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Abstract—A mutual exclusion mechanism that is both fair and space efficient can be highly valuable for shared memory systems under

time and memory constraints such as embedded real-time systems. Several algorithms that utilize only one shared variable and

guarantee a certain level of fairness have been proposed. However, these use hypothetical read-modify-write operations that have never

been implemented in any system. This paper presents two fair algorithms that do not use such operations, each of which uses a single

additional shared variable. The proposed algorithms employ commonly available operations, fetch&store and read/write, on two shared

variables. The first algorithm satisfies the bounded-bypass condition. The second is an improvement on the first that satisfies the FIFO

condition, which is the most stringent fairness condition. Additionally, it is shown that achieving the bounded-bypass condition using the

same set of operations requires two shared variables. Both of the algorithms are thus optimal with respect to the number of shared

variables.

Index Terms—Mutual exclusion, shared memory systems, space complexity, fetch&store, swap, bounded bypassing, FIFO.
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1 INTRODUCTION

MUTUAL exclusion [6] is fundamental in multiprocessing
systems for managing access to a single indivisible

resource. In mutual exclusion, a process accesses the
resource within a distinct part of code known as the critical
region. A process executes trying and exit regions, respec-
tively, before and after executing the critical region, to
guarantee the following basic requirements:

. Mutual Exclusion. At most one process at a time is
permitted to enter the critical region.

. Progress. If at least one process is in the trying region
and no process is in the critical region, then at some
later point, some process enters the critical region. In
addition, if at least one process is in the exit region,
then at some later point, some process enters the rest
of the code, called the remainder region.

Embedded real-time systems, e.g., automotive control
systems, mobile computing devices, and home electronics,
have received increasing interest in recent years. An
algorithm for such systems should consider time and
memory constraints. The time constraint imposes a dead-
line for each process in executing a particular job because
the process often interacts with users or a dynamic
environment. Additionally, embedded systems often have
small memory (about 32-64 kBytes) since minimizing
production costs, weight, and power consumption is a
primary concern in their designs [12], [17], [18]. As shown

below, a mutual exclusion algorithm, in particular, should
consider fairness and space efficiency.

Since a process can remain in the critical region for an
arbitrarily long time, no algorithm can ensure that each
waiting process will gain the permission to enter the critical
region before its deadline. This creates an inherent difficulty
in the mutual exclusion problem, especially for systems
under the time constraint. Thus, algorithm designers
attempt to improve the feasibility of mutual exclusion
algorithms by designing them to grant the critical region
fairly to each process. A mutual exclusion algorithm that
satisfies the basic requirements may not guarantee such
fairness. That is, a process may be indefinitely denied access
to the critical region. Hence, the worst case waiting time
may be infinite even when each process always returns the
resource quickly. A fair mutual exclusion algorithm tries to
reduce the worst-case waiting time by scheduling requests
fairly, and thereby, improves the feasibility of the algorithm.

A space-efficient mutual exclusion algorithm largely
focuses on reducing the memory consumption. This require-
ment is crucial for systems under the memory constraint. In
terms of space complexity, most n-process mutual exclusion
prior art algorithms use at least n shared variables, as shown
in surveys by Anderson et al. [2] and Raynal [15]. For
systems with limited memory, an algorithm using a constant
number of shared variables would be more suitable.

This work proposes two fair and space-efficient mutual
exclusion algorithms. A 2-bounded-bypass algorithm with
two shared variables is first presented to show the basic
idea. A first-in-first-out (FIFO) algorithm, which is based on
the first algorithm, and uses the same number of shared
variables, is then presented.

To define the bounded-bypass property, the trying
region of each process is divided into two parts, a doorway
and a waiting part. The property guarantees that a process
that has completed its doorway cannot be bypassed more
than a constant number of times by any other process. To be
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more specific, a mutual exclusion algorithm is defined to
satisfy the b-bounded-bypass property if no process that has
finished its doorway can be bypassed more than b times by
any other process when competing for a resource. An
algorithm is said to be bounded-bypass if it is b-bounded-
bypass for some constant b. In addition, an algorithm is said
to be FIFO if when a process i passes through its doorway
before j performs a step in its doorway, then j cannot enter
its critical region before i does so. It is clear that an FIFO
algorithm is also bounded-bypass. A fair mutual exclusion
algorithm that satisfies the bounded-bypass property
should be provided for systems under the time constraint,
in which a process can roughly estimate the waiting time.
For instance, in the proposed 2-bounded-bypass algorithm,
a process cannot be bypassed more than 2ðn� 1Þ times by
other processes, where n denotes the number of all
processes, after requesting the critical region. In contrast,
a process might be bypassed without limitation in an
algorithm that does not satisfy bounded-bypass, easily
violating the deadline for executing a particular job.

In terms of space complexity, only two shared variables
are utilized in each of the algorithms. Hence, no dynamic
memory allocation is needed when executing the algorithm,
so the system overhead is reduced. Since mutual exclusion
is a basic synchronization mechanism frequently used in
multiprocessing systems both in operating system kernel
level and in users’ application level [14], the system
performance can be significantly improved.

Both the algorithms are implemented by fetch&store
along with atomic read and write operations. Burns and
Lynch [4] showed that n shared variables are necessary to
solve the n-process mutual exclusion problem if only read
and write are available. Fich et al. [8] recently extended the
linear lower bound to systems that support conditional read-
modify-write (RMW) operations, such as compare&swap. An
RMW operation is said to be conditional provided that it
changes the value of a variable in a single step only if the
variable has a particular value. Hence, some operations
other than read/write and conditional RMW operations are
needed to decrease the space requirement. Operation
fetch&store is adopted to implement the algorithms since it
is commonly supported in modern microprocessors such as
a series of processors of Intel and AMD, Motorola 88000,
and SPARC [16], and is also available in the ARM processor
family [1],1 which is arguably the most popular embedded
architecture today. Thus, fetch&store improves the portabil-
ity of the algorithm.

Several algorithms that use only a single shared variable
and guarantee a certain level of fairness have been
presented. For instance, Fischer et al. [10] devised an FIFO
algorithm, and Burns et al. [3] devised a bounded-bypass
algorithm and a starvation-free algorithm. Unfortunately,
all of these algorithms used hypothetical RMW operations
that have not yet been implemented in any system. In
contrast, none of the algorithms we propose use a
hypothetical RMW operation, and each of them requires
only one more shared variable than these algorithms.

The proposed algorithms are inspired by the circular list-
based mutual exclusion algorithm presented by Fu and
Tzeng [11]. The proposed algorithms, like that of Fu and
Tzeng, organize waiting processes into lists, but pass the
permission within and among lists very differently. Fu and
Tzeng’s algorithm may block a process in the exit region.
However, the proposed algorithms eliminate this draw-
back. Whereas Fu and Tzeng reduced the number of remote
memory accesses, our algorithms target the space complex-
ity and guarantee a certain level of fairness.

Furthermore, this work proves that two shared variables
are necessary to solve the problem of mutual exclusion with
b-bounded-bypass for any constant b using only fetch&store
and read/write. This impossibility result is proven by
showing a more general result that two object instances
are required to implement a bounded-bypass mutual
exclusion algorithm when using only historyless objects
regardless of the size of the objects. The definition of a
historyless object is given by Fich et al. [9] and is restated in
Section 5. According to the definition, shared variables
associated with fetch&store and read/write belong to the class
of historyless objects, so the more general result implies the
proposed algorithms are optimal with respect to the
number of shared variables. Informally, an object is
historyless if applying a sequence of operations yields the
same value in the object as applying just the last nontrivial
operation in the sequence. A nontrivial operation is one that
writes a value to the object.

The lower bound proof technique is related to an elegant
method introduced by Burns and Lynch in proving the
lower bound of n on the number of read/write objects
required to solve the n-process mutual exclusion problem
[4]. Their method, called the covering argument, aims at read/
write objects, and is generalized herein to historyless objects.

The rest of this paper is organized as follows: Section 2
provides the system model and definitions of the problem.
Section 3 presents the 2-bounded-bypass algorithm and
Section 4 the FIFO algorithm. Next, Section 5 gives an
impossibility result. Conclusions are finally drawn in
Section 6.

2 SYSTEM MODEL AND DEFINITIONS

2.1 Asynchronous Shared Memory Model

Our model of an asynchronous shared memory system is
based on the model described by Lynch in [13].

An algorithm is modeled as a triple ðP;V; �Þ, where P is a
nonempty finite set of processes, V is a nonempty finite set
of shared variables, and � is a transition relation for the
entire system. Each variable v 2 V has an associated set of
values, among which some are designated as the initial
values. Each process i consists of the following elements:

. �i: a set of states;

. Ii: a subset of �i indicating the start states;

. �i: a set of steps describing the activities in which it
participates.

A step may involve a shared memory access, in which case
it is assumed to access only one shared variable.

A system state is a tuple consisting of the state of each
process in P and the value of each shared variable in V. For
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a system state s, sðiÞ, i 2 P, denotes the state of process i at
s, and sðvÞ, v 2 V, denotes the value of shared variable v at s.
A system state at which each process and each shared
variable, respectively, have a start state and an initial value
is called an initial system state.

The transition relation � is a set of ðs; e; s0Þ, where s and s0

are system states, and where e 2 �i for some process i. If
step e of process i does not access any shared variable, then
only the state of i may be modified. That is, in any ðs; e; s0Þ 2
� with the step e, sðjÞ ¼ s0ðjÞ for every process j 6¼ i and
sðvÞ ¼ s0ðvÞ for every shared variable v. On the other hand,
if e accesses a shared variable v, then only the state of i and
the value of v may be modified.

A step e is enabled at system state s if a system state s0

exists such that ðs; e; s0Þ 2 �. We assume that whether a
process step is enabled at a system state depends only on
the process state. That is, if e 2 �i (i.e., e is a step of process
i) is enabled at system state s, then e is also enabled at any
system state t at which tðiÞ ¼ sðiÞ holds.

An execution fragment is either a finite sequence,
s0; e1; s1; . . . ; sl�1; el; sl, or an infinite sequence, s0; e1; s1; . . . ,
of alternating system states and steps such that
ðsk; ekþ1; skþ1Þ 2 � for every k � 0. An execution is an
execution fragment beginning with an initial system state.
A system state s is said to be reachable if a finite execution
ending with s exists.

2.2 The Operations

In the model, shared variables can be accessed by processes
through atomic operations. The model supports fetch&store
in addition to atomic read and write. This operation is
formally defined as follows:

fetch&store (variable v, value u)
previous :¼ v
v :¼ u
return previous.

The operation atomically writes value u to variable v and
returns the old value.

2.3 The Problem

An asynchronous shared memory model has been de-
scribed so far. The mutual exclusion problem is formally
defined below.

Informally, the mutual exclusion problem is to devise
algorithms for each process to access a designated region of
code called the critical region. A process can only occupy its
critical region when no other process is in its own. A
process executes the trying region code to gain the
permission to enter its critical region, and after it passes
through the critical region, it executes the exit region code
and then returns to the remainder region.

For each process i, �i is partitioned into nonempty
disjoint subsets Ri, Ti, Ci, and Ei. Process i is said to be in
the remainder region (R), trying region (T), critical region
(C), or exit region (E) at system state s if sðiÞ belongs to Ri,
Ti, Ci, or Ei, respectively. A system state is said to be idle if
all processes are in R. Each initial system state is assumed to
be idle. Each process is also assumed to cycle through its
remainder, trying, critical, and exit regions, in that order.

Finally, an algorithm that solves the mutual exclusion
problem must meet the conditions below.

Mutual exclusion. There is no reachable system state at
which more than one process is in C.

The next condition depends on an assumption about
process scheduling in executions. No process “halts” any-
where except possibly in R. Executions with this property
are defined to be admissible. An execution � is formally
defined as admissible if for each process i 2 P that takes
only finitely many steps in �, i’s final state belongs to Ri.

Progress. At any point in an admissible execution

1. if at least one process is in T and no other process is
in C, then at some later point, some process enters C;

2. if at least one process is in E, then at some later point,
some process enters R.

This condition is necessary for the system to make
progress, but does not guarantee that the critical region is
granted fairly to each process. A situation, in which some
process trying to enter C is forever prevented from gaining
the permission (known as lockout, or starvation), may
occur. Thus, some level of fairness of granting the critical
region is often desirable.

Before defining the fairness properties below, which
guarantee a bound on the number of bypasses, we assume
that the trying region of each process consists of two parts: a
doorway followed by a waiting part. The doorway part is
wait-free: its execution requires only a bounded number of
steps. The following properties prevent any process that has
finished its doorway from being bypassed an arbitrary
number of times by any other process.

A mutual exclusion algorithm is said to be bounded-
bypass if it guarantees a b-bounded-bypass for some constant
b. The b-bounded-bypass condition is defined as follows.
b-Bounded-bypass. Once a process i has passed through

its doorway, no process can enter its critical region more
than b times before i does so.

A mutual exclusion algorithm is said to be FIFO if when
process i completes its doorway before j performs a step in
its doorway, then j cannot enter C before i does so. It is
intuitively clear that an FIFO algorithm is also an algorithm
satisfying the bounded-bypass condition.

3 THE 2-BOUNDED-BYPASS ALGORITHM

This section presents a bounded-bypass mutual exclusion
algorithm using two shared variables, as shown in Fig. 2.
Fig. 1 illustrates an example to help explain the working of
the algorithm.

In summary, the algorithm links competing processes as
circular lists by the fetch&store operation along with a shared
variable. The permission to enter the critical region is
transmitted along a list after its construction. While the
permission is transmitted, subsequent requests constitute a
new waiting list. The new list is closed when each process in
the old list has left its critical region, at which time the new list
receives the permission. Likewise, after the new list is closed,
subsequent requesting processes form another list and wait
for the permission. Roughly speaking, permission is con-
veyed along a list, and then passed to the next waiting list. The
algorithm thus satisfies the bounded-bypass condition.

According to the construction of a list, a competing
process has the identity of its predecessor rather than its
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successor. Consequently, the permission is conveyed from

the tail of a list to the head, resulting in the failure to meet

the FIFO condition. The next section describes a modified

algorithm that eliminates this drawback and achieves the

FIFO condition by initiating an additional phase for every

list to redirect the links in the list.

3.1 An Informal Description of the Algorithm

The algorithm requires exactly two shared variables.

Variable L organizes requests by processes to enter C, and

variable P indicates which process has the permission to

enter C. Additionally, each process has several private

variables, which are not accessible to other processes.
As in Fu and Tzeng’s algorithm [11], the proposed

algorithm uses a fetch&store operation on a lock to link

competing processes as a circular waiting list. Each process

in its doorway executes fetch&store on shared variable L

(i.e., the lock), announcing its identity and obtaining the

identity of its predecessor if it has one. Thus, a waiting list is

formed implicitly. Variable L is initially set to nil. A process

that reads nil from L starts a waiting list and is the head of

the list. Such a process in our design is responsible for

closing the list and starting to transmit the permission along

the list. Thus, the process is called the controller of the list.
After announcing its request by executing fetch&store on

L, each process enters the waiting part of its trying region

and starts to test P repeatedly until it has the permission to

enter C. A controller repeatedly tests P until P ¼ nil, which

is the permission for a controller. A noncontroller repeat-

edly tests P until P equals its identity, which indicates that

it gains the permission. Since P ¼ nil initially, the first

controller always gains the permission.
A waiting list is closed when the controller of the list

leaves C. The controller closes the list by executing

fetch&store(L, nil), which atomically returns the identity of

the tail of the list and modifies L’s value to nil. This closed

waiting list contains all the processes making requests

between the controller obtaining nil from L and modifying

L’s value to nil. Since L’s value is changed to nil, subsequent
requests constitute another waiting list.

After a list is closed, the permission is transmitted along
the list from the tail to the head, allowing each process in
the list to enter C in order. If the controller is not the only
process in the list, then it passes the permission to the tail of
the list by setting P to the identity of the tail. Each
noncontroller in the list then hands the permission to its
predecessor, by setting P to the identity of its predecessor,
when it leaves C. However, if the predecessor is the head of
the list, then the process passes the permission to the next
waiting list rather than to the predecessor because the
predecessor has left C. Some information is needed to check
this situation, and is encoded into P . Let P hold a pair
(Receiver,Head), each being the identity of a process or nil.2

The Receiver component serves the original purpose of P ,
indicating which process can enter C, and the Head

component stores the identity of the head of the list so that
each process can determine whether its predecessor is the
head. If the predecessor’s identity of a process is equal to
Head, the process modifies Receiver’s value to nil instead of
the predecessor’s identity to convey the permission to the
head of the next waiting list.

Fig. 1 illustrates an execution of the algorithm. Variables
L and P are, respectively, set to nil and ðnil;4Þ, as shown in
Fig. 1a. The symbol 4 in the Head component represents
that the component is not used at this time and can be an
arbitrary value.

In Fig. 1b, process 5 first makes a request by executing
fetch&store(L,5) and obtains nil from L. Since Receiver ¼ nil,
process 5 enters C after setting Receiver to 5. While process 5
is in C, processes 2, 6, and 4 make requests in turn.
Processes 5, 2, 6, and 4 form a list as shown in Fig. 1c.
Because none of processes 2, 6, and 4 succeeds in acquiring
nil from L, they repeatedly test P until the Receiver
component of P equals their respective identities.
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Fig. 1. An execution of the 2-bounded-bypass algorithm. A gray node indicates a process that has finished one life cycle. The symbol 4 denotes an

arbitrary value. An arrow from process a to b represents that a has the identity of b.

2. Thus, P can assume ðnþ 1Þ2 distinct values, where n is the number of
process, while L consists of nþ 1 values.



When leaving C, process 5 closes the list, called list 1, by
executing fetch&store(L, nil). This operation obtains the
identity of the tail and modifies L’s value to nil. The edge
from 5 to 4 in Fig. 1d indicates that the returned value is 4,
i.e., the tail of the list is process 4. Process 5 then passes the
permission to the tail and sets Head to 5 by writing (4, 5) to
P , as shown in Fig. 1e. In Fig. 1f, process 4 gains the
permission, enters C, and then passes the permission to
process 6. Similarly, process 6 gains the permission from
process 4, enters C, and then hands the permission to
process 2 by writing ð2; 5Þ into P . In Fig. 1g, since the
predecessor of process 2 is the head of the list, process 2
modifies Receiver’s value to nil to transmit the permission to
the next waiting list, called list 2. Finally, in Fig. 1h, because
Receiver’s value has been changed to nil, process 1, which is
the head of list 2, enters C after setting Receiver to 1.

3.2 The Bounded-Bypass Algorithm

Variables L and P are initially set to nil and ðnil;4Þ,
respectively. Each process stores the values of the two
components of shared variable P into its private variables
receiver and head.

In the trying region, the doorway is composed of line T1 in
Fig. 2, and the waiting part is composed of the rest (T2-T8). A

process i in the doorway executes fetch&store(L, i) (T1) to
announce its request, and then enters the waiting part. If pred

¼ nil, i.e., the returned value of T1 is nil, then the process

identifies itself as a controller and begins repeatedly checking

P until the Receiver component of P equals nil (T4-T5). When

Receiver¼ nil, process i sets Receiver to i (T6) and then enters
the critical region. In contrast, if pred 6¼ nil, then process i

repeatedly tests P until Receiver ¼ i holds (T7-T8).
In the exit region, a controller closes the current waiting

list by performing fetch&store(L, nil) (E2). If the returned

value, which is stored in tail, is not equal to its identity (i.e.,

the list contains some other process), then the controller
passes the permission to the tail of the list and sets Head to

its identity (E4); otherwise, the controller just modifies

Receiver’s value to nil (E5). For each noncontroller, if its

predecessor is not the head of the list, then it simply

transfers the permission to its predecessor by setting
Receiver to pred (E8); otherwise, it modifies Receiver’s value

to nil to convey the permission to the next waiting list (E7).

3.3 Correctness Proofs

Since each labeled instruction in the trying and exit regions

accesses at most one shared variable, it is set to correspond
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to a step of a process. That is, each labeled instruction in the
algorithm is atomic. For each process i, pci is defined as the
program counter of i; for instance, pci ¼ T1 at a system state
means that step T1 of process i is enabled. A private
variable v of process i is denoted as vi. Finally, a process i in
T, C, or E is defined as a controller provided that
predi ¼ nil.

3.3.1 Mutual Exclusion

In the algorithm, whether a process in T can enter C depends
on the value of Receiver. If Receiver ¼ nil, then a controller
waiting for nil in T is permitted to enter C, while if Receiver¼ i,
1 � i � n, then only process i is permitted to do so. Inspection
of the algorithm clearly indicates that only the process in E can
modify Receiver’s value to nil or the identity of some other
process using one of steps E4, E5, E7, or E8. (Although a
controller in T modifies Receiver’s value by executing T6, it
sets Receiver to its identity, allowing no other process to enter
C.) We show that a nil can be taken as the permission for at
most one process. Hence, a process in E allows at most one
process to enter C. Additionally, since Receiver is set to nil
initially, and a nil permits at most one process to enter C, at
most one process can enter C from the starting state. Thus, the
mutual exclusion condition is ensured.

The following lemma states that at most one controller is
at T4, T5, or T6. In other words, at most one controller is
waiting for nil at any reachable system state. Once Receiver
¼ nil, the controller enters C after step T6, which sets
Receiver to its identity, a nonnil value. Thus, a nil in Receiver
permits at most one process to enter C.

Lemma 1. At any reachable system state,

jfi 2 Pjpredi ¼ nil ^ pci 2 fT4;T5;T6ggj � 1:

Proof. Since each process is in R at an initial system state, no
process is in the set, and thus, the statement is true. We
then argue that if a process enters the set at a systems
state, no other process can enter the set until it leaves the
set. Consequently, starting from an initial state, at most
one process is in the set at all reachable system states.

The steps that could cause processes to enter the set
are considered. A process i can enter the set exactly if
predi ¼ nil after step T1, which simultaneously sets
L :¼ i. Before process i modifies L’s value to nil by
executing step E2, no other process can obtain nil from L
when executing step T1, and therefore, no other process
will enter the set. That is, no process can enter the set
until i leaves the set. tu

Since a process in E allows at most one process to enter C
and at most one process can enter C from the starting state,
the following theorem holds:

Theorem 2. The algorithm guarantees mutual exclusion.

3.3.2 Progress

We argue that the algorithm satisfies the lockout-freedom
condition, that if no process stays in C indefinitely, any
process in T eventually enters C, and any process in E
eventually enters R. A lockout-free algorithm is intuitively
also an algorithm satisfying the progress condition.

Before proving lockout-freedom, we present a definition
that intends to organize all requests in an execution. A list is
a sequence of processes that execute step T1 in an execution
fragment that starts with a step T1 that succeeds in
acquiring nil from L, and ends with the following step E2,
which modifies L’s value to nil. The following lemma
shows that starting from the last process in a list, we can
trace the whole list from the tail to the head through the
value of pred of each process in the list:

Lemma 3. In any execution fragment that starts with a system

state at which L has the nil value and ends with a system state

at which L’s value is changed to nil, each process i that
performs step T1 has the identity of its predecessor in predi if

there is one.

Proof. Due to the fetch&store primitive, a process i that
performs step T1 stores L’s value in predi and, in the
same step, modifies L’s value to its identity. Thus, each
process that performs step T1 obtains the identity of its
predecessor if there is one. tu

Theorem 4. The algorithm guarantees lockout-freedom.

Proof. The argument for the exit region is simply that since
no loop occurs in the exit region, each process in E
eventually enters R.

The lockout-freedom condition for the trying region is
now considered. We first show that each request is
properly recorded in a list, and then argue that each list
will receive the permission to enter C.

In the algorithm, each process i makes a request by
performing fetch&store(L, i) (T1). A process that succeeds
in acquiring nil from L starts a waiting list and becomes
the controller of the list. Suppose a list controller gains
permission to enter C at a later point. After passing
through C, the controller closes the list by executing E2
which obtains the identity of the tail and modifies L’s
value to nil, and then starts to convey the permission
along the list from the tail. By Lemma 3, all processes that
perform step T1 before the controller closes the list are
organized into this list, in which each process except the
controller has the identity of its predecessor. Since L’s
value is changed to nil, subsequent requests form a new
list in the same way. Thus, each request is properly
recorded in a list. Clearly, a closed list contains a finite
number of waiting processes, since each process can
occur in a list at most once.

To prove that each requesting process eventually
enters C, it remains to be shown that each controller
receives the permission. Since Receiver is initially set to
nil, the first controller always gains the permission. The
controller closes the list, and conveys the permission to
the tail of the list, when it leaves C. Since a closed list
contains a finite number of processes, if no process stays
in C indefinitely, then each process in the list eventually
gains the permission to enter C. When the process next to
the controller receives the permission, since its pred
equals Head, it redirects the permission to the next
controller by setting Receiver to nil after passing through
C. (From Lemma 1, if one controller is waiting for nil,
exactly one such controller exists.) Thus, each controller
eventually receives the permission. tu

CHEN AND HUANG: BOUNDED-BYPASS MUTUAL EXCLUSION WITH MINIMUM NUMBER OF REGISTERS 1731



3.3.3 Bounded-Bypass

A process i is said to be in the doorway if pci ¼ T1, and it is
said to be in the waiting part if pci 2 fT2; . . . ;T8g. As
shown in the proof of Theorem 4, a process is recorded in a
waiting list after passing through its doorway (i.e., after
executing T1). Since a list does not receive the permission
until each process in the previous list has left C, a process in
a list may be bypassed by those processes in the same list
and in the previous list. In addition, because a process can
occur in a list at most once, a waiting process may be
bypassed by any individual process at most twice. In other
words, the algorithm satisfies 2-bounded-bypass. The worst
case, in which a process that has finished its doorway is
bypassed twice by another process, may occur when a
noncontroller in a list quickly makes a request appending to
the new list after receiving the permission. For example, in
Fig. 1f, 1g, and 1h, process 7 is bypassed twice by process 4,
which makes a request after receiving the permission.
Consequently, the following theorem holds:

Theorem 5. The algorithm guarantees 2-bounded-bypass.

4 THE FIFO ALGORITHM

The above algorithm is 2-bounded-bypass. This section
gives an FIFO algorithm, based on the 2-bounded-bypass
algorithm, with the same number of shared variables and
the same set of operations.

The FIFO algorithm follows the same concept of the 2-
bounded-bypass algorithm, except that it initiates an
additional phase to redirect the links in a list to meet the
FIFO condition. Owing to the implementation of the
communication phase, the number of values taken on by
shared variable P increases from ðnþ 1Þ2 to 2ðnþ 1Þ3.

4.1 An Informal Description of the Algorithm

The FIFO algorithm also organizes waiting processes into
circular lists. Each process in its doorway announces its
request by executing fetch&store on the shared variable L. In
this step, a contending process obtains the identity of its
predecessor if it has one, and replaces L with its identity. As
in the 2-bounded-bypass algorithm, a process gaining nil
from L is the head of the list that it closes, and takes the role
of a controller. That is, the process closes the list, and starts
to transmit the permission along the list, when it leaves the
critical region.

However, the FIFO algorithm conveys the permission
along a list in the reverse order. Recall that the 2-bounded-
bypass algorithm is ordered from the tail to the head along
a waiting list, causing it to fail the FIFO condition. Each
process in a waiting list, except the head, has the identity of
its predecessor rather than its successor. To achieve the
FIFO requirement, an additional communication phase is
required to inform each process of its successor’s identity,
so that the permission can be passed in the FIFO order.

The algorithm initiates such a phase by the controller of a
list when the controller leaves C. Starting from the tail, each
noncontroller except the immediate successor of the head
writes a message, in turn, to inform its predecessor of its
identity. The communication phase is completed when the
immediate successor of the head receives its successor’s

identity. The permission is then conveyed from the
successor of the head to the tail. The algorithm thus
satisfies the FIFO condition.

Implementing this phase requires some communication

mechanism. In the algorithm, the shared variable P is used

for two purposes: to indicate which process is permitted to

enter C and to inform processes of their respective

successors. The use of a shared variable for these two

purposes is inspired by the algorithms [3] proposed by

Burns et al. To serve both purposes, the variable holds a 4-

tuple (Type, Receiver, Successor, Head), where Type is a value

in fInfo; Grantg, and the other parts take on values from

fnil; 1; . . . ; ng. The number of values taken on by P in this

algorithm is 2ðnþ 1Þ3, compared with ðnþ 1Þ2 in the 2-

bounded-bypass algorithm.
The Type component represents the purpose of a

variable. If Type has the value Grant, then variable P is
adopted to convey the permission. In this case, the Receiver
component represents the process that has the permission,
while the Successor and Head are not used, and may have
arbitrary values, denoted as 4 in the algorithm. Otherwise,
if the Type component has the value Info, then variable P is
used to inform some process of its successor. In this case,
Receiver represents the receiver of the message; Successor
represents the identity of the receiver’s successor, and Head
represents the identity of the head of the list.

Fig. 3 illustrates an execution process of the algorithm.
The sequence of requests in list 1 is the same as that given
to the 2-bounded-bypass algorithm in Fig. 1, but the order
in which the permission is conveyed among noncontrollers
is opposite.

Variables L and P are initially set to nil and
ðGrant; nil;4;4Þ, respectively. In Fig. 3a, processes 5, 2,
6, and 4 make requests, in turn, and constitute a list.
Because process 5 obtains nil from L, and receives a
message that Type ¼ Grant and Receiver ¼ nil, it has the
permission for a controller. It enters C after setting P to
ðGrant; 5;4;4Þ. In contrast, processes 2, 6, and 4 repeat-
edly test P until they receive their respective messages.
Process 5 performs fetch&store(L, nil) to obtain the identity
of the tail, 4 in this case, and modifies L’s value to nil, when
it leaves C. It then starts a communication phase by writing
ðInfo; 4; nil; 5Þ, as shown in Fig. 3b. This message notifies
process 4 that it is the tail of the list (because Successor ¼
nil), and that the head is process 5. Process 4 then receives
the message and writes a new message ðInfo; 6; 4; 5Þ to
process 6, as shown in Fig. 3c. The new message informs
process 6 that its successor is process 4, and that the head of
the list is process 5. Similarly, process 6 receives the
message from process 4, and writes a new message
ðInfo; 2; 6; 5Þ to inform process 2, as shown in Fig. 3d.

Process 2 receives the message written by process 6, and
becomes aware that it is the immediate successor of the head,
because its predecessor is the head of the list. This means that
the communication phase is completed. Process 2 enters C,
and conveys the permission to its successor, process 6, by
writing ðGrant; 6;4;4Þ intoP , as shown in Fig. 3e. Process 6
then gains the permission, and conveys it to process 4, as
shown in Fig. 3f. Since process 4 is the tail of the list, process 4
hands the permission to the next waiting list, by setting P to
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ðGrant; nil;4;4Þ, when it leaves C, as shown in Fig. 3g.
Process 1, which is the head of the next list, then receives the
permission to enter C, as shown in Fig. 3h, because Type ¼
Grant and Successor ¼ nil.

4.2 The FIFO Algorithm

This section describes the algorithm in more detail. Each
process stores the values of the four components of shared
variable P into its private variables type, receiver, successor,
and head.

In the trying region, the doorway is composed of line T1
in Fig. 4, and the waiting part is composed of the rest (T2-
T12). A process i in the doorway announces its request and
obtains the predecessor’s identity, if it has one, by
performing fetch&store(L, i) (T1). Process i then enters the
waiting part. If the returned value of T1 is nil (i.e., pred ¼
nil), then process i identifies itself as a controller, and
repeatedly checks P until it gains the permission for a
controller (i.e., type ¼ Grant and receiver ¼ nil) (T4 and
T5). When type ¼ Grant and receiver ¼ nil, process i enters
C after setting Receiver to i (T6). In contrast, if pred 6¼ nil,
then process i repeatedly tests P until a message belonging
to it is received (T8 and T9). If the received message has
value Grant in the Type component, then i enters C
immediately; otherwise, if the message has value Info in
Type, then two cases may occur:

1. When pred ¼ head, process i is the immediate
successor of the head. In other words, the commu-
nication phase is completed and i is permitted to
enter C.

2. When pred 6¼ head, process i conveys its own
identity and the identity of the head to its pre-
decessor (T11), and continues to check P (T12).

In the exit region, a controller i performs fetch&store(L,
nil) (E2) to close the current waiting list, and stores the
returned value in tail. If tail is not equal to its identity, then
the list is nonempty, and therefore, the controller starts a
communication phase by writing ðInfo; tail; nil; iÞ into P
(E4). This value indicates that the receiver is the tail of the

list, that the tail has no successor because the Successor part
is equal to nil, and that the head of the list is process i.
Otherwise, if tail equals the controller’s identity, then it just
modifies P ’s value to the initial value ðGrant; nil;4;4Þ
(E5). For every noncontroller, if successor ¼ nil holds, then
it realizes that it is the tail of the list, and gives the
permission to the next list by writing ðGrant; nil;4;4Þ into
P (E7). Otherwise, it hands the permission to its successor
by changing P ’s value to ðGrant; successor;4;4Þ (E8).

4.3 Correctness Proofs

Since the correctness argument of the 2-bounded-bypass
algorithm has shown the basic idea about arranging waiting
processes into lists, this section simply provides a proof
sketch. The notation and the definition of a controller are
the same as those in Section 3.3.

The mutual exclusion condition is proven by the strategy
adopted in the 2-bounded-bypass algorithm. We also show
that a process in E enables at most one process to enter C,
and at most one process can enter C from the starting state.

In the algorithm, a process i in T is permitted to enter C
only if one of the following conditions holds.

Condition 1. type ¼ Grant and receiver ¼ nil hold.
Informally, process i, which is a controller, obtains the
permission to enter C.

Condition 2. type ¼ Grant and receiver ¼ i hold.
Informally, process i, which is a noncontroller, obtains the
permission to enter C.

Condition 3. type ¼ Info, receiver ¼ i, and pred ¼ head
hold. Informally, process i, which is aware that it is the
immediate successor of the controller and that the commu-
nication phase is finished, obtains the permission to enter C.

Inspection of the algorithm indicates that a process in E
performs exactly one of E4, E5, E7, and E8 to change P ’s
value. As shown below, each step enables at most one
process to enter C.

Step E4 modifies P ’s value to ðInfo; tail; nil; iÞ. A value in
P is said to be a communication word if Type ¼ Info.
According to the algorithm (T10-T12), a communication
word may enable the receiver of the word to satisfy
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Condition 3. If not, the receiver writes a new communica-

tion word to its predecessor and backs to step T7. Thus,

step E4 enables at most one process to satisfy Condition 3.
Step E8 modifies P ’s value to ðGrant; successor;4;4Þ,

making the process whose identity is equal to successor to

satisfy Condition 2.
Steps E5 and E7 set P to the initial value,

ðGrant; nil;4;4Þ. Using the argument in Lemma 1, we

have the counterpart of Lemma 1 below:

Lemma 6. At any reachable system state,

jfi 2 Pjpredi ¼ nil ^ pci 2 fT3;T4;T5;T6ggj � 1:

Namely, there is at most one controller that is blocked,

waiting for Condition 1 to hold for it. Thus, the initial

value allows at most one process to enter C. This implies

that E5 and E7 each enable at most one process to gain

the permission, and furthermore, implies that at most one
process can enter C from the starting state, at which P

has the initial value. Thus, the mutual exclusion condition
is ensured.

We now argue that the proposed algorithm satisfies the
lockout-freedom condition. The argument is similar to that
of Theorem 4. Requesting processes are also organized into
lists. A process i is said to be in the doorway if pci ¼ T1, and
it is said to be in the waiting part if pci 2 fT2; . . . ;T12g. The
proof of Lemma 3 also holds for the FIFO algorithm.
According to this lemma, each process that finishes its
doorway has the identity of its predecessor if there is one,
by which the head of a list initiates a communication phase
to reverse the order in a list. Consequently, the permission
can be conveyed according to the sequence of the requests;
the algorithm thus satisfies not only the lockout-freedom
condition, but also the FIFO condition.
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5 AN IMPOSSIBILITY RESULT

This section shows that the bounded-bypass mutual

exclusion problem cannot be solved at all with less than

two shared variables if only fetch&store and read/write are

used. This result implies that both of our algorithms are

optimal. In the proof of this impossibility result, a shared

variable associated with fetch&store and read/write is

modeled as a type of historyless object for two reasons.

First, this approach simplifies the presentation of the proof.

Second, a more general result is thus provided: using only

historyless objects, two objects are required to solve the

bounded-bypass mutual exclusion problem. Historyless

objects, as proposed by Fich et al. [9], are defined below,

and then the proof is presented.
A shared object has an associated set of possible values and

supports a fixed set of operations that provide the only means

to manipulate the object. An operation of an object is regarded

as trivial if it leaves the value of the object unchanged. An

operation e is said to overwrite an operation e0 on an object, if,

starting from any value, applying e0 and then e yields the

same value in the object as applying just e. An object is

historyless if all its nontrivial operations overwrite one

another. For example, read is a trivial operation; and

operations write and fetch&store overwrite each other. There-

fore, an object associated with any subset of read, write, and

fetch&store is historyless, implying that the objects provided

in our model are historyless. The value of a historyless object

depends only on the last nontrivial operation applied to it,

because the last nontrivial operation overwrites the value that

might have been written to the object.
The proof can now be presented by following the proving

strategy proposed by Burns and Lynch [4]. Two more

definitions are needed. An indistinguishability relation,

which is widely used in lower bound proofs, is first defined.

Definition 1. System states s and t are indistinguishable to

process i, written as s �i t, if the state of process i and the

values of all the objects in the system are the same at s and t.

The second definition generalizes that of Burns and

Lynch [4], which states that a process covers shared variable

x provided that a write operation of the process is enabled to

write to x. An enabled write operation can overwrite the

variable involved. Similarly, an enabled nontrivial operation

of a historyless object can also overwrite the object. Thus, the

concept of “covering” is generalized to historyless objects.

Definition 2. Process i covers a historyless object x at system

state s provided that a nontrivial operation of i is enabled to

manipulate x.

That is, when process i covers a historyless object x, i can

overwrite the value of x in its next step.
A basic lemma showing that any process that reaches R

from C on its own must take a nontrivial operation to some

object is presented before proving the lower bound. The

proof of this lemma is similar to the result provided by

Lynch in [13, pp. 301-302] which shows that a process

reaching C from R on its own must write something into

shared memory before doing so.

Lemma 7. Suppose that A is a mutual exclusion algorithm,
shared by n � 2 processes, using only historyless objects. Let s
be a reachable system state of A at which process i is in C. If
process i reaches R in a finite execution fragment starting from
s that involves steps of i only, then it must take a nontrivial
operation to some object along the way.

Proof. Let �1 be a finite execution fragment that starts from
s (at which i is in C), involves steps of i only, and ends
with process i in R. By contradiction, suppose that �1

does not include any nontrivial operation to any object.
An execution that violates the mutual exclusion condi-
tion is constructed herein.

Let s1 be the system state at the end of �1. Since

process i does not write anything to any object, then s �j

s1 for every j 6¼ i.
According to the progress condition, a finite execution

fragment �2, starting from s1 and not including any step

of process i, exists such that some process reaches C.

Because s �j s1 for every j 6¼ i, �2 is also executable from s.
An execution � violating the mutual exclusion

condition can be easily constructed as follows: Execution
� begins with a finite execution fragment leading to
reachable system state s, and then continues with �2.
However, two processes are in C at the end of �,
contradicting the mutual exclusion condition. tu

The main idea of the lower bound proof is that when a
process covers a historyless object x, it can overwrite the
information that other processes might have written to x in
its next step. If a request of some process is overwritten,
another process may enter C an arbitrary number of times,
violating the bounded-bypass condition.

Theorem 8. If algorithm A solves the bounded-bypass mutual
exclusion problem for n processes where n > 2, using only
historyless objects, then A must use at least two objects.

Proof. Suppose for the sake of contradiction that there is
such an algorithm A using only one historyless object,
say x, and guaranteeing b-bounded-bypass for some
constant b. Let s be an initial system state. An execution
of A that violates the bounded-bypass condition is
constructed below and is depicted in Fig. 5.

The progress condition implies that there is an
execution involving process i only, starting from s, that
causes process i to enter C once and back to an idle
system state s0. Lemma 7 implies that process i must take
a nontrivial operation to some object in E in this solo
execution. Since only one object is used, process i must
take a nontrivial operation to the historyless object x in E.
Thus, i must cover x at some point in E.

Let �1 be the prefix of this solo execution up to the last
point where process i covers x in E. At this point, the last
nontrivial operation of i in the solo execution is enabled.
(That is, i can write a value to x in its next step such that
x has the same value as that at system state s0.) Then, �1

is extended to �2 by allowing process j, which is in R at
the end of �1, to enter T and finish its wait-free doorway,
and then allowing process i to overwrite x. Let the final
system states of �1 and �2 be s1 and s2, respectively.
Object x has the same value at s0 and s2 because the last
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nontrivial operation in the execution leading to s0 is the
same as that in the execution leading to s2. Therefore,
s0 �k s2 for every k 6¼ i and j.

Consider any process k that is different from i and j.
(k exists since n > 2.) Since s0 �k s2, and s0 is an idle
system state, the progress condition implies that process
k can enter the critical region an arbitrary number of
times on its own, starting from s2. Additionally, process j
must remain in the trying region at s2, to avoid violating
the mutual exclusion condition.

A counterexample execution � is constructed as
follows: It begins with �2 and then continues by
allowing k to enter the critical region bþ 1 times, as if
process j had never entered its trying region. Execu-
tion � violates the bounded-bypass condition, because
process j, which has passed through its doorway, is
bypassed more than b times by k. tu

6 CONCLUSIONS

We have provided two fair and space-efficient algorithms
for systems under time and memory constraints. The first
algorithm is 2-bounded-bypass; the second is an FIFO
algorithm based on the first algorithm. Each algorithm
adopts the commonly available operations fetch&store and
read/write.

Each algorithm utilizes only two shared variables, one
for arranging requests and the other for communicating
messages. The shared variable for arranging requests
requires nþ 1 distinct values in either algorithm, where n
is the number of processes. In contrast, to improve the
fairness from the bounded-bypass condition to FIFO, the
FIFO algorithm increases the number of values taken on by
the other shared variable from ðnþ 1Þ2 to 2ðnþ 1Þ3. That is,
the size of the shared variable for communicating messages
is increased from 2 log2ðnþ 1Þ bits to 1þ 3 log2ðnþ 1Þ bits.
The best choice of algorithm thus depends on the size of the
shared variables in the underlined system.

Furthermore, we have shown that any bounded-bypass
algorithm using the same set of operations must utilize at
least two shared variables, regardless of the size of the
variables. This lower bound is proven by showing a more
general result that two objects are necessary to solve the
bounded-bypass mutual exclusion problem when using
only historyless objects. Since shared variables associated
with fetch&store and read/write belong to the class of

historyless objects, the more general result applies to our

model, implying that both the algorithms are optimal with

respect to the number of shared variables. The proof

technique is derived from that of Burns and Lynch [4].
One disadvantage of the algorithms is that the hot spot

contention [7] can be up to n. The hot spot contention is the

maximum number of pending operations for any individual

shared variable in any execution, and this number is one of

the principal determiners of the system performance.

Because each algorithm utilizes only a constant number of

shared variables to meet the memory constraint, �ðnÞ hot

spot contention is inevitable.
Additionally, each competing process in the algorithms

repeatedly tests a shared variable while it is waiting to enter

its critical region. Such repeated testing may generate much

traffic on the interconnection network between the process

and the memory, heavily degrading the system perfor-

mance. A complexity metric that counts the number of

remote memory references (RMRs) is widely used to evaluate

mutual exclusion algorithms in systems with hardware

support for cache coherence or distributed shared memory

[2]. In cache-coherent systems, both the algorithms have

OðnÞ RMR complexity. Since the algorithms are bounded-

bypass and each process performs a constant number of

steps to modify shared variables in its trying and exit

regions, the cached copies of these shared variables are

updated OðnÞ times during a process’ life cycle. Thus, a

process takes OðnÞ RMRs to pass through its critical region

once. In distributed shared memory systems, a process in

the algorithms, however, may take an unbounded number

of RMRs in a busy-waiting loop. The problem can be

alleviated by using a collision avoidance technique such as

exponential backoff. A contending process increases its delay

time before testing again after a failed attempt to obtain the

required value from a remote shared variable.
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