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The transmission technology for intelligent transportation systems can be typically classified into two

categories, namely, road-to-vehicle communication (RVC) and inter-vehicle communication (IVC). RVCs

perform the information communication service offer from road to vehicle whereas the IVCs perform

the information communication through vehicles. This work proposes quality of service (QoS)-aware

roadside base station assisted routing mechanisms to establish a routing path in IVC with the assistance

of roadside base station. A link failure prevention mechanism is employed to effectively construct

alternative routing path required by the volatile network topology in vehicular Ad hoc networks.

Besides, a bandwidth consumption predictor is presented to avoid dropping packets owing to

inadequate bandwidth during handoffs. A neural network with fast learning algorithm is adopted as the

core module for estimating the parameters used in the proposed schemes. Simulation results

demonstrate the effectiveness and feasibility of the proposed work.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the research on the intelligent transportation
systems (ITSs) has been progressing intensively. ITS uses informa-
tion communication technologies to connect ‘‘the person’’, ‘‘the
road’’, and ‘‘the vehicle’’ as one system. The transmission
technology for ITS can be typically classified into two categories,
i.e., road-to-vehicle communications (RVC) and inter-vehicle
communications (IVC). IVCs are achieved using effective routing
protocol that considers the specific characteristic of the road
information, relative car movements and application restriction.
The most important requirement is the quality of service (QoS),
especially the communication delay between the end-to-end and
the minimum consumption of network resources. Wireless mobile
Ad hoc network (MANET) technologies promise delivery of
network access area without the need of infrastructure, which is
required by other technologies. However, MANET technologies
cannot be directly applied to IVCs since the characteristics of
vehicle movement and relative speed of mobile nodes are
different from those in traditional Ad hoc network. There have
been several researches (Mesh Networks Inc., 2000; Cherry, 2003)
addressed on the construction of Ad hoc network among vehicles
in the early stage of development of MANETs. Recently, the usage
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of MANETs as a base technology in IVCs has gained more
popularity due to its potential applications, such as providing
support for intelligent transportation systems (ITS) and expedit-
ing Internet access in high ways.

It is well known that the major challenge for designing routing
protocols in MANETs is to find a path from the source to the
destination without any preconfigured information or regularly
varying link situations. The position-based routing becomes a
suitable candidate for vehicular Ad hoc networks (VANET)
because this kind of routing protocol depends only on the
geographic position information and the information can be
easily obtained by navigation systems, such as global position
system (GPS) (Maihofer and Eberhardt, 2004; Imielinski and
Navas, 1996). In addition, the dissemination of the network and
the road information can be more efficient if base station
allocated for RVCs can be arranged to participate in the
determination of management policy or routing path construction
in IVCs and RVCs.

This work presents roadside base station assisted routing
mechanisms, which are able to dynamically choose the routing
path through multi-hop vehicular Ad hoc networks or roadside
base station according to the current network conditions. Link
break and congestion indicator mechanisms are proposed to ease
the link break or congestion situation that might occur in IVCs.
Meanwhile, a bandwidth consumption predictor is presented to
estimate the consumed bandwidth for each roadside base station
in RVCs during the next period of time. Notably, an advanced
neural-network architecture that was recently introduced in
the literature, so-called fast learning neural networks (FLNNs)
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(Zhu et al., 2004), is employed to derive the numeric values for the
parameters needed in the above mentioned routing mechanisms.
Unlike traditional neural networks, the FLNNs not only produce
good generalization performance but also have real-time learning
and prediction capability. To the best of our knowledge, this work
is the first application of the FLNNs to the network routing
problems. The experimental results exhibit the feasibility and
practicality of our proposed work.

The rest of this paper is organized as follows. Section 2 gives a
brief overview of the IVCs and RVCs in the literature. Section 3
presents the proposed QoS-aware roadside base station assisted
routing mechanisms. The simulation results and analysis are given
in Section 4. Conclusion is made in Section 5.
2. Related work

The researches on IVCs can be roughly divided into three
categories: unicast, flooding, and diffusion in the literature.
Traditional Ad hoc network routing protocols (Füssler et al.,
2002) or position-based routing protocols (Mauve et al., 2001; Wu
et al., 2004) can be used to establish general unicast communica-
tion in a VANET. A service discovery mechanism is then
established to allow each node to obtain the needed information
(Festag et al., 2004; Morris et al., 2000). Nevertheless, the
overhead such as the latency and the diminished network
capacity caused by the service discovery mechanism and routing
table maintenance makes this method infeasible for most safety
critical applications.

The flooding and diffusion rely on the observation that the
importance of sensed information about a particular location
decreases with the distance to that location. Data is thus required
to be disseminated in the vicinity of its origin. This is the case for
most safety applications, but not for example infotainment
(Bogenberger et al., 2003) or environmental applications, where
all data comes from some remote site(s). Most IVC protocols
employ flooding to broadcast data, in which the performance
drops quickly as the number of nodes increases because each node
receives and broadcasts the message simultaneously and conten-
tions and collisions, broadcast storms and high bandwidth
consumption might occur (Ni et al., 1999). A so-called dedicated
omni-purpose inter-vehicle communication linkage protocol for
highway automation (DOLPHIN) (Tokuda et al., 2000) is an
example of IVC in this category. Selective flooding is used to
disseminate the information in the reverse direction of vehicle
movement. The nodes that broadcast the information are
reselected in every communication hop and would not have a
good performance for point-to-point communications. The GPS-
based message broadcasting (Sun et al., 2000) uses a better
broadcasting system, similar to the single cast routing protocol,
zone routing protocol (ZRP). It performs much better than
flooding based ones, but it still has routing overhead as long as
the forwarding nodes are selected in every hop and is not efficient
for point-to-point communications.

Korkmaz et al. (2006) proposed a cross-layer protocol using
clustering transmission (CVIA). They create single-hop vehicle
clusters and mitigate the hidden node problem by dividing road
into segments and controlling the active time of each segment.
However, the assumption of each vehicle on the road moves at a
fixed speed without considering the impact of mobility causes this
approach infeasible in the application of VANETs.

Unlike all of the solutions mentioned above, this work exploits
roadside base station assisted routing mechanisms that adapt to
the architecture of IVC/RVC and the specific characteristic of
VANETs, and tackles the unresolved issues mentioned in the above
brief discussions on the related work.
3. Roadside base station assisted routing mechanisms
for VANETs

3.1. Routing path construction

In this work, the robust communications in the VANETs are
established by constructing an effective routing path on which the
vehicles can transmit or receive their packet through IVC or RVC.
As shown in Fig. 1, the base station is employed to determine the
routing paths for the vehicles on the road segment that the base
station governs. When a vehicle enters the road segment and
submits a packet transmission request, the administrative base
station attempts to arrange a shortest routing path to the
destination for the packets via IVC if the traffic in IVC is not
congested. The IVC protocol adopted in this work is similar to the
approach taken in the AODV, in which an acknowledgment (ACK)
packet is sent back to the source node when the destination node
receives a packet in order to certify that each packet is
successfully delivered. In case no appropriate routing path can
be found in IVC, the administrative base station can grant the
vehicle’s request when there is enough free bandwidth to meet
the request’s minimum bandwidth requirement. Notably, the
reason for selecting AODV-like protocol in this work is that the
route discovery mechanism in a connection-oriented protocol,
such as AODV, precisely matches the bandwidth calculation
scheme and is suitable for bandwidth constrained routing. In
addition, AODV provides some minimal control to enable nodes to
specify quality of service parameters, namely maximal delay or
minimal bandwidth, that a route to a destination must satisfy
(Chen and Nahrstedt 1999).

The traffic transmitted in this work is classified as either real-
time traffic or non-real-time traffic. The freeable bandwidth for
the request of real-time traffic can be expressed by

Bwf ¼ Bwunused þ
X

i

ðBwi;curr � Bwi;minÞ � Bwe, (1)

where Bwunused is the unused bandwidth at the base station,
Bwi,curr is the bandwidth currently allocated for the non-real-time
traffic with index i, Bwi,min is the minimum bandwidth required
for the non-real-time traffic with index i, and Bwe is the
bandwidth reserved for transmission of emergency events.

As for the non-real-time traffic, the so-called freeable band-
width is exactly the unallocated bandwidth at the base station,
Bwunused. Notably, code-division multiple-access (CDMA) is
adopted in this work to ease the interference effect and increase
the transmission efficiency as in (Souryar et al., 2006; Kawama-
gari et al., 2006; Elbahhar et al., 2001; Linedemmeier et al., 2003;
Chung and Cho, 2006). Besides, the administrative base station
will direct a route via the roadside base station that is closer to the
destination, and all the roadside base stations will follow the
same decision procedure as illustrated in Fig. 1 in case they receive
the incoming requests from other base stations.
3.2. Link enhancement mechanism for IVC via RVC

In the VANETs, the fault-tolerant connectivity can be estab-
lished by offering alternative routing paths whenever a possible
link failure or congestion event occurs on the current routing path.
We thus arrange each node in IVC to compute link break and
congestion indicators to avoid possible link break and congestion
events occurring at each node. Each vehicle will inform its
administrative base station in case link break and congestion
events are anticipated. The base station will then look up its
routing table to construct the alternative route. Notably, the base
station keeps monitoring the network status of each node on the
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Fig. 1. The proposed roadside base station assisted routing mechanism.
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road segment that it governs, and shares the information with the
neighboring roadside base stations.

3.2.1. Link failure avoidance based on link break and congestion

indicators

In order to prevent link break caused by varied mobility or
congestion events, we attempt to estimate each vehicle’s speed in
the next time period using a neural network with fast computing
capability. The input–output mapping for the employed neural
network can be expressed by

vnext ¼ NNðd; a; r;vcurÞ, (2)

where d denotes the distance between two consecutive vehicles, a

represents the driver’s age, r is condition of the road segment, and
vcur is the current speed of the vehicle.

Notably, the driver’s age is adopted as one of the parameters
for the prediction of vehicle speed because the influence of
driver’s age on his/her driving behavior has been an active
research issue in recent year (de Ridder et al., 2002; Sivak et al.,
1981; DeLucia et al., 2003). On the contrary, other factors, such as
‘‘wearing glasses’’ and ‘‘weather’’, have never been reported to
influence the driving behavior in the literature to the best our
knowledge. It was observed in de Ridder et al. (2002) that older
participants made more mistakes than did younger participants in
both real and simulated driving tasks. Additionally, older drivers
require closer distances to correctly perceive the orientation of the
letter on the nighttime highway sign (Sivak et al., 1981). Older
participants overestimate speed at lower velocities, underesti-
mate speed at higher velocities, and underestimate time-to-
contact more than younger drivers (DeLucia et al., 2003).

Once the predicted speeds of the vehicle and its neighbors are
obtained, we can easily determine whether the vehicle is within
the communication range of its neighbors by computing the
distances of the vehicle and its neighbors in the next time period
as follows:

pnext ¼ vnext þ pcur , (3)

where vnext denotes the speed of the vehicle in the next measuring
period and pcur is the current position of the vehicle.

In case the vehicle’s position is estimated to be out of the
communication of its neighbors in the next time period, the
vehicle can initiate backup route construction process to prevent
link failure caused by mobility of vehicles by piggybacking link
break warning message to its neighbors.

Similar to Eq. (2), the congestion indicator can be derived by

cg ¼ NNðq;p;nÞ, (4)

where q denotes the queue length, p is the expected number of the
packets traveling through the vehicles, n is the expected number
of the vehicles in the next time period, and the function NN stands
for the proposed neural-network model.

Now take Fig. 2 as an example, when there is a possible
congestion or link break detected at node B, it sends a congestion/
link break warning message to all its neighbors. As node A
receives the message, it re-initiates route discovery process with
congestion/link break indicator piggybacked in packets to find an
alternate path to destination D. Thus, new arrived packets can
then be delivered via a new path as shown in Fig. 2.

3.3. Bandwidth consumption predictor for roadside base station

In this work, the routing path for transmitting packets is either
through IVC or RVC. There should be a bandwidth management
mechanism because the roadside base station has limited
bandwidth. The estimated position of the moving vehicle in the
next time period given by Eq. (3) can be used to count the number
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of vehicles that are located at the road segment that the roadside
base station governs. The bandwidth consumed by the vehicles
moving on each road segment can then be computed by

Bwused ¼
X

i

bi;incoming þ
X

j

bj;cur �
X

k

bk;outgoing , (5)

where bi,incoming, bj,cur and bk,outgoing represent the required
bandwidth for the ith vehicle that is moving into the target road
segment, the jth vehicle that stays on the target road segment, and
the kth outgoing vehicle in the next time period, respectively.

The roadside base station that is expected to run out of
bandwidth during the next time period will inform its neighbor-
ing roadside base stations that it is unable to receive new routing
requests for the time being due to scarce bandwidth.
3.4. Fast learning neural networks

As given in Eqs. (2) and (4), a recently proposed neural-
network architecture, fast learning neural networks (FLNNs), is
employed as the core module in the computation of link break and
congestion indicators. The neural networks are chosen owing to
their superior performance in the literature (Huang et al., 2006).
The major problem of applying neural networks is that it is not
impractical to use neural networks in real-time applications
because it takes too much time during the neural-network
training process. However, there have been lots of solutions on
VLSI chips that allow the neural networks to be hardware-
computed; thus, the implementation of neural networks by
hardware becomes feasible nowadays. Besides, this work replaces
the classical back-propagation learning by a fast learning
algorithm (FLA) to reduce the overlong training time that usually
occurs in the traditional neural-network models. The training
process for the neural networks is activated at each node
whenever the performance metric such as packet delivery ratio
of the traffic degrades below some preset threshold.

The FLNNs (Huang et al., 2006, 2000; Huang, 2003; Zhu et al.,
2004) that adopt the fast learning algorithm can automatically
select appropriate value of neural quantizers and analytically
determine the weights and bias of the network at one time. As
shown in Fig. 3, a FLNN is composed of complex network
structure. The FLNN employs a powerful and novel constructive
method to remarkably reduce the computing time of the neural
networks, especially for some problems with large training set. It
is possible for the FLNN to represent all observations with
arbitrarily high accuracy and make it feasible to implement
extensive systems in an ordinary computer. Xiang et al. (2005)
observed that four-layered neural networks are more powerful
than three-layered neural networks in most cases. For instance,
one obvious advantage gained by decomposing the target function
into several sub-functions is that the total number of the
parameters of the four-layered MLP may be smaller than that of
three-layered MLP. Obradovic and Yan (1990) reported the
superiority of four-layered feed-forward networks to three-
layered networks in terms of mapping capabilities. They showed
that the classification boundaries of four-layered networks, which
are at most polynomial in the number of training samples, are
strictly more general than those of three-layered networks. Based
on the previous analysis in the literature, Huang took advantage of
using four layers in the design of the neural networks and
presented a constructive network and a real-time learning
algorithm for the architecture. Based upon Huang’s constructive
method, the connection weights and bias linking the first hidden
layer and second hidden layer can be determined at one time,
instead of the iterative adjustment method adopted in most
neural-network learning algorithms. Hence, the real-time learning
algorithm can automatically select appropriate values of neural
quantizers and analytically determine the weights and bias of the
network at one time only. This kind of neural networks has the
following characteristics:
(1)
 The neural networks are composed of two hidden layers, with
first larger and second narrower. There are several neuron
quantizers that connect to the input layer and one or several
neurons in the second hidden layer.
(2)
 All the connection weights between the input layer and the
first hidden layer can be simply prefixed, and most of them are
randomly assigned.
(3)
 The connection weights between the first hidden layer and
second hidden layer can be determined at one time, instead of
the iterative adjustment adopted in traditional neural-net-
work learning algorithms.
(4)
 The connection weights between the second hidden layer and
the output layer can be simply set as a constant value C.
(5)
 Weight size factor wf or C and quantizer factors qt and qu

should be adjusted to optimize generalization performance.
The fast learning algorithm adopted in this work can be
summarized as follows:

Inputs of FLA:
1.
 N arbitrary distinct samples (xi, ti), where xi ¼ [xi1, xi2,y,
xin]TARn and i ¼ 1,y,N.
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2.
 Expected learning accuracy eo0.

3.
 Number of groups G.

4.
 Number of neurons D of the first hidden layer.
The learning procedure of FLA:
Step 1: Sorting and grouping inputs.
(a)
 Randomly choose vector wtARn and re-index inputs such that
wt � x1owt � x2o?owt � xN.
(b)
 Group sorted inputs into G groups V(g), g ¼ 1�G

V ðgÞ ¼ fxijwt � xðg�1ÞN=Gþ1pwt � xipwt � xgN=Gg. (6)
Step 2: Determination of weights and biases of two hidden
layers.
(a)
 Randomly choose the weights wti and biases bi, where
i ¼ 1,y,D, and DpN/G is the number of neurons in the first
hidden layer.
(b)
 Choose C ¼ a �max1pipn;1pjpmjtijj, where á can be any
positive number larger than two.
(c)
 Calculate matrix g(g)[g1
(g),g2

(g),y,gD
(g)]T:

gðgÞ ¼ ðMðgÞÞ�UðgÞgðgÞ ¼ ðMðgÞÞ, (7)

where

MðgÞ ¼

sðwt1 � xðg�1ÞN=Gþ1 þ b1Þ . . . sðwtD � xðg�1ÞN=Gþ1 þ bDÞ

..

.
. . . ..

.

sðwt1 � xgN=G þ b1Þ . . . sðwtD � xgN=G þ bDÞ

2
6664

3
7775,

(8)

sðxÞ ¼ 1=ð1þ e�xÞ,

UðgÞ ¼

ln
0:5þ tðg�1ÞN=Gþ1;1=C

0:5� tðg�1ÞN=Gþ1;1=C

� �
� � � ln

0:5þ tðg�1ÞN=Gþ1;m=C

0:5� tðg�1ÞN=Gþ1;m=C

� �

..

.
� � � ..

.

ln
0:5þ tgN=G;1=C

0:5� tgN=G;1=C

� �
� � � ln

0:5þ tgN=G;m=C

0:5� tgN=G;m=C

� �

2
66666664

3
77777775

,

(9)
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and (M(g))* stands for the Moore–Penrose generalized inverse
of (M(g)).

tep 3: Determination of weights and biases of neural
quantizers.
Set the quantizers factor qt and qu as
2 lnð2qu= min
i¼1�N

lnððC þ �=
ffiffiffiffiffi
m
p
� 2tijÞðC þ 2tijÞ=ðC � �=

ffiffiffiffiffi
m
p
þ 2tijÞðC � 2tijÞÞ � 1Þ

min
j¼1�N�1

ðwt � xjþ1 �wt � xjÞ
, (10)
qu ¼ ln
2
ffiffiffiffiffi
m
p

CG

�
� 1

� �
þ max

g¼1�G
q¼1�N=G

s¼1�G

kMðgÞq � g
sk1

þ min
i¼1�N

ln
ðC þ �=

ffiffiffiffiffi
m
p
� 2tijÞðC þ 2tijÞ

ðC � �=
ffiffiffiffiffi
m
p
þ 2tijÞðC � 2tijÞ

 !
. (11)
(b)
 Set the connection weights wtPðgÞ and wtQgÞ that link the input
layer and neurons P(g) and Q(g), g ¼ 1, 2,y,G, as

wtpðgÞ ¼ qt �wt

wtQ ðgÞ ¼ �qt �wt, (12)
(c)
 Set the biases of neurons P(g) and Q(g), g ¼ 1, 2,y,G as

b̄pðgÞ ¼

�qt
1

2
wt � xgN=G þ

1

2
wt � xgN=Gþ1

� �
; if gaG

�qt wt � xN þ max
j¼1�N�1

ðwt � xjþ1 �wt � xjÞ

� �
; if g ¼ G

8>>><
>>>:

(13)

b̄Q ðgÞ ¼

qt
1

2
wt � xðg�1ÞN=Gþ1 þ

1

2
wt � xðg�1ÞN=G

� �
; if ga1

qt wt � x1 þ max
j¼1�N�1

ðwt � xjþ1 �wt � xjÞ

� �
; if g ¼ 1

8>>><
>>>:

(14)
(d)
 Set the connection weights wAB that link neurons A(p) and A(p)

and the second hidden layer as

wPQ ¼ �qu (15)
(e)
Table 1
Simulation parameters.
Set the connection weights and the biases that link neurons of
the second hidden layer and the output layer as

wto ¼ C (16)

bo ¼ �0:5C (17)
Parameter type Parameter value

Simulation time 500 s

Rectangle area of local road 5000 m�5000 m

Length of highway 8000 m

Length of the road segment 1000 m

Traffic flow 0.1–0.5 veh/s

Traffic model Microscopic model

Average vehicle speed 5–30 m/s

Maximum vehicle speed 50 m/s

Channel bandwidth 2 Mbps

Mac protocol 802.11

Transmission range for IVC 33.75 m

Transmission range for RVC 250 m

Bandwidth of base station 54 Mbps

Service class Real-time, non-real-time

CBR real-time sessions 25
4. Experimental results

We ran a series of simulations to evaluate the performance of
the proposed work using a network simulator written by C++. The
results are averaged over 130 runs with a randomly generated
topology in each run. The total simulation time for each run is
500 s. The compared schemes include the proposed roadside base
station assisted routing algorithm without link enhancement
mechanism (BAR), the proposed roadside base station assisted
routing mechanisms embedded with fast learning neural-network
link break and congestion detection modules (BAR-FLNNLC), the
roadside base station assisted routing mechanisms embedded
with back-propagation neural-network link break and congestion
detection modules (BAR-BPNNLC) and a representative cross-layer
routing protocol for ad hoc networks that was recently introduced
in the literature (CVIA) (Korkmaz et al., 2006). CIVA creates
single-hop vehicle clusters and mitigates the hidden node
problem by dividing road into segments and controlling the
active segments where vehicle communication is allowed to occur
in a time slot.
4.1. Simulation scenario

The highway and local road simulation environment setups
were replicated from (Namboodiri and Gao, 2007; Zhao et al.,
2007), respectively. A 5000 m�5000 m rectangle area was
established in the local roads simulation. We initially randomly
deployed vehicles on local roads. Each vehicle randomly picked a
value as its moving speed and 20 m/s was the upper speed limit.
An 8000-m-long straight stretch of highway with four lanes was
constructed as the high-speed moving environment. Fifty vehicles
were randomly distributed on the highway. Based on the lane in
which the vehicles were randomly placed, all vehicles were given
an initial velocity. The initial velocity assigned to each vehicle was
the average speed of the lane in which they were placed in. In
order to simulate the road traffic, the traffic flow is simulated with
microscopic model (van Arem et al., 2006). The detail simulation
parameters are listed in Table 1.

Notably, CBR/UDP traffic is generated between randomly
selected pairs of vehicles and the bandwidth for each channel is
2 Mbps. The bandwidth of the base station is 54 Mbps, there is one
base station located in each road segment. There are two service
classes, including real-time and non non-real-time traffics. The
CBR packet size is 512 byte and packet rate is 4 packets/s. Each
vehicle moves along the direction of the pathway, and the speed is
randomly changed within a preset range that is related to the
driver’s age and the distance between the vehicle and the one in
front of it. Once it reaches that position, it will change the speed
and repeats the process.

4.2. Simulation results and analysis

The performance metrics used in this work are packet delivery
ratio, end-to-end delay and control overhead. The packet delivery
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ratio is the total amount of received packets divided by the total
amount of packets transmitted during the simulation. The end-to-
end delay is the average time elapsed for delivering a packet from
the transmitter to the receiver. The control packet overhead is the
ratio from the total transmitted control packets to the total
received packets. With the simulation parameters and the
performance comparison metrics stated above, the simulation
results are explained in the following four subsections.

We first investigated the impact of moving speed of the
vehicles on the network performance. The average vehicle speed
is varied from 5 to 30 m/s, the traffic flow is fixed at 0.1 veh/s.
Figs. 4 and 5 show the packet delivery ratio of the overall traffic
and the real-time traffic for the four schemes under different
moving speeds, respectively. The two proposed mechanisms BAR-
FLNNLC and BAR-BPNNLC perform better than the other two
because these two schemes can effectively construct alternative
routes to avoid link failure whenever link break or congestion
warning is issued by the embedded neural networks. Notably, the
packet delivery ratio for BAR-FLNNLC keeps fixed at around 95%.
Meanwhile, these two figures also demonstrate the effectiveness
of the fast learning neural networks. The performance of the
traditional back-propagation neural networks degrade sharply
due to significant dropping of the packets which is caused by the
slow computation of neural networks during the training process.
CVIA also shows a steep decrease owing to the significant increase
of hop counts on the routing path when the moving speed of the
vehicle increases to 15 m/s.

Fig. 6 shows the end-to-end delay of packets for the four
schemes under different moving speeds. Notably, the end-to-end
delay in this work includes the routing delay plus other processing
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Fig. 4. Packet delivery ratios of overall traffic for CVIA, BAR, BAR-BPNNLC and BAR-

FLNNLC under different moving speeds.
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Fig. 5. Packet delivery ratio of real-time traffic for the four schemes under

different moving speeds.

Vehicle speed (m/s)

Fig. 7. Control overhead for the four schemes under different moving speeds.
delays such as the computation of neural-network algorithm. The
delay is measured for those packets from the mobile source
vehicle to the mobile destination vehicle. The proposed BAR-
FLNNLC scheme is effective in finding a shorter path by re-
initiating route discovery process through the backup route
mechanism. The reason behind this is that it not only transmits
packets through shorter path but also prevents packet loss from
link failure events. On the contrary, CVIA scheme performs the
poorest and transmits packets through more hops than the other
three schemes as well. The packets must go through more hops to
reach the base station and this causes a longer transmission delay
in CVIA scheme. Moreover, CVIA has to periodically construct
transmission group at each time and the delay latency is thereby
increased as well.

Fig. 7 shows the control overhead for the four schemes under
different moving speeds. The control overhead is the required
number of control packets that completes a packet transmission.
Apparently, the control overhead for BAR-BPNNLC scheme
ascends drastically when the moving speed of the vehicle is
increased. It can be inferred that BAR-BPNNLC produces higher
control overhead than the other three schemes since it needs to
generate control messages to maintain the transmission group
periodically. On the contrary, the control overhead for CVIA, BAR
and BAR-FLNNLC schemes is slightly increased when the moving
speed of the vehicle is increased. The proposed BAR-FLNNLC
scheme maintains the routing path by means of piggybacking
messages in the packets and hence the control overhead is
lowered.

Figs. 8 and 9 demonstrate the impact of varied traffic flows on
the packet delivery ratio in low speed. The mean traffic flow is set
within the range of 0.1 and 0.5 veh/s. The average moving speed of
each vehicle is set to 15 m/s because it is a very common driving
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speed on local driveway. Meanwhile, varied traffic flows are
generated from a Poisson distribution (Bose and Ioannou, 2003).
The proposed BAR-FLNNLC scheme outperforms the other three
schemes as expected. We believe it is because the link
enhancement mechanism is able to assist the IVC in
constructing the alternate route to transmit packet through
congestion free route. On the other hand, CVIA and BAR
schemes have to discard packets because of congestion and thus
have poorer packet delivery ratio. Besides, the link enhancement
mechanism in BAR-BPNNLC is unable to effectively boost the
performance due to its expensive computation overhead.
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Fig. 9. Packet delivery ratio of real-time traffic for the four schemes under varied

traffic flows on local roads.
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Fig. 10. End-to-end delay for the four schemes under different traffic flows on local

roads.
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Fig. 8. Packet delivery ratio of overall traffic for the four schemes under varied

traffic flows on local roads.
Fig. 10 shows the end-to-end delay for the four schemes
under different traffic flows on local roads. The proposed BAR-
FLNNLC scheme performs much better than the other three
schemes owing to its successful strategy on the deployment of
alternative route used for link failure avoidance. The control
overhead for the four schemes under different traffic flows on
local roads is shown in Fig. 11. We can see that more control
packets are required to keep network topology updated when the
traffic flow becomes heavy in the schemes other than BAR-
FLNNLC. The link failure prediction mechanism employed in
FLNNLC keeps track of the topology change successfully, and
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Fig. 11. Control overhead for the four schemes under different traffic flows on local

roads.
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Fig. 12. Packet delivery ratio of overall traffic for the four schemes under different

traffic flows in a high-speed moving environment.
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Fig. 13. Packet delivery ratio of real-time traffic for the four schemes under

different traffic flows in a high-speed moving environment.
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Fig. 15. Control overhead for the four schemes under different traffic flows in a

high-speed moving environment.

Table 2
Comparison of train time and execution time for the BPNN and FLNN algorithms.

BPNN FLNN

Training time 4720ms 21ms

Execution time 80ms 6ms

Average accuracy rate 97.98% 90.67%

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1
Traffic flow (veh/sec)

E
nd

-t
o-

en
d 

de
la

y 
(s

ec
)

CVIA BAR BAR-BPNNLC BAR-FLNNLC

0.2 0.3 0.4 0.5

Fig. 14. End-to-end delay for the four schemes under different traffic flows in a

high-speed moving environment.

Table 3
t-test results of the paired ‘‘CVIA’’–‘‘BAR-FLNNLC’’ comparison on local roads.

Performance metric Mean StDev SE Mean T Value P Value

Packet delivery ratio �0.308 0.086 0.039 �7.977 0.001

End-to-end delay 2.473 0.134 0.060 41.331 0.000

Control overhead 1.280 0.343 0.154 8.336 0.001

Table 4
t-test results of the paired ‘‘CVIA’’–‘‘BAR-FLNNLC’’ comparison in a high-speed

moving environment.

Performance metric Mean StDev SE Mean T Value P Value

Packet delivery ratio �0.324 0.155 0.070 �4.664 0.010

End-to-end delay 0.289 0.140 0.063 4.612 0.010

Control overhead 0.318 0.035 0.016 20.242 0.000
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reduces the need of the sending extra control packets in
consequence.

Figs. 12 and 13 show the influence of different traffic flows on
the packet delivery ratio on the highway. The average moving
speed of each vehicle is set to 30 m/s. The four schemes in a high-
speed moving environment perform much worse than in low
speed due to quickly changed topology of the moving vehicle,
which leads to unreliable connections among vehicles.
Nevertheless, the proposed BAR-FLNNLC scheme signifi-
cantly outperforms other schemes in a high-speed moving
environment owing to the effectiveness of the congestion and
link failure avoidance schemes. Notably, the packet delivery ratio
for BAR-FLNNLC still keeps at around 70% even the number of
vehicles is significantly increased in a high-speed moving
environment. In contrast, the CVIA scheme has the worst packet
delivery ratio for real-time traffic due to rapidly increased hop
counts on the routing path in a high-speed moving environment.

Figs. 14 and 15 show the end-to-end delay for the four schemes
under different traffic flows and the control overhead for the four
schemes under different traffic flows in a high-speed moving
environment, respectively. The BAR-FLNNLC scheme outperforms
other three schemes as a result of successful management on the
deployment of alternative route used for link failure avoidance in
a high-speed moving environment. Moreover, the high-speed
moving vehicles quickly change the topology of network, and this
might result in the potential link breakage of the delivering routes.
Extra control overhead packets are thus required to keep newly
updated network topology information in the two schemes other
than the proposed BAR-FLNNLC and BAR-BPNNLC schemes. CVIA
scheme performs the worst due to a significant increase of hop
counts on the routing path that is caused by the quickly changed
topology of the moving vehicles.
Table 2 gives the comparison of training time and execution
time for the BPNN and the FLNN algorithms. The BPNN algorithm
is much slower than the FLNN algorithm in terms of training time,
and is not suited for the real-time applications, especially for the
VANET environment where frequent training is required due to
the ongoing network topology changes. In the 130 runs of the
simulations, the average accuracy rate for BPNN and FLNN can
reach up to 97.98% and 90.67%, respectively. Though the average
accuracy for the BPNN is better than for the FLNN, the FLNN is
more feasible than the BPNN due to its much shorter training
time, which is an essential requirement in a volatile environment
such as a VANET.

Tables 3 and 4 show the comparison of the t-test results of the
three performance metrics for the CVIA and the proposed BAR-
FLNNLC schemes on the local roads and the highway, respectively.
The high-significance level as given by the results of t-test in
Tables 3 and 4 once again reveals the effectiveness of the proposed
BAR-FLNNLC schemes.
5. Conclusion

In this paper, QoS-aware routing mechanisms for VANETs are
proposed to establish an effective routing path in IVC with
assistance of roadside base stations. Alternate route construction
and congestion avoidance mechanisms based on mobility patterns
are presented to prevent the link failure caused by frequent
change of network topology and the occurrence of congestion. A
fast learning neural-network model is employed as the core
modules in the link enhancement mechanisms to generate the
link break and congestion indicators, which are piggybacked in
the packets to inform the neighboring vehicles and roadside base
stations. Meanwhile, a bandwidth consumption predictor em-
bedded in each roadside base station is used to avoid dropping
packets owing to inadequate bandwidth during handoffs. The
simulation results showed that the proposed routing path
construction and alternate route construction mechanisms can
effectively prevent the link break caused by volatile vehicle
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movements and traffic flows. The performance metrics including
packet delivery ratio, control overhead, and end-to-end delay are
significantly better than the representative IVC routing schemes in
the literature. Meanwhile, the simulation results also support the
effectiveness of using the fast learning neural network in the
proposed work. In the future work, we will establish an autonomic
policy-based management system and integrate it with the
proposed routing mechanism to enhance the network resource
management on safety applications and multimedia applications.
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