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可動態規劃之軟體系統研究 
 

 

研究生: 李岳峰     指導教授: 張瑞川 博士 

國立交通大學資訊科學研究所 

 

摘要  
 

現今有愈來愈多的軟體系統都設計為可升級，他們並不需要經由重新安裝便可

獲得新功能以及錯誤修正。然而，大多數的可升級軟體都無法動態升級，即在不

中斷任何執行中服務的狀態下進行升級。可使軟體動態升級的功能稱之為動態規

劃，動態規劃至今仍不是常見的軟體功能，因其必須仰賴特別的系統服務，要建

置這些系統服務往往需要對軟體進行大幅度的修改。 

本論文對於兩種傳統上不可動態規劃的系統加入動態規劃的功能。第一，我們

為通訊協定堆疊提供一個以Java為基礎的元件框架，只要依照元件框架所訂定的

設計規則，程式設計者即可設計出可動態規劃的通訊協定元件。在此元件框架

下，我們亦設計了一個可在傳輸中進行升級的TCP元件。 

第二，雖然以元件為基礎的程式設計已成為廣泛使用的軟體再利用方法，目前

所有的元件框架皆不支援動態規劃，因此我們提出一個一般用途且支援動態規劃

的元件框架，其亦以Java為基礎，但可支援各種軟體升級的形式，包括相當複雜

的升級形式例如多重升級，而系統的效能也藉由JNI和JVMDI使用而大幅提升。 
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A Study of Dynamically Reconfigurable 
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Student: Yueh-Feng Lee  Advisor: Dr. Ruei-Chuan Chang 

Department of Computer and Information Science 

National Chiao Tung University 

 

Abstract 

 

More and more software systems are designed to be upgradeable. New functionalities and 

bug fixes can be introduced to these systems without reinstalling the software. However, very 

few of them can be upgraded dynamically, that is, the system can be upgraded without 

interrupting any running services. The software feature that makes a system dynamically 

upgradeable is called dynamic reconfiguration. Dynamic reconfiguration is still not widely 

deployed because it needs special system services and such services cannot be realized in 

current software systems with only a few modifications. 

This thesis incorporates dynamic reconfiguration into two types of systems that are not 

traditionally dynamic-reconfigurable: protocol stacks, and component frameworks. For 

protocol stacks, we propose a component-based protocol framework written in Java. 

Following the programming rules specified by the component framework, the programmers 

are able to develop dynamically reconfigurable protocol modules. Under this framework, we 

developed a TCP component that can be upgraded when the TCP protocol is still in 

transmission. 

Although component-based programming is a widespread software development technique, 
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none of the existing component frameworks are dynamically reconfigurable. Therefore, we 

propose a general-purpose, dynamically reconfigurable component framework for software 

components. The component framework is also based on Java, but it supports various types 

of component updates, including rather complicated ones such as multiple update, and the 

performance is improved considerably by using the Java Native Interfaces (JNI) and Java 

Virtual Machine Debugging Interface (JVMDI).  
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1. Introduction 
Software upgradeability is already a popular feature of contemporary software systems. 

Instead of reinstalling the entire software, a software system can improve its functionality or 

correct software faults by installing small pieces of software called software patches. 

Software upgradeability emerges because of several reasons. First, software usually evolves. 

Programmers have to continuously develop new features to satisfy their users’ need. Second, 

large software system are very complicated and error-prone. When software complexity 

grows, software faults are more likely to happen so they should be fixed in an efficient way. 

Finally, software upgradeability reduces the system administration cost because there is no 

need to reinstall the software. 

Although a number of current software systems are upgradeable, very few of them are 

dynamically upgradeable, that is, upgrading without restarting the system so that all the 

running services are not affected or terminated. Dynamic upgradeability is also referred to as 

dynamic software updating (Hicks et al. 2001), online software upgrading (Segal 2002), or 

unanticipated software evolution (Kniesel et al. 2002). The process of dynamically upgrading 

a software system is called dynamic reconfiguration (Kramer and Magee 1985). 

A most fundamental requirement of dynamic reconfiguration is modularization, for which 

the system subdivides its functionalities into a number of modules and compiles them into 

separate binaries. When the software system is modularized, dynamic reconfiguration can 

modify only part of the system rather than the whole system.  

The programming interface of dynamic reconfiguration is usually provided as a set of 

reconfiguration operations. The two most basic operations are create and remove. The former 

adds a new module instance to the system and the latter removes an existing module instance 

from the system. The most important and powerful operation is replace, which not only 
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replaces an existing module instance with a new one in a different format but also preserves 

the state stored in the old module instance. Note that the process of performing the replace 

operation is also called hotswapping (Dmitriev 2001; Soules et al. 2003). The implementation 

of the replace operation is challenging because it has to fulfill two other requirements: state 

transfer mechanism and external reference management. 

State transfer mechanism: When a module is replaced, the new module should not start 

from the beginning. Instead, the new module must behave as if the old module continues its 

execution, so the data stored in the old module must be transferred to the new module. These 

data are referred to as module state. The mechanism that transfers the module state from the 

old module to the new module is called state transfer mechanism. A dynamically 

reconfigurable system must implement at least one state transfer mechanism, and the module 

state must be defined before state transfer. 

External reference management: The replace operation has to correctly manage module’s 

external references. For instance, when module A is used by module B, B is module A’s 

external reference. Similarly, module B may also be an external reference of module A. After 

dynamic reconfiguration, the system must ensure that the new module is accessible by its 

external references and that the new module can still access the modules to which the old 

module used. 

The final requirement of dynamic reconfiguration is safe reconfiguration point, a period in 

which the system can be safely modified. The system must preserve the safe reconfiguration 

point before performing any reconfiguration operations. Safe reconfiguration point is 

necessary because a module may be concurrently accessed by several executable entities, 

such as a number of threads. If the system is not reconfigured at the safe point, race 

conditions would take place and inconsistent results would be produced. 

Generally, the implementation of the replace operation involves four steps: module 
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creation, state transfer, external reference management, and module removal, as shown in Fig. 

1-1. Suppose that a system consists of three modules: A, B, and C (Fig. 1-1a). B is the 

module to be replaced and we assume that the system has already reached the safe 

reconfiguration point. First, the module B’, the new version of B, is created in the system 

(Fig. 1-1b). The state of B is then transferred to B’ (Fig. 1-1c). Next, B’ refers to the modules 

that B originally refers to (Fig. 1-1d). Then, the modules that originally refer to B are directed 

to B’ (Fig. 1-1e). Finally, B is removed from the system and the dynamic reconfiguration 

process is complete (Fig. 1-1f). 

In addition to the three reconfiguration operations, a system can also be dynamically 

reconfigured in other ways. For example, interposition (Soules et al. 2003) modifies the 

A 

Figure 1-1: Dynamic reconfiguration of the module B. 
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module behavior by attaching code that is executed before or after the original code. Since 

the original code is not changed, interposition is not as powerful as the replace operation 

because it cannot fix software faults inside the original code. Therefore, interposition is not 

discussed in the rest of this paper. 

The external references mentioned earlier can be managed in two ways: indirect swapping 

and direct swapping (Fig. 1-2). Indirect swapping associates a module with an indirect 

reference. A module can be replaced by switching only the indirect reference instead of 

changing all the module references. Indirect swapping is simple but the indirection layer will 

introduce additional runtime overheads. In contrast, there is no additional layer between the 

module and module references in direct swapping, so during swapping each module reference 

must be changed. Although the direct approach is more complex, it is suitable for 

performance-sensitive systems since there is no additional runtime overhead. 

Although dynamic reconfiguration is an attractive feature, it is still not widely deployed 

because existing software systems cannot satisfy the requirements described above with only 

a few modifications. This thesis aims to incorporate dynamic reconfiguration into software 

systems that are not traditionally dynamically reconfigurable. The contribution of this thesis 

is twofold. First, we develop a protocol framework that fully supports dynamic 

reconfiguration; none of the existing protocol frameworks provide such a feature. Second, we 

Figure 1-2: Indirect swapping and direct swapping. 
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develop a general-purpose component framework that supports dynamic reconfiguration. All 

of the current component frameworks are not dynamically reconfigurable, and our component 

framework supports rather complicated update types, such as a multiple update. The 

remainders of this chapter briefly introduce these two systems and their motivations. 

 

1.1. A Dynamically Reconfigurable Protocol 

Framework using Java 
Communication protocol specifications are evolving, which usually generates a series of 

versions based on similar hardware requirements. For example, GSM 04.08 specification 

(ETSI 1998) has more than ten versions and each version differs only in certain message 

formats or control flows. Because some protocol specifications are complicated, incremental 

implementation is often used to deploy protocols as early as possible. In addition, protocols, 

implemented as software, can be affected by programming faults. As a result, a 

communication device needs protocol upgrading to extend its lifetime and functionality. 

Dynamic protocol architecture is a fundamental solution to protocol upgrading. It splits a 

protocol stack into a number of protocol modules and allows a protocol stack to be composed 

of different modules during runtime (Plagemann and Plattner 1993; Ritchie 1984; Schmidt et 

al. 1993; Zitterbart et al. 1993). However, when a new architecture is deployed, the existing 

protocol connections will be lost. For example, if the new architecture consists of a new TCP 

module that replaces the old one, the old TCP module is terminated and then the new module 

is started from the beginning. Thus, the connections held by the old module cannot survive in 

the new module. Moreover, the applications running on top of the protocol stack would lose 

TCP connections. The above situation is especially unfavorable in long-running servers since 

they usually have long and important TCP connections. 
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In order to implement dynamic reconfigurable protocol stacks, the system has to satisfy the 

requirements as described earlier. Unfortunately, no protocol subsystem can fulfill all of the 

requirements with a few modifications. For example, the Linux TCP/IP implementation 

cannot be decoupled from the kernel image. Also, its TCP and IP implementations cannot be 

separated clearly. Although the TCP/IP implementations based on the STREAMS (Ritchie 

1984) subsystem have separate TCP and IP modules and a STREAMS module does not have 

to manage external references because module communication is based on message passing 

rather than function invocation, safe reconfiguration point and state transfer mechanism are 

still not supported by the STREAMS subsystem. Moreover, a protocol implementation based 

on message passing is more difficult to program due to the message encoding and decoding 

processes. 

Therefore, we propose a protocol framework1 to demonstrate an ideal network subsystem 

supporting all the requirements of dynamic reconfiguration. The protocol framework is also a 

component framework, which specifies a set of programming rules for programmers to 

develop highly reusable components. The most important feature is that the components 

written for the component framework are dynamically reconfigurable. The component 

framework supports create, remove, and replace operations for protocol components. The 

first two operations are similar to the insmod and rmmod utilities of the Linux module system 

or the push and pop operations of the STREAMS subsystem. The component framework is 

novel in that it supports the replace operation, which can replace a running component 

without losing the component state and breaking the integrity of the protocol stack. 

The component framework is completely written in Java, based on JDK 1.4.0. The 

component framework is Java-based because of its powerful language and library features. 

The component framework is able to connect to Linux network drivers so that it can transmit 

 
1 The source code of the component framework is available at http://www.cis.nctu.edu.tw/~gis88802 
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and receive data as in-kernel protocol stacks do. In addition, we have implemented a TCP 

component under the framework. The TCP component can be reconfigured while it is 

running. The experiment shows that the replacement of the TCP component roughly adds a 

delay of 200 ms. 

 

1.2. A Java-based, General-purpose 

Component Framework for Dynamic 

Reconfiguration 
In the previous section, we have introduced a dynamically reconfigurable environment for 

protocol stacks, which is a specialized application. In this section, the component framework 

is extended so that it can be used by general-purpose applications. 

Many general-purpose, dynamic-reconfigurable systems are developed as a programming 

language feature (Costanza 2001; Dmitriev 2001; Hicks et al. 2001; Hjalmtysson and Gray. 

1998; Malabarba et al. 2000; Orso et al. 2002). A programming language with its runtime 

system is dynamically reconfigurable if the types used in a program can be redefined during 

runtime. Dynamic reconfiguration has been implemented on several programming languages, 

including C++ (Hjalmtysson and Gray. 1998), Java (Costanza 2001; Dmitriev 2001; 

Malabarba et al. 2000; Orso et al. 2002), and an assembly language with types (Hicks et al. 

2001). 

A dynamically reconfigurable programming environment should be able to perform several 

kinds of dynamic changes. For Java, The most fundamental kind of change is method 

reimplementation, in which a method is reimplemented but its arguments and return type are 

not changed. A more advanced one is method redefinition, which changes not only the 

method implementation but also the arguments and the return type of a method. Method 
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redefinitions can be further classified as external or internal. An external method redefinition 

changes the methods that are invoked by other classes. In contrast, an internal method 

redefinition changes only the methods that are invoked inside the class. Another one is field 

redefinition, such as to add a field, to remove a field, or to modify the type of a field. In 

addition, several classes can be changed simultaneously, which results in a multiple update. 

A multiple update is not equivalent to a series of single updates. A single update cannot 

handle external method redefinition because both the changed class and the classes that 

invoke the changed one must be updated at the same time. Currently dynamically 

reconfigurable systems do not handle all of them very well. For example, the HotSpot Java 

virtual machine (Dmitriev 2001) does not permit method redefinition and field redefinition. 

Although method redefinition is permitted in the work by Orso (Orso et al. 2002), the object 

states cannot be transferred correctly. 

In addition to various kinds of change, dynamic reconfiguration can also be implemented 

for high-level programming languages in several ways: syntax-based, runtime-dependent, and 

runtime-independent. The syntax-based approach modifies both the language syntax and the 

corresponding runtime system (Costanza 2001). The dynamic reconfiguration interface is 

provided as special language syntax. The runtime system-dependent approach does not 

alternate the language syntax but modifies the language runtime system, and the 

reconfiguration interface is provided as a library (Dmitriev 2001; Malabarba et al. 2000). The 

runtime system-independent approach neither modifies the language syntax nor modifies the 

language runtime system (Hjalmtysson and Gray. 1998; Orso et al. 2002), and there are two 

kinds of such systems. The first (Hjalmtysson and Gray. 1998) provides a dynamic 

reconfiguration library written in the same language and specifies a set of programming rules 

for programmers to develop software modules. The second (Orso et al. 2002) uses a proxy 

mechanism to transform the code into a format that enables dynamic reconfiguration. 
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Each approach described above has both advantages and disadvantages. When using the 

syntax-based approach, the users have to install a language development environment that is 

capable of dynamic reconfiguration. Although the runtime system-dependent approach does 

not need a new language development environment, the users still have to install a modified 

language runtime system if the runtime system and applications are separated. For example, 

Java language users have to install a modified Java virtual machine. These two approaches 

are not suitable for multi-user environments because the users may not be able to install 

language development environments or language runtime systems. The runtime 

system-independent approach also has some drawbacks. For systems that specify special 

programming rules, these rules may make software development more difficult. For systems 

that use proxy and code transformation, it has been reported that some language features may 

not operate correctly after transformation (Orso et al. 2002). 

Our goal is to provide a dynamic reconfiguration system for Java. The system has the 

following design goals. First, we exploit the features of the Java language and the virtual 

machine instead of modifying them. Second, dynamic reconfiguration should be transparent 

to the software modules as much as possible. Next, the system should support all kinds of 

dynamic changes that usually take place. Finally, the implementation technique should 

minimize both the runtime and reconfiguration overheads. 

Therefore, the proposed system adopts the component-based solution. We provide a 

component framework to programmers. Following programming rules specified by the 

component framework, the programmer can write reusable components and use them to 

compose applications. Most importantly, the components can be changed at runtime by 

several reconfiguration operations as described earlier. This component-based solution has 

several advantages. First, the component framework can be used with most of the Java virtual 

machines, and it is compatible with most virtual machine dependent features, including Java 
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reflection and Java native interface (JNI) (Liang 1999). Second, when designing components, 

the programmer does not have to write code to transfer component state or to preserve a safe 

reconfiguration point. Next, most of the usually encountered changes are supported by the 

component framework, these includes method reimplementation, external and internal 

method redefinition, field redefinition, and multiple update. Finally, the normal execution and 

reconfiguration overheads are effectively reduced by utilizing the Java Native Interface and 

Java Virtual Machine Debugging Interface (JVMDI) (Sun Microsystems 2002). 

The component framework has two implementations. The first focuses on portability and 

the second focuses on performance. Although both implementations do not modify the Java 

virtual machine, that is, they are runtime-system independent, the second implementation is 

not platform-independent because part of it is written in C. This part is compiled into a 

library that can be loaded by the Java virtual machine.  

 

1.3. Thesis Outline 
The remainder of the thesis is organized as follows. Chapter 2 introduces related work. 

Chapter 3 to Chapter 5 describes each of the proposed systems in turn. Chapter 3 presents the 

Java-based protocol reconfiguration framework. Chapter 4 presents a general-purpose 

component framework that supports dynamic reconfiguration. Finally, in Chapter 5, the 

conclusions and future work are given. 
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2. Related Work 
In this chapter, we review the work related to the proposed systems. Section 2.1 introduces 

the traditional but the most active research areas of dynamic reconfiguration, including 

distributed systems, object-oriented programming languages, and non-object oriented 

programming languages. Dynamic reconfiguration can also be implemented for protocol 

architectures and operating system kernels. Section 2.2 and Section 2.3 describe the 

relationships between dynamic reconfiguration and these two areas, respectively. Section 2.4 

describes several techniques to preserve the safe reconfiguration point. When developing a 

dynamically reconfigurable system, some programming tools can effectively reduce the 

programming efforts. Section 2.5 introduces the programming tools used in the proposed 

systems, including object persistence, reflection, JNI, and JVMDI.  

 

2.1. Dynamic Reconfiguration in General 
A system is dynamically reconfigurable if its configuration can be changed while it is 

running. Dynamic reconfiguration was originally implemented in distributed programming 

languages (Bloom 1983; Kramer and Magee 1985) and has been studied throughout two 

decades. Hotswapping is a more powerful type of dynamic reconfiguration, and it is 

equivalent to the replace reconfiguration operation as described earlier. Both hotswapping 

and the replace operation mean that the module states must be preserved after 

reconfiguration. 

Dynamic reconfiguration is also prevalent in object-oriented programming language 

communities, including CLOS (Keene 1989), C++ (Hjalmtysson and Gray. 1998), Java 

(Dmitriev 2001; Malabarba et al. 2000), and a Java-based language (Costanza 2001). All the 



 

 

 

12

works mentioned allow a new class to replace an instantiated class during runtime. In recent 

years, dynamic reconfiguration is also supported in CORBA (Almeida 2001), which is a 

distributed object-oriented environment.  

Dynamic reconfiguration can also be implemented for non-object oriented programming 

languages. Hicks et al (Hicks et al. 2001) use the Typed Assembly Language (TAL) 

(Morrisett et al. 1999) and the dynamic linking feature of the ELF format (Lu 1995) to 

implement general-purpose, dynamically reconfigurable applications. However, this 

approach cannot be directly used by operating system kernels because most kernels do not 

have a built-in dynamic linker and Levine (Levine 2000) indicated that dynamic linking 

suffers from performance penalty. 

 

2.2. Dynamic Reconfiguration and Protocol 

Architectures 
Dynamic protocol architectures (Plagemann and Plattner 1993; Ritchie 1984; Schmidt et al. 

1993; Zitterbart et al. 1993) allow a protocol stack to be composed with different protocol 

modules during runtime. Some properties of dynamic protocol architectures are also present 

in dynamic-reconfigurable protocol stacks, such as to dynamically create or remove protocol 

modules. For example, although the STREAMS system can dynamically create and remove 

modules, the STREAMS system is not fully dynamic-reconfigurable since it does not provide 

an operation to replace protocol modules. If the programmer wishes to produce results similar 

to that produced by the replace operation, the programmer has to write proprietary code to 

deal with state transfer and safe reconfiguration point. 

When developing a protocol subsystem, the programmer has to consider the programming 

model to be supported. Several programming models have been proposed and generally each 
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can be classified as either an active approach or a passive approach. An active approach binds 

a module with an executable entity such as a process or a thread whereas a passive approach 

does not bind a module with an executable entity, so the modules are invoked only by the 

executable entities that are initiated by others. 

The most straightforward model is to implement each layer of a protocol stack as a process 

of the underlying operating system. This is an active approach. Layers can exchange 

messages using interprocess communication facilities provided by the operating system. This 

approach is used only by some embedded communication devices such as mobile phones, 

since it suffers from context switching overheads.  

A more efficient model is upcalls and downcalls (Clark 1985), in which the whole protocol 

stack is implemented in the same address space and each layer implements a set of inter-layer 

communication functions that can be invoked by other layers. The context switching 

overheads are therefore eliminated. This is a passive approach and is usually adopted by the 

protocol implementations of operating system kernels such as the TCP/IP implementation of 

the Linux kernel. In object-oriented programming languages, upcalls and downcalls can be 

further modeled as a passive object (Ananthaswamy 1995; Krupczak et al. 1998). The benefit 

of passive objects is that all the functions implemented by a layer can be encapsulated into a 

single class and this approach is also adopted by our component framework. 

 

2.3. Dynamic Reconfiguration and Operating 

System Kernels 
Extensible kernels are also closely related to dynamic reconfiguration. Kernel extensions 

can be added to an extensible kernel during runtime, just as modules can be dynamically 

installed into a dynamic reconfigurable system. Well-known extensible kernels are SPIN 
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(Bershad et al. 1995), Exokernel (Engler et al. 1995), and VINO (Seltzer et al. 1994). The 

Linux kernel is also extensible due to the use of modules, but only part of the kernel services 

are implemented as modules. An extensible kernel is said to be dynamic reconfigurable if a 

running kernel extension can be replaced by another kernel extension. Senart et al (Senert et 

al. 2002) use the THINK component framework (Fassino et al. 2002) to build a dynamically 

reconfigurable kernel, although they do not provide detailed status. K42 (Soules et al. 2003) 

is an object-oriented operating system kernel that can be dynamically reconfigured using 

interposition and indirect swapping. 

Transaction processing systems (Gray and Reuter 1993), usually built on top of the 

operating systems, can also make hotswapping easier. Software modules can be hotswapped 

in transaction processing systems in two ways. In the first approach, the system blocks 

incoming transactions, keeps track of the ongoing transactions, rollbacks the ongoing 

transactions, hotswaps software modules, redoes the transactions, and then processes 

incoming transactions. In the second approach, the system blocks incoming transactions, 

waits until all the ongoing transactions finish, hotswaps software modules, and then processes 

new transactions. However, since most operating system kernels do not support transaction 

processing, the transaction-based kernel hotswapping is not easy to achieve. 

 

2.4. Techniques for Preserving the Safe 

Reconfiguration Point 
All the dynamically reconfigurable systems must be able to preserve the safe 

reconfiguration point, which guarantees the system can be safely changed, and several 

programming models have been proposed. Kramer and Magee (Kramer and Magee 1990) 

proposed a model called quiescent state. This model defines the passive and the active 
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module states. When receiving the passive signal, a module has to enter the passive state and 

in this state it cannot perform any action. In other words, the module blocks itself. A system 

is in quiescent state when all the reconfiguration related modules are in the passive state, so 

the system can be safely changed. Our component framework differs from their model 

because it determines the safe reconfiguration point by detecting the component behavior 

rather than interacting with the component. Although the programmer has to write code to 

handle the passive signal sent by the system, the quiescent state model is suitable for systems 

in which the components are too busy to find the safe reconfiguration point. On the other 

hand, our system does not impose any synchronization burden to the programmer, but a 

component should guarantee that each component invocation can be served in a relatively 

short time. 

A system that does not need a synchronization protocol can determine the safe 

reconfiguration point in several ways. Some system uses the reference counting technique 

(Orso et al. 2002) that allows a reconfiguration to take place only when the reference counter 

is zero. Our component framework uses a simple locking mechanism to guarantee that a 

component can be exclusively accessed by the component framework. Some system uses the 

stack inspection technique to determine the safe reconfiguration point (Dmitriev 2001). In 

this model the system is able to inspect the stack of each thread in the system. A 

reconfiguration can start when the code of the module to be replaced is not in the stack of any 

thread. The stack inspection technique is also used by our general-purpose component 

framework. 
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2.5. Programming Tools 

2.5.1 Object Persistence and Reflection 
Object persistence is the ability to store objects in the secondary storage and to reconstruct 

them from it. The object persistence scheme provided by the Java environment is called Java 

serialization (Sun Microsystems 2001), which provides ObjectOutputStream and 

ObjectInputStream classes to store objects to and retrieve objects from the storage. In 

our component framework, the Java serialization is used in the serialization and 

deserialization steps of the replace operation. 

Reflection provides computational systems the capability to “reason about and act upon 

itself” (Maes 1987) and there are two models of reflection: computational reflection and 

structural reflection (Ferber 1989). The reflection capability provided by the Java 

environment is called Java reflection (Sun Microsystems 1997). The Java reflection is an 

instance of structural reflection, which allows the programmer to inspect the structure and 

modify the content of an object during runtime. In our work, the Java reflection is used in the 

reference duplication and reference redirection steps of the replace operation. It is also used 

by the user-defined handler to transfer inconsistent fields. 

 

2.5.2 JNI and JVMDI 
JNI is usually used by Java applications that need to integrate code written in languages 

other than Java (Liang 1999), and it can also be used for the time-critical part of a Java 

application. JNI provides a set of C functions to communicate with Java objects. JVMDI 

(Sun Microsystems 2002) is the lowest layer of the Java Platform Debugger Architecture 

(JPDA). It provides a set of C functions to monitor or modify the execution state of a Java 

application, such as the functions to set a breakpoint, watch a field, or suspend a thread. 
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When using JNI or JVMDI, the Java virtual machine is not modified because the code is only 

compiled into a library that can be loaded by the Java virtual machine. 

 

2.6. Summary 
In this chapter, we have surveyed the literature related to dynamic reconfiguration. 

Dynamic reconfiguration is originally developed in distributed systems. It is later 

incorporated into several object-oriented programming languages, including CLOS, C++ and 

Java, as well as non-object oriented languages, such as the assembly language.  

The idea of dynamic reconfiguration can also be applied two non-traditional application 

areas. One is protocol architecture and the other is operating system kernel. Although 

traditional protocol architectures are able to create or remove modules dynamically, dynamic 

module replacement is not allowed. Similarly, traditional operating system kernels cannot 

dynamically replace kernel extensions. 

Every dynamically reconfigurable system must be able to maintain the safe reconfiguration 

point and essentially there are two programming models. One requires a synchronization 

protocol between the modules and the underlying system, but the other does not.  

In order to implement dynamic reconfiguration, several programming tools can ease the 

development process. Reflection can be used to inspect and set the module state, and 

persistence can be used to transfer module states. JNI can improve the performance of Java 

code, and JVMDI can be used for detecting the safe reconfiguration point. 
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3 A Dynamically Reconfigurable Protocol 

Framework using Java 
Traditional protocol architectures are not dynamically reconfigurable. This chapter 

describes a dynamically reconfigurable protocol framework based on Java and 

component-based programming. Section 3.1 presents the architectural overview of the 

protocol framework. Section 3.2 introduces how to develop reconfigurable components in the 

protocol framework. Section 3.3 describes the implementation of the protocol framework. 

Finally, Section 3.4 describes a reconfigurable TCP component based on the protocol 

framework and evaluates its performance. 

 

3.1 Architectural Overview 

3.1.1 Framework Architecture 
The architecture of the component framework is shown in Figure 3-1. The component 

framework, which is built on top of the Java virtual machine, provides programmers an 

environment that is suitable for implementing protocols. A protocol stack can be realized 

using a number of interconnected components. The component framework specifies how 

components should behave and how they can be connected. A component may provide a 

service, require a service, or have both functions. Two components can be connected only 

when one component provides a service that is required by the other component. A running 

component is called a component instance, which is the basic unit for dynamic 

reconfiguration. The component framework also provides support libraries for implementing 

protocols, such as socket, timer, and buffer management libraries. 

The reconfiguration management subsystem is located in the component framework. It 
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manages the dynamic reconfiguration process and the life cycle of components. Two entities 

are executed by the subsystem: the startup program and the reconfiguration program. Each 

program is a Java class and a specific method will be executed by the reconfiguration 

management subsystem. The startup program is responsible for creating and connecting 

component instances to establish a protocol stack. It is executed at the initialization time of 

the component framework. The reconfiguration program is used to replace a configuration of 

the protocol stack with a new one. It is executed after receiving the reconfiguration message. 

Three reconfiguration operations, create, remove, and replace, can be used by the startup 

program or the reconfiguration program to construct or modify a configuration. 

After the protocol stack is established, the protocol reconfiguration subsystem waits for the 

reconfiguration message. The reconfiguration message is generated by the reconfiguration 

command, which can be invoked like a UNIX shell command. When the message is received, 

the reconfiguration management subsystem executes the reconfiguration program to bring the 

protocol stack from the old configuration to the new configuration.  
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Figure 3-1: Architecture of the component framework. 
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On top of the component framework is the user application, which is a regular Java 

application containing a single or multiple threads. The user application uses the services 

provided by the component framework and the component instances. An interesting feature is 

that the dynamic reconfiguration is transparent to the user application. That is, the user 

application does not have to consider dynamic reconfiguration in their programming. 

 

3.1.2 Dynamic Reconfiguration Procedure 
Figure 3-2 shows how components are dynamically reconfigured in the component 

framework. The shaded areas are those in execution. First, the startup program is executed at 

the initialization time of the component framework (Figure 3-2a). Next, the startup program 

creates and connects component instances for the current protocol stack configuration (Figure 

3-2b). In the example, the component instances of components C1 and C2 are created and 

connected. When the startup program terminates, the component instances perform normal 

processing (Figure 3-2c). During normal processing, the reconfiguration management 

subsystem may receive the reconfiguration message (Figure 3-2d). On receiving the 

Figure 3-2: Dynamic reconfiguration in the component framework. 
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reconfiguration message, the components are temporarily stopped and the reconfiguration 

program begins to execute (Figure 3-2e). In the example, the instance of component C2 is 

replaced by an instance of component C2’. After the reconfiguration, both C1 and C2’ 

continue their normal processing (Figure 3-2f). 

 

3.2 Component Programming 

3.2.1 Component Definition and Component 

Communication 
A component is a Java class. A protocol implementation, such as a TCP implementation, 

can be modeled as a single or multiple components. Each component instance is a Java object 

and the programmer can create multiple instances of a component during runtime. A protocol 

must be able to communicate with adjacent protocols on the same stack. For example, the 

TCP must be able to communicate with IP. Therefore, the components can communicate with 

each other via Java interfaces. A Java interface is a class that defines only the prototype of 

methods and does not provide an actual implementation. The actual implementation can be 

provided by a class that implements the methods of the interface.  

Two components can be connected when one component implements an interface and the 

other holds a reference of that interface. A component that holds the interface reference can 

therefore invoke methods defined in the interface. The objective of interface and 

implementation is similar to provide and require constructs of languages that support 

dynamic reconfiguration (Kramer and Magee 1985; Magee et al. 1993). 

Component instances are connected during runtime, either by the startup program or by the 

reconfiguration program. However, during component design time, a component must 

provide a set of link methods to store the interface references it holds. Thus, the startup 
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program or reconfiguration program can link two component instances by invoking the 

corresponding link methods. This technique is popular in designing object-oriented protocol 

stacks (Ananthaswamy 1995; Buschmann et al. 1996; Krupczak et al. 1998). 

In order to identify the component instance to be reconfigured, each component instance 

must have a unique name. The unique name is given as an argument of the create operation 

and stored in the name field of each component. When invoking the create operation, the 

startup program or the reconfiguration program must determine the unique name. Unique 

name helps subsequent reconfiguration programs to address component instances without 

ambiguity. Component instances are identified by unique names instead of component names 

because a component may have multiple instances. 

 

3.2.2 External Interfaces 
Components can interact with the user application or the network device through special 

interfaces defined by the component framework, as shown in Figure 3-3. A component that 

wishes to interact with the user application must implement the SocketDown interface and 

have a reference to the SocketUp interface. The SocketDown interface defines the 

Figure 3-3: Service interfaces defined by the component framework. 
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following methods: create, connect, bind, listen, accept, sendmsg, and close. 

The SocketUp interface defines the accept_callback and receive_callback 

methods. Likewise, a component wishes to interact with the network device must implement 

the DeviceUp interface and have a reference to the DeviceDown interface. The 

DeviceDown interface defines the output method and the DeviceUp interface defines 

the input method. 

 

3.2.3 Component Execution Model 
The component framework adopts a passive component execution model in which each 

component is passive. A passive component is not bound with a thread, so it is invoked only 

by the threads owned by the user application or by the component framework. In addition, a 

component cannot have an infinite loop. That is, each component method must return in a 

reasonable time. 

We choose the passive execution model for two reasons. First, the passive model is usually 

used by protocol implementations of operating system kernels, such as the TCP/IP 

implementation of the Linux kernel. Second, the passive model is also used to obtain the safe 

reconfiguration point, which is discussed later. 

 

3.2.4 Component States 
During component replacement, the state of the old component instance is transferred to 

the new instance. Thus, the component state must be defined before the state transfer. For 

ease of programming, the component framework treats object states as component states. The 

component states can therefore be transferred by the standard Java object persistence 

mechanism, the Java serialization (Sun Microsystems 2001), which is provided by almost 

every Java virtual machine.  
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The Java serialization is used to store the state of a living object in the storage and 

reconstruct it from the storage later. The programming aspect of the Java serialization can be 

found in (Arnold et al. 2000). When designing a component, the programmer must declare it 

as Serializable so that it can be accessed by the Java serialization. Thus, the 

reconfiguration management subsystem can use the Java serialization to automatically 

transfer the component state. This approach does not need any proprietary state transfer code 

written by the programmer. 

The other benefit of this approach is that if some fields are not considered as part of the 

component state, the programmer can declare these fields as transient. Transient is a 

keyword of the Java language and transient fields will be discarded during serialization. Note 

that the fields referring to other components must be declared as transient because they are 

not part of the component state. 

 

3.2.5 User-defined Handlers 
Although the component states can be automatically transferred by the component 

framework, the default state transfer mechanism may not satisfy all of the components. For 

example, if the new component defines a field that is not present in the old component, the 

default mechanism will not have sufficient knowledge to determine the suitable value of this 

field. In such case, the programmer can provide a user-defined handler, which is invoked 

after the default state transfer. In order to transfer these inconsistent fields, the user-defined 

handler is allowed to use Java reflection (Sun Microsystems 1997) to inspect and set their 

values. The Java reflection is a virtual machine feature together with a set of libraries that can 

inspect the structure and modify the content of objects during runtime. The programming of 

Java reflection can be found in (Arnold et al. 2000). 
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3.2.6 A Protocol Component Example 
A simple component example is shown in Figure 3-4. ComponentA is a component that 

connects to the lower part of the component framework, so it implements the DeviceUp 

interface and holds a reference of the DeviceDown interface. Since DeviceUp defines the 

input method, it is implemented by ComponentA. The field name stores the unique name 

given by the startup program or the reconfiguration program. The method setDeviceDown 

is a link method that stores the reference of DeviceDown to the field dd. The dd field is a 

transient field because component references do not belong to the component state of 

ComponentA. ComponentA is declared as Serializable because it has to be used by 

Java serialization during replacement. Note that a component does not have to inherit from a 

component base class because we focus on component-based programming rather than 

object-oriented programming, and a base class is not really necessary for our component 

framework. 

 

public class ComponentA implements DeviceUp, Serializable { 
String name; 
transient DeviceDown dd; 

  ... 
public void setDeviceDown(DeviceDown d) { 
dd=d; 

} 
 
public void input(…) { 

  ... 
} 

} 

Figure 3-4: A protocol component example. 

public interface DeviceUp { 
public void input(…); 

} 
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3.3 Implementation of the Component 

Framework 

3.3.1 Safe Reconfiguration Point 
Safe reconfiguration point is a short period in which the protocol stack can be dynamically 

reconfigured without inconsistent results. It is necessary because the threads other than the 

reconfiguration thread can also reside in the component framework, including a thread owned 

by the component framework that handles incoming messages, one or multiple threads owned 

by the user application that handle outgoing messages, and a thread owned by the component 

framework that handles timers. Without any restriction, inconsistent results may be produced 

because these threads are able to invoke the components while they are reconfigured by the 

reconfiguration thread. 

The safe reconfiguration point is governed by the component framework. The exclusive 

access right is given to the reconfiguration thread when it is about to reconfigure the 

components. Thus, when the reconfiguration thread is modifying the components, no other 

thread can invoke them simultaneously. The above behavior is modeled by a Java class that 

implements a read/write lock. The incoming, outgoing, and timer threads acquire the read 

lock before invoking the components. The reconfiguration thread acquires the write lock 

before modifying the components. 

 

3.3.2 Support Libraries 
The component framework provides three support libraries to ease the programming. The 

socket library is for the user application. The socket library is still the standard Java socket 

library but a custom socket implementation is plugged in. This socket implementation is 

connected to the component framework rather than the native socket library of the underlying 
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operating system, and it acquires the read lock before invoking the components. When the 

user application tries to send a message during the reconfiguration process, the thread of the 

user application will be temporarily blocked in waiting the read lock since the write lock has 

been acquired by the reconfiguration management subsystem. When the write lock is released 

after the reconfiguration, the user application thread can get the read lock and then invoke the 

components. The message buffer library is a modified version of Jbuf, which was originally 

developed by the HotLava project (Krupczak et al. 1998). With the message buffer library, 

the protocol headers can be easily added to and removed from a protocol message. The timer 

library extends the java.util.TimerTask class of JDK1.4.0. In order to reserve the 

safe reconfiguration point, it acquires the read lock before invoking the timer handling 

routines. 

 

3.3.3 Implementation of Reconfiguration Operations 
The component framework provides three reconfiguration operations: create, remove, and 

replace. These operations are provided as a library defined in the operations class. The 

reconfiguration program is allowed to use all of the operations while the startup program is 

only allowed to use the create operation. All the operations are related to the component 

repository, which is an internal data structure maintained by the reconfiguration management 

subsystem to keeps track of all component instances. The create operation creates a 

component instance and registers it with the component repository. It also uses the Java 

reflection to assign the unique name given by the startup program to the component instance. 

The remove operation removes a component instance from the component repository and 

detaches it from other component instances so that its memory space can be reclaimed by the 

Java garbage collector. 

The replace operation is the most sophisticated one because it is responsible for state 
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transfer and external reference management. A component replacement involves two 

component versions. The original version is called the source component and the new version 

is called the target component because the component state is transferred from the source 

component instance to the target component instance. Internally, this operation uses several 

programming techniques, such as Java serialization, serialization stream instrumentation, and 

Java reflection. 

The replace operation consists of eight steps: component finding, object serialization, byte 

stream instrumentation, object deserialization, reference duplication, reference redirection, 

user-defined handler invoking, and component registration. The first step searches the 

component repository to find the source component instance. The second step serializes the 

source component instance to an in-memory byte stream. This stream temporarily stores the 

state of the source component instance. The third step, byte stream instrumentation, converts 

the byte stream from the source component class to the target component class. This step is 

necessary because multiple versions of a Java class cannot coexist in a Java virtual machine. 

Thus, the source and target components must be implemented as separate classes. The 

deserialization step creates the component instance from the instrumented byte stream. Due 

to the instrumentation, an instance of the target component rather than the source component 

is created and its state is inherited from the source component instance. In other words, the 

target component instance is created with the state of the source component instance. 

The fifth step, reference duplication, copies component references from the source 

component instance to the target component instance, as shown in Figure 1-1d. This step uses 

Java reflection to inspect each field of the old component instance. If any field refers to a 

component instance that is stored in the component repository, the value of this field is 

duplicated to the same field of the target component instance. The above comparison uses the 

operator == of the Java language, which can test whether two object references refer to the 
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same object. The sixth step, reference redirection, redirects the component references that 

originally refer to the source component instance to the target component instance, as shown 

in Figure 1-1e. This step also utilizes Java reflection and it inspects each field of each 

component instance other than the source component instance. If any field refers to the 

source component instance, this field will be redirected to refer the target component instance. 

The seventh step, user-defined handler invoking, is executed when the user-defined handler is 

provided. The final step deregisters the source component instance and registers the target 

component instance with the component repository.  

 

3.3.4 Implementation of External Interfaces 
The component framework is able to communicate with both the user application and 

network device, as shown in Figure 3-5. The user application communicates with the 

component framework through the standard Java socket library with a custom socket 

implementation. For the network device, the component framework is connected with two 

UNIX FIFOs (Stevens 1999). One is for outgoing data and the other is for incoming data. 

When the component invokes the output method of the DeviceDown interface, the 
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Figure 3-5: External interfaces of the component framework. 
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component framework sends the payload to the outgoing FIFO. When receiving a message 

from the incoming FIFO, the component framework invokes the input method of the 

DeviceUp interface that is implemented by the component. In addition to the incoming and 

outgoing FIFOs, the component framework is also connected with a reconfiguration FIFO. 

When the reconfiguration message is received from the reconfiguration FIFO, the 

reconfiguration management subsystem will start the reconfiguration process. 

 

3.4 Dynamic Reconfiguration of TCP 
In order to demonstrate dynamic reconfiguration, we implement TCP (Postel 1981) on the 

component framework. There are two reasons for implementing a dynamically reconfigurable 

TCP. First, TCP is one of the most widely used data communication protocols. Second, since 

TCP is connection-oriented, the dynamic reconfiguration of a connection-oriented protocol 

can increase its availability. For example, a server may have several long and overlapped 

TCP connections. If dynamic reconfiguration is provided, the administrator can upgrade the 

TCP implementation without closing any TCP connection. 

 

3.4.1 Structure of TCP Implementation 
The TCP implementation consists of three component instances, an instance of TCP1, an 

instance of FastTimer, and an instance of SlowTimer, as shown in Figure 3-6. Since 

each component has exactly one instance, the component names are also used indicate the 

component instances. The TCP implementation follows lwIP (Dunkels 2001), which is a 

lightweight TCP/IP implementation. We reimplement the basic features of the lwIP’s TCP in 

object-oriented design. TCP1 communicates with the component framework by 

implementing the SocketDown and DeviceUp interfaces and holding references to the 
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DeviceDown and SocketUp interfaces. To demonstrate dynamic reconfiguration, TCP1 

supports only a single connection and will be upgraded by a more complete version later. 

The other two components, FastTimer and SlowTimer, implement two different timer 

resolutions required by the TCP specification. Instead of communicating with the component 

framework, these two components communicate with TCP1 through the TMRtoTCP 

interface. They register with the timer library provided by the component framework so that 

the timer library can invoke them periodically. When invoked by the timer library, the timer 

components invoke the methods defined in the TMRtoTCP interface. Conceptually, although 

TCP1, FastTimer, and SlowTimer can be combined as a single component, they are 

separated due to the limitation of the Java timer library. In addition, the two timer 

components cannot be dynamically reconfigured. We will discuss these issues in the next 

section. 

 

3.4.2 Experimental Environment 

Figure 3-6: Structure of the TCP implementation. 
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The experimental environment is a Celeron 1.13 GHz PC that runs Linux 2.4.18 and JDK 

1.4.0. The environment consists of two protocol stacks to emulate two communicating 

machines, as shown in Figure 3-7. On top of each stack are the test applications, which 

exchange data with each other. The first test application uses the original Java socket library, 

so it is connected to the native Linux TCP/IP stack. Instead, the second test application is 

connected to the component framework because it uses the Java socket library that is plugged 

with the custom socket implementation.  

Since the component framework only contains the TCP layer, it also needs lower-layer 

protocols, such as ARP, ICMP, and IP. We utilize ARP, ICMP, IP, and device driver layer of 

lwIP and connect its IP layer to two FIFOs that are managed by the component framework. 

One is for TCP input and the other is for TCP output. Two protocol stacks are connected by 

the TAP device driver (Krasnyansky), which is a virtual Ethernet device driver for Linux. 

The two stacks communicate with each other through this virtual device. 

Note that our TCP implementation is capable for working in a real network because it can 

operate with the Linux TCP, which already runs in a large number of networked computers. 

However, if we want to attach the experimental environment to a real Ethernet, we have to 

use a modified Ethernet card driver rather than the TAP driver. The modified card driver has 
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Figure 3-7: Experimental environment. 
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to intercept all the Ethernet frames and then direct them to the component framework instead 

of the native Linux stack. The modified card driver will be implemented in the future. 

 

3.4.3 Dynamic Reconfiguration of the TCP Component 
While the TCP1 component is running, we replace it with TCP2, which supports multiple 

connections. The reconfiguration command is deliberately invoked after TCP1 accepts a 

connection and this connection enters the ESTABLISHED state. Therefore, the 

reconfiguration can take place while the two test applications are exchanging data. 

TCP1 and TCP2 differ both in method and field declarations. The difference in methods 

does not need special treatment since the methods of TCP1 are just replaced by those of 

TCP2. However, the difference in fields cannot be directly handled by the component 

framework because it does not know how to assign values for the fields that are present in 

TCP2 but not present in TCP1. In this case, the component programmer should provide a 

user-defined handler to convert them from TCP1 to TCP2.  

The fields of TCP1 and TCP2 are all the same except at a field that stores protocol control 

blocks (PCB). PCB is a class that implements the protocol control block of a TCP connection. 

Since TCP1 only accepts a single connection, it only manages one PCB object. Thus, TCP1 

only declares a field p of class PCB to store this PCB object. However, TCP2 has to manage 

multiple PCB objects, so it declares a field pcb_list of class ArrayList, which is a 

utility class that can store multiple objects. 

 

3.4.4 Implementation of User-defined Handler 
The user-defined handler is used to convert inconsistent fields defined in TCP1 and TCP2. 

Since the field p of TCP1 and the field pcb_list of TCP2 differ both in their names and 
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types, they cannot be handled by the Java serialization. Thus, the value of pcb_list will 

become null after the state transfer. To overcome this problem, the user-defined handler has 

to move the PCB object from the field p to the field pcb_list. 

In addition, since TCP1 and TCP2 do not manage the PCB object in the same way, the 

user-defined handler has to perform different actions depending on the connection state of 

TCP1. For example, if TCP1 is in CLOSED state, that is, no PCB object has been created yet, 

the handler does nothing. If the PCB is in LISTEN state, the handler performs three steps. 

First, an ArrayList object is created. Then, this object is attached to the pcb_list field. 

Finally, the PCB object is added to pcb_list by invoking the add method of ArrayList. 

Note that the last two steps are achieved by using the Java reflection. If the PCB is in 

ESTABLISHED state, the handling process is more complicated because in addition to 

transferring this PCB object, TCP2 needs another PCB object to wait for new connections. 

Therefore, the handler duplicates the PCB object, sets the duplicated PCB object to LISTEN 

state, and adds the resulting PCB object to pcb_list. 

 

3.4.5 Performance of TCP Reconfiguration 
The performance of the TCP reconfiguration in terms of the steps implemented by the 

replace operation is shown in Table 3-1. All numbers are averaged over a large number of 

iterations. The reconfiguration process lasts for 214 ms. Since the resolution of the fast TCP 

timer is 200 ms, the reconfiguration may slightly delay the fast TCP timer but this delay will 

not cause fatal results. Better performance can be gained by using a faster machine or by 

improving some critical steps of the replace operation. For example, the most 

time-consuming steps are object serialization and object deserialization. They are slow 

because the Java serialization is completely written in Java. Thus, it can be implemented 

inside the Java virtual machine or by a C library that uses Java Native Interface (JNI). 
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Table 3-2 shows the maximum processing time of the TCP component. The TCP 

component requires 2 ms for outgoing data and 3 ms for incoming data at most. The 

incoming processing is slower than the outgoing processing because an incoming TCP 

segment may trigger the transmission of an acknowledgement segment. Comparing Table 3-2 

with Table 3-1, we can find that the TCP processing time is much shorter than its 

reconfiguration time. Since the TCP processing time is relatively short, the safe 

reconfiguration point is not difficult to find. 

 

3.5 Summary 
In this chapter, we introduced a dynamically reconfigurable software framework for 

communication protocols. The software framework is based on Java and component-based 

programming. Following the programming rules specified by the component framework, the 

programmer can use Java to develop dynamically reconfigurable protocol components. 

 Time (ms) 
1.Component finding 5 
2.Object serialization 136 
3.Byte stream instrumentation 8 
4.Object deserialization 43 
5.Reference duplication 2 
6.Reference redirection 2 
7.User-defined handler invoking 18 
8.Component registration 0 
Total 214 
 

Table 3-1: Performance of replacing the TCP component. 

 Time (ms) 
Outgoing 2 ms 
Incoming 3 ms 

Table 3-2: The maximum processing time of the TCP component. 
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The components communicate with each other through standard Java interfaces and they 

are not allowed to initiate any thread. In addition, each component must be declared as 

Serializable so that the component state can be transparently transferred. If the formats of the 

new component and the old component are not compatible, the component state can still be 

transferred with the help of the user-defined handler.  

The component framework uses a read/write lock to preserve the safe reconfiguration point. 

The replace operation is implemented using two programming tools: Java serialization and 

Java reflection. In order to demonstrate the component framework, a dynamically 

reconfigurable TCP component is developed. The TCP component replacement process 

roughly adds a delay of 200 ms. 
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4. A Java-based, General-purpose 

Component Framework for Dynamic 

Reconfiguration 
The previous chapter proposed a dynamically reconfigurable component framework for 

communication protocols. This chapter proposes a general-purpose component framework 

for dynamic reconfiguration. The component framework is still Java-based but the 

implementation is more powerful and efficient. Section 4.1 provides an overview of the 

component framework. Section 4.2 describes the two implementations of the component 

framework. The first one extends the implementation described in the previous chapter. The 

second one adopts a new approach, native programming, which effectively improves the 

performance. Section 4.3 evaluates the performance of these two implementations using the 

dynamically reconfigurable TCP component, as described in the previous chapter. 

 

4.1 Component Framework Overview 

4.1.1 Component Model 
The architecture of the general-purpose component framework is similar to that of the 

protocol component framework, as described in Chapter 2. The component model is also 

similar, but the general-purpose component framework does not define any external 

interfaces, such as SocketDown or DeviceUp. A general component example is shown 

in Fig 4-1. Here ComponentA implements an interface called InterfaceA. A method called 

methodA is declared in InterfaceA so that ComponentA provide an implementation of this 

method. Since ComponentA connects to another component that implements InterfaceB, it 
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implements a link method, setB, which accepts an argument of type InterfaceB. In addition, 

ComponentA declares a field called name that is used to store the unique name. For state 

transfer, ComponentA is declared as Serializable and the field b, which is a component 

reference, is declared as transient. 

 

4.1.2 Compatible Changes and User-defined Handler 
When replacing a component, the new component must be compatible with the old one, 

and two component versions are totally compatible if they satisfy three requirements. The 

first requirement is they must implement the same interfaces. The second requirement is that 

if the old version refers to a component, the new version must also refer to this component 

and the component reference must be stored in the same field. The final requirement is that 

two component versions must declare the same fields. If the first two requirements are not 

satisfied, the old component cannot be replaced by another one. However, if only the third 

requirement is not satisfied, the old component can also be replaced but the state transfer may 

fail for certain fields. 

When part of the component state cannot be successfully transferred to the new component, 

public class ComponentA implements InterfaceA, Serializable { 
 String name; 

transient InterfaceB b; 
… 

  public void setB(InterfaceB inf) { 
  b=inf; 
 } 
 
 public void methodA(…) { 
 … 
 } 
} 

Figure 4-1: A general component example. 

public interface InterfaceA { 
 public void methodA(…); 
} 
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the programmer can provide a user-defined handler to transfer this part of the state. The 

user-defined handler is a class that implements a convert method. This method accepts the 

component instance and the component class of both the old and the new components. The 

programmer can use Java reflection to inspect the fields of the old component and then set 

the fields that are not compatible or not present in the new component. Note that Java 

reflection can get all the fields of the old component and can set all of the fields of the new 

component. After the state is transferred by the default state transfer mechanism, if the 

programmer provides a handler class, the component framework will invoke the convert 

method of this class.  

Fig. 4-2 is an example of the user-defined handler and two corresponding component 

classes. Suppose component1 is the old version and component2 is the new version. 

Component1 originally declares a field a, which is used to store an integer. However, in 

Component2, the programmer changes the field name from a to b. Since the state transfer 

mechanism does not know these two fields should have the same value, after state transfer, 

field b will have an initial value rather than the value inherited from field a. In such case, a 

user-defined handler is written to transfer the value from a to b. When invoked by the 

component framework, the convert method receives the object and class of component1 

from the first and the second arguments. The object and class of component2 are received 

from the third and the fourth arguments. Next, the programmer gets the field objects of field 

a and field b in component1 and component2, respectively. The value of field a is then 

stored to variable v. Finally, variable v is set to the field b of component2.  
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4.1.3 Programming Rules for the User Application 
In addition to the component programming rules, the user application has to follow some 

rules so that the components can be accessed correctly. The user application can interact with 

the component instances in two ways. The first is that the user application can communicate 

with components directly. For this, it must refer to the component instances through Java 

interfaces and must register itself to the component repository. During reconfiguration, the 

component instances to which the user application refers can therefore be altered by the 

component framework. The second is that the component instances are only accessed by the 

user application through a component adapter. A component adaptor is also a component 

instance from the component framework’s perspective but it can be accessed by the user 

public class handler { 
 public void convert(Object o1, Class c1, Object o2, Class c2) { 
  Field f1, f2; 
  int v; 
  try { 
   f1=c1.getDeclaredField("a"); 
   f2=c2.getDeclaredField("b"); 
   v=f1.getInt(o1); 
   f2.setInt(o2,v); 
  } catch (Exception e) { 
   … 
  }   
 } 
} 

Figure 4-2: User-defined handler. 

public class component1 implements …, Serializable{ 
 public int a; 
 … 
} 

public class component2 implements …, Serializable { 
 public int b; 
 … 
} 
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application like a regular Java object. In other words, a component adaptor provides a 

programming interface to the user application to access the components. When the 

programming interface is called, the component adaptor accesses the components to perform 

the task that is desired by the user application.  

 

4.1.4 Limitations of the Component Model 
Since we do not modify the Java language and the virtual machine, there is a limitation on 

the component behavior. A component instance must act as either an active component or a 

passive component. Most importantly, only a passive component can be reconfigured 

dynamically. An active component is a component with a thread declared inside, so it can 

freely invoke the methods on passive components. In constrast, since there is no thread inside 

a passive component, a passive component is only executed when its methods are invoked by 

active components or by other passive components that are invoked by active components. 

That is, a passive component only invokes other passive components when it is executed. To 

avoid this limitation, an application can be composed without an active component. All the 

threads needed by an application can be provided by the user application so that all the 

components are passive and reconfigurable. 

 

4.2 Implementation of the Component 

Framework 
The component framework is implemented by two different approaches: a 

serialization-based approach and a native programming approach. The first is written entirely 

in Java. It is portable, but is slower and the preservation of the safe reconfiguration point is 

not transparent to the active components or the user application. Although the 
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implementation of the first approach has been reported in Chapter 3, we also introduce a 

modified version, called preloading technique, which is still portable but is faster than the 

original implementation. The second is written in Java and C. The C language is used in the 

programming of Java Native Interface (JNI) and Java Virtual Machine Debugging Interface 

(JVMDI). It is faster, although the C part is platform- dependent. We will describe the 

implementation of the second approach in this chapter. 

 

4.2.1 Preloading Technique 
Due to portability, the Java serialization itself is not very efficient because it is also written 

in Java. Although we cannot modify the serialization library, we can improve the 

serialization performance by reducing the overhead that is not directly due to the serialization. 

Since we find that a large portion of serialization time is consumed by the loading of 

serialization related classes by the Java virtual machine, a preloading technique is developed 

to reduce the class loading time for serialization.  

Although we cannot directly control the loading of Java classes, the classes that are needed 

by serialization can be forced to load into the virtual machine if we serialize some objects. 

Therefore, at the startup time of the component framework, we serialize and then deserialize 

an object of type Object, which triggers the loading of serialization related classes. The 

preloading technique will increase some framework startup time but it can reduce a great 

amount of serialization time. 

 

4.2.2 Safe Reconfiguration Point in Native Programming 

Approach 
In the native programming approach, we use stack inspection technique to preserve a safe 

reconfiguration point. This technique is transparent to both the user application and all the 
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components. When reconfiguration starts, the component framework invokes the stack 

inspection code that is written in JVMDI. There are several steps in inspecting the stacks. In 

the first step, all the Java threads other than the thread of the component framework are 

suspended by the SuspendThread function. In the second step, each stack frame of each Java 

thread is acquired by the GetCurrentFrame and GetCallerFrame functions. In the third step, 

the instruction location of each stack frame is inspected by the GetFrameLocation function. 

If no thread is executing the methods of the target component, it is a safe point. Since all the 

user threads are suspended, the reconfiguration can be performed safely. After 

reconfiguration, the suspended Java threads are resumed by the ResumeThread function. On 

the other hand, if any Java thread is executing the methods of the target component, it is not a 

safe point and all the threads are resumed. The stack inspection code will sleep for a short 

period and then retry after it is woken up. However, if the number of retry exceeds a 

threshold, the stack inspection is stopped and the reconfiguration process is aborted.  

Although the stack inspection technique is transparent to application programmers, the 

system may retry frequently. If the system retries too frequently, we suggest the programmer 

to use the locking technique instead of the stack inspection. An alternative to stack inspection 

is reference counting, in which we can use JVMDI to capture each method entry and exist to 

maintain the corresponding reference counter. As long as the reference counter of the target 

component is zero, the system can perform reconfiguration immediately. Although this 

approach seems better, its overhead may be larger than stack inspection because using 

JVMDI to capture each method entry and exit would severely degrade the system 

performance. Nevertheless, if computing power is sufficient, the retry and reference counting 

overheads are not an issue. 
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4.2.3 State Transfer of the Native Programming Approach 
The component states are transferred by the native programming approach in three steps. 

Before the state transfer, the component framework creates an instance of the new component. 

The first step locates the old component instance and the new component instance. The 

second step copies the state from the old component instance to the new component instance. 

This step is based on the type of fields held by the component class. For a primitive field, if it 

is present in both the old class and the new class, and its name, modifier and signature are all 

matched, the value of this field is copied. For example, if the field type is int, the value is 

retrieved and duplicated by the GetIntField and SetIntField functions of JNI. However, for an 

object field, only the object reference is copied. In this case, the GetObjectField and 

SetObjectField functions are used. The third step is performed if an object field belongs to an 

inner class (Arnold et al. 2000) of the component class. Object reference copy is not possible 

because their type names are not the same. Therefore, an object of the inner class that belongs 

to the new component class is created and the state rather than the reference is copied. 

 

4.2.4 Replace Operation in Native Programming Approach 
The replace operation of the native programming approach consists of eight main steps: 

component locating, stack inspection, state transfer, reference duplication, reference 

redirection, user-defined handler invoking, component registration, and thread resumption. 

The stack inspection and thread resumption steps are not needed in the serialization-based 

approach because it uses a different mechanism to preserve a safe reconfiguration point. 

The implementation is divided into the Java part and the native part. The native part is a 

dynamic library that is plugged into the Java virtual machine at its startup time. The library 

inserts three JVMDI breakpoints, and each of them is set on a method of the component 

framework.  
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When the operation starts, the Java part is executed first. It performs component locating 

and then invokes the first Java method on which the breakpoint is set. The Java virtual 

machine suspends the execution of this method and invokes the breakpoint handler of the 

native part. The breakpoint handler performs stack inspection to preserve a safe 

reconfiguration point, as described earlier. When the safe point is obtained, the breakpoint 

handler stops and the control is returned to the Java part. The Java part creates a new 

component instance and then invokes the second method. This time, the breakpoint handler 

performs state transfer and then returns to the Java part. After the state is transferred, the Java 

part performs the reference duplication, reference redirection, user-defined handler invoking, 

and component registration steps. Finally, the Java part executes the third method, for which 

the breakpoint handler resumes the suspended Java threads. 

 

4.2.5 Implementation of External Method Redefinition and 

Multiple Update 
The implementation of external method redefinition and multiple update are described here. 

In the component framework, external method redefinition implies a change to the Java 

interface that a component implements or refers to, which includes adding new methods, or 

changing the arguments or return type of existing methods. The changed interface is stored as 

a new interface. When an interface is changed, both the component implementing the 

interface and the component referring to that interface must be updated simultaneously. In 

other words, external method redefinition implies a multiple update. 

A multiple update occurs when more than one component need to be updated at the same 

time, which is not equivalent to a series of single updates because they cannot handle external 

method redefinition. The multiple update version of the replace operation is different from 

the single update version. The multiple update version has an additional argument that is used 
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to commit a multiple update. When the operation is invoked without setting this argument, 

the component framework stores the request in a pending list. The requests are accumulated 

and not performed until this argument is set.  

The necessary steps of a multiple update are also similar to a single update but the 

implementation of some steps and the execution sequence are different. The procedure of the 

native programming approach is described as follows. The first step also locates the 

components to be replaced. The second step also detects a safe reconfiguration point but all 

of the target components are tested together. If one of the target components is in a thread 

stack, it is not considered as a safe reconfiguration point. The third step is also state transfer 

but all the new component instances are created and transferred at once. Next, for each new 

component instances, the reference duplication and reference redirection steps are performed 

together. After these two steps are performed on each component instance, the user-defined 

handler invoking and component registration steps are also performed together. Finally, the 

suspended Java threads are also resumed. 

Fig. 4-3 shows the reference duplication and the reference redirection steps of a multiple 

update. The shaded component is the one to be replaced. Suppose components A and B are 

both target components and consider the reference duplication step of component B (Fig. 

4-3a). Originally, the new version of component B, B’, would refer to component A. Since A 

is also replaced, B’ will refer to A’ rather than A. Now consider the reference redirection step 

Figure 4-3: Reference duplication and reference redirection steps 
of a multiple update.

A B A 

A’ 

B 

A’ B’ B’ 

(a) (b) 
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of component B (Fig. 4-3b). Originally, component A would change its reference to refer to 

B’. Since component A itself is also replaced, component A’ rather than component A will 

refer to B’. 

 

4.3 A Dynamically Reconfigurable TCP and 

Performance Evaluation 
The component framework described earlier is used to develop a dynamically 

reconfigurable Transmission Control Protocol (TCP), which has been introduced in Chapter 3. 

In this section, we evaluate the performance of the two component framework 

implementations in terms of the reconfigurable TCP. The experimental platform is a Celeron 

1.16 GHz PC running Linux 2.6.5. 

 

4.3.1 Performance of Normal Execution 
Table 4-1 shows the performance of normal execution on a simple component. The 

overhead of the component framework is just a method invocation on an interface. For 

comparison, we also measure the execution time of a regular method and an integer 

increment. The result is the time required for 10 million repetitions. The method we tested is 

an empty method that has no argument and no return value. Although an interface invocation 

is about three times the length of a regular invocation, this overhead is not large because it is 

 Time (ms) 

Regular Method 58 

Interface Method 161 

Integer Increment 84 

Table 4-1: Performance of normal execution. 
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not longer than two integer increments. Moreover, if a Java object is originally designed to be 

invoked through an interface, we can say that there is no additional overhead on method 

invocation. 

 

4.3.2 Performance of the Replace Operation 
The dynamically reconfigurable TCP can be upgraded while it is running. When the TCP1 

component is in the established state, that is, the TCP connection has been established, we 

replace it with the TCP2 component.  

Fig. 4-4 shows the overall performance of the replace operation using the serialization-only 

approach, serialization with preloading, and native programming approach. The result is 

averaged from 100 iterations and the standard deviations are also shown as bars. In addition, 

two techniques are used to measure the performance: the getrusage function of Linux and 

System.currentTimeMillis method of Java. The getrusage function measures the actual 

Figure 4-4: Overall performance of serialization and native 
programming approaches. 
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processor time consumed by the Java environment while the System.currentTimeMillis 

method measures execution time experienced by the user. Notice that the result of 

System.currentTimeMillis depends on the system load of the machine. 

In Fig. 4-4, the reconfiguration lasts 212.8 ms using the serialization only approach while 

the same reconfiguration lasts only 33.95 ms using the native programming approach. The 

performance of serialization with preloading lies between the two. Detailed analysis of the 

performance is shown in Fig. 4-5, indicating the performance of eight major steps of the 

replace operation measured by the getrusage function. No matter which approach is used, 

state transfer is always the most time-consuming step. However, the native programming 

approach spends only one ninth of the serialization only approach in this step. In addition, 

since the stack inspection and thread resumption are both less than 1 ms, they have little 

effect on the overall performance. Notice that the native programming approach spends 

slightly more time than the serialization approach in reference duplication and handler 

Figure 4-5: The detailed performance of serialization and native 
programming approaches. 
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invoking steps. This is because in these two steps the native programming approach leads to 

some class loadings that have already occurred in the state transfer step of the serialization 

approach. 

The state transfer overhead of a component depends on two factors. One is the number of 

fields the target component declares. The other is the complexity of each individual field. 

That is, the state transfer time would be longer if a field refers to an object rather than a 

primitive type. Note that the total component number of the system does not affect the state 

transfer time of the component to be replaced, so it does not affect the reconfiguration time. 

The fields declared by TCP1 are shown in Table 4-2. The fields of class PCB are also shown 

because it is an inner class of TCP1 and one PCB object is referred to by a field of TCP1. 

The PCB class implements the protocol control block (PCB) of TCP.  

The effect of preloading is shown in Table 4-3, indicating that the preloading technique can 

eliminate over 35% of the state transfer time. The preloading performance is measured on the 

first reconfiguration of the component framework’s lifetime because reconfiguration is not a 

very frequent event. However, if the serialization-only version performs a second 

Table 4-3: Effect of the preloading technique. 

 Preloading 
disabled 
(ms) 

Preloading 
enabled (ms) 

Percentage 

getrusage 128.27 80.75 62.95% 
System.currentTimeMillis 201.76 130.73 64.79% 
 

 TCP1 PCB  

Primitive Fields 5 24 

Object Fields 2 6 

Total 7 30 

Table 4-2: The fields defined in the TCP1 and PCB classes. 
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reconfiguration, the performance will be close to that of the preloading version. 

Although the preloading technique reduces the overhead caused by class loading, the 

serialization itself is still slow due to several reasons. Firstly, serialization is implemented as 

Java library classes instead of a built-in feature of the virtual machine. The price of 

portability is that it leads to additional bytecode execution time. Secondly, Java serialization 

stores the complete object graph to the byte stream. During deserialization, a new version of 

the complete object graph is constructed and is independent of the original object graph. 

However, from the perspective of the component framework, the objects referred to by the 

old component can be simply attached to the new component, rather than being recreated. 

 

4.4 Summary 
In this chapter, a powerful, general-purpose, and performance-improved component 

framework for dynamic reconfiguration is proposed. The programming rules for the 

components are the same as those described in the previous chapter, but the implementation 

presented here differs from the implementation of the protocol framework in several aspects. 

First, the general-purpose component framework adopts a new implementation approach 

based on JNI and JVMDI, which is six times faster than the protocol framework. The 

performance is considerably improved because the state transfer mechanism is implemented 

in C rather than in Java. Second, the technique of preserving the safe reconfiguration point is 

also different. The new implementation exploits JVMDI to inspect the thread stacks, and this 

technique does not need any synchronization mechanism such as a lock or a synchronization 

protocol. Third, the new component framework supports several update formats not handled 

in the protocol framework. The most notable one is multiple update, which can replace 

several components at one time. Next, the external interfaces are different. The protocol 
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framework connects to the socket library and network devices, but the general-purpose 

component framework does not have such a limitation. Then, the performance of the old 

implementation is also improved by using the preloading technique. Finally, the performance 

is measured more accurately by using a measurement function of the underlying operating 

system. 
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5.  Conclusions and Future Work 
The idea of dynamic reconfiguration is not new, and it has been studied throughout two 

decades. However, most of the past dynamic reconfiguration researches are limited to certain 

application domains, especially for distributed systems and object-oriented programming 

languages. This thesis attempts to find out new application areas for which the benefits of 

dynamic reconfiguration have not been discovered. This chapter summarizes the 

contributions of the thesis and then presents the directions of our future research in dynamic 

reconfiguration. 

 

5.1. Summary 

5.1.1 Protocol Reconfiguration 
The first contribution of the thesis is that we proposed a dynamic-reconfigurable 

component framework for protocol stacks. This work is novel in that the proposed framework 

is the first protocol programming environment that fully supports dynamic reconfiguration. 

Although existing protocol architectures are able to dynamically create or remove protocol 

modules, they cannot replace a protocol module in use. Since most protocol implementations 

already clearly defined their module boundaries, adapting component-based programming is 

not difficult.  

The protocol framework is written in Java instead of being built on the operating system 

because of three reasons. First, current operating system kernels must be heavily modified to 

support dynamic reconfiguration. In contrast, the Java environment already provides several 

useful libraries, such as serialization and reflection. Second, current operating systems have 

diverse designs. Instead of solving specific problems inherited by an individual operating 
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system, our work identifies and tackles the general problems that should be handled by every 

dynamically reconfigurable system. Finally, the Java bytecode can run on any operating 

system as long as a Java virtual machine is present. Therefore, dynamic protocol 

reconfiguration can be realized on simple operating systems or the operating systems that are 

not friendly to implementing dynamic reconfiguration.  

 

5.1.2 Component Framework 
The second contribution of the thesis is that we provide a powerful, general-purpose, and 

performance-improved programming environment for dynamic reconfiguration. The 

proposed environment is a component framework based on Java. Following some program 

rules specified by the component framework, programs are able to develop general-purpose, 

dynamic-reconfigurable applications. Our component framework is novel in that it exploits 

Java code to dynamically reconfigure Java code, so there is no need to modify the Java 

language, the Java virtual machine, or the definition of Java bytecode.  

The dynamically reconfigurable system most related to our component framework is the 

work by Hjalmtysson and Gray (Hjalmtysson and Gray. 1998), which is a C++ based 

software framework and it also defines some programming rules. By exploiting C++ 

templates, the code of the framework is automatically injected into the classes written by the 

programmer. However, it differs from our component framework in several places. First, Java 

does not support templates, so Java cannot use the template-based solution. Second, the code 

of our component framework is written as separate classes rather than injected into each 

component class, so the code size is reduced. Finally, their work is dynamic in that the 

objects of a new class implementation can be dynamically created in a running program, but 

it cannot convert an object from an old class to a new class. In other words, object 

replacement is not supported. Since object replacement is not supported, it does not consider 
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state transfer, safe reconfiguration point, and external reference management, which are the 

main concern of our component framework. 

The reconfiguration operations provided by the component framework are also similar to 

those provided by typical dynamically reconfigurable systems. However, our component 

framework can deal with some kinds of change usually not supported by other systems, such 

as field redefinition, method redefinition, and especially the multiple update. 

The component framework provides two implementations. The first one uses Java 

serialization and Java reflection. The second one exploits the programming of JNI and 

JVMDI. From the experience of implementing the component framework, we also find that 

the capability of native Java interfaces is much powerful than pure Java code. For example, 

we can use JVMDI to inspect thread stacks and set breakpoints on Java applications, which 

are very important in developing a transparent mechanism for the safe reconfiguration point. 

In other words, the integration of Java library and native interfaces can solve problems that 

cannot be solved by traditional Java code. We believe that there exist some more application 

areas that can benefit from such integration. 

 

5.2 Future Work 

5.2.1 Dynamic Reconfiguration of Linux Protocols 
Although Java is selected by our protocol framework, another language environment, C# 

(Archer and Whitechapel 2002), is also a suitable environment because its language and 

library features are similar to Java. The major limitation of Java is performance. In order to 

be portable, Java uses an intermediate bytecode format rather than the native machine code. 

Although the newer JIT- or HotSpot- supported Java virtual machines effectively reduces the 

bytecode execution time (Wilson and Kesselman 2000), the performance is not efficient 
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enough. The native programming approach and the preloading technique presented in 

Chapter 4 improve the performance further, but these approaches still require certain amount 

of Java code. 

To achieve the best performance, dynamic protocol reconfiguration should be built into 

operating system kernels, such as the Linux kernel. However, the current Linux network 

subsystem is not dynamic-reconfigurable because it does not fulfill any of the requirements 

described in Chapter 1. Therefore, the Linux network subsystem at least needs the following 

modifications. First, protocol implementations must reside in separate kernel modules. The 

current Linux protocol implementations such as the TCP/IP implementation is still part of the 

kernel image and cannot be configured as loadable modules. In addition, its TCP and IP 

implementations are still not clearly separated. Second, the Linux network subsystem must 

have a mechanism to detect the safe reconfiguration point. The Linux scheduler is often 

invoked by protocol modules in accept and recvmsg socket service methods. When a protocol 

module invokes the scheduler, it blocks itself and therefore cannot be safely reconfigured. 

The Linux kernel should detect scheduler invocation or redesign its network subsystem to 

avoid this situation. Third, the Linux kernel must provide a general mechanism to transfer 

module states. Although the programmer is allowed to make module variables persistent 

one-by-one, the kernel cannot automatically capture and restore module states like our state 

transfer mechanism does.  

Finally, the Linux kernel must be able to manage external references for the protocol 

modules. Two types of external references are common in Linux module programming: 

symbol exporting and address passing. Symbol exporting takes place when a protocol module 

provides its functions to other protocol modules by exporting them as symbols. Other 

protocol modules can use exported symbols after the symbol resolution process. However, 

when a protocol module is replaced, its symbols are probably moved to different addresses. 
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Other protocol modules would lose track of the moved symbols because symbol resolution 

process occurs only once, that is, during module load time. To deal with this problem, the 

symbol exporting scheme or symbol resolution mechanism should be modified. Address 

passing occurs when some variables of a protocol module are passed to the kernel as pointers. 

When a protocol module is replaced, the Linux kernel loses the data referred by these 

pointers. In this case, variables can be allocated in a memory region that is independent of the 

protocol module so that their addresses will not be moved because of dynamic 

reconfiguration. 

 

5.2.2 Enhancing the Component Framework 
Although the proposed component model is unique in that it is dynamically reconfigurable, 

it lacks some advanced features provided by other component models (Aldrich et al. 2002; 

McDirmid et al. 2001; Seco and Caires 2000), such as component inheritance and compound 

components. Component inheritance allows a component to acquire features from existing 

components instead of reimplementing them. A compound component is a component that is 

composed of several existing components.  

Additionally, the component framework does not check whether an update is safe (Barr and 

Eisenbach 2003). An update is safe if all the interfaces defined by new components exactly 

match the interfaces defined by existing components. Programmers are responsible for 

checking the safety of an update in the current system. In other words, the component 

framework does not detect an unsafe update during reconfiguration. Our future work includes 

implementing advanced features provided by other component models and detecting unsafe 

updates as early as possible during the reconfiguration process.  
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5.2.3 Integrating Transactional Rollback and Dynamic 

Reconfiguration 
Most researches on dynamic reconfiguration are based on the notion of safe reconfiguration 

point. Although the safe reconfiguration point easily guarantees that a module could be safely 

reconfigured, there are still some disadvantages. For a transparent approach such as stack 

tracing, the system may be too busy to find the safe reconfiguration point. For a 

non-transparent approach, the programmer has to preserve the safe reconfiguration point by 

implementing a synchronization protocol or using synchronization mechanisms. 

The safe reconfiguration point, however, is not needed by a dynamically reconfigurable 

system using transactional rollback. Transactional rollback (Rudys and Wallach 2002) is a 

facility that can roll back a system to a restartable state. If the underlying system supports 

transactional rollback, dynamic reconfiguration can start at any desired point. The code in 

execution can be rolled back to the restartable state, and before restarting the module can be 

replaced. 

Current transactional rollback system for Java (Rudys and Wallach 2002) is not efficient 

because it is based on transforming the Java code. There still no transactional rollback facility 

directly built inside the Java virtual machine. Our future work is to develop a transactional 

rollback enabled Java virtual machine and then use this virtual machine to create a more 

flexible system for dynamic reconfiguration. 
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