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Abstract:  Hydrologic model parameters obtained from regional regression equations are subject 
to uncertainty. Consequently, hydrologic model outputs based on the stochastic parameters are 
random. This paper presents a systematic analysis of uncertainty associated with the two parame- 
ters, N and K, in Nash's IUH model from different regional regression equations. The uncertainty 
features associated with N and K are further incorporated to assess the uncertainty of the resulting 
IUH. Numerical results indicate that uncertainty of N and K from the regionM regression equations 
are too significant to be ignored. 
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1 U n c e r t a i n t i e s  in regional regression e q u a t i o n s  

In hydrologic and hydraulic analysis and design, system responses are often described 
by empirical equations such as equation (1) in Part  1 of the accompanying paper 
(Tung et al., 1995). Due to the fact that  model parameters  0 's  are es t imated from 
limited amount  of data,  they are subject  to sampling errors. Furthermore,  due to 
lack of perfect fit between the observed system responses and modeled responses, the 
empirical models are also subject  to model  uncertainty represented by the error term 
E. Detail discussions on the presence of uncertainties in an empirical equation are 
given by Yeh and Tung (1993) and Tung (1994). 

Suppose that  parameters  0 's  and E in equation (1) are est imated involving uncer- 
ta inty and they are t rea ted  as random variables. Furthermore,  assume that  their first 
two moments  (including their covariance) are quantified. Then, by the f irsborder ap- 
proximation (Mays arid Tung, 1992; Tung and Yen, 1993), the mean and variance of 
hydrologic response y for a given basin characteristics x0 can be est imated,  respec- 
tively, by 

E(ylx0)  ~ g(#o]x0) + #z (32) 
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Var(y0fx0) ~ Vg(p01x0) t C(0)Vg(#0lx0 + a 2 (33) 

in which P~0 and ~e are vectors of means for the stocha~stic model parameters 0's 
and the model error term, respectively; Vg(~01xo ) is a gradient vector measuring 
the sensitivity of model response to the unit change in model parameter, that is, 
Vg(~01x0 ) = [c)g/00q], evaluated at ~0; C(0) is the covarianee matrix of stochastic 
model parameters; 0"~ = variance of the model error term. 

When equation (1) can be expressed as equation (18a), equation (32) becomes 
equation (4a) and equation (33) reduces to 

2 Var(yoI xo) ~ Vg(P~blXo) t C(b)Vg("ulxo) + 0"e 

2 (34@ : x~ C(b)xo  + 0"~ 

: 0"211 -~ x ; ( X t x ) - l x o ]  ( 3 4 b )  

which is identical to equation (4b) in Part 1. 
It should be pointed out that, in the above quantification of uncertainty associated 

with the dependent variable of a regional regression equation, only the parameter and 
model uncertainties are considered while the independent variables are considered free 
of errors. This treatment is consistent with the classical regression analysis by which 
only the dependent variable is considered as random variable. If the uncertainties 
associated with the independent variables are to be considered, special treatments in 
regression analysis are required. Alternatively, a practical way is to apply methods 
such as first-order variance estimation method or probabilistic point estimation pro- 
cedures to regional regression models by which model inputs, parameters, and model 
error term are all treated as random variables. Presently, this study limits its scope 
of quantifying uncertainties associated with hydrologic regional equations in the clas- 
sical sense and demonstrates how the information provided by regression analysis can 
be directly utilized. 

Note that the derived regional regression equations in Part 1 provide estimations of 
means, standard deviations, and correlation coefficient of N and K in the log-space, 
namely, #lnN, 0"1nN, #lnK, 0-INK and PlnN,lnK" Under the normality condition for ln(N) 
and In(K) as shown in Part 1, the statistical moments of N and K in the original space 
can be analytically derived. Without making any parametric assumptions, the mean 
and variance of N and K in the original space can be approximated by methods such 
as first-order variance estimation technique (Tung and Yen, 1993). 

Using the analytical approach assuming bivariate log-normal distribution for N and 
K, the means and variances of N and K can be computed by the following general 
formulas as 

#x = exp #lnx + (35) 

2 2 ~x : #x [exp(cr~nx - 1)] (36) 

in which X can be N or K in the original space and In(X) be in(N) or In(K). The 
correlation coefficient of N and K in the original space can be computed as 

C plnN'InK°-InNO'Ir~K --  1 

RN,K = a N ~ K  (37) 
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in which f~N = O ' N / / - t N  and f~K = ErK/~tK are the coefficients of variation of N and K, 
respectively. 

2 Asses smen t  of  unce r t a in t i e s  assoc ia ted  wi th  regional ized N a s h ' s  I U H  pa- 
r a m e t e r s  

2.1 Regionalized Nash 's IUII parameters from univariate regression (UVR) 

For a selected watershed with known basin characteristics, x0 = (area, L¢~, length, 
Mope), the means of predicted in(N) and ln(K) can be estimated based on the regres- 
sion coefficients in Table 4. The variances associated with the predicted ln(N) and 
ln(K) can be estimated by either equations (343-b). By equation (343) the covari- 
ance matrix of estimated regression coefficients for each regional regression equation 
is used. More specifically, the variances of ln(N) and ln(K) associated with a given 
basin characteristic x0, respectively, are 

~r~n(N0) Vat  [ ln(N0) lxo]  = e,.~ = X~,lnNC(blnN)XO,lnK q- 0 .2 (38) 

~2 Var [ln(Ko)Ixo] = = x0,1.KC(bl,K)Xo,l~ K + 0.2 (39) 111( K0 ) ~lnK 

in which X0,L~N and x0,hz are, respectively, the vectors of basin characteristics in the 
derived regional equations for predicting ln(N) and ln(K); C(bh~x) is the covariance 
matrix associated with bL~x); and o'~ is the standard error of estimate for the corre- 
sponding regionM equation. The elements in xo,t~x should correspond to the derived 
regional equation. The regression coefficients bh~N, bh~K, the model error ~r~, and the 
covariance matrices for bt~N and bh~K from the UVR are provided by most statistical 
packages. 

Using equation (34b), the matrix (XtX) -1 associated with each derived regional 
equation has to be calculated and the variances corresponding to the predicted ln(N) 
and ln(K) can be calculated as 

2 2 [1+  t ~ -1 ] ~(~o),~v~ = ~ ,o~ ,~w Xo,,.~ ( x ~ x ~ )  xo ,~  (40) 

~(~0),uvR = ~,.K,.vR 1 + Xo,~ (X~X~K)  Xo,~K (41) 

Using the conventional univariate regression, UVR0, the correlation between the 
residuals of ln(N) and ln(K) is not considered. As an approximation, the sample cor- 
relation between In(N) and In(K) can be used to account for the correlation between 
the predicted model parameters. Based on Table 3(b) in Part 1, a value of PlnN,lnK 
= -0.753 can be used and the covariance between the predicted model parameters is 
obtained as 

Coy [ln(No),ln(K0)] = -0.753 ae,o(~o),uvRere,o(~o),uv a . (42) 

Based on the derived statistical moments of ln(N) and ln(K) from the regional equa- 
tions, the means and variances of N and K can be computed by equations (35)- (37) .  

2.2 Regionalized ?Cash 's IUH parameters from multivariate regression (MVR) 

By the multivariate regression framework, the computations of means and variances 
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of in(N) and in(K) are similar to those described for the UVR. Unlike the. univariate 
case, the correlation between the residuals of in(N) and in(K) is used in equation (13) 
for computing the covariance of predicted model parameters. Furthermore, because 
the multivariate regression model contains the same independent variables for differ- 
ent dependent variables, the terms (XtX) -a in equations (40) and (41) are identical. 

More specifically, for multivariate regression with intercept (MVRW), the vector of 
basin characteristics involved in the derived regional equations for both In(N) and 
ln(K), referring to Table 4 in Part 1, is X0,MVaW~ = [1, In(Area), ln(L~), In(Slope), 
ln2(Area), ln2(Slope)]. The variances associated with In(N) and in(K) can be made 
as 

O'2n(N0),MVRW e~°~,MVaW L1 + X0,MVaW (X X)MVa w X0,MVaW (43) 
J 

2 [1 t t -1 ] 
O'~rt(Ko),MVRW : O'GInK,MVR w @ X0,MVRW ( X  X)MVR w X0,MVRW (44) 

The covariance between the predicted In(N) and ln(K), according to Table 4, can be 
estimated by 

Cov [ln(N0),ln(Ko)] = -0.77796 ITEIn(N0),MVRWO'Eln(Ko),MVI:gW (45) 

Similarly, for multivariate regression without intercept (MVRWO), the vector of 
basin characteristics used in the derived regionaJ equations for both In(N) and ln(K) 
is X~,MVRW o = [In(area), ln(L¢~), In(Slope), ln2(area), ln2(Stope)]. The computation 
of the variances associated with ln(N) and In(K) and their covariance can be made in 
the same way as equations (43)-(45) using the matrix XtX) -1, the standard errors, 
and correlation coefficient provided by the statistical package. 

2.3 Regionalized Nash's IUH parameters from seemingly unrelated regression (SUR) 

According to Table 4 in Part 1, the basin characteristics used in the derived regional 
equations for IUH parameters by the SUR are 

X0,1mN,SURt ~--- [1, in(Area) ln(L~), In(Slope), lnZ(Area), ln2(Slope)] 

x0,1~K,s~j a t  = [In(Area), ln(Lc~), In(Slope), ln2(Area), ln2(Slope)] 

Based on equation (14b), the covariance matrix of predicted in(N) and ln(K) can be 
estimated as 

[ C~No,SU R 2 Coy(inN0 SUR, lnKo sua) ] , , 

C(lnN0,1nKo)sva = [ Cov(lnN0 sua, lnK0 sua) a 2 
, , lnK0,SUR 

t XlnN,SURXlnN,SuRC (blnN,SUR ' blnK,SUR)XlnK,SU R 

X~nK,suRC(blnK,SUR, blnN,SUP~) X t h~K,SUaXlnK,suRC (blnN,SUa, blnK,SUR)XlnK,SUa 

P~InN ,SUB. ,~lnK ,SUR O" ~InN,SUR O'~lnK ,SUR 0-2 ~lnt(,SUR 
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in which C(blnN,SUR, blnN,SUR), is a 6 x 6  covaxiance matrix of estimated regression 
coefficients for ln(N), C(btnN,Sun,bh~K,sua) is a 6x5 covariance matrix between the 
estimated regression coefficients for in(N) and ln(K), C(blnK,SUa, bh~K,SUR) is a 5 X5 
covariance matrix of estimated regression coefficients for In(K), ~rh~N,SUR and O'h~Z,sua 
are the standard errors of estimate associated with the regional equations for ln(N) 
and ln(K), respectively, and PelnN,elnZ is the correlation coefficient between the resid- 
uals of ln(N) and ln(g). 

3 Assessment  of  unce r t a in ty  in a regionalized uni t  hydrograph  

From equations (15) and (16), the Nash's IUH ordinates, U(t), and those of the corre- 
sponding DUH ordinates, Urn, axe functions of model parameters N and K. However, 
the values of model parameters, N and K, estimated from the regional regression 
equations for a given watershed should only be regarded as nominal and are inher- 
ently subject to uncertainties. These uncertainties, through equations (15) or (16), 
will be transmitted to the resulting UH ordinates. Hence, the derived IUH and DUH 
for a watershed involve uncertainty. The presence of uncertainty in UH can be incor- 
porated in reliability analysis of hydraulic structures as shown by Yeh et al. (1993) 
and Zhao et al. (1995). 

Since the same stochastic model parameters, namely, N and K, are used to deter- 
mine the UH by equation (15) or (16), the UH ordinates at different times are not 
independent but correlated. Due to the nonlinear relationship between the UH ordi- 
nates and the model parameters, analytical derivations of the joint probability density 
function for the UH ordinates is practically impossible. As a practical alternative, 
this study focuses on estimating the moments of UH ordinates and the correlation 
among them. 

3.i Methods of uncertainty analysis 

For a given watershed, several methods, based on the statistical information of N 
and K, can be applied to estimate the statistical moments of Nash's IUH ordinates 
and those of the corresponding DUH (Tung and Yen, 1993). Although the first-order 
variance method is frequently used in uncertainty analysis, it is less attractive in this 
study for the following reasons: (1) great degree of nonlinearity of Nash's IUH model; 
(2) rather large variances associated with the regionalized model parameter estima- 
tors; and (3) requirement of computing derivatives of u(t) which is a cumbersome 
exercise. 

For the above reason, two probabilistic point-estimate (PE) methods, namely, 
Rosenblueth's method and Haxr's method were applied. The PE methods evaluate 
uncertainty of a model output subject to stochastic model parameters by computing 
the model's responses at specified points in the parameter space. Therefore, proba- 
bilistic PE methods do not require computations of derivatives of U(t) with respect 
to N and K. By a probabilistic PE method, proper candidate points in the parameter 
space for function evaluations are selected to preserve the probabilistic characteris- 
tics of stochastic parameters. The general consideration is to preserve moments of 
stochastic model parameters. However, the required input moments vary among prob- 
abilistic PE algorithms. It has been shown by Karmeshu and Laxa-Rosano (1987) 
that the first-order variance method is a special case of probabilistic PE methods 
when the uncertainty of stochastic parameters are small. 
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3.1.1 Rosenblueth 's  Point Est imation Method - In 1975, Rosenblueth proposed a 
probabil ist ic PE algori thm to deal with uncertainty analysis of a model involving 
symmetric  stochastic parameters .  It was later extended to handle non-symmetric  
variables (Rosenblueth 1981). The fundamental  principle of the method is to deter- 
mine the points for model evaluation in the parameter  space in such a manner  that  
the first three stat is t ical  moments of each individual stochastic parameter  are pre- 
served. The locations of the two points, x+ and x_, and the corresponding probabil i ty  
masses, p+ and p_, are obtained by solving 

p + + p _  = i 

p + z + - p _ z _  = #z = 0 

2 2 p+z+--p_z 2_ = cr := i 

p+z~_ - p_z a - = "7 (47) 

in which z_ = Ix_ - #1/o% z+ = x+ - #l/~r, and -/is the skew coefficient of the random 
variable X. The four unknowns in equation (47) can be obtained as 

z+=~+ 

z_ == Z+--% 

Z_ 
p+ -- 

z++z_ 

p_ = l - p +  (48) 

Once the two points in the standardized space are obtMned, the corresponding points 
in the original space can be respectively determined from 

x_ ---- #--Z_O" 

x+ = # + z + ~  (49) 

For a mult ivariate  model involving n stochastically correlated parameters,  
W = g(X) = g(Xt,  X2, ..., X,) ,  the two-point representations for each of the variable 
are computed and permuted to form the 2 n points in the parameter  space for model  
evaluations, Hence, the moments about the origin of model output ,  W, can be esti- 
mated  as 

~W,m = E ( w m )  ~ E "" " E wm ' ' '" P(al,...,6,) (61,..,,~°) (50) 
6~=+,- 5n=+,- 

in which subscript,  5i, I = l ~ n ,  is a sign indicator and can only be + or - represent- 
ing the model  parameter  Xi having the value of xi+ or xi_, respectively, as the two 
points locations obtained in the univariate case; W(6~,...,s~) is the corresponding model 
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output value evaluated at the selected point. If the stochastic model parameters are 
independent, the weighing factor, p(:l ...,~,), is simply the product of the marginal 
probability masses from the univaxiate case. When correlation among the stochastic 
model parameters exists, a correction term is added to the product as 

P(~'"'"a') = H Pi, al + y ~  (~i(~j&ij (51) 
i=1 i=1 k j = i + l  / 

in which Pi+ and pi- represent the probability masses at point locations xi+ and xi-, 
respectively; aij is determined as 

pij/2 n 
(52) 

where Pij is the correlatipn coefficient between stochastic model parameters Xl and 
Xj. The m-th order central moment of W, #w,m, can be obtained from the non-central 

! moments, #w,m, by 

in 

P W , m  : ,~_ 1,-- ) i ~ / ' tW) ~ W , m - - i  (53) 
i=0  

where C~=m!/[I!(m-I)!], a binomial coefficient and #w=E(W). 
To yield each point estimate for the model output, the model W(X) must be eval- 

uated once. From equation (50), one realizes that 2 ~ model evaluations are required 
for a model involving n stochastic model parameters. As the number of stochastic 
model parameters increasing, Rosenbtueth's algorithm becomes computational less 
attractive. 

3.1.2 Harr's Point Estimation Method - rib circumvent the potential computational 
disadvantage of Rosenblueth's algorithm, an alternative probabilistic PE method was 
proposed by Harr (1989). Harr's algorithm ignores the skewness of the variables and, 
therefore, is theoretically appropriate for treating stochastic variables having normal 
distributions. 

By Harr's algorithm, a hypersphere with radius v ~  centered at the origin in 
the standardized parameter space is constructed for a model involving n correlated 
stochastic model parameters. The points for model evaluation are selected at the 
intersections of the hypersphere and the eigenvectors of the correlation matrix of the 
stochastic model parameters resulting in two intersections on each eigenvector. For 
problems involving n stochastic model parameters, the number of total points se- 
lected for model evaluations is 2n. Thus, the amount of computations using Harr's 
algorithm is significantly less than Rosenblueth's algorithm as n increases. To calcu- 
late the statistical moments of model output, the point estimates are weighted by the 
eigenvalues associated with the correlation matrix. Harr's probabilistic PE algorithm 
is summarized as the following: 

1. The correlation matrix of the stochastic model parameters, Rx,  is decomposed 
a s  

R x  - V L V  t (54) 
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where V = [vl, v2< ' - ,  vn] is the eigenvector matrix with Vl, v2,-.  ' , Via being the 
column vectors of the eigenvectors; L = diag(11, t 2 , - " ,  An) is the corresponding 
diagonal eigenvalue matrix with 11 ,12 , ' - ' ,  An being the eigenvalues. 

2. Along each eigenvector in the standardized parameter space, the coordinates of 
two intersection points on the hypersphere with a radius of x/if, centered at the 
origin, is determined as 

zl i  = -t-vfff vj, i = 1 , 2 , . . . , n  (55) 

where zi+ and zi- is the column vectors containing the coordinates of two in- 
tersection points along the t-th eigenvector, vi, in the standardized parameter 
space. Then, the coordinates of the 2n intersection points in the originM param- 
eter space are obtained as 

xi~ = tt q- D1/2zi±, i = 1, 2 , . . . , n  (56) 

where x is the column vector containing the coordinates of the intersection points 
in the original parameter space; tt is the vector of the expected values of stochas- 
tic model parameters; and D 1/2 is the diagonal matrix containing the standard 
deviations of the stochastic model parameters. 

3. Based on the two points selected along each eigenvector, compute the corre- 
sponding model output values wi± = g(xi+) for I=1 to n. 

4. The m-th order moment about the origin for the model output can be computed 
a s  

Aiwm 
, = E ( w  TM) = _ i=1 ( 5 7 )  #W,ra 

i = 1  

where 
i n  Igt wi+ + wi_ 

w~ -- 
2 

[[?hen, the central moments can be obtained by equation (53). 

( 5 s )  

3.2 Assessment of uncertainties of regionalized unit hydrograph 

The stochastic model parameters involved in the determination of UH are N and K 
whose statistical characteristics can be obtained from the regional regression equations 
as illustrated in Section 3.1. Therefore, referring to the above two PE methods, n=2 
and the model W(X)  is the IUH, U(tlN,K), by equation (15) or the DUH, Um(N,K), 
by equation (16). 

For a given watershed with known basin characteristics, depending on the regres- 
sion procedure employed, the means and variances of N and K, and their correlation 
coefficient p(N,K) can be obtained from the regional regression equations. Then, 
from the two PE algorithms, four points in the N-K parameter space are chosen for 
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computing the IUH and/or DUH ordinates. According to equation (50) for Rosen- 
blueth's approach or equation (57) for Harr's algorithm, the means and variances of 
U(t) and Um can be computed. 

To compute the correlation coetficients among ordinates in a IUH, the probabilistic 
PE methods can be applied to compute the expectation of the following model 

W = g(N,K) ---- U ( t ) U ( t ' )  -- 1 ( t t " ~  N-i - ~ - ~  t' 
K2F2(N ) \ K 2 ]  e x , t  ¢ (59) 

in which t and t t represent different time instances. Once the expectation of U(t)U(t') 
is obtained~ the covariance and correlation coefficient of IUH ordinates at different 
times can be computed, respectively, as 

Cov[U(t),U(t ')]  = E[U(t)U(t')] -E[U(t)]EU(t ' ) ]  (60) 

and 

p[u( t ) ,u( t ' ) ]  = Cov[U(t) ,U(t ' )]  (61) 
~ru(t)~u(t,) 

in which E[U(t)] and erc(t) are the mean and standard deviation of U(t), respectively. 
Similarly, to compute the correlation coefficient among ordinates of a DUH of a 

specified duration, the expectation of UmUm, for m~m.', is calculated by the PE 
methods with Um computed by equation (16). Then, the covariance and correlation 
coefficient of Um and Urn, can be obtained by equations (60) and (61), with U(t) and 
U(t') replaced by Um and Urn,, respectively. 

4 Appl i ca t ion  

To illustrate the application of the two probabilistic PE methods to assess the uncer- 
tainty features of a IUH and DUH from a regional regression equations, a watershed 
was selected for which the uncertainties associated with its regional IUH and DUH 
were obtained. In this application, the results of uncertainty analysis affected by the 
three regional regression analysis procedures and the two PE methods were examined. 
The watershed selected in this application is the portion of Tan-Shui River upstream 
of Jei-Shou Bridge. The watershed characteristics are listed in Table 1 in Part 1. 

Statistical moments of in(N) and ln(K) from the various regional regression equa- 
tions are shown in Table 7. The UVR0 and UVR1 have the identical values for the 
means and standard deviations of ln(N) arid In(K) except that UVR1 considers the 
sample correlation between the two parameters in the log-space. The statistical mo- 
ments of N and K in their original space can be obtained by equations (35)-(37) and 
are tabulated in Table 7. 

It is interesting to note that the values of N and K of the four points selected by the 
two probabilistic PE methods for uncertainty assessment of IUH and DUH as shown 
in Table 8. When N and K are treated as bivariate normal variables as in UVR1, 
MVRW, MVRWO, and SUR, the four points selected by Harr's and Rosenblueth's 
methods for uncertainty analysis are identical. Under the UVR0 in which N and K 
are considered as independent, the four points selected by the two PE methods are 
different with Rosenblueth's method giving its points in a narrower range. Under the 
analytical assumptions of lognormal distributions for N and K, the selected points by 
the two PE methods are different because primarily Rosenblueth's method considers 
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Table 7. Statistical moments of N and K for Tan-Shui watershed at aei-Shou Bridge from different 
regional equations. 

~lnN O'lnN ~InK (::rinK fllnN,lnK #N 0*N #K O'K flN,K 

UVRO 1.072 0.4322 0.5792 0.6035 0.0000 3.206 1.453 2 .141 1.419 0.0000 
UVR1 1.072 0.4322 0.5792 0.6035 -0.702 3.206 1.453 2 .141 1.419 -0.557 
MVRW 1.072 0,4322 0.5502 0.6327 -0.780 3.206 1.453 2 .141 1 .419 -0.604 
MVRWO 0.875 0.4144 0.7081 0.5954 -0.782 2 .613 1.131 2.424 1.581 -0 .622 
SUR 0.988 0.4184 0.7081 0.5954 -0.756 2 .931 1 .282 2.424 1 .581 -0.602 

Table 8. Points used in N and K parameter space by two PE methods for assessing IUH uncer- 
tainties. 

Point #1 Point #2 Point #3 Point #4 
(N,K) (N,K) (N,K) (N,K) 

UVRO/H (3.206, 4.148) (3.206, 0.134 
UVRO/R (2.465, 1.607) (6.056, 1.607 

UVRI/H (4.658, 0.722) (1.753, 3.560 
UVRI/R (2.465, 1.607) (6.056, 1.607 

MVRW/H (4.658, 0.632) (1.753, 3.603 
MVRW/R (2.465, 1.588) (6.056, 1.588 

(5.260, 2.141 
(2.465, 5.911 

(4.658, 3.560 
(2.465, 5.911 

(4.658, 3.603 
(2.465, 6.287 

(1.151, 2.141) 
(6.056, 5.911) 

(1.753, 0.722) 
(6.056, 5.911) 

(1.753, 0.632) 
(6.056, 6,287) 

MVRWO/H (3.744, 0.843) (1.482, 4.005 (3.744, 4.005 (1.482, 0.843) 
MVRWO/R (2.019, 1.820) (4.767, 1.820 (2.019, 6.560 (4.767, 6.560) 

SUR/H (4,213, 0.843) (1.649, 4.005 (4.213, 4.005 (1.649, 0.843) 
SUR/R (2.262, 1 .820)  (5.389, 1.820 (2.262, 6.560 (5.389, 6.560) 

Note: H = Harr's PE method is used for estimating moments of IUH 
R = Rosenblueth's PE method is used for estimating moments of IUH 
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the skewness of N and K whereas Harfs algorithm does not. Although Rosenblueth's 
method selects the four identical points for UVR0 and UVR1, the weighting functions 
in equation (51) for computing the moments are different. Therefore, the resulting 
mean and standard deviation of IUH and DUH will not be the same. 

In the following discussions, illustrations are made using the IUH because the re- 
sults for the DUH are similar. The means and standard deviations of IUH ordinates 
by the two PE methods with N and K obtained from different regression procedures 
are shown in Figures 2 and 5. Based on these figures, comparisons were made to 
evaluate the differences in the resulting IUHs by different methods under various con- 
siderations. 

4.1 Comparison of UH's with parameters from different regional regression equations 

Figures 2(a) and 2(b), respectively, are the means and standard deviations of UH 
obtained by Harr's PE method with N and K estimated from various regional re- 
gression equations assuming that N and K have a bivariate log-normal distribution. 
As can be seen, the mean IUH and the associated standard deviation obtained from 
the conventional univariate regression (UVR0), assuming independence between N 
and K, are quite different from those UHs considering their correlation. By Harr's 
method, consideration of correlation between N and K results in higher mean peak 
discharge for the IUI-I. Among the three regional regression equations that consider 
ON,K, multivariate regression with intercept (MVRW) yields the highest peak dis- 
charge, followed by multivariate regression without intercept (MVRWO). Regional 
equations for N and K developed by the seemingly unrelated regression (SUR) results 
in a lower peak discharge for this test case. As for the associated standard deviation, 
the MVRWO, overall speaking, yields the lowest standard deviation than the other 
three regression equations considering correlation in N and K. The standard devi- 
ation of the IUH ordinates computed by Harr's algorithm shows a bimodal nature 
with N and K estimated from UVR1, MVRWO, and SUR during the earlier part of 
the IUH. 

Figures 3(a)-(b) are similar to those in Figures 2(a)-(b) in that Rosenblueth's 
method were used to calculate the mean and-standard deviation of resulting IUHs. 
From Figure 3(a) one observes that the shape of mean IUHs for all regional regres- 
sion equations are similar. The mean and standard deviation of the resulting IUHs 
at peak discharge by Rosenblueth's algorithm is about 1-1.5 cms/mm smaller than 
those obtained by Harr's algorithm. The UVR0, in contrast to Figure 2(a), results in 
the highest peak than all other regional equations which account for correlation in N 
and K. The relative position of IUHs among the four regional equations considering 
PN,K is about the same as those by Harr's method. There also exists greater similar- 
ity in temporal variation in standard deviation among different regional equations by 
Rosenblueth's method as shown in Figure 3(b). 

4.2 Comparison between two probabilistic point estimate methods 

For this particular test case, a glance over Figures 2-3 reveals that,, when PN,K is con- 
sidered in regional regression equations, Harr's method yields mean IUHs with higher 
peak discharge than those by Rosenblueth's. A more detailed comparison between 
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the two PE methods by the regional equations are shown in Figures 4-5. Except for 
the UVR0, Harr's method results in higher mean peak discharge and larger standard 
deviation for regional equations considering PN,K" 

The consistency in lower mean peak and standard deviation for the IUH by Rosen- 
blueth's method is attributed to the underlying difference in point selection for model 
evaluation between the two PE methods. Recall that Harr's method preserves only 
the first two moments of N and K implying that they are bivariate normM random 
variables. On the other hand, Rosenblueth's method preserves the first three moments 
of model parameters. Under the assumption that N and K are bivariate log-normal 
random variables, Rosenblueth's method could account for the positive-skewed nature 
of N and K marginally. The nonlinear relationship between the UH ordinates and the 
model parameters, along with the presence of correlation, makes the explanations of 
such behavior difficult. Based on the recent study by Chang et al. (1995), the abitity 
to incorporate the skew coefficients of involved random variables by Rosenblueth's 
method will improve the accuracy of uncertainty analysis. 

To improve the competitiveness of Harr's method in this particular application, 
the selection of points for model evaluations can be made in the log-transformed 
space in which both ln(N) and ln(K) are bivariate normal random variables. Under 
a bivariate standardized normal parameter space, both Harr's and Rosenblueth's 
methods will select four identical points for model evaluations and the skew coefficient 
of tognormal random variables in the original space can be implicitly accounted for. 
Due to different weights are used in computing the statistical moments of model 
response (see equations (50) and (57)), the resulting uncertainty features of model 
response computed by the two probabilistic PE methods will be different. However, 
the numerical experiences have indicated that the differences in estimated statistical 
moments between the two PE methods, when they are placed on the same common 
ground, will be negligible (Chang, 1994). 

5 S u m m a r y  and  conclusions 

Due to the existence of uncertainties in regional equations, the parameters N and K 
in Nash's model cannot be predicted with absolute certainty. Consequently, the IUH 
and DUH derived based on the uncertain N and K are also subject to uncertainty. 
Prom the regional regression study, relevant statistical information can be readily 
incorporated into the assessment of uncertainty associated with the IUH and DUH 
of a watershed under consideration. To quantify tile uncertainty features associated 
with the IUH and DUH by Nash's model, two probabilistic point estimate methods 
were applied and their relative performance compared. 

Results from the uncertainty analysis indicate that the effect of uncertainty in N 
and K from the regional equations on the uncertainty of IUH and DUH is significant 
and cannot be ignored. The correlations among the dependent variables in the re- 
gional regression equations may have profound influence on the results of uncertainty 
analysis and should be considered accordingly. This effect is clearly observed in this 
study which shows that, around the peak, the mean and the standard deviation of 
IUH obtained from the conventional univariate regression procedure is significantly 
higher. The consideration of correlation coefficient between N and K, which is neg- 
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ative, leads to lower mean peak discharge and standard deviation. Therefore, using 
an IUH without considering the correlation between N and K could lead to a conser- 
vative design of a hydraulic structure or over-estimation of failure probability of an 
existing structure. 

The paper demonstrates the applicability of two probabilistic point estimation 
methods to uncertainty analysis of hydrologic models. Rosenblueth's method has 
the theoretical advantage over ttarr 's for its ability to account for the skew coetIi- 
cients of involved random variables, which often leads to improving the accuracy of 
uncertainty analysis. On the other hand, Harr's method is more computationally vi- 
able to handle problems involving large number of random variables. To enhance the 
accuracy of Harr's method, one possible way is to transform the non-normal random 
variables to their equivalent normal spaces (Liu and Der Kiureghian, 1986; Chang et 
at., 1994) from which the selection of points for model evaluations is made. 

As a last note, the uncertainty analysis conducted herein considers only the pa- 
rameter and model uncertainties associated with regional regression equations. The 
main purpose is to illustrate how the information from a regression analysis can be 
readily incorporated and used to quantify uncertainty features of a dependent vari- 
able. In case one wishes to further consider the uncertainty of independent variables, 
then every terms in a regression model are random variables and the classical results 
such as equation (34b) is no longer appropriate. In this circumstance, one practical 
approach {s to apply an appropriate probabilistic point estimation method or other 
techniques to assess the uncertainty of the dependent variable. 

A c k n o w l e d g m e n t s  

The study was funded by the Agricultural Council of the Executive Yuan, Taiwan, 
Republic of China. The authors are grateful to Mr. Wen-Zhang Hu of the Agri- 
cultural Council for his support and encouragement. In addition, comments and 
criticisms by the two reviewers are greatly appreciated. 

R e f e r e n c e s  

Chang, C.-H. 1994: Incorporating information of non-normal distribution in uncertainty analysis 
of hydrosystems. Ph.D. Dissertation, Department of Civil Engineering, National Chiao-T'ang 
University, Hsinchu, Talwan, Republic of China. 166pp 

Chang, C.-tt.; Tung, Y.-K.; Yang, J.-C. 1994: Mote carlo simulation for correlated variables with 
marginal distributions. Journal of Hydraulic Engineering, ASCE 120(2), 313-331 

Chang, C.-H.; Tung, Y.-K.; Yang, J.-C. 1995: Evaluating performance of probabilistic point 
estimates methods. Journal of Mathematical Modelling 19(2), 95-105 

Harr, M.E. 1989: Probabilistic estimates for multivariate analyses. Applied Mathematical Mod- 
elling 13,313-318 

Karmeshu; Lara-Rosano, F. 1987: Modelling data uncertainty in growth forecasts. Applied Math- 
ematical Modelling 11, 62-68 

Liu, P.-L.; Der Kiureghian, A. 1986: Multivariate distribution models with prescribed marginals 
and covariances. Probabilistic Engineering Mechanics 1(2), 105-112 

Mays, L.W.; Tang, Y.K. 1992: Hydrosystems Engineering and Management, McGraw-Hill Book 
Company, New York, N.Y. 

Rosenblueth, E. 1975: Point estimates for probability moments. Proceedings, National Academy 
of Science 72(10), 3812-3814 

Rosenblueth, E. 1981: Two-point estimates in probabilities. Applied Mathematical Modelling 5, 
329-335 



192 

Tung, Y.K.; Yen, B.C. 1993: Some recent progress in uncertainty analysis for hydraulic design. 
In: Reliability and Uncertainty Analyses in Hydraulic Design, edited by B.C. Yen and Y.K. 
Tung. 1734. ASCE 

Tung, Y,K. 1994: Probabitistic hydraulic design: a next step to experimental hydraulics, d. of 
Hydraulic Research, IAHR 32(3), 323-336 

Tung, Y.K.; Yeh, K.C.; Yang, J.C. 1995: Regionalization of unit hydrograph parameters: 1. 
Comparison of regional regression methods. (Aceompanyingpaper under review) 

Yeh, K.C.; Tung, Y.K., 1993: Uncertainty and sensitivity of a pit migration model, d. of Hydraulic 
Engr., ASCE 119(2), 262-281 

Yeh, K.C,; Tung, Y.K; Yang, J.C.; Zhao, B. 1993: Uncertainty analysis of hydrologic models 
and its implications on reliability of hydraulic structures (2). Agricultural Council, Executive 
Yuan, Taiwan 

Zhao~ B.; Tung, Y.K,; Yeh, K.C.; "gang, J.,C. 1995: Reliability analysis of hydraulic structures 
considering unit hydrograph uncertainty. Journal of Stochastic Hydrology and Hydraulics 
(Accepted). 


