrusion Detection System is proposed for processing the

intrusion detection knowledge to monitor the network and detect intrusions, which combines

the high efficiency for network activity monitoring of general IDS and the accuracy for

knowledge expression of rule base system. In this system, network behaviors will be

monitored and detected in different levels, including fundamental network connection layer

and customized application layer. The following figure shows the architecture of Two-Layer

Network Intrusion Detection System.

 112

Ethernet

ONAD

Local PC

Local PC

Local PC

Local Network Environment

Ethernet

MDE

ONAD

Local PC

Local PC

Local PC

Local Network Environment

Reporter Plugins

Managerment /
Detection Rules

Network Events

IDML
Events

IDML
Events

IDML
Events

MOM Server

IDML
Events

NBMReaction Plugins

Fundamental
Network
Connection
Layer

Customized
Application
Layer

Figure 9.3: The architecture of Two-Layer Intrusion Detection System

For general and simple intrusion behaviors, Online Network Analyzer/Detector (ONAD) of

the proposed model is used for signature based intrusion detection process, which is widely

used for online intrusion detection. On the other hand, in order to detect more complicated

intrusion behaviors, the alarm events and abstract network information generated from

ONAD are further analyzed by Meta Detection Engine (MDE) using Rule Base technology,

and logical expressions are used to express intrusions with complicated behavior pattern.

Based on the concept, a Two-Layer Network Intrusion Detection System, including

Fundamental Network Connection Layer and Customized Application Layer, is proposed and

implemented. In the fist Layer, ONAD is responsible for real-time detect intrusions in huge

amount of network connection. And in the second Layer, MDE receives and analyzes events

reported from ONAD and other applications to discover possible complicated intrusions using

Rule Base inference technology.

 113

In order to support intrusion detection and management monitoring, an Inference Engine is

used in MDE. According to the intrusion detection rules and the management rules given by

system manager or experts, the inference engine will use the facts from Fact Manager to

trigger the rule inference and detect possible intrusions or management events. Since a rule

based inference engine is used, more complicated rule chains are supported for experts to

represent more complicated intrusion behaviors. Since logical expressions can be used to

represent intrusion patterns or behavior patterns in MDE, more complicated intrusions and

behaviors can be detected by MDE.

The NORM inference engine, DRAMA, is used as the Inference Engine of MDE, which can

efficiently support forward chaining inference with Object-based inference mechanism. Since

DRAMA supports forward inference process and fact encapsulation, MDE can efficiently

manage the inference process.

For intrusions detection system as MDE, performance is one of the important properties to be

concerned. DRAMA is designed to have good performance in rule inference, which means

MDE will be able to infer the rules and detect intrusions efficiently. Some modifications are

made on DRAMA inference engine, including Facts retrieving and managing mechanism. On

the other hand, instead of managing the facts using original fact management mechanism,

Facts Manager in this system is used to index and retrieve necessary facts for the modified

DRAMA inference engine.

According to the framework proposed, a prototype of Two-Layer Network Intrusion

Detection System is implemented. In the prototype, the Meta Detection Engine is

implemented as a centralized server for receiving events sent from client ONAD agents. The

 114

ONAD is an enhanced version of IDML detection engine [17], to provide basic detection

capability of detecting possible intrusions in a local area network based on the packet level

information extracted from network data. When ONAD performs detection process on each

local area network, the alerts, and extracted information of ONAD will be sent to MDE

server.

However, when the ONAD sending information to MDE server, network handshaking and

delaying may degrade the performance of this system. In order to enhance the performance of

our prototype, MOM is used here for delivering information between MDE and ONAD. In

this prototype, OpenJMS, which follows the JMS standard [30], is used as the MOM system.

With OpenJMS, network traffic usage and system performance can be obviously enhanced for

our Two-Layer Intrusion Detection System.

The MDE server of this system, implemented using Java Language, is designed to receive

IDML events from UDP and JMS channels, i.e., our MDE server can not only receive

information from JMS server, but also receive information from other applications which

report IDML events using UDP datagram. OORB inference engine, which is also

implemented in Java, is used in MDE for detect complicated intrusions. Also, several kinds of

charts to show the network information are also implemented..

As we mentioned before, any application with the ability of sending IDML events to MDE

server can be treated as the Reporter plugin for our system. In our implemented system, an

SNMP information collector is designed and implemented to poll information from SNMP

hardware or software and send to MDE server. According to the network address settings and

OID information, SNMP collector will retrieve corresponding information from SNMP device

and send the information in IDML event format to MDE server. With this SNMP collector,

 115

SNMP information can be used as the source of events for MDE to detect, and enhance the

detection ability of this prototype.

Figure 9.4: MDE Server. The left part shows the events received. The right part shows
the configuration of the server.

Figure 9.5: Received IDML event.

 116

Some local network behaviors, which are presumed normal, may be intrusions after some

signatures are detected. An example is IP spoofing attacks, which first denies the service of a

client A and then spoofs A to connect server B. In this sections, detection model for TFN is

described as follows.

TFN (Tribal Flood Network), a distributed denial of service attack, consists of an intrusion

master (server) and zombie ants (clients). Unlike some specific intrusion detection tool for

TFN, in our system, this intrusion can be modeled without modifying system kernel. In the

experiment, the TFN attacking master is at 210.1.2.3, the TFN clients are at

140.113.87.101~105, and the victim is at 140.113.87.25.

The detection model consists of three steps. First, ONAD detects local signatures, which may

be a TFN attack. Second, ONAD reports to MDE via MOM. Finally, MDE collects

information from all local area network, confirms the intrusion and identifies the source IP of

the TFN attacking master. The ONAD patterns, IDML events and MDE rules of each step are

described as follows:

1. Patterns of ONAD to detect the local signatures about TFN (four rules only):

 (Probe)
 Pattern IcmpTypeValue=8

and ContentInclude=”1234”
 Alert ”DdosTfnProbe”

 (BE)

Pattern IcmpTypeValue=0
and IcmpEchoId=456
and IcmpEchoSeq=0

 Alert ”DdosTfnClientCommandBE”

(LE)
Pattern IcmpTypeValue=0

and IcmpEchoId=51021
and IcmpEchoSeq=0

Alert ”DdosTfnClientCommandLE”

(SR)
Pattern IcmpTypeValue=0

and IcmpEchoId=123
and IcmpEchoSeq=0
and ContentInclude="73 68 65 6C 6C 20 62 6F 75 6E 64 20 74

 117

6F 20 70 6F 72 74"
 Alert “DdosTfnServerResponse”

2. IDML event message sent to MDE via MOM (one example only):

<?xml version="1.0"?>
<Event>

 <Time>20020701125634</Time>
 <Name>DdosTfnProbe</Name>

 <Attribute>
 <Name>SourceIp</Name>
 <Value>140.113.87.101</Value>

 </Attribute>
 <Attribute>

 <Name>DestinationIp</Name>
 <Value>140.113.87.25</Value>

 </Attribute>
</Event>

3. Rules of MDE to detect and identify the TFN attacking master:

 If ∃x, y, z, LargerThen(ProbeCount(x, y), 1000)

and BE(x, z)
 and LE(x, z)

and SR(z, x)
 Then Response(“TFN Attack, master IP:” + z)

Where x, y, z denote the sources of network behaviors. ProbeCount(a, b) is the number
of the “Probe” events with the source a and destination b. The relations of BE, LE, and
SR are detected by the information sent from ONAD via MOM.

9.3 Knowledge Acquisition in NID-ES

Since WordNet has well-defined dictionary structure and open format structure, and

WordNet provides concept hierarchy of vocabularies for general purpose

terminologies, we use WordNet in our implementation for calculate the similarity

between keywords. However, there are many different hierarchy relations defined in

WordNet, and only following relations will be used:

 118

Table 2. WordNet relations

Relation Meaning
ANTONYM Opposite-of relation (wet-dry), equal
CAUSE Cause relation, related
ENTAILED_BY Be-entailed (sleeping is entailed by snoring) relation
HYPERNYM Is-A-kind-of relation, generalization
MEMBER_HOLONYM A-member-of relation, generalization
PART_HOLONYM A-part-of relation, generalization
PARTICIPLE_OF Be-pertained relation, generalization
SIMILAR_TO Similar-to relation, equal
SUBSTANCE_HOLONYM A-part-of relation(in substance), generalization

When calculating the distance between keywords, we will use the shortest path of the

keywords among all these relations. With the help of WordNet, we implement a

general purpose Knowledge Feature Clustering System, in which the WordNet

dictionary has been accessed via corresponding Application Programming Interface to

extract the concept hierarchy from WordNet. Table 3 shows the detail developing

environment settings: The architecture of the prototype system is shown in Figure 2.

Table 3. The related information of implementation
Attribute Description Value
Operating System The OS to develop and execute the

prototype system.
Platform Independent

Programming Language The programming language used to
develop the prototype system.

Java language with JDK
1.4.1

Word Relationship The word relation used to calculate
the similarity between words.

WordNet 1.7.1

Programming Library The programming library used to
access the word relationship and
corresponding dictionary file.

JWNL (Jave WordNet
Library)

KA Approach The Knowledge Acquisition
approach.

Two-Phase KA approach

KA Tool The tool used as the interface to
extract knowledge from expert.

Knowledge Extractor in
DRAMA version 2.5
[DRA04]

 119

Domain
Terminolgies

and
Descriptions

WordNet 1.7

Dictionary File

JWNL Library

Keyw
ord Extractor

Word Similarity
Calculation ISODATA Clustering

Term
inology C

lusters

D
R

AM
A

 Form
at E

xporting

DRAMA
Format File

Terminology Clustering

DRAMA Rule Editor DRAMA Extractor

Domain
Knowledge

(DRAMA Rules)

Figure 9.6: The architecture of prototype system

In this architecture, the domain cases and descriptions collected will first be loaded by

Keyword Extractor module and corresponding keywords for these cases will be

extracted. Since then, the similarity between these cases will be calculated by the

Similarity Calculation module, while the JWNL library is used in this module to

access the dictionary file of WordNet 1.7 to access the word relationships. ISO-DATA

clustering algorithm is implemented here to cluster the cases into meaningful case

clusters, which will be formatted as DRAMA format knowledge file. We can then use

DRAMA rule editor to remove redundancy of cases, and finally use DRAMA

extractor, which is a Repertory Grid application used to acquire knowledge from

expert, to extract the knowledge of these knowledge concepts. Figure 3 is some screen

shots of implemented knowledge clustering program:

 120

Figure 9.7: Some screen shots of prototype system

To improve the capability of this prototype system for specific domain, a concept

hierarchy of Denial of Service (DoS), which is a type of network intrusions, is also

included in the similarity calculation to get more accurate result for the domain of

DoS. The concept hierarchy used is shown as following figure, which is summarized

from existing DoS intrusions:

Internet

ProtocolContentApplication Hardware OS Environment

Service Network

HTTP FTP SMTP DNS SSLSMBPort

TCP UDP ICMP IP

⋯⋯⋯

Traffic CPU Memory Conn.

pps bps

Overload Thrashing

Leakage Overflow

Spoofing Occupied

Command Request Packet

CorruptedNull len.Long len.Spec. lenOption

URLURICWDGETLogin

Invalid Overflow String

System Device

PhoneModemSwitchRouter

SystemGeneral

FirewallMail

Comm.Entertain

MSNICQ

LinuxWindosMS/DOSMacOSUNIX

Figure 9.8: The concept hirearchy of DoS

 121

After the terminologies are clustered into different rule class, DRAMA extractor,

which is part of DRAMA rule base product [DRA03], is used here as the tool to

acquire knowledge from expert. The clustering result of our algorithm will be

translated into DRAMA format, and DRAMA rule editor is then used to review the

content of each clustering and edit the knowledge cluster. After the knowledge cluster

is adjusted, DRAMA knowledge extractor is further used to design the grids for

extracting the relationships between concepts and retrieving the knowledge content of

each concept. Figure 9.9 and Figure 9.10 show some screenshots of DRAMA utilities.

Figure 9.9: DRAMA editor

 122

Figure 9.10: Using DRAMA extractor to extract knowledge concept relations

Since then, the knowledge contained in the grid can be extracted and translated

into DRAMA rules, and a knowledge based system can be finally implemented by

integrating the DRAMA rule base.

9.4 Knowledge Discovery in NID-ES

 123

RAW Packet Log

Connection
Identifier

Packet
Aggregator

ISO-DATA
based

Clustering
Module

User
Behavior
Sequence

Pattern Miner

Cluster Feature
Extractor

Pattern
Explainer

User Behavior Pattern
Rule

Intrusion Behavior
Pattern Rule

Intrusion
Behavior
Selection

Feature Vectors

Experts

Figure 9.11: The architecture of Intrusion Detection Knowledge Mining System

For discovering embedded knowledge in user’s (intruder’s) behavior, the Intrusion

Detection Knowledge Mining system is designed. Figure 9.11 shows the architecture

of Intrusion Detection Knowledge Mining System. In this system, the raw packet

information collected from IDS engine is used as the input. The system will first try to

group the packets of the same connection according to network protocol. After the

packets are grouped, the Packet Aggregator will summarize each connection into

feature vector. The following shows the format of a network packet:

Time SIP DIP DPort SPort Protocol Flag Length …

And for each connection, the Packet Aggregator will summarize the packets

information into a feature vector as follows:

Time Duration SIP DIP DPort SPort Protocol Flag Traffic Packet
No. …

 124

KDDCUP 1999 [KDD99], a data mining test for network intrusion detection,

proposed a set of features for representing network connections. The features used in

KDDCUP 1999 are referred and used to construct our feature vectors here. The

following shows the features used in KDDCUP 1999 [KDD99]:

Table 9.1: KDDCUP selected features

Attribute Data type
duration Continuous
protocol_type Symbolic
service Symbolic
flag Symbolic
src_bytes Continuous
dst_bytes Continuous
land Symbolic
wrong_fragment Continuous
urgent Continuous
hot continuous
num_failed_logins continuous
logged_in symbolic
num_compromised continuous
root_shell continuous
su_attempted continuous
num_root continuous
num_file_creations continuous
num_shells continuous
num_access_files continuous
num_outbound_cmds continuous
is_host_login symbolic
is_guest_login symbolic
count continuous
srv_count continuous
serror_rate continuous
srv_serror_rate continuous
rerror_rate continuous
srv_rerror_rate continuous
same_srv_rate continuous
diff_srv_rate continuous
srv_diff_host_rate continuous
dst_host_count continuous
dst_host_srv_count continuous
dst_host_same_srv_rate continuous
dst_host_diff_srv_rate continuous
dst_host_same_src_port_rate continuous
dst_host_srv_diff_host_rate continuous
dst_host_serror_rate continuous
dst_host_srv_serror_rate continuous
dst_host_rerror_rate continuous
dst_host_srv_rerror_rate continuous

 125

As the connections summarized as the feature vectors, the ISO-DATA Clustering

Module will perform ISO data clustering to these vectors as proposed in our algorithm.

Then User Behavior Sequence Pattern Miner will label the clusters generated in

previous module, and translate users’ behaviors into sequence of cluster labels.

Sequential pattern mining algorithm will be applied to these user behavior sequences

to find the patterns of user behavior. In order to explain the meaning of these user

behavior sequences, the significant features of each cluster generated in ISO-DATA

Clustering Module will be extracted using information theorem, which is done by

Cluster Feature Extractor. After that each step of user behavior sequence can be

explained by Pattern Explainer, which means each step corresponds to a set of

features, e.g., ICMP # > 1000, and hence the meaning of each user behavior sequence

can be translated into chaining rules.

However, not all the patters discovered is an intrusion, many of them may be normal

user behaviors or known intrusion behaviors. Except compare to original rules in the

knowledge base, experts will be consulted to identify whether each pattern is useful or

meaningless. The Intrusion Behavior Selection Process is the process for expert to

select useful and meaningful intrusion behaviors. After all, in the following

Knowledge Fusion process of the NID-ES will then fuse those meaningful patterns

selected by experts into existing knowledge base.

9.5 Knowledge Fusion in NID-ES

 126

Wordnet Dictionary

WordNet Interface

Updated Snort Rule
Base

Updated Pakemon
Rule Base

NIDS Ontology

Rule
Merger

Snort
Parser

NID-ES
Loader

Flat Rule Base

Relation-
ship

Graph
Builder

Ontology Constructor

Criteria Calculator

Greedy Growth Cluster
Builder

Partition
Builder

Merged Rule Base

Pakemon
Parser

NID-ES Knowledge
Base

Figure 9.12: The architecture of Intrusion Detection Knowledge Bases Fusion
System

In the Intrusion Detection Knowledge Bases Fusion System, several knowledge bases

will be fused according to the knowledge fusion framework proposed. For each

knowledge base, the corresponding parser / loader are designed to retrieve knowledge

from knowledge base and translated into internal uniform format. After comparing

several different knowledge base for intrusion detection, the following simplified

format of intrusion detection rule is used:

If <protocol> <src_ip> <src_port> <dst_port> <dst_ip> <content>
Then <intru_name> <intru_type>

All these formatted rules will be gathered by Rule Merger, and stored into a

temporary storage, which stored all rules in flat structure (no rule class / partition

defined). After that the Relationship Graph Builder will be used to construct the

relationship graphs between all rules, which will be used in forthcoming components

 127

to do partitioning and clustering for these rules.

In the knowledge fusion process we proposed, a dictionary / concept hierarchy

information will be helpful for calculating the semantic distances between rules; in

Intrusion Detection Knowledge Bases Fusion System, not only a general purpose

dictionary, WordNet, is used, but also a domain specific ontology [LT04] is also

referred and used here. The domain ontology used is shown as figure 9.8.

Since WordNet is a general purpose dictionary and hence many specific domain

terminology, e.g., DDoS, is not included in the dictionary, and hence make the

semantic distance calculation to be less accurate. Including a domain specific

dictionary / concept hierarchy as above is helpful for improve the usability and

accuracy of this system. The dictionaries will be loaded and merged by Ontology

Constructor, and then Criteria Calculator will use the ontology together with the

relationship graph constructed in previous module to calculate the three criteria for

determine the clustering result. Greedy Growth Cluster Builder is used to grow the

rule clusters by the greedy growth algorithm defined. Finally, in the Partition Builder,

the rules temporarily stored in the flat rule base will be partitioned into rule classes of

NORM model, and hence the expert can use NORM utilities to review / edit / modify

the knowledge base of fused knowledge base.

Followings are some screenshots of the prototype system for rule base partitioning.

The system provide interface for loading multiple formats of rules, including Snort

rules, Pakemon rules, and NORM DRAMA formatted rules. All these rules will be

translated into the same format. After that the implemented system will cluster the

rules according to WordNet (access through JWNL library) and user customized

 128

dictionary. The cluster result can be exported as NORM DRAMA rule format, and

also rule classes will be defined according to the clustering result; the outputted result

can be loaded into DRAMA rule base and related utilities, users can use DRAMA

utilities to modify / edit the result, and finally provide the result to Two-Layer

Intrusion Detection System for monitoring the network.

Figure 9.13: The screenshots of the prototype system

9.6 Disscuss of NID-ES

In this chapter, a Network Intrusion Detection Expert System is proposed following

NORBP architecture, and the systems, including Two-Layer Network Intrusion

Detection System, Intrusion Detection Knowledge Acquisition System, Intrusion

Detection Knowledge Mining System, and Intrusion Detection Knowledge Bases

 129

Fusion System, for the four phases of KM lifecycle defined in NORBP are designed.

Two-Layer Network Intrusion Detection is used to monitor network behaviors and

detect intrusion behaviors according to the NORM knowledge base with the help of

DRAMA rule base engine. Intrusion Detection Knowledge Acquisition System help

to acquire the expert knowledge about intrusions and hence provide the knowledge

base for entire expert system to be useful for detecting intrusion. Intrusion Detection

Knowledge Mining System is designed to help extract the knowledge embedded in

the users daily behaviors and intruders behaviors is also included, and hence we can

obtain the knowledge about new behaviors or new intrusions without repeat the

knowledge acquisition process and reduce the effort to make the system updated to

new intrusions. After all, in order to maintain the knowledge structure, which is most

meaningful in NORM knowledge model, Intrusion Detection Knowledge Bases

Fusion System provide the mechanism to help manage the knowledge base by fuse all

different knowledge sources and obtain the knowledge structure meaningful for

system administrator to manage the system. With these mechanisms of NORBP, the

expert system built can be evolutionary maintained and developed without modify the

infrastructure of this expert system to be adaptive to growing knowledge and

applications. And also, by using the implementations of NORM mechanisms, NID-ES

can be realized with lower effort to implement entire expert system, which can be a

very difficult task for building an expert system.

 130

Chapter 10 Conclusion

In this thesis, a New Object-oriented Rule Base Platform (NORBP) was proposed,

which was designed to provide more flexible, efficient, maintainable, and meaningful

knowledge representation, and also correspondingly knowledge systems mechanisms.

According to the lifecycle defined in this work, several mechanisms were designed to

construct a complete knowledge platform, including the mechanisms for knowledge

representation, knowledge acquisition, knowledge discovery, and knowledge fusion.

In NORBP, the New Object-oriented Rule Model (NORM) was designed to represent

knowledge according to Object-oriented concept, and knowledge relations were

defined to construct the knowledge model. In order to acquire knowledge from

experts in NORBP, Concept Learning from Cases based on Semantic Distance for

Knowledge Acquisition was proposed base on NORM concepts. Moreover, for the

knowledge embedded in users daily behaviors, Knowledge Discovery mechanism

were used for extracting knowledge from huge amount of massive data. Newly

discovered knowledge in Knowledge Discovery mechanism might be redundant or

conflict to existing knowledge, and Knowledge Fusion mechanism in NORBP was

proposed to fuse different knowledge sources for the same knowledge domain,

resolve the conflict and redundant of knowledge, and reconstruct the knowledge

model in more meaningful structure.

The mechanisms of NORBP are implemented and corresponding experiments were

designed and done. The experiments showed that the algorithms and mechanisms

designed in this work are useful for knowledge management. Moreover, two expert

systems, including a Computer Assisted Learning Expert System (CAL-ES) and a

 131

Network Intrusion Detection Expert System (NID-ES) were designed and proposed as

case studies for implementing expert system using NORBP. In the CAL-ES proposed,

knowledge about how to selection appropriate learning materials, which is usually so

called an Adaptive Learning issue, was organized as NORM knowledge model, and

the inference of these knowledge were also handled by a NORM rule base system –

DRAMA, which is a production system implemented according to NORM knowledge

model.

In NID-ES, the corresponding systems for complete lifecycle defined in NORBP were

designed and implemented. A Two-Layer Network Intrusion Detection System was

designed to detect the possible intrusion behaviors on the network, in which the rules

for intrusion detection was represented in NORM knowledge model. We also

designed an Intrusion Detection Knowledge Acquisition System based on the

knowledge acquisition mechanism in NORBP, with WordNet and DDoS concept

hierarchy to calculate the similarities of domain terminologies. According to the

network features proposed in KDDCUP 1999, the feature vector for Knowledge

Discovery in NORBP was defined, and hence the data mining algorithms designed in

Intrusion Detection Knowledge Mining System could be applied for discovering user

and intruder behavior patterns, and translated the patterns into rules. Finally, the

DDoS concept hierarchy used in Knowledge Acquisition mechanism was also used in

Intrusion Detection Knowledge Bases Fusion System to calculate the semantic criteria

between rules and hence built the rule classes between the knowledge to be fused.

In the future, we will improve NORBP by improving each mechanism respectively.

For NORM knowledge model, we would like to design a backward inference

mechanism and corresponding algorithm, to deal with the knowledge relations

 132

defined in NORM knowledge model, which is not a part of existing backward

inference mechanism and make the mechanism designation to be more complicated.

Also, knowledge validation and verification in NORM knowledge model is also part

of our plan to improve then usability of NORM. Currently, the Knowledge

Acquisition mechanism we proposed still required some expert effort to define the

NORM knowledge relations between concepts, and that can be an issue during the

knowledge acquisition process; a methodology help generating the knowledge

relations from the relations between the features in different concepts will be useful to

provide at least a semi-automatic mechanism to reduce experts effort. Currently in our

Knowledge Discovery mechanism, ISODATA clustering algorithm is used to cluster

the feature vector, but since we have to generate the features of each cluster, that

means we have to consider to make the resulting cluster more significant to each other;

a specific clustering algorithm can be designed for our Knowledge Discovery process;

Other data mining and machine learning algorithm, e.g., association rules, decision

tree, can be also used for the Knowledge Discovery process. Regarding the

knowledge fusion mechanism, although we have proposed algorithms for knowledge

fusion, the time and space complexity are still high. Now, we are trying to improve

the performance of the algorithms by developing some analysis on the characteristics

of the knowledge to derive the weight for structural and semantic criteria. On the

other hand, construction the shared vocabulary dictionary is still a difficult task for the

domain experts. The well-developed vocabulary dictionary like WordNet can be

applied to help improve our algorithm in the future.

Also, for the NID-ES proposed, the fully implementation and experiment are planed

to be done based on the utilities developed for each mechanism in the near future. For

the implementation, the concept hierarchy for intrusion related concepts will be first

 133

defined according to previous researches, which will help to analyze the signatures

should be obtained from network traffic for all different kind of intrusions. Based on

the concept hierarchy of intrusion related concepts and signatures designed for

various types of intrusions, the ontology construction process in Knowledge

Acquisition process can be more accurate, and also for Knowledge Discover process,

the feature vector constructed will be more meaningful since it represents the user

behavior features required for detecting an intrusion. And also for Knowledge Fusion

phase, the concept hierarchy provide good information for calculating the semantic

criterion. Moreover, experiments based on existing intrusion detection rule bases have

been done to show the performance improvement after the rule bases are fused and

partitioned, so far the experiment results show that the performance of the rule base

partitioned have great performance improvement than original rule bases without rule

partitioning.

 134

Reference

[ACM00] ACM, “KDD cup 1999 data,”
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html, 2000.

[AND95] Anderson, J. R., “Cognitive Psychology and its Implications,” New York:
W.H. Freeman and Company, 1995

[AS+03] Alani, H., Sanghee, Kim, Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H.,
and Shadbolt, N.R., “Automatic ontology-based knowledge extraction from Web
documents,” Intelligent Systems, IEEE, Volume: 18 Issue: 1 , Jan.-Feb. 2003, pp.
14 –21

[AS95] Agrawal, R. and Srikant, R, ”Mining sequential patterns,” in Proc. of 7th
IEEE International Conference on Data Engineering, pp. 3-14, 1995.

[BS99] Beishuizen, J. J. and Stoutjesdijk, E. T., ”Study strategies in a computer
assisted study environment.,” Int'l Journal of Learning and Instruction, Vol. 9, pp.
281-301, 1999

[BH01] Budanitsky, A., Hirst, G., “Semantic distance in WordNet: An experimental,
application-oriented evaluation of five measures”, Workshop on WordNet and Other
Lexical Resources, Pittsburgh, June 2001

[BHJ+93] Behrendt, W, Hutchinson, E, Jeffrey, and KG, Macnee, CA, MD Wilson,
"Using an Intelligent Agent to Mediate Multibase Information Access", CKBS-SIG,
Keele, September 1993

[BOO91] Booch, G., “Object-oriented Design with Applications, 2nd ed.,” San
Francisco, CA: Benjamin/Cummings, 1991

[BRA93] Branch, S. T., CLIPS Reference Manual: Volume I Basic Programming
Guide, NASA, JSC-25012, 1993.

[BS84] Buchanan, B.G.. and Shortliffe, E.H., ”Rule-based Expert Systems,” London:
Adison-Wesley, 1984

[BTW01] Boley, H., Tabet, S., and Wagner, G., “Design Rationale of RuleML: A
Markup Language for Semantic Web Rules”, Proc. SWWS'01, Stanford, July/August
2001.

[CER01] CERT, http://www.cert.org/, 2001.

 135

[CL02] Choi, Byounggu and Lee, Heeseok, “Knowledge management strategy and its
link to knowledge creation process,” Expert Systems with Applications, Vol. 23 (3),
pp. 173-187, 2002

[CH02] Chung-Hong Lee, and Hsin-Chang Yang, “Text mining of multilingual
corpora via computing semantic relatedness,” Systems, Man and Cybernetics, 2002
IEEE International Conference on , Volume: 5 , 6-9 Oct. 2002, pp. 5 pp. vol.5

[CHO96] Chou , C., “A computer logging method for collecting use-reported inputs
during formative evaluation of computer network-assisted distance learning,” Proc. of
ED-Media'96, 1996

[CLI98] CLIPS, “CLIPS Reference Manual Volume I Basic Programming Guide,”
Software technology branch, Lyndon B. Johnson Space Center, Version 6.10, 1998

[CQ69] Collins, A.M. and Quillian, M.R., “Retrieval time from semantic memory,”
Journal of Verbal Learning and Verbal Behavior, 1969

[CTL03] Chen, Chang-Sheng, Tseng, Shian-Shyong and Liu, Chien-Liang, “A
unifying framework for intelligent DNS management,” International Journal of
Human-Computer Studies, Vol 58, Issue 4, April 2003, pp. 415-445

[DD00] Dickerson, J. E. and Dickerson, J. A., “Fuzzy network profiling for intrusion
detection,” in Proc. of Fuzzy Information Processing Society, 2000.

[DEE65] Deese, J., “The Structure of Associations in Language and Thought,”
Baltimore: the Johns Hopkins Press, 1965

[DRA03] DRAMA, Coretech Inc, http://www.ctknow.com.tw/rule.htm, 2003

[DWT03] Davidovic, A., Warren, J., and Trichina, E., “Learning benefits of structural
example-based adaptive tutoring systems,” Education, IEEE Transactions on , Volume:
46 Issue: 2 , May 2003, pp. 241 -251

[EA02] Elst, Ludger van and Abecker, Andreas, “Ontologies for information
management: balancing formality, stability, and sharing scope,” Expert Systems with
Applications, Vol. 23 (4), pp. 357-366, 2002

[ERI03] Eriksson, H., “Using JessTab to integrate Protege and Jess,” Intelligent
Systems, IEEE, Volume: 18 Issue: 2 , March-April 2003, pp. 43 –50

[FAS98] Fensel, D., Angele, J., and Studer, R., “The knowledge acquisition and
representation language, KARL,” Knowledge and Data Engineering, IEEE
Transactions on , Volume: 10 Issue: 4 , July-Aug. 1998, pp. 527 –550

 136

[FFF99] Frank, G., Farquhar, A., and Fikes, R., “Building a large knowledge base
from a structured source (KA and ontology),” Intelligent Systems, IEEE , Volume:
14 Issue: 1 , Jan.-Feb. 1999, pp. 47 –54

[FIS87] Fisher, D., "Knowledge Acquisition via Incremental Conceptual Clustering",
Machine Learning, 2, 139-172, 1987.

[FK85] Fikes, R. and Kehler, T., “The role of frame-based representation in
reasoning,” Communications of the ACM, Vol.28, NO.9, pp.904-920, 1985

[FS84] Feigenbaum, E.A., and Simon, H., "EPAM-like Models of Recognition and
Learning", Cognitive Science, 8. 1984.

[GAG85] Gagné, R.M., "The Conditions of Learning and Theory of Instruction,” N.Y.:
Holt, Rinehart & Winston, 1985

[GAG84] Gagné, R.M., “Learning outcomes and their effects,” American
Psychologist, Vol.39, pp.377-385, 1984

[GJZ99] G. Webb, J. Wells, and Z. Zheng, “An Experimental Evaluation of
Integrating Machine Learning with Knowledge Acquisition,” Machine Learning, vol.
35, no. 1, 1999, pp. 5–23.

[GLF90] Gennari, J.H., Langley, P., and Fisher, D., "Models of Incremental Concept
Formation", J. Carbonell, Ed., Machine Learning: Paradigms and Methods,
Amsterdam, The Netherlands: MIT Press, 11-62, 1990.

[GMA95] Godin, R., Missaoui, R., Alaoui, H., “Incremental concept formation
algorithms based on Galois (concept) lattices”, Computational Intelligence, 11(2),
246-267, 1995

[GR89] Giarratano, J. and Riley, G., “Expert Systems: Principle and Programming,”
Boston: PWS Publishing Company, pp.63-102, pp.509-513, 1989

[GRU03] Gruber, Tom, “What is ontology,” http://www-ksl.stanford.edu/kst
/what-is-an-ontology.html, 2003

[GRU93] Gruber, Tom, “A translation approach to portable ontologies. Knowledge
Acquisition, 5(2):199-220”, 1993.

[GT93] Gruber, Tom, “Toward principles for the design of ontologies used for
knowledge sharing,” Presented at the Padua workshop on Formal Ontology, March
1993.

[GWP88] Ginsberg, A. and Weiss, S. M. & Politakis, P., “Automatic knowledge base

 137

refinement for classification systems,” Artificial Intelligence, Vol.35, NO.2,
pp.197-226, 1998

[GLA87] Glaser, R., “Thoughts on Expertise, In Schooler, C. & Schaie, K. W. (Eds.)
Cognitive Functioning and Social Structure over the Life Course,” Norwood, New
Jersey: Ablex Publishing Corporation, pp.81-94, 1987

[HEN01] Hendler, J., “Agents and the Semantic Web,” Intelligent Systems, IEEE ,
Volume: 16 Issue: 2 , March-April 2001, pp. 30 –37

[HPH01] Harmelen, F. van, Patel-Schneider, P. F. and Horrocks, I. (editors), “The
DAML+OIL language”, http://www.daml.org/2001/03/reference.html, 2001

[HS98] Hirst, G. and St-Onge, D., Lexical chains as representations of context for the
detection and correction of malapropisms, pp. 305–332, Fellbaum, 1998.

[HT90] Hwang, G. J. and Tseng, S. S., ”EMCUD: A knowledge acquisition method
which captures embedded meanings under uncertainty,” Int’l Journal of Man Machine
Studies, Vol. 33, pp. 431-451, 1990

[HW03] Hirasawa, S., and Wesley W. Chu, “Knowledge acquisition from documents
with both fixed and free formats,” Systems, Man and Cybernetics, 2003. IEEE
International Conference on , Volume: 5 , Oct. 5-8, 2003, pp. 4694 -4699

[HY+02] Hongmei Yan, Yingtao Jiang, Jun Zheng, and Bingmei Fu, “Internet-based
knowledge acquisition and management method to build large-scale medical expert
systems,” EMBS/BMES Conference, 2002. Proceedings of the Second Joint , Volume:
3 , 23-26 Oct. 2002, pp. 1885 -1886 vol.3

[ILG93] Ilgun K., “USTAT: A real-time intrusion detection system for UNIX,” in Proc.
of the IEEE Symposium on Research on Security and Privacy, Oakland, CA, May
1993.

[ILG95] Ilgun, K., Kemmerer, R.A., and P. A. Porras, “State transition analysis: A
rule-based intrusion detection system,” IEEE Transactions on Software Engineering,
21(3), March 1995.

[JD88] Jain, A. K. and Dubes, R. C., “Algorithms for Clustering Data,” Prentice-Hill,
Englewood Cliffs, N.J., 1988.

[JF90] Jacob, R.J.K. and Froscher, J.N., “A software engineering methodology for
rule-based systems,” IEEE Transactions on Knowledge and Data Engineering, Vol.2,
NO.2, 1990

 138

[JGC00] Jonyer, I., Holder, L.B., and Cook, D.J., “Graph-Based Hierarchical
Conceptual Clustering”, International Journal on Artificial Intelligence Tools, 2000

[KDD99] KDD Cup, “http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html”,

KDD Coup, 1999.

[KEM97] Kemmerer, R. A., “NSTAT: A model-based real-time network intrusion
detection system,” Technical Report TRCS-97-18, Department of Computer Science,
University of California, Santa Barbara, November 1997.

[KIN01] Kingston, J., “High Performance Knowledge Bases: four approaches to
knowledge acquisition, representation and reasoning for workaround planning,”
Expert Systems with Applications, Vol. 23 (4), pp. 181-190, 2001

[KIN70] Kintsch, W., “Models for Free Recall and Recognition, In DA Norman (Ed.),
Models of Human Memory,” NY: Academic Press, 1970

[KK98] Karypis, G. and Kumar, V.. “Multilevel Algorithms for Multi-constraint
Graph Partitioning”, Proceedings of Supercomputing '98, 1998

[KLA71] Klausmeier, H. J., “Cognitive operations in concept learning,” Educational
Psychologies, 1971

[KM03] knowledge and its use in a functional way server,” Expert Systems with
Applications, Vol. 24, Issue 2, February 2003, pp 153-166.

[KO02] Kurosu, M., and Ookawa, Y., “Effects of negative information on acquiring
procedural knowledge,” Computers in Education, 2002. Proceedings. International
Conference on , 3-6 Dec. 2002, pp. 1371 -1372 vol.2

[KS98] Lee, W., and Stolfo, S. J., “Data mining approaches for intrusion detection,”
in Proc. of the 1998 USENIX Security Symposium, 1998.

[LEB86] Lebowitz, M., "Concept Learning in a Rich Input Domain: Generalization
Based Memory", R. Michalski, J. Carbonell,and T. Mitchell, Eds., Machine Learning:
An A.I. Approach, Morgan Kaufmann, 193-214, 1986.

[LO96] Lee, S. and O’Keefe, R.M., “The effect of knowledge representation schemes
on maintainability of knowledge-based systems,” IEEE Transactions on Knowledge
and Data Engineering, Vol.8, NO.1, pp.173-178, 1996

[LSM99] Lee, W., Stolfo, S. J., and Mok, K. W., “A data mining framework for
building intrusion detection models,” in Proc. of 1999 IEEE Symposium on Security
and Privacy, May, 1999.

 139

[LT04] Lin, S.C., Tseng, S.S., “Constructing Detection Knowledge for DDoS

Intrusion Tolerance,” submitted to Expert Systems With Applications.

[LTT03] Lin , Yao Tsung, Tseng , S. S., and Tsai , Chi-Feng, "Design and
implementation of new object-oriented rule base management system,” Expert
Systems with Applications, Volume 25, Issue 3 , October 2003, pp.369-385

[LTL01] Lin, Y. T., Tseng, S. S., and Lin, S. C., “An intrusion detection model based
upon intrusion detection markup language (IDML),” Journal of Information Science
and Engineering Vol. 17, No.6, 2001, pp. 899-919, 2001

[LV+03] Lopez de Vergara, J.E., Villagra, V.A., Asensio, J.I., and Berrocal, J.,
“Ontologies: giving semantics to network management models,” Network, IEEE ,
Volume: 17 Issue: 3 , May-June 2003, pp. 15

[MAR01] Marty, R., “Snort – the open source network IDS,” http://www.snort.org/,
2001.

[MBF+90] Miller, G.A., Beckwith, R., Fellbaum C., Gross, D., and Miller, K.,
“Introduction to WordNet: An On-line Lexical Database”, Journal of Lexicography,
1990

[MCZ+00] Manganaris, S., Christensen, M., Zerkle, D., and Hermiz, K., “A data
mining analysis of RTID alarms,” Computer Network 34 (2000), pp.571-577, 2000

[MG95] Mineau, G.W., Godin, R., “Automatic Structuring of Knowledge Bases by
Conceptual Clustering”, IEEE TKDE, 7(5), 824-828, 1995.

[ML+03] Masuoka, R., Labrou, Y., Parsia, B., and Sirin, E., “The semantic web -
Ontology-enabled pervasive computing applications,” Intelligent Systems, IEEE [see
also IEEE Expert] , Volume: 18 Issue: 5 , Sept./Oct. 2003, pp. 68 –72

[MS01] Maedche, A., and Staab, S., “Ontology learning for the Semantic Web,”
Intelligent Systems, IEEE , Volume: 16 Issue: 2 , March-April 2001, pp. 72 -79

[MS03] McClure, S. and Scambray, J., ”InfoWorld Security Sweet 16 (ISS16),”
http://www.infoworld.com/cgi-bin/displayNew.pl?/security/links/security_iwss16.htm,
2003

[MSD81] Michalski, R.S., Stepp, R., and Diday, E., "A Recent Advance in Data
Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts",
Kanal and Rosenfeld, Progress in Pattern Recognition, North-Holland, 1981.

[NEG85] Negoita, C.V., “Expert Systems and Fuzzy Systems,” the

 140

Benjamin/Cummings Publishing Corporation, pp.28, 1985

[NF+02] Nikiforou, S., Fink, E., Hall, L.O., Goldgof, D.B., and Krischer, J.P.,
Knowledge acquisition for clinical-trial selection,” Systems, Man and Cybernetics,
2002 IEEE International Conference on , Volume: 1 , 6-9 Oct. 2002, pp. 66 –71

[NP99] Neumann, P. and Porras, P. A., ”Experience with EMERALD to data,” in Proc.
of 1st USENIX Workshop on Intrusion Detection and Network Monitoring, Santa
Clara, California, April 1999, pp.73-80, 1999

[NS+01] Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., and Musen,
M.A., “Creating Semantic Web contents with Protege-2000,” Intelligent Systems,
IEEE, Volume: 16 Issue: 2 , March-April 2001, 60 –71

[PC01] Pal, N.R., and Chakraborty, S., “Fuzzy rule extraction from ID3-type decision
trees for real data,” Systems, Man and Cybernetics, Part B, IEEE Transactions on ,
Volume: 31 Issue: 5 , Oct. 2001, pp. 745 -754

[PET77] Peterson, J.L., “Petri Nets”, ACM Computing Surveys (CSUR), v.9 n.3,
1977

[PHG+01] Preece, A., Hui, K., Gray, A., Marti, P., Bench-Capon, T., Cui, Z., and
Jones, D.. “KRAFT: An Agent Architecture for Knowledge Fusion”, International
Journal of Cooperative Information Systems, 10, 171-195, 2001

[PN99] Porras, P. A. and Neumann, P. G., “EMERALD: Event monitoring enabling
responses to anomalous live disturbances,” http://www2.csl.sri.com/emerald
/concepts.html, 1999.

[POR92] Porras, P., “STAT – A state transition analysis tool for intrusion detection,”
Master’s thesis, Computer Science Department, University of California, Santa
Barbara, June 1992.

[POR99] Porras, P. A., “Detecting computer and network misuse through the
production-based expert system toolset (P-BEST),” in Proc. of the 1999 IEEE
Symposium on Security and Privacy, Oakland, California, May 9-12,1999.

[RB91] Rumbaugh, J. and Blaha, M., et al., “Object-oriented Modeling and Design,”
Prentice Hall, 1991

[REI91] Reichgelt, H., “Knowledge Representation, an AI Perspective,” Norwood,
New Jersey: Ablex Publishing Corporation, 1991

[RH03] Rafea, Ahmed and Hassen, Hesham, “Automatic knowledge acquisition tool

 141

for irrigation and fertilization expert systems,” Expert Systems with Applications, Vol

24, Issue 1, January 2003, pp 49-57.

[RIC99] Richards, K., “Network based intrusion detection: A review of technologies,”
Computer and Security, Vol. 18, pp.671-682, 1999.

[RN95] Russell, S.J., Norvig, P., Artificial Intelligence: Modern Approach, Prentice
Hall, 185-216, 1995.

[ROE88] Roesner, H., Expert systems for commercial use. Artificial Intelligence and
Expert Systems, pp.35-59, 1988

[ROE99] Roesch, M., “Snort - Lightweight Intrusion Detection for Networks”,
Proceedings of the USENIX LISA '99 Conference, Nov. 1999.

[RSC97] Ramaswamy, M., Sarkar, S., Member and Chen, Y.S., “Using Directed
Hypergraphs to Verify Rule-Based Expert Systems”, IEEE TKDE, Vol.9, No.2,
Mar-Apr, pp.221-237, 1997

[RW02] Rosca, Daniela and Wild, Chris, “Towards a flexible deployment of business
rules,” Expert Systems with Applications, Vol. 23 (4), pp. 385-394, 2002

[SAL93] Salzgeber, M. J., et al, “Managing Uncertainty in CLIPS: A System Level
Approach,” Proceedings of the 6th Florida Artificial Intelligence Research
Symposium, Florida AI Research Society, 1993

[SB75] Shortliffe, E.H. and Buchanan, B.G., “A model of inexact reasoning in
medicine,” Mathematical Biosciences, Vol.23, pp.351-379, 1975

[SBA04] Shamsfard, Mehrnoush and Barforoush, Ahmad Abdollahzadeh, “Learning
ontologies from natural language texts,” International Journal of Human-Computer
Studies, Vol 60, Issue 1, January 2004, pp 17-63.

[SCO03] Sharable Content Object Reference Model, Advanced Distributed Learning,
http://www.adlnet.org/index.cfm, 2003

[SF02] Souza, M.A.F. de and Ferreira, M.A.G.V., “Designing reusable rule-based
architectures with design patterns,” Expert Systems with Applications, Vol. 23 (4), pp.
395-403, 2002

[SG91] Shieh, S. W. and Gligor, V. D, “A pattern-oriented intrusion-detection model
and its applications,” in Proc. of IEEE Computer Society Symposium on Research in
Security and Privacy, pp 327 –342, 1991.

 142

[SG97] Shieh, S. P. and Gligor, V. D., “On a pattern-oriented model for intrusion
detection,” in Proc. of IEEE Transactions on Knowledge and Data Engineering,,
Volume 9, pp 661 -667, July-Aug. 1997.

[SM86] Stepp, R.E., and Michalski, R.S., "Conceptual Clustering: Inventing
Goal-Oriented Classifications of StructuredObjects", R. Michalski, J. Carbonell, and T.
Mitchell, Eds., Machine Learning: An A.I. Approach, Kaufmann, 1986.

[SOW00] Sowa, J.F., Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, 2000

[SOW84] Sowa, J.F., Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, 1984.

[STT99] Su, G. H. and Tseng, S. S. and Tsai, C. J. and Zheng, J. R, “Building an
object-oriented and individualized learning environment on the WWW,” 7th
International Conference on Computers in Education, 1999

[TAK02] Takeda, K., Packet Monster,
http://web.sfc.keio.ac.jp/~keiji/backup/ids/pakemon/index.html, 2002

[TL89] Thompson, K., and Langley, P., "Incremental Concept Formation with
Composite Objects", Proceedings of the 6thInt.Workshop on Machine Learning,
Cornell University. Morgan Kaufmann, 1989.

[TL91] Thompson, K. and Langley, P., “Concept formation in structured domains”, In
D. H. Fisher and M. Pazzani (Eds.), Concept Formation: Knowledge and Experience
in Unsupervised Learning, Chap. 5. Morgan Kaufmann Publishers, Inc. 127-161,
1991.

[TL+99] Tsai, J.J.P., Liu, A., Juan, E., and Sahay, A., “Knowledge-based software
architectures: acquisition, specification, and verification,” Knowledge and Data
Engineering, IEEE Transactions on , Volume: 11 Issue: 1 , Jan.-Feb. 1999, pp. 187
-201

[TSA02] Tsai, C.F., “Design and Implementation of New Object-Oriented Rule Base
Management System,” Master Thesis, Department of Computer and Information
Science, NCTU, 2002

[TT02] Tsai, Chang-Jiun and Tseng, S.S., “Building a CAL Expert System based upon
Two-phase Knowledge Acquisition,” Expert Systems with Applications, Vol. 22 (3),
pp. 235-248, 2002

[TTW99] Tsai, C. J. and Tseng, S. S. and Wu, Y. C., “A new architecture of

 143

objected-oriented rule base management system,” Proceeding of Int’l Conf. on
TOOLS 31, pp. 200-203, Nanjing, China, 1999

[TUL83] Tulving, E., “Elements of Episodic Memory,” Oxford: Oxford university
press, 1983

[TUL73] Tulving, E. and Thomson, D.M., “Encoding specificity and retrieval
processes in episodic memory,” Psychological Review, Vol.80, pp.352-373, 1973

[VAR01]M. Vargas-Vera et al., “Knowledge Extraction Using an Ontology-Based
Annotation Tool,” Workshop on Knowledge Markup & Semantic Annotation,ACM
Press, New York, 2001, pp. 5–12.

[VK98] Vigna, G.. and Kemmereer, R. A., “NetSTAT: A network-based intrusion
detection approach,” in Proc. of IEEE Computer Security Applications Conference,
pp25-34, 1998.

[VSV+01] Visser, U., Stuckenschmidt, H., Vögele, T. and Wache, H., “Enabling
Technologies for Interoperability”, Transactions in GIS, 2001.

[WON98] Wong, C.H., GA-Based Knowledge Integration, Ph. D. Dissertation,
Department of Computer and Information Science, National Chiao Tung University,
1998

[WOR03] Wordnet, “WordNet Homepage,” cognitive science laboratory, priceton
university, http://www.cogsci.princeton.edu/~wn/, 2003

[WU00] Wu, X., “Knowledge object modeling,” IEEE Transactions on System. Man,
and Cybernetics—Part a: Systems and Humans, Vol.30, NO.2, 2000

[WU99] Wu, Y.C., “An Approach to Object-oriented Rule Base Management
System,” master thesis, Department of Computer and Information Science, National
Chiao Tung University, 1999

[WVV+01] Wache, H., Vgele, T., Visser, U., Stuckenschmidt, H., Schuster, G.,
Neumann, H., and Hbner, S., “Ontology-based integration of information - a survey of
existing approaches”, Proceedings of the Workshop Ontologies and Information
Sharing, IJCAI, 2001

[WW99] Webb, G. and Wells, J., “An Experimental Evaluation of Integrating

Machine Learning with Knowledge Acquisition,” Machine Learning, vol. 35, no. 1,

1999, pp. 5–23.

 144

Index

Abstraction, 27
Acquire, 37
Behavior Clustering, 74
Behavior Clustering Algorithm, 75
CAL, 108
Certainty-factor, 36
CF, 36
cognitive psychologist, 46
Computer Assisted Learning, 108
Coretech Inc, 98
DAML+OIL, 97
Data Mining, 19
DRAMA, 98
DRAMA Knowledge Extractor, 99
DRAMA Rule Editor, 99
Expert System, 23
expertise, 27
Extension-of, 39
greedy growth, 93
Greedy Growth, 135
Inter-cluster Semantic Clustering
Criterion, 79, 85
Intra-Cluster Semantic Clustering
Criterion, 79, 85
Intrusion Detection Knowledge
Acquisition System, 118
Intrusion Detection Knowledge Bases
Fusion System, 118
Intrusion Detection Knowledge Mining
System, 118
Java, 104
KC, 34
KDDCUP, 132
Knowledge Acquisition, 19, 51
Knowledge and Data Engineering

Laboratory, 98
Knowledge Class, 34
Knowledge Engineering, 18
knowledge fusion, 79
Knowledge Management, 23
Learning, 29
Learning Content Management System,
109
Learning Management System, 113
LMS, 113
MDE, 121
Meta Detection Engine, 121
Modularity, 27
Network Intrusion Detection Expert
System, 117
network packet, 131
New Object-oriented Rule Base
Platform, iii, 12, 24
New Object-oriented Rule Model, 32
NID-ES, 117
NORBP, 24
NORM, 32
Object-Oriented, 16
ONAD, 121
Online Network Analyzer/Detector,
121
Ontology, 20
Ontology Construction Phase, 95
Pakemon, 105
Pattern Explanation, 77
Pattern Explanation Phase, 66
Preprocessing Phase, 66
Procedural knowledge, 46
Pseudo Rule, 90
psychology, 28

 145

Reference, 38
Refinement, 50
Relationship Graph, 80
Relationship Graph Construction
Algorithm, 89
Relationship Graph Partitioning
Algorithm, 93
Renumber Sort Algorithm, 68
Reusability, 27
RTE, 113
rule, 35
Runtime Time Environment, 113
SCORM, 111
Sequential Pattern Mining, 76
Sequential Pattern Mining Algorithm,
76

Sharability, 28
Shared Vocabulary Ontology and
Semantic Distance Function, 90
Snort, 105
Strategic knowledge, 46
Structural Succinctness Criterion, 79,
84
TFN, 124
Tribal Flood Network, 124
Trigger, 37
Two-Layer Network Intrusion
Detection System, 118
Two-Layer Pattern Discovering Phase,
66, 73
Uncertainty reasoning, 28
weight, 36

