
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 20 (2009) 385–402
1045-92

doi:10.1

$ A

Interna

Perugia
� Cor

Nationa

E-m
1 Re

MY3.
journal homepage: www.elsevier.com/locate/jvlc
Drawing graphs with nonuniform nodes using potential fields$
Chun-Cheng Lin a,b, Hsu-Chun Yen a,c,�,1, Jen-Hui Chuang d

a Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan, ROC
c Department of Computer Science, Kainan University, Taoyuan 338, Taiwan, ROC
d Department of Computer Science, National Chiao-Tung University, Hsinchu 300, Taiwan, ROC
a r t i c l e i n f o

Article history:

Received 1 March 2008

Received in revised form

9 December 2008

Accepted 24 April 2009

Keywords:

Graph drawing

Potential field
6X/$ - see front matter & 2009 Elsevier Ltd. A

016/j.jvlc.2009.04.006

preliminary version of this work was pres

tional Symposium on Graph Drawing, Septe

, Italy.

responding author at: Department of Elec

l Taiwan University, Taipei 106, Taiwan, ROC.

ail address: yen@cc.ee.ntu.edu.tw (H.-C. Yen).

search supported in part by NSC Grant 9
a b s t r a c t

Graphs with nonuniform nodes arise naturally in many real-world applications.

Although graph drawing has been a very active research in the computer science

community during the past decade, most of the graph drawing algorithms developed

thus far have been designed for graphs whose nodes are represented as single points. As

a result, it is of importance to develop drawing methods for graphs whose nodes are of

different sizes and shapes, in order to meet the need of real-world applications. To this

end, a potential field approach, coupled with an idea commonly found in force-directed

methods, is proposed in this paper for drawing graphs with nonuniform nodes in 2-D

and 3-D. In our framework, nonuniform nodes are uniformly charged, while edges are

modelled by springs. Using certain techniques developed in the field of potential-based

path planning, we are able to find analytically tractable procedures for computing the

repulsive force and torque of a node in the potential field induced by the remaining

nodes. The crucial feature of our approach is that the rotation of every nonuniform node

and the multiple edges between two nonuniform nodes are taken into account. In

comparison with the existing algorithms found in the literature, our experimental

results suggest this new approach to be promising, as drawings of good quality for a

variety of moderate-sized graphs in 2-D and 3-D can be produced reasonably efficiently.

That is, our approach is suitable for moderate-sized interactive graphs or larger-sized

static graphs. Furthermore, to illustrate the usefulness of our new drawing method for

graphs with zero-sized nodes, we give an application to the visualization of hierarchical

clustered graphs, for which our method offers a very efficient solution.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As graphs are known to be one of the most important
abstract models in various scientific and engineering
ll rights reserved.

ented at the 11th

mber 21–24, 2003,

trical Engineering,

7-2221-E-002-094-
areas, graph drawing (or information visualization in a
broader sense) has naturally emerged as a fast growing
research topic in computer science (see, e.g., [1]). In
visualizing graphs associated with real-world entities, it is
common to annotate each node with some labels (such as
name, attribute), and a good way to display such
information (in the form of text or icon) is to fill the
information inside the drawing of the node. As a result, it
is of importance and interest to be able to cope with nodes
of different sizes and shapes in graph drawing.

Among the various graph drawing techniques reported
in the literature, the so-called force-directed methods (see,
e.g., [2–11]) have received much attention and have

www.sciencedirect.com/science/journal/yjvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2009.04.006
mailto:yen@cc.ee.ntu.edu.tw

ARTICLE IN PRESS

Fig. 1. Various drawings of a graph with three square-shaped nodes and

three edges. (a) Style S1. (b) Style S2. (c) Style S3. (d) Style S4.

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402386
become very popular for drawing undirected graphs. In
such a framework, a graph is viewed as a system of
particles with forces acting between the particles, and
then a good configuration or drawing of the particles
could be generated with locally minimal energy, i.e., the
sum of the forces on each particle is zero. According to
the experimental and theoretical results of [12,13],
graph drawing methods based on the force-directed
strategy usually enjoy the merit of producing graph
layouts with a high degree of symmetry and uniformity
of the edge length.

Unfortunately, most of the conventional force-directed
graph drawing algorithms only deal with graphs with
zero-sized nodes. A naive extension of conventional
drawing algorithms by plugging in objects of nonzero
size for point nodes in the drawing is unlikely to produce a
high quality drawing. In view of this, it becomes apparent
that a new line of research has to be carried out in hope of
narrowing the gap between the conventional force-
directed algorithms and graphs consisting of nodes of
various sizes and shapes that are frequently encountered
in the real world. About the previous work, Harel and
Koren [14] extended the conventional force-directed
methods to develop three new algorithms to draw graphs
with either elliptic or rectangular nodes. Huang and Lai
[15] proposed a force-directed graph drawing algorithm
for graphs with rectangular nodes in which they guaran-
teed that there is no overlapping between any pair of
rectangular nodes.

In this paper, we present a new approach, combining
the force-directed strategy as well as the theory of
potential fields, for drawing graphs with nonuniform
nodes. Although there exist other conventions (e.g., like
hierarchical-layered drawing [16] and orthogonal drawing
[17]) for drawing graphs with nonuniform nodes, we for
the first time take node rotations into account when
implementing our force-directed-based drawing algo-
rithm. The concept of potential fields has already found
appli-cations in a variety of areas in computer science and
engineering, such as path planning [18,19], among others.
In our setting, each edge is modelled by a spring (like in
conventional force-directed methods) and the boundary
of every nonuniform node is uniformly charged. We
consider both 2-D and 3-D drawings of nonuniform
nodes, each of which is represented by a polygon (in
2-D) or polyhedron (in 3-D). Other shapes of objects can
be approximated by their enclosing polygons (or poly-
hedrons). For a given nonuniform node, the forces on the
node come from two sources: one resulting from being
connected by springs, and the other is caused by being
present in the potential field induced by the remaining
nodes. From the efficiency viewpoint, it turns out that
computing the repulsive force and torque of a node in the
potential field induced by the remaining nodes is
analytically tractable, as our subsequent discussion
indicates.

In comparison with [14], our approach differs in the
following. First, we deal with graphs in both 2-D and 3-D,
whereas in [14], only 2-D graphs with either elliptical or
rectangular nodes are investigated. Second and perhaps a
more significant difference is that when measuring the
movement of a nonuniform node, rotation is taken into
account rather naturally in our framework, while the
algorithm in [14] lacks this capability. In the process of
reaching equilibrium, the degree of inclination of a
nonuniform node can be adjusted while moving from
one position to another. By doing so, the final drawing has
a tendency to display a high degree of symmetry or
occupy a small area, which will be shown by our
experimental results. Consider various drawings of a
graph with nonuniform nodes shown in Fig. 1, which can
be classified into four styles, depending on where the end
points of the drawing edges are emanated from and
whether the orientation of each nonuniform node can be
modified. In Figs. 1(a) and (b), every edge connects two
corners between a pair of nonuniform nodes; in Figs. 1(c)
and (d), each edge connects the centers of two nonuni-
form nodes. Figs. 1(b) and (d) allow each nonuniform node
with angle of inclination, but Figs. 1(a) and (c) do not. The
algorithm in [14] can only produce the drawing depicted
in Fig. 1(c). In contrast, our approach can produce all four
drawing styles simply by altering the values of some
parameters in our drawing algorithm. In view of this
example, it is clear that rotation plays a crucial role in
producing a nicer drawing for a graph with nonuniform
nodes. Another feature of our approach is that multiple

edges can be dealt with in a natural way. By allowing an
edge to come out from a corner or the interior of a
nonuniform node rather than from its center, our
approach can produce drawings of graphs with multiple
edges. Note that Figs. 1(a) and (b) allow multiple edges
between two nonuniform nodes.

Aside from the fact that natural objects tend to be of
nonzero size, another motivation behind the need of
handling graphs with nonuniform nodes has to do with
drawing clustered graphs, which are frequently used for in
the visualization of huge graphs. Assuming that each
cluster of a clustered graph has already been drawn nicely,
our idea (motivated by [20]) is to view the convex hull
(polygon) of each nicely drawn cluster as a nonuniform
node first. The next step is to produce a nice drawing for
the graph with its constituent clusters represented by
nonuniform nodes. In the final phase of the drawing
procedure, the details of each cluster are then plugged
into the corresponding nonuniform node. The drawing
approach by abstracting out the details of each cluster
runs very efficiently, making the method suitable for
graph drawing in dynamic scenarios (see, e.g., [21]).

We have developed a prototype system to compare our
new graph drawing method with other existing ap-
proaches empirically. Our experimental results look

ARTICLE IN PRESS

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 387
promising as our subsequent discussion indicates.
However, our method is slower than the previous
methods for moderate-sized graphs without rotations of
nonuniform nodes, and hence our method is suitable for
moderate-sized interactive graphs or larger-sized static
graphs (note that graph drawing algorithms may be
designed for the static or dynamic scenarios, e.g., Biedl
and Kaufmann [22] presented algorithms for generating
orthogonal drawings in the static and dynamic scenarios).
Therefore, finding a more efficient algorithm for drawing
graphs with nonuniform nodes remains open. In addition,
note that some applications do not allow rotations of
nonuniform nodes. Therefore, we give examples applied
to UML class diagrams by using our approach in this
paper.

The rest of this paper is organized as follows. Section 2
gives some preliminaries. In Section 3, the theory behind
potential fields in graph drawing is developed in depth.
Section 4 gives some experimental results in 2-D and 3-D,
and Section 5 gives an application. Finally, a conclusion is
given in Section 6.

2. Preliminaries

In this section, we give formal definitions for the
problem at hand, as well as the necessary background in
force-directed methods.

2.1. Basic definitions

A graph is a pair G ¼ ðV ; EÞ where V is the set of nodes
and E � V � V is the set of edges. A drawing of a graph G

on the plane is a mapping D from V to R2, where R is
the set of real numbers. That is, each node v is placed
at point DðvÞ on the plane, and each edge ðu;vÞ is dis-
played as a straight-line segment connecting DðuÞ and
DðvÞ.

A nonuniform node refers to a polygon in 2-D or a
polyhedron in 3-D. Points of zero size are regarded as
degenerated nonuniform nodes, and to draw other types
of nonuniform nodes (such as circles and ovals in 2-D or
balls in 3-D), we simply use polygons or polyhedra to
approximate such nonuniform nodes. Note that nonuni-
form nodes may be of different shapes and different sizes.
A graph with nonuniform nodes (GNN) is a pair G ¼ ðN;EÞ

such that N is the set of nonuniform nodes and E is the set
of edges. For satisfying different applications, we can
classify drawings of a GNN into four categories, as shown
in Fig. 1, depending on where the end points of the
drawing edges are emanated from and whether the
orientation of every nonuniform node can be altered.
Through the rest of this paper, we denote S1–S4 as the
drawing styles of Figs. 1(a)–(d), respectively, in which:
�
 S1: every drawing edge connects two corners between
a pair of nonuniform nodes, and nonuniform nodes are
not allowed to be rotated.

�
 S2: every drawing edge connects two corners between

a pair of nonuniform nodes, and nonuniform nodes are
allowed to be rotated.
�
 S3: every drawing edge connects the centers of two
nonuniform nodes, and nonuniform nodes are not
allowed to be rotated.

�
 S4: every drawing edge connects the centers of two

nonuniform nodes, and nonuniform nodes are allowed
to be rotated.
It should be noticed that S1 and S2 allow multiple edges
between two nonuniform nodes. Here, we assume that
the ports to which the edges are connected are given.

A hierarchical clustered graph C ¼ ðG;HÞ is a graph with
its nodes clustered recursively in a way that each leaf
(resp. internal node) of the rooted tree H called inclusion

tree corresponds to a node (resp. a subset of nodes called
‘‘cluster’’) of G. In the drawing of a hierarchical clustered
graph, every node of G is drawn as a point, every edge of G

is drawn as a simple curve, and every internal node of H is
drawn as a simple closed region bounding its descendents.
A c-planar drawing [23], i.e., the drawing of a hierarchical
clustered graph without any crossing between edge pairs
or edge/region pairs, is of importance in the fields of graph
drawing or information visualization. Although there exist
polynomial time algorithms for drawing restricted types
of c-planar graphs [24], whether c-planar drawings can be
generated efficiently in the general case remains a
challenging unanswered problem. Dogrusöz et al. [21]
(resp., [20]) applied force-directed strategy (resp., layered-
drawing strategy) to producing the straight-line drawings
of hierarchical clustered graphs where every internal node
of the inclusion tree is drawn as a rectangular box.

In order to draw hierarchical clustered graphs, Eades
and Huang [25] devised a force-directed model where the
edges between two nodes that belong to the same cluster
are replaced by stronger springs; the edges between two
nodes that belong to different clusters are replaced by
weaker springs. By this setting, the nodes of the same
cluster are drawn closer; the nodes of different clusters
are drawn farther. Hence, the relationship of clustering
can be observed in visualization even if we do not draw
the simple closed regions of the internal nodes of the
inclusion tree. In this paper, we propose an approach to
drawing clustered graphs. Although this approach cannot
avoid crossings between edge pairs and edge/region pairs,
it may run more efficiently than the force-directed
strategy in [25] applied to clustered graphs. In this paper,
we show that our approach gives nicer quality than theirs.
2.2. Defining the problem

The drawing problem considered in this paper is
addressed as follows. Suppose we begin with an initial
drawing of a GNN, one is required to produce a nice
drawing of the GNN with respect to the following
aesthetic criteria: no overlapping between any two
nonuniform nodes, no overlapping between any pair of
nonuniform node and edge, symmetry, uniform edge
length, and minimizing the size of the drawing. In
addition, the efficiency of the drawing algorithm is also
factored into our design.

ARTICLE IN PRESS

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402388
2.3. Previous work on force-directed methods

The graph drawing algorithm of Tutte [26,27] de-
scribed by pure mathematics can be regarded as the
earliest force-directed method. In the Tutte model, the set
of nodes is divided into two sets, a set of fixed nodes and a
set of free nodes. By nailing down the fixed nodes as a
strictly convex polygon and then placing each free node at
the barycenter of its neighbor in each iteration, the model
can yield a nice drawing.

Furthermore, since the introduction of the simple
force-directed method by Eades in [2] (a.k.a. spring

algorithm), there has been a number of variants of force-
directed approaches reported in the literature. Generally
speaking, such modifications fall into the following two
categories. One has to do with altering the repulsive force
and the spring force models, while the other attempts to
manipulate the local minima problem resulting from the
equilibrium between attractive and repulsive forces.

The model introduced by Eades uses logarithmic
strength springs in place of Hooke’s law for spring forces
f a, and the inverse square law for repulsive forces f r

as follows:

f aðduvÞ ¼ ðca � logðjduvj=lÞÞduv=jduvj,

f rðduvÞ ¼ �ðcr=jduvj
2Þduv=jduvj, (1)

where ca and cr are scaling constants, l is the given spring
natural length, and duv is the vector from node u to node v.
Besides above considering repulsive forces between every
node–node pair, the models of considering repulsive
forces between every node–edge pair [3], and every
edge–edge pair [4] also were developed to preserve the
edge crossing property and handle the zero angular
resolution problem, respectively.

Subsequently, a number of variations of spring algo-
rithms have been proposed to improve the performance
as well as the drawing quality. Notable examples
include [5–9]. The algorithm in [5] uses the following as
alternate spring and repulsive force formulas: f aðduvÞ ¼

ðjduvj
2=kÞduv=jduvj and f rðduvÞ ¼ �ðk

2=jduvjÞduv=jduvj, re-
spectively, where k is a constant. As it turns out, this
change makes the algorithm more efficient than the
original spring algorithm. In addition, a parameter called
temperature is used to terminate the algorithm. Every
node initially has a temperature value and the value
decreases by computing some cooling function at the end
of each iteration. Until all nodes cool down to some
constant value, the algorithm stops to attain a nice
drawing. In a similar work, the approach of GEM [6]
makes use of the history of the moving trajectory of all
nodes to compute the temperature.

As the algorithm in [7] indicates, the simulated
annealing [28] approach also plays a constructive role in
graph drawing. The basic idea is as follows. Given a
evaluation function consisting a set of criteria, e.g.,
number of edge crossings, the temperature of every node
decreases at the end of each iteration, but the temperature
of a node may increase when the return value of the
evaluation function for the new position of the node is
worse than that regarding the original position of the
node. The algorithm terminates when the temperature of
every node is below some predefined value. In addition,
Kamada and Kawai [8] have used a potential formula to
replace the force formula,and the optimization procedure
tries to minimize the total energy of the system. Sugiyama
and Misue [9] have considered the force-directed method
based on magnetic forces. Their method replaces some or
all of the edges of a graph by magnetized springs, and
gives a global magnetic field that acts on the springs. It
gives three basic types of magnetic fields (i.e., parallel,
radial, and concentric) to control the orientation of the
edges, and hence can generate drawings with different
aesthetic criteria.

In the past, the force-directed techniques only can
handle moderate-sized graphs (about 50 nodes). Recently,
the multi-scale approaches [10,11] make them successful
with much larger graphs (over 10,000 nodes).

2.4. Previous work on graph drawings with nonuniform

nodes

Harel and Koren [14] extended the conventional force-
directed methods to develop three new algorithms to
draw graphs with either elliptic or rectangular nodes.
Rectangular nodes can be viewed as the special case of
nonuniform nodes (polygons) in 2-D, so the force-directed
strategy in [14] for drawing graphs with rectangular nodes
is related to our work, and will be compared in this paper.
The spring and repulsive force formula of their approach
are calculated according to f aðu;vÞ ¼ lbðu;vÞ

2=Len and
f rðu;vÞ ¼ Len2=maxðlbðu;vÞ; �Þ, respectively, where lbðu;vÞ

is the shortest distance between the boundaries of
rectangular nodes u and v, and Len and � are positive
constants.

Other work concerning the force-directed methods for
drawing graphs with rectangular nodes includes
[15,29,30], which mainly focus on only the aesthetic
criterion that removes the overlaps between any pairs of
nodes, and hence, the results of our paper are not
compared with those work.

3. Force-directed method using potential fields

To draw GNNs, our force-directed approach is based
upon the idea of replacing each edge by a spring and
assuming that the border of every nonuniform node is
uniformly charged. In this setting, the repulsive forces
among nonuniform nodes avoid crossings between non-
uniform nodes, and the spring forces pull nonuniform
nodes closer. A nice drawing would be generated when
the corresponding model reaches an equilibrium between
the repulsive forces due to the charged nonuniform nodes
and attractive forces due to springs.

In each iteration of our algorithm, each nonuniform
node moves and rotates, respectively, according to the
force (consisting of repulsive and spring forces) and the
torque (consisting of repulsive and spring torque) acting
at that node. In what follows, since we use Eq. (1) as the
spring force formula, we mainly focus on deriving the
repulsive forces as well as the repulsive and spring

ARTICLE IN PRESS

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 389
torques. Note that the torque acting at each nonuniform
node is a measure to cause that node to rotate counter-
clockwise about an axis, called pivot point of that node, i.e.,
the rotation center of the node.

In what follows, we only consider the style S2 (the
remaining styles are similar and simpler) and elaborate on
the foundations of the theory behind the use of potential
fields in graph drawing. The reader is referred to [18,19]
for more about potential fields as well as some of the
detailed derivations of formulas involved in our subse-
quent discussion.

3.1. 2-D model

Consider two polygons (representing two nonuniform

nodes) A and B in 2-D connected by two edges a1b2 and

a3b2 as shown in Fig. 2(a). Polygon A has vertices

a1; . . . ; a6, and polygon B has b1; b2, and b3 along their
boundaries. Each polygon is associated with a pivot point
exerted by repulsive and attractive forces, and shifts and
rotations are carried out with respect to this pivot point.
For instance, in Fig. 2 ea and eb are the pivot points of
polygons A and B, respectively. In xy-plane, for any two
points of unit charge and of distance r apart, the
Newtonian potential is defined as V ¼ 1=r and the New-
tonian potential of a point q with respect to a uniformly

charged line segment a1a2 is V ¼
R a2

a1
1=rðxÞdx where rðxÞ is

the distance between q and x. Fig. 3 shows uniformly
charged edges along with the equi-potential contours.

Consider two line segments a1a2 and b1b2 on the new
coordinate system (uv-plane), placing a1 on the original
point and a1a2 on the positive u-axis (v-axis is perpendi-
cular to u-axis), after coordinate transformation as shown
in Fig. 2(b). Q ðm;ZÞ is some point on b1b2, and v ¼ auþ b

(where a and b are constants) is the line equation
representing b1b2. d is the length of a1a2, and u1 and u2
A
Bea

b2 = eb

a6

b3

b1

y

x

v

u
ea

A

B

u1

v = au + b

a1

a2

a3
a4

a5

b1

u2

a1 a2

b2 = eb
Q(�,�)

Fig. 2. Coordinate transformation of a 2-D graph with two nonuniform

nodes A and B where ea and eb are the pivot points. (a) The original

coordinate system (xy-plane). (b) The new coordinate system (uv -plane)

after the transformation.

Fig. 3. Potential contours due to uniformly charged square boundary

(left: charge distribution; right: equi-potential contours).
are the projection points of the end points of b1b2. After a
sequence of computations of the above Newtonian
potential function such as negative gradient, integral,
coordinate transformation, and integral, the repulsive
force on b1b2 due to a1a2, i.e., the repulsive force between
two line segments, along the u-axis and the v-axis can be
respectively expressed as

f ru
¼ f ru

ðu2Þ � f ru
ðu1Þ, (2)

f rv
¼ f rv

ðu2Þ � f rv
ðu1Þ, (3)

where

f ru
ðuÞ ¼ log

f 01ðuÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

f 1=2
1 ðuÞ

f 02ðuÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

f 1=2
2 ðuÞ

,

f rv
ðuÞ ¼

1

a
log

f 01ðuÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

f 1=2
1 ðuÞ

f 02ðuÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

f 1=2
2 ðuÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

ðbþ dÞ

aðadþ bÞ

� log
2ðadþ bÞðd� uÞ þ 2ðadþ bÞf 1=2

1 ðuÞ

auþ b

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

a
log
�2buþ 2bf 1=2

2 ðuÞ

auþ b

!
,

where f 1ðuÞ ¼ ðauþ bÞ2 þ ðu� dÞ2 and f 2ðuÞ ¼ ðauþ bÞ2þ

u2. And the repulsive torque on b1b2 due to a1a2, i.e., the
repulsive torque between two line segments, with respect
to the pivot point eb ¼ ðe

u
b ; e

v
bÞ can be expressed as teb

r ¼

teb
r ðu2Þ � teb

r ðu1Þ where

teb
r ðuÞ ¼ b� ev

b �
ba2
þ b2

1þ a2
�

eu
b þ b

a

 !

� log
f 01ðuÞ=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

f 1=2
1 ðuÞ

f 02ðuÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

f 1=2
2 ðuÞ

�
b2

a2
þ eu

bdþ
beu

b þ bd

a

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

bþ da

� log
2ðadþ bÞðd� uÞ þ 2ðadþ bÞf 1=2

1 ðuÞ

auþ b

þ
b

a
þ eu

b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

a
log
�2buþ 2bf 1=2

2 ðuÞ

auþ b

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

a
ðf 1=2

1 ðuÞ � f 1=2
2 ðuÞÞ, (4)

whose direction is iz ¼ iu � iv, in which iu and iv are the
unit vectors of u-axis and v-axis, respectively.

In addition, the torques due to the spring forces should
be considered. For example, in Fig. 2, suppose the

attractive force on the point b2 due to the spring edge

b2a1 is equal to f aðb2a1

��!
Þ, from Eq. (1), and B rotates with

respect to the pivot point eb. The torque with respect to

point eb due to the attractive force f aðb2a1

��!
Þ from spring

b2a1, on point b2, is equal to the cross product

ðb2 � ebÞ � f aðb2a1

��!
Þ. (5)

Note that it is inappropriate to choose the center of
shape as the pivot point of a polygon because the forces
and torques due to springs are computed by the spring

ARTICLE IN PRESS

B

eb

q

A
ea
C1

C2

C4

C3
S

q

R
Q

P1
0 C1

C2

C4

S

l1
-

l1
+

C3
P1

0^

n̂

u1^

q’q

d

l1
^ l1

{

ix = l1
^

iz = n̂

iy = - u1
^

Fig. 4. A 3-D graph consisting of two polyhedra. (a) Uniformly selected

sample points on the surfaces of the right polyhedron B. (b) Geometric

quantities associated with a sample point q from B and a surface S of A,

where Q is the plane containing S.

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402390
lengths and the springs are not connected to the centers of
the shape. Instead, the mean of the coordinates of the
vertices connected by springs is selected as the pivot
point. Consider Fig. 2 for instance. The polygon A has
vertices a1 and a3 connected by springs, and the midpoint
of a1 and a3 is the pivot point of A. The polygon B only has

a single vertex b2 connected by a spring, and hence b2 is
the pivot point of B.

In view of the above derivations, the force between two
polygons can be derived. For example, in Fig. 2, the total
repulsive force on polygon B due to polygon A is equal to

Fr ¼
X

i2BðBÞ

X
j2BðAÞ

f ij
r , (6)

where BðXÞ is the set of border lines of polygon X, and
f ij

r ¼ ðf
ij
ru
; f ij

rv
Þ is the repulsive force on border line segment i

due to j in which f ij
ru

(resp., f ij
rv

) is the component along the
u-axis (resp., v-axis) computed by Eq. (2) (resp., Eq. (3)).

On the other hand, the total spring force on polygon B

due to all of the springs is equal to

Fa ¼
X

p2PðBÞ

X
ðp;qÞ2E

f að pq
�!
Þ, (7)

where PðBÞ is the set of vertices of B, E is the edge set, p is
a vertex of B, q is a vertex of some polygon, and f a is the
spring force defined in Eq. (1).

In summary, the total force applied to polygon B due to
the remaining polygons and springs is equal to the sum
of the repulsive force (Eq. (6)) and the attractive force
(Eq. (7)) as follows:

F ¼
X

N�fBg

ðFr þ FaÞ. (8)

Similar results can be obtained for the total torque T
with respect to the pivot point eb including repulsive and
spring torques.
3.2. 3-D model

Now we turn our attention to drawing nonuniform
nodes in 3-D in the framework of potential fields.

In Fig. 4(a), consider two polyhedra (representing
nonuniform nodes in 3-D) A and B, where q is a sample

point of B, and S is a plane surface of A surrounded
by border lines C1–C4 and @S denotes the boundary of S.
Fig. 4(b) only illustrates q and S where bui and bli are along
the (outward) normal and tangential directions of @S, andbn is its surface normal, where bn ¼ bui �

bli. Consider a
generalized potential function (i.e., higher-order potential
function) of the kind used in [18] for reasoning about
motion planning.

According to the derivation from [18], the repulsive
force at point q due to S can be expressed in the following
analytical from (see [18] for more details):

Fr ¼ ðFrx ; Fry ; Frz Þ

¼ �
X

i

ri½F3;iðxi ¼ lþi ; yi; zÞ

�F3;iðxi ¼ l�; yi; zÞ� þ
a
z2

iz, (9)
where, for each Ci, the triple xi, yi, and z ¼ d?40 are
measured alongbli, �bui, and bn, respectively, with the origin
located at the projection of q on Ci; the gradient ri is
determined by the coordinate system in which Ci resides,
and iz is the unit vector of z, i.e., bn. And then Eq. (9) can be
resolved as follows:

@F3

@x
¼

y

ðx2 þ y2Þ
ffi
x2 þ y2 þ z2

p ,

@F3

@y
¼

�xðx2 þ 2y2 þ z2Þ

ðx2 þ y2Þðy2 þ z2Þ
ffi
x2 þ y2 þ z2

p ,

@F3

@z
¼ �

tan�1 xz

y
ffi
x2 þ y2 þ z2

p
z2

þ
xyðx2 þ y2Þ

zðx2 þ y2Þðy2 þ z2Þ
ffi
x2 þ y2 þ z2

p .

In 3-D, the repulsive force between two polyhedra A and
B is the sum of the repulsive forces of every possible pair
of polygonal surfaces in A and B. However, the repulsive
force between two polygonal surfaces is a complicated
four-order integral. In order to reduce the complexity of
computing repulsive forces between A and B, we uni-
formly select sample points on the surfaces of each
polyhedron. Hence the repulsive force on B due to A is
the sum of the repulsive forces at each sample point q due
to every polygonal surface of B. See Fig. 4(a) for an
illustrating example. The complexity of computing the
forces between two polyhedra can be reduced because the
forces at a single point due to polygons is a two-order
integral.

Assume that SPðXÞ is the set of sample points of
polyhedron X and SðXÞ is set of polygonal surfaces of
polyhedron X. The repulsive force at a sample point pi on B

due to A is the sum of the repulsive forces at pi due to n

(all) polygonal surfaces on A. Thus, the repulsive force Fr ,

ARTICLE IN PRESS

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 391
standing for the force at B due to A, is the sum of the
repulsive forces for all sample points on B, as follows:

Fr ¼
X

i2SPðBÞ

X
j2SðAÞ

Fij
r , (10)

where the repulsive force at pi due to the j-th polygonal
surface of A is denoted as Fij

r ¼ ðF
ij
rx
; Fij

ry
; Fij

rz
Þ, which is

computed according to Eq. (9).
On the other hand, the total attractive force on

polyhedron B due to all of the springs is equal to

Fa ¼
X

p2PðBÞ

X
ðp;qÞ2E

f að pq
�!
Þ, (11)

where p is a vertex of B, and f a ¼ ðf ax
; f ay

; f az
Þ in which f ax

,
f ay

, f az
are the projections of the spring force defined in (1)

along x-, y-, and z-axes, respectively.
Thus, the total force on polyhedron B due to all springs

and the other polyhedra except for B can be expressed as
the sum of (10) and (11), as follows:

F ¼
X

N�fBg

ðFr þ FaÞ. (12)

The repulsive torque (13) is the cross product of the
repulsive force Fi

r at sample point pi and distance vector Xi

which is the distance from the reference point eb to pi. So
the total repulsive torque (14) is the sum of torques due to
all of the sample points.

Ti
r ¼ Xi � Fi

r , (13)

Tr ¼
X

i2SPðBÞ

Ti
rx

. (14)

The total attractive torque Ta can be derived similarly.
Consequently, the total torque (15) on polyhedron B due to
all springs and the other polyhedra except for B can be
expressed as

T ¼ Tr þ Ta. (15)

Note that an important aspect of our approach lies in
the formulas derived in our potential field model being
analytically tractable, making our algorithm computa-
tionally tractable.

4. Implementation and experimental results

Based on the theory of potential fields detailed in the
previous section, in this section we propose our algorithm,
detail the implementation of our algorithm, and develop a
prototype system for drawing GNNs in 2-D and 3-D and
give some experimental results.

4.1. Algorithm

Our drawing algorithm, based upon the theory of
potential fields, is presented in Algorithm 1, which has a
structure similar to those found in conventional force-
directed methods. The algorithm operates iteratively to
generate a continuous process from the initial drawing to
the final drawing, as shown in Fig. 7. It is worthy of
pointing out that if the drawing of each iteration is
rendered, the animated process allows the user to predict
the dynamics of the drawing, which meets the require-
ment in information visualization.

Algorithm 1. POTENTIAL_SPRING (graph G)
1: a
ssign the initial locations of nonuniform nodes of G according to a

given (or random) initial drawing
2: w
hile convergeda1 or the maximal number of iterations is reached

do

3:
 converged 1
4:
 oldPosn newPosn
5:
 for each nonuniform node Ni in G do

6:
 Calculate the total force Fi of node Ni , consisting of:
(a) the repulsive force due to the other nonuniform nodes

located within the neighborhood of node Ni (the circle in 2-D (ball in

3-D) with center Ni and a small radius g) according to spring force

formula (1), and
(b) the spring force due to its adjacent springs according to

repulsive force formulas (2) and (3) in 2-D or (9) in 3-D;
7:
 Calculate its total torque Ti according to 2-D formulas (4) and

(5) or 3-D formulas (13) and (14);
8:
 Save Fi and Ti;
9:
 endfor

10:
 for each nonuniform node Ni in G do

11:
 Simultaneously move and rotate every nonuniform node Ni

according to minðc1 � Fi ; t1Þ and minðc2 � Ti ; t2Þ, respectively, and

then save new positions to newPosn;
12:
 if kc1Fik4�1 or kc2Tik4�2 then

13:
 converged 0
14:
 end if

15:
 end for

16: e
nd while

In Algorithm 1, c1 and c2 (resp., t1 and t2) are constants
used to control the magnitudes (resp., upper bounds) of
movement and rotation of every nonuniform node,
NewPos and OldPos are data structures used to record
the new and old positions of vertices of all nonuniform
nodes in N respectively, and �1 (resp., �2) in line 12 is the
tolerance of convergence for force (resp., torque) which is
usually a very small positive number. In addition, by using
the flag converged, the while loop in lines 2–16, especially
lines 2–4 and 12–14, stops when the drawing remains
unchanged between two iterations, i.e., the algorithm
converges, or the maximal number of iterations is
reached. There exist two for loops in the rest of the main
loop, i.e., in each iteration, the first (lines 5–9) is to
compute all the forces and torques of each nonuniform
node according to the derivations in previous sections,
and the second (lines 10–15) is to move and rotate each
nonuniform node and then render the graph. To avoid a
drastic change in position, we can assign upper bounds to
the movement and rotation for each nonuniform node.

The way of rotating a nonuniform node in line 11 is
by taking the pivot point as the center of rotation
and rotating with an angle with degree c2 � Ti counter-
clockwise.

About the computation of repulsive forces in line 6(a)
of Algorithm 1, we consider only the local repulsive forces

(derived from the approach in [5]) to speed up the
algorithm. Like most of the force-directed approaches to
drawing huge graphs [10,11], the idea is to compute the
local repulsive force of each nonuniform node Ni, i.e., only
to compute the repulsive force of Ni due to the other
nonuniform nodes placed within the neighborhood of Ni

ARTICLE IN PRESS

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402392
(which is defined as the circle in 2-D (sphere in 3-D) with
center Ni and a small radius g) instead of all the other
nonuniform nodes.

As for the time complexity, since line 6(a) in Algorithm
1 needs to enumerate all pairs of nonuniform nodes, one
can easily check that each iteration of Algorithm 1 takes
time OðjNj2 þ jEjÞ in the worse case. Line 6(a) in Algorithm
1 may take time OðjNjÞ if nonuniform nodes are uniformly
distributed in the 2-D plane (note that the situation often
occurs in the drawings generated by force-directed
methods). In this case, each iteration of Algorithm 1
taking time OðjNj þ jEjÞ may be executed efficiently. In
order to evaluate the total number of iterations experi-
mentally, we execute our algorithms on a number of GNNs
with moderate sizes (jNj � 100), which are generated
randomly, under our setting of parameters. The experi-
mental evaluation shows the total number of iterations to
be at most about 1000.
2 Without considering edges, the approach in [15] produces the

drawing of style S3 without the overlapping between the rectangular

nodes.
4.2. Implementation

The analysis on the convergence and the adjustments
of parameters in force-directed methods has been dis-
cussed a lot in previous work (see, e.g., [7,11,13]). On
theoretical aspect, Eades and Lin [13] have shown that the
general framework of force-directed methods can lead to a
stable drawing in which many symmetries are displayed.
In fact, our force-directed approach only modifies the
force formulas and considers additional torque formulas,
but does not have too much modification on the
optimized procedure of conventional force-directed algo-
rithms. Therefore, like [13], our approach also can be
shown to lead to a stable drawing, under appropriate
setting of parameters.

In Algorithm 1, it should be noticed that the setting of
c1, c2, �1, �2 influences not only the running time but also
the convergence of our approach and the quality of the
final drawing. In the following, we briefly explain how to
set those parameters in Algorithm 1 to achieve conver-
gence. W.l.o.g., we consider that the input graph is
connected; thus, each node must be exerted by nonzero
spring and repulsive forces. That is, if the total force acted
at a node is nonzero, then the node moves either inward
into or outward from the other nodes of the graph. Since
parameters c1 and c2 (resp., t1 and t2) control the
magnitudes (resp., upper bounds) of movement and
rotation, the ranges in which nodes move and rotate are
bounded. That is, if those parameters are set smaller, then
the movement and rotation ranges of nodes are smaller.
Note that parameters �1 and �2 control the tolerance of
convergence, so under larger �1 and �2 nodes do not move
and rotate in smaller movement and rotation ranges. As a
result, smaller c1, c2, t1, t2, as well as larger �1, �2 narrow
the movement and rotation ranges of nodes, so our
algorithm can achieve convergence if the movement and
rotation ranges are set appropriately.

In fact, given certain settingof parameters, the user can
easily verify whether the parameter setting achieves
convergence or not by observing the differences of the
drawings generated by some consecutive iterations of
Algorithm 1. If the algorithm under a given parameter
setting is divergent, the user can judge the divergence
type to adjust the parameters so that the algorithm
becomes convergent. The possible divergence types are
stated as follows:
1.
 Bigger movement (resp., rotation) magnitude para-
meter c1 (resp., c2) makes nodes move farther (resp., be
rotated faster) so that the final drawing may be
generated faster and hence the total running time
may be shorter. Note that t1 and t2 control the upper
bounds of the movement and rotation, respectively.
However, if some nodes move back and forth between
two consecutive drawings (resp., rotates very fast
during a series of drawings) so that the convergent
positions (resp., convergent inclination degrees) of
these nodes cannot be determined, then it implies that
the value of c1 (resp., c2) should be decremented.
2.
 Bigger force (resp., torque) convergence tolerance �1

(resp., �2) can make the algorithm achieve the
convergence of forces (resp., torque) faster. However,
if we observe that a further iteration executed at the
final drawing can obtain a drawing with better
placements of nodes (resp., better inclination degrees
of nodes), then it implies that the value of �1 (resp., �2)
should be decremented.
3.
 Smaller neighborhood radius g can make the algorithm
run faster because only the local repulsive forces are
computed. However, if we observe that the final
drawing looks bad, i.e., we encounter a local minimal
problem, then it implies that the value of g should be
incremented.

Intuitively, our approach with repulsive forces between
nonuniform nodes handles the problem of node–node
overlapping,2 except for the case when the pivot point of a
small-size node falls inside a large node. If there is no
overlapping in the initial drawing, this pathological case
would occur only when the small-size node moves so fast
such that it rushes into the big-size node, and hence the
problem can be solved by setting c1 smaller. In future
work, we may apply an alternative strategy in which each
iteration checks out this case and adds a repulsive force
between the two nodes.

Aside from the problem of node–node overlapping, the
problem of node–edge overlapping also needs to be taken
into account. In [14], it was proven that a drawing is free
from edge–node overlapping if the distance between any
two nonuniform nodes is at least half of the maximal edge
length. If we also consider uniform edge lengths, it is
required that the ratio between the maximal edge length
and the minimal edge length is less than two. Hence, in
practice edges rarely intersect with nodes if the deviation
between the edge lengths is not too large. Moreover, a
post-processing strategy may be applied to remove
node–edge overlapping, e.g, adding repulsive forces

ARTICLE IN PRESS

initial weak spring medium spring strong spring

Fig. 5. A variety of drawings of style S2 for the same GNN with respect

to different kinds of springs. (Average running time per iteration:

0.00452 s.)

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 393
between nodes and edges [7] or drawing edges as curves
[29], bypassing the intersected nodes.

In the future work, we may consider the following. The
repulsive forces make our approach computationally
expensive, and so we may apply an extension of the
conventional spring algorithms (viewing each nonuniform
node as a zero-size point) as the preprocessing procedure
of our approach may be a good strategy of reducing the
total executing time as well as ‘jumping’ out local minimal
problems initially. Especially, if all the nodes of the input
graph are rectangles, applying the algorithm in [14] as the
preprocessing procedure of our approach is a good
starting point. Obviously, we can imagine that [14] is
used to produce an initial drawing with a nice embedding,
and then our approach only takes a slight amount of
additional effort to adjust the initial drawing by means of
rotations for achieving a smaller area or a higher degree of
symmetry.

Note that conventional force-directed methods cannot
guarantee nice drawings for all kinds of graphs because
they in general do not necessarily reach minimal config-
urations, i.e., the repulsive forces among some nodes might
be too weak or too strong. Fortunately, some local minimal
problems can be overcome by adjusting the coefficients of
the models. Our model for drawing GNNs can also handle
the local minimal problem in the same way.
3 The classical spring algorithm is carried out by first assuming all

nodes to be of zero size. Once the drawing using a spring algorithm is

done, each of the point node is replaced by its actual structure (a small or

a large ball).
4.3. 2-D experimental results

In what follows, we present some experimental results
for a variety of graphs in 2-D and give some discussion.
Recall that there exist four styles S1–S4 for drawing
GNNs. In this subsection, we only consider the drawings of
style S2 or S4 because the other styles can be formed
from these by rotation.

In practice, setting different spring magnitudes for the
same GNN may produce a variety of nice drawings.
Technically, spring magnitude is controlled by scaling
constant ca or spring natural length l in Eq. (1), and we say
that spring is stronger (resp. weaker) if ca is set larger
(resp. smaller) or l is set shorter (resp. longer). In Fig. 5, all
the various drawings of style S2 display symmetrically
regardless of the setting of spring magnitudes.

Figs. 6 and 7 display the continuous process from
initial drawing to final drawing of styles S2 and S4,
respectively. Note that Fig. 6 allows multiple edges, and
hence is easy to manipulate nonuniform nodes arbitrarily.
By observing the continuous processes of many instances,
we find that springs can be set very strong such that our
approach can output a nice drawing with a compact area
as well as avoiding node–node overlapping although there
may exist some node–node overlapping in the process.
However, setting springs too strongly may result in an
unbalanced and divergent state because of lacking a
compromise between spring and repulsive forces. On the
other hand, setting springs weaker may not only lead to a
local minimal problem but also produce a final drawing
with larger area. Therefore, the strength of springs might
as well be adjusted case by case, and there exist a tradeoff
between spring magnitude and drawing area.
Note that it is more difficult to draw a GNN with more
edges. Consider Fig. 8 as an example. Fig. 8(a) illustrates
an initial drawing of a hypercube-structure GNN, where
each nonuniform node has degree four. Consider the
drawings produced by our approach with weaker and
stronger springs in Figs. 8(b) and (c), respectively. Our
approach with weaker springs can produce a larger-sized
nice drawing, as shown in Fig. 8(b). If a smaller-sized
drawing is required, since each nonuniform node occupies
a nonzero size, the crossings among edges are easily
overlapped by nonuniform nodes, as shown in Fig. 8(c), so
that the degrees of those nonuniform nodes may not
be easily recognized by users. Note that the case is
not serious for graphs with zero-sized nodes, as show in
Fig. 8(d). As a result, our approach may be more suitable
for GNNs with fewer edges.

Fig. 9 gives some 2-D drawings for various graphs with
rectangular nodes, where the graphs of (a)–(d) comes
from the analogies of the examples in [14] in which we
initially give every nonuniform node a certain angle of
inclination, and the experimental statistics is given in
Table 1. For comparison, five drawings for each graph are
given in Fig. 9. That is, the initial drawing displays graphs
by randomly assigning the location and the inclination
degree of every nonuniform node, while the classical, HK,
our drawings with stronger and weaker springs display
graphs by, respectively, using the naive extension of
[2],3[14], and Algorithm 1 with respect to the initial
drawing. The criteria of displaying smaller drawing area
and more symmetries may be conflicting with each other,
and hence in Fig. 9 our approaches using stronger springs
and weaker springs are applied to, respectively, display
smaller drawing area and more symmetries. Note that we
only give the classical and HK drawings with stronger
springs in Fig. 9 because those with weaker springs
occupy larger area and cannot generate any symmetry. It
is obvious from Fig. 9 to see that the rotations of
nonuniform nodes play an important role in the drawing
area and symmetries.

In Table 1, the term ‘area’ measures the rectangular
region bounding the graph drawing, and the area value is
calculated by viewing the smallest (square) node of graph
as one unit. The degree of uniform edge length is
measured by the term ‘standard deviation of edge length’

ARTICLE IN PRESS

iteration 10

iteration 20
iteration 30

intial

iteration 40

iteration 50

iteration 60
iteration 70

iteration 243

Fig. 6. Continuous process from initial drawing to final drawing of style S2 with multiple edges for a bird structure. (Average running time per iteration:

0.127572 s.) Note that in this case each spring has different strength for yielding good drawing.

random
drawing

final drawing
(iteration 67)

iteration 4
iteration 8

iteration 12
iteration 16

iteration 20
iteration 24

random
drawing

final drawing
(iteration 244)

iteration 5
iteration 10

iteration 15
iteration 20

iteration 25
iteration 30

Fig. 7. Continuous process from initial drawing to final drawing. (a) A simple case makes us easy to realize how to follow the dynamic drawing. (b) Bigger

nodes walk along a collision-free path.

Each nonuniform
node is replaced by
a zero-sized node.

a b c d

Fig. 8. Different drawings of a hypercube. (a) Initial; (b) our (weaker spring) and (c) our (stronger spring).

4 After trying many examples of moderate-size graphs, we find that

our approach can generate nice drawing by taking about two or three

times of the number of iterations of HK approach.

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402394
[14], and obviously a drawing with more uniform edge
length has lower deviation. The symmetries of generic 2-D
graph drawings involve reflectional and rotational symme-

tries, and the relationship between force-directed meth-
ods and symmetries has been formally defined in [13].
Nevertheless, the symmetries of the drawings for GNNs
has a little difference. A drawing for GNNs has reflectional

symmetry if it can be folded in half along a reflection axis
and the two halves line up with each other, while the
drawing has k-rotational symmetry if it can be rotated
around degrees 2p=k and still look the same. Table 1
records the number of reflection axes and k in the
columns ‘reflection axes’ and ‘k-rotational symmetries’
respectively. That is, the higher the two values are, and
the more symmetric the drawing appears. In addition,
Figs. 9(b) and (d) reveal that the drawings of some
subgraphs in the drawings generated by our approach
display a high degree of symmetries.

In what follows, we observe and analyze the entries in
Table 1 in greater detail. As for running time, the total
running time and total iterations4 depend on many
complicated factors, e.g., movement magnitude parameter
c1, rotation magnitude parameter c2, force convergence
tolerance �1, torque convergence tolerance �2, nature
length of spring, and so on, and hence in Table 1 ‘average

ARTICLE IN PRESS

classical
our

(stronger springs)HKinitial
our

(weaker springs)

classical
our

(stronger springs)HKinitial
our

(weaker springs)

classical
our

(stronger springs)HKinitial
our

(weaker springs)

classical
our

(stronger springs)HKinitial
our

(weaker springs)

classicalinitial classical ourHKinitialour (strong-
-er springs)

our (weak-
-er springs)HK

Fig. 9. 2-D drawing of styles S4 for various graphs with rectangular nodes. (a) HK_A. (b) HK_B. (c) HK_C (The size of each drawing is 40% of the original.).

(d) HK_D. (e) Mesh 4� 4. (f) Mesh 6� 6 (The size of each drawing in (f) is 30% of the original.).

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 395
time per iteration’ and ‘number of iterations’ are mea-
sured under the setting c1 ¼ 0:1, c2 ¼ 0:01, t1 ¼ 10,
t2 ¼ p=2, �1 ¼ 0:1, �2 ¼ p=1800 ¼ 0:1	, and g ¼ 40 and
considering that all the three approaches obtain the
drawings with the same total edge length. Note that, in
order to speed up the convergence of our algorithm, the
force and torque convergence tolerances (i.e., �1 and �2)
are set as large values as possible such that in visualiza-
tion the final drawing is hardly modified by subsequent
iterations. We apply the same idea to setting the force
tolerances used by the classical and HK drawings, which
are naturally different from �1.

As for the standard deviation of the edge length, T
able 1 seems to indicate that our approach using weaker
springs is the best. However, a closer examination reveals
that the measure of the remaining methods can be
reduced by adjusting the parameter of stretching the
nature lengths of springs, which has a tendency to
maintain the uniformity of the edge length. Therefore, it
appears that there is no clear winner in producing
drawings with the most uniform edge lengths. As for the
drawing area, the HK drawing and our drawing using
stronger springs (in Fig. 9) perform better, as the
numerical values in Table 1 suggest. Obviously, our
approach has the capability of producing the drawing
with the smallest area because the rotations of nonuni-
form nodes are considered in our procedure. As for
symmetries, both Fig. 9 and Table 1 suggest that our

ARTICLE IN PRESS

Table 1
Statistics on the experimental results.

Graph name jNj Method Standard deviation of edge

length
StdDev

AvgLen

� � Area Reflect. axes k-Rotational

symmetries

Ave. time per

iter. (s)

Number of

iter.a
Total run.

time (s)

Spring type Stronger Weaker Stronger Weaker Weaker

HK_A 31 Classical 0.3950 – 386.50 – – 0.00019 984 0.187

HK 0.4121 – 349.98 – – 0.00109 1047 1.141

Our 0.4746 0.3817 305.28 – – 0.05371 208 11.172

HK_B 25 Classical 0.4152 – 475.99 0 0 0.00011 282 0.031

HK 0.4989 – 405.94 0 0 0.00077 366 0.281

Our 0.6366 0.3768 249.31 2 2 0.05558 244 13.562

HK_C 31 Classical 0.2697 – 1012.32 – – 0.00020 1181 0.234

HK 0.3454 – 603.20 – – 0.00112 460 0.515

Our 0.4813 0.2950 500.31 – – 0.05263 293 15.422

HK_D 15 Classical 0.2702 – 283.26 0 0 0.00005 87 0.004

HK 0.3001 – 181.00 0 0 0.00031 562 0.172

Our 0.4754 0.2764 70.68 1 0 0.01895 357 6.766

Mesh 4� 4 16 Classical 0.3170 – 28.94 0 0 0.00007 222 0.016

HK 0.2341 – 32.15 0 0 0.00030 256 0.078

Our 0.3584 0.2961 22.66 4 4 0.02379 67 1.594

Mesh6� 6 36 Classical 0.3649 – 80.10 – – 0.00025 557 0.141

HK 0.4269 – 63.59 – – 0.00157 1390 2.188

Our 0.4737 – 44.61 – – 0.08758 529 46.328

Running time is measured on an Athlon 64 X2 Dual Core 1.99 GHz PC with 1.25 GB memory under setting c1 ¼ 0:1; c2 ¼ 0:01; t1 ¼

10; t2 ¼ p=2; �1 ¼ 0:1; �2 ¼ p=1800 ¼ 0:1	 , g ¼ 40.
a The number of iterations is measured when all the three approaches obtain the drawings with the same total edge length.

Fig. 10. The drawing of a mesh GNN with 10� 10 nodes produced by our

approach. (a) Classical. (b) Our. (c) HK.

Table 2
Statistics of the experimental result for the mesh GNN shown in Fig. 10.

Mesh 10� 10 (jNj ¼ 100)

Method Average time per

iterations (s)

Number of

iterations

Total running

time (s)

Classical 0.00200 2267 4.531

HK 0.01187 1316 15.625

Algorithm 1a 0.20775 753 156.438

a Applying the classical approach as the preprocessing procedure of

our approach (i.e., applying the output of the classical approach as the

input of our approach) costs only about 95.406 s.

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402396
approach using weaker springs enjoys the merit of a high
degree of symmetries.

In order to estimate the number of nodes that our
algorithms can handle, Figs. 10(a)–(c) give the drawings of
a mesh GNN with 100 nodes produced by the classical
approach, the HK approach, and Algorithm 1, respectively,
and their experimental statistics is given in Table 2. In
view of Tables 1 and 2, our algorithm can still be
considered tractable for handling moderate-sized graphs,
although it runs slower than the others, as expected. On
average, for the GNNs in Table 1, our algorithm runs
263–505 times slower than the classical approach,
whereas from Table 2 our algorithm runs about 34.5
times slower than the classical approach for a 100-node
mesh GNN. It implies that, as far as a larger-sized GNN is
concerned, the effect of computing only the local repulsive
forces in Algorithm 1 on the reduction of time complexity
is getting more obvious, and the gap of time complexity
between Algorithm 1 and the classical approach is getting
narrower. Although Algorithm 1 still run slower than the
classical approach by a large multiple, Algorithm 1 takes
about 156.438 s (
 2:6 min) to handle such a 100-node
GNN. This leads us to a conclusion that our algorithm is
mostly suitable for either moderate-sized GNNs or the
larger-sized GNNs in the static scenario. Note that
applying the classical approach as the preprocessing
procedure of our approach may reduce the total running
time (in the example, this strategy costs only about
95.406 s
 1:6 min). It is of interest to see whether the
multi-scale technique [10,11] could be applied and

ARTICLE IN PRESS

Fig. 11. Different drawings of a UML class diagram, where (a) is derived from [32]. Note that the original drawing in [32] includes texts associated with

edges, but the texts are omitted in (a) because the edge labeling is not concerned in our work. (a) original; (b) our (weaker springs); (c) our (stronger

springs) and (d) Zooming in (c) until the height is the same as (a).

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 397
incorporated into our algorithm to improve the time
complexity.

In summary, allowing the rotation of each nonuniform
node has the advantage that weaker springs make our
final drawing more symmetrical, whereas strong springs
make our final drawing with a smaller size. In graph
drawing, symmetry is a much admired property [31]. A
more symmetrical drawing can help users observe the
structure and the properties of the graph clearly in
visualization. On the other hand, because the display
screen is limited, it is crucial to generate a drawing with a
smaller area, especially, in the case when every node has a
nonzero size. When wezoom in a smaller-sized drawing
with tiny attributes (texts or icons) associated with
nonuniform nodes, the size of the attributes are enlarged
simultaneously and hence can be displayed clearly.

Consider Fig. 11 for an example. The unified modeling

language (UML) is a standardized specification language
for object modeling, and it is often used to describe the
static view of an application [33]: the main constitutions
are classes and their relationships. In the graphical
notations of UML, classes are represented by nonuniform
nodes and their relationships are represented by arcs. For
example, Fig. 11(a) gives a drawing of a UML class diagram
derived from [32], depicting the procedure followed
for organizing honors students’ seminars. Fig. 11(b) (resp.,
Fig. 11(c)) redraws Fig. 11(a) by our approach with weaker
(resp., stronger) springs, which gives a nearly symmetrical
drawing (resp. a smaller-sized drawing). As compared to
the drawing in Fig. 11(a), the drawing in Fig. 11(b) reveals
the information that the UML class diagram is a
symmetrical graph if we delete the node labeled by
‘:Lecture’ (the bottommost node in Fig. 11(b)). As for the
advantage of a small-sized drawing, Fig. 11(d) gives
the drawing after zooming in the small-sized drawing in
Fig. 11(c) until the drawing height is the same as Fig. 11(a).
By doing this, although some text inside nonuniform
nodes in Fig. 11(d) is oblique, they still can be observed
more clearly than those in Fig. 11(a), under the same
display screen. If text labels are too oblique to be
observed, we may further restrict every nonuniform node
to rotating under a range of inclination angles.

For graphs with not only rectangular nodes, we
consider an example shown in Fig. 12. Fig. 12(a) is a
diagram derived from [34], which applies UML notations
and a special type of high-level Petri-nets [35] to the
visual modeling of object-oriented distributed system.
Note that Fig. 12(a) is drawn manually. By representing
each object by a polygon and each net by straight line
segments, we obtain a straight-line drawing of a GNN in
Fig. 12(b), where multiple edges are allowed. Fig. 12(c)
redraws Fig. 12(b) by our approach. We observe that there
are three clusters of nonuniform nodes which are divided
by two dashed curves in Figs. 12(b) and (c), respectively.
Note that the way to divide the GNN into three clusters in
Fig. 12(c) is different from that in Fig. 12(b). It is easy to
see that the clusters in Fig. 12(c) are more reasonable (e.g.,
according to the connectivity of node ‘processtask’, the
node should belong to the largest cluster, but Fig. 12(b) is
not the case). Therefore, like other force-directed meth-
ods, our approach has the advantage that the nodes with
highly connectivity are drawn closely.
4.4. 3-D experimental results

Now we turn our attention to drawing GNNs in 3-D.
Figs. 13 shows some experimental results of our algorithm
on pyramid, cube, mesh, flower, and sphere. As one can
easily see, each of the final drawings displays a high

ARTICLE IN PRESS

tasks

[done] [working]

processtask

delay

query

update

[updated][actual]

addTask

Archive status

select

tasks

tasks

[done]

[working]

processtask
delay

query

update
[updated]

[actual]

addTask

Archive

select
status

tasks

Fig. 12. (a) A diagram derived from [34]. (b) A straight-line drawing of (a). (c) A drawing of the diagram produced by our approach. Note that two dashed

lines divide the diagram into three clusters in (b) and (c), respectively.

weaker spring stronger spring

ourapproximation classical

Fig. 13. 3-D graph drawing. (a) For the same structure, using different springs show two different layouts. (b) Cube structure. (c) Mesh structure. (d)

Flower structure. (e) Sphere structure (our approach uses polyhedra to approximate spherical nodes). (Respectively, average running time per iteration

(s): 0.00015, 0.00453, 0.00593, 0.02203, 0.02375).

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402398
degree of symmetry and is reasonably ‘nice’. In Fig. 13(e),
we compare our approach with a naive extension of the
classical spring algorithm [2] using an example of a 3-D
sphere structure. In this graph, a large ball is surrounded
by a number of small balls. Our potential fields approach
produces a nicer drawing as Fig. 13(e) indicates. This is

ARTICLE IN PRESS

tree mesh

triangle
mesh

Petersen
graph

unknown

Fig. 14. Drawing a clustered graph. (a) Cluster partition. (b) Drawing individual clusters using the conventional force-directed method. (c) Convex hulls of

clusters. (d) Drawing while treating clusters as nonuniform nodes. (e) Output of our algorithm (taking (d) as the input). (f) Final drawing by plugging in

details of clusters.

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 399
because our approach can detect the large ball and
consider it to draw the GNN.

It should be noticed that the nonuniform nodes
(polyhedra) in each graph of Fig. 13 do not display
symmetrically. The reason is that our 3-D approach uses
sample points to approximate each polyhedron for
reducing the running time, and hence it may easily result
in local minimal problems between polyhedra.

In the future, it is of interest to further compare our 3D
approach with other 3D methods, e.g., GEOMI [36] or
WilmaScope [37].
5. Applications

Aside from the fact that natural objects tend to be of
nonzero size, another motivation behind the need of
handling GNNs has to do with drawing clustered graphs.
Consider the scenario of drawing a graph with millions of
nodes. Applying a drawing algorithm to the huge graph
directly suffers from a number of drawbacks. Disregarding
the inefficiency of the method, the outcome of the
drawing often fails to reflect the structure of the graph,
for related nodes may not be close to each other as one
normally prefers. As a result, a number of strategies have
been developed targeting at keeping related nodes in a
cluster. For instance, the EH method [25] suggests the use
of three types of springs: ‘weaker’ springs for connecting
inter-cluster nodes, ‘stronger’ springs for intra-cluster
ones, and ‘virtual springs’ for gathering adjacent and
nonadjacent intra-cluster nodes. Using this idea, it
becomes easier to ‘navigate’ through clustered graphs
with huge numbers of nodes. However, with nodes added
into (or deleted form) the graph, the EH algorithm has to
be applied to all the nodes in the new graph, even to
clusters that already exist in the original graph. This leaves
us to wonder, instead of re-drawing an existing cluster,
whether it is possible to inherit the drawing of the cluster
from its original graph. By treating each cluster as a
nonuniform node, one would naturally expect that
drawing graphs with nonuniform nodes might find
another application in the study of clustered graphs.

Consider Fig. 14 for example. Instead of applying a
drawing algorithm (such as a force-directed method) to
the entire graph, it might be beneficial to take advantage
of the nature of the graph being clustered. By using some
technique, we partition the graph into some clusters, e.g.,
the graph of Fig. 14(a) is divided into clusters of tree,
mesh, triangle mesh, and Petersen graph, and the
remaining nodes form a cluster called ‘unknown’. Know-
ing the constituent clusters, a good starting point to draw
such a clustered graph, perhaps, is to draw each individual
cluster separately by means of, for instance, the classical
spring algorithm (Fig. 14(b)). Once this is done, the details
of each cluster can be abstracted out by regarding its
convex hull as a nonuniform node. See Figs. 14(c) and (d).
The next step is to apply our approach to producing a
layout of the GNN such as Fig. 14(e) shows. Finally, a nice
drawing of the original clustered graph is obtained by
restoring the details of all the clusters as Fig. 14(f)
illustrates. Now suppose new nodes are added to or
deleted from Fig. 14(a). Instead of running the drawing
algorithm on the new (possibly huge) graph all over again,
our approach allows us to keep the internal drawings of
those unaffected (due to insertion/deletion of nodes)
clusters intact, while the redrawing need only be applied
to a much smaller graph, giving rise to a much better
performance.

ARTICLE IN PRESS

C1 C2

C3

C4
C5

C1 C2

C3

C4 C5

C1 C2

C3

C4 C5

C1
C2

C3

C4 C5

Fig. 15. Comparison of drawing the clustered graph in Fig. 14 (a) classical (without clustering); (b) EH (c) our.

Fig. 16. Drawing a 1024-node mesh graph by (a) using our approach which considers the graph as a hierarchical clustered graph with four-level inclusion

tree (total running time: 73.297 s); (b) using classical spring embedder [2] (total running time: 1477.250 s).

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402400
With respect to hierarchical clustered graphs, the
superiority of our approach is twofold. First, by taking
advantage of the cluster structure, our method requires a
much lesser amount of computation than the EH method
as pointed out in the above discussion. Furthermore, the
drawing quality of our approach is also better than the EH
method with respect to the example shown in Fig. 15. To
see this, the drawings of clusters C2 and C5 are somewhat
distorted by using the EH method; on the other hand,
these two clusters are nicely displayed by ours. (See the
left-most drawings of Figs. 15(b) and (c).) Now if
we add two edges to the graph (see the middle drawings
of Figs. 15(b) and (c)), and re-draw the graph using the
two methods, we end up with the right-most drawings of
Figs. 15(b) and (c). Comparing the left-most drawing with
the right-most drawing in Fig. 15(b), the embedding (see
C3 and C4 clusters) and the contour (see C2 cluster) have
changed. Our approach, on the other hand, does not have
this problem as Fig. 15(c) shows.

Note that our approach, however, may have a dis-
advantage as follows. The inter-cluster edge incident to a
node that is not drawn on the boundary of a cluster
(polygon) can induce edge crossings (see the thick edge in
the right-most of Fig. 15(c)). This is because the drawings
of clusters which are generated in earlier stages and not
changed afterwards are not aware of whether the nodes
drawn inside the cluster drawings are connected by inter-
cluster edges in later stages.

Our approach to drawing hierarchical clustered graphs
would also work well in the visualization of social
networks [38]. Their comparison is remained as the future
work.

Although the graph used in Figs. 14 and 15 is a
hierarchical clustered graph with a 3-level inclusion tree,

ARTICLE IN PRESS

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402 401
our approach can be easily applied to more complicated
hierarchical clustered graphs. Fig. 16(a) gives an example
of the drawing of a 4-level hierarchical clustered graph. In
comparison with Fig. 16(b) which is generated byusing the
classical embedder [2] (regardless of its cluster structure),
our approach performs about 13 times more efficient than
the classical approach. Fig. 16(a) in fact displays the
cluster structure of the hierarchical clustered graph. What
makes our approach run faster than the classical one is
that our drawing method need not re-draw the clusters at
the lower levels when processing the clusters at the
higher levels. As the size of the graph increases, the
classical approach is likely to run even slower and often
suffers from a more serious local minimal problem. In
view of the above, our approach also has similar merits as
so-called multi-scale approach [10,11], which runs effi-
ciently because in the multi-scale approach each node
only considers the local forces instead of the global forces.
The main difference between our approach and the multi-
scale approach is that the main purpose of the multi-scale
approach is to draw generic graphs instead of hierarchical
clustered graphs, and hence, the multi-scale approach
cannot display the cluster structure of a clustered graph.

6. Conclusion

A potential-based approach, coupled with a force-
directed method, has been proposed and implemented for
drawing graphs with nodes of different sizes and shapes.
Some applications, including drawing clustered graphs,
have also been given to demonstrate the usefulness of our
approach. A unique feature of our approach is that in the
process of reaching equilibrium, the degree of inclination
of a nonuniform node can be adjusted while moving from
one position to another. By doing so, the final drawing has
a tendency to display a high degree of symmetry as well as
to fit in a compact area. An equally important aspect of
our approach is that the formulas derived in our potential
field model are analytically tractable, making our algo-
rithm computationally efficient. In comparison with some
existing algorithms, our experimental results look promis-
ing. A line of future improvement includes the reduction
of time complexity and the investigation of a more general
model for potential fields in 3-D, for our current treatment
of a 3-D node is based on approximating its faces using
sample points. It would be of interest to find solutions to
overcome the local minimal problems for drawing graphs
with nonuniform nodes, to apply the multi-scale techni-
que to handle graphs with huge nonuniform nodes, and to
produce dynamic drawings of graphs while preserving the
mental map. In addition, it would also be of interest to
find a wider variety of instances for our approach such
that users may decide whether our approach suits their
practical needs.
Acknowledgments

The authors thank the anonymous referees for com-
ments that improved the content as well as the presenta-
tion of this paper.
References

[1] K. Kaufmann, D. Wagner (Eds.), Drawing graphs: methods and
models, in: Lecture Notes in Computer Science, vol. 2025, Springer,
Berlin, 2001.

[2] P. Eades, A heuristic for graph drawing, Congress Numerantium 42
(1984) 149–160.

[3] F. Bertault, A force-directed algorithm that preserves edge crossing
properties, in: Graph Drawing 1999, Lecture Notes in Computer
Science, vol. 1731, Springer, Berlin, 1999, pp. 351–358.

[4] C.-C. Lin, H.-C. Yen, A new force-directed graph drawing method
based on edge–edge repulsion, in: IV 2005, IEEE CS Press, 2005,
pp. 329–334.

[5] T. Fruchterman, E. Reingold, Graph drawing by force-directed
placement, Software-Practice and Experience 21 (1991) 1129–1164.

[6] A. Frick, A. Ludwig, H. Mehldau, A fast adaptive layout algorithm for
undirected graphs, in: Graph Drawing ’94, Lecture Notes in
Computer Science, vol. 894, Springer, Berlin, 1995, pp. 388–403.

[7] R. Davidson, D. Harel, Drawing graphs nicely using simulated
annealing, ACM Transactions on Graphics 15 (1996) 301–331.

[8] T. Kamada, S. Kawai, An algorithm for drawing general undirected
graphs, Information Processing Letters 31 (1989) 7–15.

[9] K. Sugiyama, K. Misue, Graph drawing by the magnetic spring
model, Journal of Visual Languages and Computing 6 (1995)
217–231.

[10] S. Hachul, M. Jünger, Drawing large graphs with a potential-field-
based multilevel algorithm, in: Graph Drawing 2004, Lecture
Notes in Computer Science, vol. 3383, Springer, Berlin, 2004,
pp. 285–295.

[11] D. Harel, Y. Koren, A fast multi-scale method for drawing large
graphs, Journal of Graph Algorithms and Applications 6 (3) (2002)
179–202.

[12] F.J. Brandenburg, M. Himsolt, C. Rohrer, An experimental compar-
ison of force-directed and randomized graph drawing algorithms,
in: Graph Drawing ’95, Lecture Notes in Computer Science,
vol. 1027, Springer, Berlin, 1995, pp. 76–87.

[13] P. Eades, X. Lin, Spring algorithms and symmetry, Theoretical
Computer Science 240 (2) (2000) 379–405.

[14] D. Harel, Y. Koren, Drawing graphs with nonuniform vertices, in: AVI
2002, ACM Press, New York, 2002, pp. 157–166.

[15] X. Huang, W. Lai, Force-transfer: a new approach to removing
overlapping nodes in graph layout, in: 25th Australasian Computer
Science Conference, CRPIT, vol. 16, Australian Computer Society,
2003, pp. 349–358.

[16] H. Eichelberger, SugiBib, in: Graph Drawing 2001, Lecture Notes
in Computer Science, vol. 2265, Springer, Berlin, 2002, pp. 467–468.

[17] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, P. Mutzel, A
new approach for visualizing UML class diagrams, in: SOFTVIS
2003, ACM Press, New York, 2003, pp. 179–188.

[18] J.-H. Chuang, Potential-based modeling of three-dimensional work-
space for obstacle avoidance, IEEE Transactions on Robotics and
Automation 14 (5) (1998) 778–785.

[19] J.-H. Chuang, N. Ahuja, An analytically tractable potential field
model of free space and its application in obstacle avoidance, IEEE
Transactions on System, Man, and Cybernetics—Part B: Cybernetics
28 (5) (1998) 729–736.

[20] F.B.M. Miller, An algorithm for drawing compound graphs, in: Graph
Drawing ’99, Lecture Notes in Computer Science, vol. 1731, Springer,
Berlin, 1999, pp. 197–204.

[21] U. Dogrusöz, E. Giral, A. Cetintas, A. Civril, E. Demir, A compound
graph layout algorithm for biological pathways, in: Graph Drawing
2004, Lecture Notes in Computer Science, vol. 3383, Springer,
Berlin, 2004, pp. 442–447.

[22] T.C. Biedl, M. Kaufmann, Area-efficient static and incremental graph
drawings, in: ESA’97, Lecture Notes in Computer Science, vol. 1284,
Springer, Berlin, 1997, pp. 37–52.

[23] Q. Feng, R. Cohen, P. Eades, Planarity for clustered graphs, in:
ESA’95, Lecture Notes in Computer Science, vol. 979, Springer,
Berlin, 1995, pp. 213–226.

[24] Q. Feng, Algorithms for drawing clustered graphs, Ph.D. Thesis,
University of Newcastle, Australia, 1997.

[25] P. Eades, M.L. Huang, Navigating clustered graphs using force-
directed methods, Journal of Graph Algorithms and Applications 4
(3) (2000) 157–181.

[26] W.T. Tutte, Convex representations of graphs, Proceedings of the
London Mathematical Society 10 (1960) 304–320.

[27] W.T. Tutte, How to draw a graph, Proceedings of the London
Mathematical Society 13 (1963) 743–768.

ARTICLE IN PRESS

C.-C. Lin et al. / Journal of Visual Languages and Computing 20 (2009) 385–402402
[28] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated
annealing, Science 220 (1983) 671–680.

[29] E. Gansner, S. North, Improved force-directed layouts, in: Graph
Drawing ’98, Lecture Notes in Computer Science, vol. 1547, Springer,
Berlin, 1998, pp. 364–373.

[30] T. Dwyer, K. Marriott, P.J. Stuckey, Fast node overlap removal, in:
Graph Drawing 2005, Lecture Notes in Computer Science, vol. 3843,
Springer, Berlin, 2005, pp. 153–164.

[31] H. Purchase, Which aesthetics has the greatest effect on human
understanding, in: Graph Drawing ’97, Lecture Notes in
-Computer Science, vol. 1353, Springer, Berlin, 1997, pp. 248–261.

[32] H. Purchase, J.-A. Allder, D. Carrington, Graph layout aesthetics in
UML diagrams: user preferences, Journal of Graph Algorithms and
Applications 6 (3) (2002) 255–279.

[33] J. Rumbaugh, J. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, Essex, UK, 1998.
[34] H. Giese, G. Wirtz, Visual modeling of object-oriented distributed
systems, Journal of Visual Languages and Computing 12 (2001)
183–202.

[35] W. Brauer, W. Reisig, G. Rozenberg, Petri nets: central models (part
I)/applications (part II), in: Lecture Notes in Computer Science, vols.
254/255, Springer, Berlin, 1987.

[36] A. Ahmed, et al., GEOME: GEOmetry for maximum insight, in:
Graph Drawing 2005, Lecture Notes in Computer Science, vol. 3843,
Springer, Berlin, 2005, pp. 468–479.

[37] T. Dwyer, Extending the WilmaScope 3D graph visualization
system—software demonstration, in: Proceedings of Asia Pacific
Symposium on Information Visualisation 2005 (APVIS2005), CRPIT,
vol. 45, 2005, pp. 35–42.

[38] N. Henry, J.-D. Fekete, M.J. McGuffin, NodeTrix: a hybrid visualiza-
tion of social networks, IEEE Transactions on Visualization and
Computer Graphics 13 (6) (2007).

	Drawing graphs with nonuniform nodes using potential fields
	Introduction
	Preliminaries
	Basic definitions
	Defining the problem
	Previous work on force-directed methods
	Previous work on graph drawings with nonuniform nodes

	Force-directed method using potential fields
	2-D model
	3-D model

	Implementation and experimental results
	Algorithm
	Implementation
	2-D experimental results
	3-D experimental results

	Applications
	Conclusion
	Acknowledgments
	References

