
Chapter 4 IPMP-X Software Reference

 In this chapter, we will describe IPMP-X Software Reference for its

implementation including a few key components. The major key components contain

Message Router, Tool Manager, Control Point and Tool Framework

 The IPMP-X Terminal Software is mostly developed by Craig A.Schutz and

based on IM1 system. IM1,the AHG on System Reference Software Implementation ,

is a group that is responsible for the development and integration of the MPEG-4

system software.

4.1 Building the Reference Software

The reference software codes are developed with Microsoft Visual C++. To build

the application, users could use Microsoft Visual Studio to open the workspace file

IM1.dsw under _WorkSpace directory. This will result in projects being opened. We

will compile projects to build the application.

To run the application, users need to take the following actions.

(1) Open the workspace IM1.dsw in the directory \IM1_Workspaces.

(2) To add the tool for the IPMP reference software program, the IPMP-X software

reference implementation will load the IPMP Tools present in the directory

\IM1\Debug on the basis of a string of bytes appended at the end of their DLL file

after these are built (add the command AppendBin.bat, refer to example

IPMP_MasterTool\AppendBin.bat). For more information on how to compose this

string of bytes have a look at IPMPServicesFull::CheckDllForTool method in the

file \IPMPXFull\IPMPXFull.cpp

(3) Select the necessary modules to build. The basic necessary modules contain

 35

 IM1_2D , Bifsenc,Mux ,IPMPXFull and your tool module.

(4) Edit the file \IM1_Registry\im1.reg . If is not present the necessary entry,(Ex :

“IPMPSystem =”IPMPFull.dll”), add and update your registry

(2) Copy the necessary decoder module from IM1\IM1Decoders*.dll to the the

IM1\Debug directory

(3) Prepare a multiplexed MPEG-4 IPMPX transport stream

The steps are as below:

1. Open the DOS window and change cd to the \IM1\Debug

2. Type BifsEnc(has created BifsEnc.exe in build module) IPMPX.txt

3. Type Mux(has created Mux.exe in build module) IPMPX.scr

4. After step 3 finishes, IPMPX.trif file is created.

file

Program

BIFS/OD Encoder

IM1-2D Player

TRIF
Multiplexer

*.txt
description of scene and

Object descriptor
commands

*.bif
BIFS file

*.od
OD stream

.mp4
TRIF format

Various Audiovisual
Stream such as *.h263

,*.g723 etc

*.scr

file

Program

BIFS/OD Encoder

IM1-2D Player

TRIF
Multiplexer

*.txt
description of scene and

Object descriptor
commands

*.bif
BIFS file

*.od
OD stream

.mp4
TRIF format

Various Audiovisual
Stream such as *.h263

,*.g723 etc

*.scr

 Figure 4-1 IM1 Development Environment

(4) Launch IM1-2D application

 36

4.2 Software Reference Architecture

Message Router Tool Manager

IM1 Terminal

Received IPMP Tool
Descriptor from bitstream

Parse IPMP Tool Descriptor,
possibly request IO streams from

terminal, ask TM to instantiate
tool at the given control point

Possible
thread

handling
input/output
and/or IPMP

Stream

Setup Input, Output, IPMP
Streams

Instantiate IPMP Tool,
maintain table

SetFilter()

SetupIPMPStream()

Give MediaStream
pointers of Input/Output,

and/or IPMP streams

Receive IPMP Tool List
from IOD

Parse IPMP Tool List,
resolve Alt list, Param

Desc, retrieve tools

Retrieve Tool from Tool
ES

Creat an IPMP Tool ES
decoder to handle Tool ES

ProcessIPMPTool
Descriptor()

ConnectTool()

ReceiveToolList
Descriptor()

CreatToolESDecoder()

Tool 's instance

MessageParser/
Routing

MessageParser

ReceiveMessage()

DisConnectTool()

Destroy IPMP Tool,
maintain table

GoNoGo()

SetTMPointer()

SetMRPointer()

ProcessOD()

ProcessESD() ReleaseFilter()

Figure 4-2 MPEG-4 with IPMP-X Terminal, [3]

 37

MPEG-4 IPMP Extension to IM1

T : Represents a component which uses a clock to control its operation

Service

FlexMux
ALManagerData Channel

Data Channel

Data Channel

Data Channel

Media Stream

Media Stream

IPMP Stream

Executive

Application

Decoder

BIFS Decoder Root Scene
Object

Media ObjectMedia Stream
T

Presenter(T)

OD Stream

IOD

IPMP Tool A

Retrieve Missing Tools

IPMP Tool B

Points from the object which instantiates the object pointed to

Shows the direction of data movement

Represents a component running as a separate threat

Represents a component which is a shared data structure

Represents new IPMP Extension additions
Represents an IPMP tool

Media Stream Decoder
Media Stream

T

Message Router

Tool Manager

Service
Provider

Figure 4-3 Architecture of IM1 with IPMP-X, [8]

The figure 4-1and figure 4-2 are supported by IM1.We can roughly understand

flow control of the architecture of IM1 with IPMP-X from Fig 4-1. We can find that it

is the multithread architecture(the symbol □ of this figure represents the thread).

We must point out here that IPMP-X Box including Message Router, Tool Manager ,

Tool is the same as the concept of the IPMP-X Specification we described in chapter

3.

Fig 4-1 emphasizes the implementation of IPMP-X Terminal supported by IM1.

We trace this reference code and describe it clearly in next section.

4.3 Description of the Key Components

 38

4.3.1 Instantiation of the IPMP System

The top level object of the IPMP-X DLL Instantiated into an IM1 terminal by the

following code :

static ZRegistry registry ("IPMPX\System");

m_pIPMPX= (IPMPSystem *)registry.CreateInstance("IPMPSystem", m_hIPMPX);

The pathname of an IPMPX DLL must be defined in the registry as the value of the

key [KEY_CURRENT_USER\Software\MPEG-4\Im1\IPMPX]

The IPMPX DLL must include the following code :

extern "C" IPMPSystem* CreateInstance ()

 {

 return new IPMPSystem

 }

4.3.2 The Description of the Message Router Implementation

The software reference implements the Message Router function use the many

polymorphism techniques of Object Orientated Language. The Message Router

interface is an abstract class that is instantiated by IPMPServicesFull object. We

highlight the class relationship of Message Router and interface of Message Router in

scheme 4A as below.

(1) Class Relationship of The Message Router

 IPMPX_Tool Tool A
 Tool B
IPMPTool_Interface MessageDistributor

 MR_Interface IPMPService

 39

(2) the Message Router Interface

The Message Router Interface is defined in class MR_Interface.

Scheme 4A:

class MR_Interface : public IPMPTool_Interface

{

public:

/*This constants enumerates the possible access permission of an Elementary Stream

*/

 enum ACCESS_PERMISSION

 {

 ALLOWED = 1, // terminal can proceed processing the stream

 DENIED = 2, // don't process and discard the stream

 PROTECTED = 3 //wait for a GO

 };

 virtual bool SetTMPointer(TM_Interface * tmPointer) = 0;

virtual bool ProcessObjectDescriptor(ObjectDescriptor* pOD) = 0;

 virtual bool RemoveObjectDescriptor(ObjectDescriptor* pOD) = 0;

 virtual bool ProcessIPMPDescriptor(IPMP_Descriptor* descriptor) =0;

virtual bool RemoveIPMPDescriptor(IPMP_Descriptor*descriptor)= 0;

ProcessESDescriptor(ES_Descriptor* pESD) = 0;

virtual bool RemoveESDescriptor(ES_Descriptor* pESD) = 0;

virtual bool SetUpIPMPStream(ObjectDescriptor *pOD,ES_Descriptor* pESD,

MediaStream* ipmpStream) = 0;

virtual bool RemoveIPMPStream(ES_Descriptor *pESD) = 0;

};

 After we have described about the class and interface of the Message Router, we
will discuss the implementation of Message Router. There are three key points for the
Message Router implementation in the Software Reference program.

(1) We know that class MR_Interface is an abstract class. It is instantiated by

IPMPServicesFull object. So,the Message Router interface function is

implemented by IPMPServicesFull object. The detailed content refers to the

Software Reference Program.

(2) After the InstanceTool() function is called by the Message Router to request a tool

 40

be instantiated, the Message Router may transfers IPMP information to these

tools.

(3) The Message Router transfers IPMP information.

Scheme 4B:

class IPMPTool_Interface

{

public:

 virtual bool ReceiveMessage(int size, unsigned char* message) = 0;

};

class MessageDistributor : public IPMPTool_Interface

{

public:

 …

 bool ReceiveMessage (ToolMessage * msg);

 ….

};

 class IPMPX_Tool : public IPMPTool_Interface

{…

 virtual bool ReceiveMessage(ToolMessage*) = 0;

 …

 }

 class IPMP_ToolA : public IPMPX_Tool

{

….

 // IPMPTool_Interface interface methods.

 bool ReceiveMessage(ToolMessage*);

 ….

 }

The ReceiveMessage(ToolMessage *msg) in scheme 4B that is defined in many

different classes. How does it work is decided by which object instantiates it. Its

parameter may carry various kinds of IPMP Information.

As below, the two different cases describe IPMP information to transfer either

 41

from the terminal to the tool or the too to the terminal on the software reference.

(1) m_MessageDistributor.ReceiveMessage(&msg):

The m_MessageDistributor.ReceiveMessage(&msg) indicates that the Message

Router will transfer IPMP Information from terminal to the specified tool. The

m_MessageDistibutor is instantiated by MessageDistributor object.

(2) m_pMRInterface->ReceiveMessage(&msg):

The m_pMRInterface->ReceiveMessage(&msg) indicates that the Message

Router will transfer IPMP Information from the specified tool to terminal. The m_

pMRInterface is instantiated by the specified tool object.

4.3.3 The Description of Tool Manager Implementation

The software reference implements the Tool Manager function using the many

polymorphism technique of Object Orientated Language. The Tool Manager interface

is an abstract class that is instantiated by IPMPServicesFull object. So, the Tool

Manager interface function is implemented by IPMPServicesFull object. The

condition is the same as the Message Router. We highlight the class relationship of the

Tool Manager and interface of Tool Manager in scheme 4C as below.

(1) Class Relationship for the Tool Manager

TM_Interface IPMPService IPMPServicesFull

 IPMPServicesTriv

(2) the Tool Manager Interface

The Tool Manager Interface is defined in the class TM_Interface

Scheme 4C:

class TM_Interface

{

public:

 42

virtual bool SetMRPointer(MR_Interface * tmPointer) = 0;

virtual bool DisconnectTool(void* toolPtr) = 0;

virtual void* ConnectTool(ES_Descriptor *pESD, PMPToolDescriptor* toolDescriptor) = 0;

virtual bool ReceiveToolES(MediaStream *tool_ES, ES_Descriptor *tool_ESD) = 0;

virtual bool ReceiveIPMP_ToolListDescriptor(IPMP_ToolListDescriptor* toolList) = 0;

};

After we have described about the class and interface of the Tool Manager in
scheme 4C, we will discuss the implementation of Tool Manager. There are two key
points for the Tool Manager implementation in the Software Reference program.

(1) The class TM_Interface is an abstract class. It is instantiated by

IPMPServicesFull object. The Tool Manager interface function is implemented

by IPMPServicesFull object.

(2) The following functions are defined in

.\Craig-IPMP\IPMPXFull\IPMPXFull.cpp

IPMPServicesFull::Parse_IPMPTool(..)

IPMPServicesFull::RetrieveMissingTool(..)

IPMPServicesFull::ReceiveIPMP_ToolListDescriptor()

IPMPServicesFull::ConnectTool(..)

These member functions are the major functions for the Tool Manager to

implement as IPMPX specification describes.

4.3.4 The Description of Control Point Implementation

Specifies the IPMP Control Point at which the IPMP Tool resides such that the

IPMP Tool knows where it must perform its module. The Software Reference creates

thread to implement the Control Point function that receives input stream and transfers

the stream to the specified tool. After the tool module is implemented, the Control Point

transfers the stream to next level. The next level may be the decoder or the composite

or others.

 43

We highlight the class relationship of the Control Point and interface of Control

Point as below.

(1) Class Relationship for Control Point

Filter ControlPointObject

IPMPTool_Interface IPMP_Tool IPMP_ToolA
IPMP_ToolB

(2) Control Point Interface

Scheme 4D:

class ControlPointObject : public Filter, public IPMPX_Tool

{

public:…

// Filter interface methods.

void Start ();

void Stop ();

virtual void SetInputStream (MediaStream *pStream){…}

void SetOutputStream (MediaStream *pStream){..}

MediaStream *GetInputStream () {..}

MediaStream *GetOutputStream () {..}

int GetOptimalOutputSize (int inputSize) { … }

// IPMPX_Tool interface methods

bool ReceiveMessage(ToolMessage*) {return false;}

bool ProcessData (..);

bool AddTool(..);

bool RemoveTool(..);

void SetControlPoint(){…}

SDLInt<8> GetControlPointCode(){…}

private: // Methods

….

};

After we have described about the class and interface of the Control Point in
scheme 4D, we will discuss the implementation of Control Point. There are three key
points for the Control Point implementation in the Software Reference program.

 44

(1) The Software Reference executes Control Point function in the thread way.

(2) ProcessData() may be instantiated by ControlPointObject or IPMP_ToolA,and

 which one is decided by the control flow of the currently execution.

(3) void ControlPointObject::Run()

It is responsible for the major work to reach control point function. The function

retrieves units from the input stream, passes them to the first tool in the tool sequence,

and dispatched the processed units to the output stream, till the input stream’s end is

exceeded

4.3.5 The Description of Tool Module Implementation

When this document was written, there was still no tool available in the reference

software to allow the embedding of IPMP elementary streams inside MPEG4 files. So,

currently, the Software Reference version is only considered the tool module

embedded in the terminal. We highlight the class relationship of the Tool Module and

interface of Tool Module in scheme 4E as below.

(1) Class Relationship for the Tool Module

IPMPTool_Interface IPMPX_Tool ToolA

ToolB

…..

(2) the Tool Module Interface

 45

Scheme 4F:

class IPMP_DummyTool : public IPMPX_Tool

{

 …// constructor and deconstructor

// IPMPTool_Interface interface methods.

bool ReceiveMessage(ToolMessage*);

// Interface methods added by IPMPX_Tool

bool ProcessData (…);

bool ProcessMessage (…);

private:

// Member data needed during tool functioning.

IPMPTool_Interface m_pMRInterface;

__int32 myContextID;

IPMP_Descriptor m_pMyIPMPDescriptor;

};

The Software Reference provides the tool framework for developers to develop

application programs. This framework is defined in

\Craig-IPMP\IPMP_DummyTool\IPMP_DummyTool.cpp. The tool framework is as

below. We only list the key parts and comments.

Scheme 4G:

bool IPMP_ToolA::ReceiveMessage(ToolMessage msg)

{ ……

// This function calls ProcessMessage() for processing IPMP message.

// The developer can modify this function such that it meets application requirements.

}

bool IPMP_ToolA::ProcessData (LPBYTE pInput, int nInputLength

 , DWORD dwTime)

{ …..

//This function receives media stream and passes the stream to Control Point object.

//The developer can modify this function such that it meets application requirements.

 46

}

bool IPMP_ToolA::ProcessMessage (ToolMessage* base

 , IPMP_Data_BaseClass * msg)

{

//The developer can add code to this function such that it meets application requirements.

 switch (msg->GetTag()){

 case(TAG_IPMP_Secure_Container):

 {

 return false;

 }

 …….

 case(TAG_User_Initialize):

 {

// The Software Reference uses this case such that the Tool Message can be transferred

to terminal .The below codes describes the message transferred to terminal. …

 Msg.receiver = 0x00;

 Msg.sender = myContextID;

 IPMP_CanProcess payload;

 payload.canProcess = true;

 Msg.IPMP_MessageFromBitstream += &payload;

 Msg.IPMP_MessageFromBitstream += &anotherPayload;

 m_pMRInterface->ReceiveMessage(&newMsg);

 return true;

 }

 }

 return false;

}

 47

