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Abstract: Tyrosine sulfation is a post-translational modification of many secreted and membrane-bound proteins.

It governs protein-protein interactions that are involved in leukocyte adhesion, hemostasis, and chemokine signaling.

However, the intrinsic feature of sulfated protein remains elusive and remains to be delineated. This investigation

presents SulfoSite, which is a computational method based on a support vector machine (SVM) for predicting pro-

tein sulfotyrosine sites. The approach was developed to consider structural information such as concerning the sec-

ondary structure and solvent accessibility of amino acids that surround the sulfotyrosine sites. One hundred sixty-

two experimentally verified tyrosine sulfation sites were identified using UniProtKB/SwissProt release 53.0. The

results of a five-fold cross-validation evaluation suggest that the accessibility of the solvent around the sulfotyrosine

sites contributes substantially to predictive accuracy. The SVM classifier can achieve an accuracy of 94.2% in five-

fold cross validation when sequence positional weighted matrix (PWM) is coupled with values of the accessible sur-

face area (ASA). The proposed method significantly outperforms previous methods for accurately predicting the

location of tyrosine sulfation sites.
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Introduction

Numerous post-translational modifications (PTMs) of proteins

provide the proteome with structural and functional diversity,

and regulate cellular plasticity and dynamics. Tyrosine sulfation

is one of the most common PTMs in secreted and transmem-

brane proteins, and has been experimentally demonstrated to be

essential to extracellular protein–protein interactions.1,2 Approxi-

mately 1% of all tyrosine residues of the total proteins in an or-

ganism can be sulfated.3 Several proteins that are known to be

tyrosine-sulfated play important roles in physiological processes,

and a direct link between protein function and tyrosine sulfation

has been established in many cases.4 For example, sulfated tyro-

sines have an essential role in the immune response,5 such as

promote HIV infection of T-helper lymphocytes,1,6 leukocyte

rollin,7 and a complementary cascade.8 Sulfation is also involved

in the modulation of intracellular protein transportation, and the

regulation of the proteolytic process of proteins.9 Tyrosine sulfa-

tion occurs when tyrosylprotein sulfotransferases (TPSTs) cata-

lyze the transfer of a negatively charged sulfate from 30-phos-
phoadenosine-50-phosphosulfate (PAPS) to the hydroxyl group

of tyrosine residue on a polypeptide.10 Two tyrosylprotein sulfo-
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transferases (TPST1 and TPST2) have been identified.10–13 The

use of synthetic peptide acceptors in vitro suggests that the two

TPST proteins prefer different substrates.12 For instance, pepti-

des modeled on the N-terminus of P-selectin glycoprotein

ligand-1 are sulfated by the two isoenzymes with equal effi-

ciency.14 Furthermore, peptides that are modeled on sulfation

sites of human C4-a-chain and heparin cofactor II are sulfated

more efficiently by TPST1 than by TPST2.12 In contrast, Danan

et al. demonstrated that TPST2 is more catalytically efficient

than TPST1 in sulfating CCR8 substrates.15 The two tyrosylpro-

tein sulfotransferases, TPST-1 and TPST-2, have overlapping

but not identical substrate specificities in vitro and in vivo.2,12,15

However, the relative abundances and distribution of the two

isoenzymes have not yet been examined because of lack of suit-

able analytical reagents and tools.10,12

Tyrosine-sulfated protein is important to cellular control, but

no clear-cut acceptor sequence of TPSTs, which can be used to

predict sulfotyrosine sites. Because of labile sulfotyrosine, the

characterization of this PTM has been impeded by the limitation

of general, unambiguous methods for its site determination.

Eliminating numerous false positive tyrosine sulfations, Rosen-

quist and Nicholas discovered a test for acidic amino acids close

to the target tyrosine, which yielded a good filtering crite-

rion.16,17 However, no universal features have yet been identified

for use in the accurate prediction of sulfation sites. To increase

the predictive accuracy and to reduce the number of false-posi-

tives, Yu et al. incorporated context-based rules and logical fil-

ters to develop a so-called position-specific scoring matrix

(PSSM) to predict tyrosine sulfation sites.18 Unfortunately, the

capacity to find new or unseen PTM patterns is absent due to

the static behavior of PSSMs.12,18 Additionally, the methods

demonstrated above without a user-friendly interface. Sulfina-

tor19 was developed to predict sulfotyrosine sites based on four

Hidden Markov Models. Despite the high predictive accuracy of

Sulfinator’s validation test set, it cannot be guaranteed to iden-

tify new sulfated tyrosine sites from all of the protein sequence

databases.12 For instance, variable sulfotyrosine in extracellular

class II leucine-rich repeat (LRR) proteins were characterized by

mass spectrometry, and, Sulfinator19 does not accurately predict

tyrosine sulfation in this class of proteins.3 Therefore, a compu-

tational tool to predict accurately tyrosine sulfation sites in

protein sequences is crucial.

This work develops a new method for identifying protein sul-

fotyrosine residues. The studies cited earlier have been only pro-

posed to analyze the consensus sequences around sulfotyrosine

sites and did not take consider other information. Most PTM sites

are located at the surface of the protein, and the residues with

larger Accessible Surface Areas (ASA) are regarded as surface

residues.20 In this investigation, position-specific amino acid fre-

quencies and the structural property of the protein, in terms of the

Accessible Surface Area (ASA), are employed to distinguish

between sulfation and non-sulfation sites using a Support Vector

Machine (SVM).21 All tyrosine-sulfated proteins were collected

from UniProtKB/SwissProt (Release 53.0).22 Subsequently, the

experimental tyrosine-sulfated proteins were selected to reduce

the quantity of the homologous sequences with a given window

size and processed for SVM training. Suitable parameters were

used to train SVM models. Five-fold cross-validation was

adopted to evaluate the accuracy of the models. The estimates

made using the models reveal that the solvent accessibility around

the sulfation sites can be used to improve their predictive accu-

racy. Furthermore, during the independent test experiment, the

proposed method achieves 84% predictive accuracy. The phos-

phorylation and sulfation of tyrosine are well known to be iso-

baric. Hence, differentiating modifications by phosphorylation

from those by sulfation is generally difficult. However, the

method herein effectively distinguishes sulfotyrosine from phos-

photyrosine sites. SulfoSite is now available as a freely accessible

web server at http://SulfoSite.mbc.nctu.edu.tw.

Materials and Methods

Various machine learning approaches (such as Linear Discrimi-

nant Analysis (LDA), Support Vector Machine (SVM), and

others) support the rapid collection, annotation, retrieval, compar-

ison, and mining of specific features from large biological data-

sets, to solve structure–function problems.23–25 A similar research

flow was also utilized in this study. Figure 1 presents the flow-

chart of the proposed method. The method comprises three major

steps: (i) collecting and preprocessing data, (ii) extraction of fea-

tures, and (iii) creation and evaluation of models.

Collecting and Preprocessing Data

Collecting and Preprocessing Data to Construct and Test Models

UniProtKB/SwissProt22 (release 53.0) maintains 269,293 protein

entries, of which 313 contain 732 residues, that are annotated as

‘‘sulfotyrosine’’ in the ‘‘MOD_RES’’ fields (and exhibit post-

translational modification of a residue). However, only experi-

mentally verified sulfotyrosine sites were collected. Potential

sulfotyrosine sites for which the comments in UniProtKB/Swis-

sProt’s contained the keywords of ‘‘by similarity,’’ ‘‘potential,’’

or ‘‘probable’’ were removed. As given in Table 1, 162 experi-

mentally confirmed sulfotyrosine sites within 115 proteins that

were extracted from UniProtKB/SwissProt release 53.0 were

used for further preprocessing. Thereafter, the sulfotyrosine sites

were extracted as positive sets, and the non-sulfotyrosine sites as

negative sets from 115 tyrosine sulfated proteins.

Then, the 9-mer sequences (24 to 14), 11-mer sequences

(25 to 15), 13-mer sequences (26 to 16), 15-mer sequences

(27 to 17), and 17-mer sequences (28 to 18) of sulfotyrosine

sites are extracted and constructed as training sets. The positive

(1) dataset for training may contain some homologous sites of

homologous proteins. When the test data were highly homolo-

gous with the training data, the prediction accuracy was overes-

timated. To avoid such overestimation, when two sulfotyrosine

sites of the two proteins were in the corresponding positions in

the alignment, only one was kept. Thus, non-homologous posi-

tive (1) data on high-quality tyrosine-sulfated sites were

obtained using different window sizes, as given in Table S1 (see

Supporting Information). Nonhomologous positive and negative

dataset were merged into a nonhomologous dataset. Moreover,

the tyrosine-sulfated proteins in UniProtKB/SwissProt release

55.0, which were not available in release 53.0 were selected to
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perform an independent test. The statistics of sulfation sites

obtained from UniProtKB/SwissProt release 55.0 is given in

Table S2 (see Supporting Information).

Collecting Data for Analysis of 3D Structure of

Tyrosine-Sulfated Proteins

To elucidate the structural characteristics of sulfated protein, all

matched 3D structures were downloaded from the protein dada

bank (PDB),26 as listed in Table S3 (see Supporting Informa-

tion). Table 2 summarizes structural information on the non-

redundant subset of sulfated proteins in PDB. In the case of ty-

rosine, only nine hit proteins (CXAA_CONPE, CXAB_CONPE,

FIBG_HUMAN, GP1BA_HUMAN, HEP2_HUMAN, ITH1_

HIRME, ITH3_HIRME, ITHA_HIRME, and TRY1_HUMAN)

contained sulfotyrosine, and only 13 sulfated sites had reliable

structures, as shown in Table 2. The majority of these proteins

are related to the thrombin inhibitor, the others are conotoxins

and trypsin, as presented in Table S4 (see Supporting Informa-

tion). All of them indicated that the absence of sulfation in the

critical tyrosine influences biological activity (Table S4, see

Supporting Information). Some proteins (small peptides) have

pharmacological applications; for example, conotoxins are

utilized in the selection of a lead compound in drug design.

Figure 1. System flow of SulfoSite.
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Extracting Features

After the nonhomologous training set of tyrosine sulfation sites

had been constructed, three characteristics—sequences that sur-

round the sulfotyrosine sites, the secondary structure that sur-

rounds the sulfotyrosine sites, and the solvent accessibility

around the sulfotyrosine sites were extracted. However, the ex-

perimental ASA and SS information about the sulfotyrosine sites

of known 3D structures in the protein data bank (PDB)26 is not

enough to be examined (Table 1). Consequently, RVP-Net20,27

and PSIPRED28 were applied to predict the Accessible Surface

Area (ASA) and secondary structure (SS), respectively, for each

residue of a protein sequence. RVP-Net directly predicts ASA

without making exposure categories and achieves a mean abso-

lute error better than 19% mean.27 PSIPRED28 is a highly accu-

rate method for predicting the secondary structure, combining

two feed-forward neural networks to analyze the output obtained

using Position Specific Iterated-BLAST (PSI-BLAST).29

PSIPRED 2.0 achieved an average accuracy of 80.6% across all

40 submitted target domains with no obvious sequence similarity

to structures that are present in PDB, making PSIPRED better

than all other evaluated methods.30 The output of PSIPRED

includes three symbols ‘‘H,’’ ‘‘C,’’ and ‘‘E’’ which stand for

helix, coil, and b-sheet respectively. Before SVM models are cre-

ated, the extracted features should be encoded as real values

except the ASA values. The two sequences around the sulfotyro-

sine site (position 0) and the 9-mer sequences (24 to 14), 11-mer

sequences (25 to 15), 13-mer sequences (26 to 16), 15-mer

sequences (27 to 17), and 17-mer sequences (28 to 18) of the

tyrosine sulfation sites were encoded in three ways—two for the

sequence and one for the secondary structure. As presented in

Table S5 (see Supporting Information), an orthogonal binary

coding scheme was adopted to transform amino acids into nu-

meric vectors, as in so-called 20-dimensional vector coding. For

example, alanine was encoded as ‘‘10000000000000000000’’;

Table 1. The Statistics of Sulfation Sites Obtained from

UniProtKB/SwissProt Release 53.0.

Number

of

proteins

Number of

sulfotyrosine

sites

Tyrosine sulfated protein 313 732a

Experimental tyrosine sulfated protein 115 162b

Experimental secreted tyrosine sulfated

protein

103 138b

Experimental membrane-bound tyrosine

sulfated protein

8 17b

Experimental Tyrosine sulfated protein

annotated in PDB

9 12

Nonhomologous experimental sulfation sites

in SulfoSite

– 69c

aThose sites annotated as ‘‘by similarity’’, ‘‘potential,’’ or ‘‘probable’’ are

included.
bThose sites annotated as ‘‘by similarity’’, ‘‘potential,’’ or ‘‘probable’’ are

not included.
cOn the basis of window size 4.
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cysteine encoded as ‘‘01000000000000000000,’’ and so on. The

number of feature vectors that correspond to the flanking amino

acids that surround the sulfated site was (2n 1 1) 3 20. Values

of n from four to eight were used to determine the optimal win-

dow length. The 20-dimensional vector for protein sequence

encoding (with each amino acid mapped to a 20-dimensional

vector) was named SEQ(20-d). Additionally, the positional

weighted matrix (PWM) of amino acids around the sulfated sites

was determined for tyrosine using nonhomologous training data.

The positional weighted matrix (PWM) specified the relative fre-

quency of amino acids in the sulfated sites, and was used to

encode the fragment sequences, namely SEQ(PWM) (Table S5

in Supporting Information). Whenever feature values were miss-

ing (such as in case of tyrosine residues near the end of the pep-

tide), they were discarded. Furthermore, the full-length protein

sequences with sulfated sites were inputted to PSIPRED to ver-

ify the secondary structure of all residues. The orthogonal binary

coding scheme was used to transform the three terms that spec-

ify the secondary structure into numeric vectors. For instance,

helix was encoded as ‘‘001,’’ sheet was encoded as ‘‘010,’’ and

coil was encoded as ‘‘100.’’ The 3D vector that encoded the sec-

ondary structure (SS) of the protein (each secondary structure

was mapped to a 3D vector) was named SS. Figure S1 (see

Supporting Information) presents a diagram of the feature

dimensions.

Creation and Evaluation of Model

SVM is a machine learning method, which has been utilized to

solve pattern identification problems with clear connections to

the underlying statistical learning theory.21 The principle of

SVM is to map input vectors to a higher dimensional space

where a maximal separating hyperplane is defined. Two parallel

hyperplanes are constructed on each side of the hyperplane that

separates the data into two groups. The separating hyperplane is

that which maximizes the distance between the two parallel

hyperplanes. Furthermore, SVM can solve the classification

problem when the number of training data is very small.31 LDA

is a simpler classifier than SVM that is adopted to solve biologi-

cal structure–function problems.32–34 People may argue with our

reasons for selecting SVM as the method herein. Therefore, the

classification performance of LDA and SVM were compared ini-

tially. As given in Table S6 (see Supporting Information), the

models trained by SVM greatly outperform those trained using

LDA based on the same training and validation data sets.

Accordingly, this work employed protein sequences, profiles of

Accessible Surface Area (ASA) and secondary structure (SS) in

the support vector machine (SVM) for training the models of

sulfotyrosine site prediction. An SVM library called LIBSVM,35

was applied to train the predictive models and a radial basis

function (RBF) was selected as the SVM kernel function in this

study. The experimental sulfotyrosine sites were defined as the

positive dataset, while all other nonsulfated tyrosine sites in the

sulfated proteins were treated as the negative dataset. K-fold

cross-validation was exploited to evaluate the predictive per-

formance of the models. The sizes of the positive and negative

datasets were made equal during the cross-validation processes.

After the models were trained, whether they were the models

are appropriate had to be determined. The performance of SVM

was measured in a five-fold cross-validation analysis, in which

each dataset was divided into five parts: four parts were used for

model learning (training); the remaining one was used for vali-

dation (testing). Four performance measures were employed;

they were precision (Pr), sensitivity (Sn), specificity (Sp), and

Table 3. The Statistics of Sequence Logo, Average Accessible Surface Srea (ASA), and Secondary Structure

(SS) Surrounding the Sulfotyrosine Sites (Position 5 0) in UniProtKB/SwissProt Release 53.0.

Sequence logos Accessible surface area (ASA) Secondary structure

Entire experimental

tyrosine

sulfated sites

Nonhomologous

tyrosine

sulfated sites

Nonsulfated

tyrosine sites
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accuracy (Acc), defined later. The Matthews correlation coeffi-

cient (MCC) was used to measure the classification performance

in the SVM training process to accommodate unbalanced data-

sets. TP, TN, FP, and FN are true positive, true negative, false

positive, and false negative predictions, respectively.

Precision ðPrÞ ¼ TP

ðTPþ FPÞ ; Sensitivity ðSnÞ ¼ TP

ðTPþ FNÞ ;

Specificity ðSpÞ ¼ TN

ðTNþ FPÞ ;

Accuracy ðAccÞ ¼ ðTPþ TNÞ
ðTPþ FPþ TNþ FNÞ ;

MCC ¼ ðTP3TNÞ � ðFN3FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞ3ðTNþ FPÞ3ðTPþ FPÞ3ðTNþ FNÞp

Several parameters of the models, the length of the sequence

that surround the sulfotyrosine site, the SVM cost and the

gamma values were optimized to maximize predictive accuracy.

Additionally, receiver operating characteristic (ROC) curves for

different window sizes and features were plotted using

LIBSVM.35 Finally, the parameters of the trained model with

the highest predictive accuracy from each dataset were adopted

to provide the prediction service on the web. SulfoSite was

implemented in PHP, PERL, and hosted by an Apache web

server running on a RedHat Linux system.

Results and Discussion

Characteristics of Sulfated Protein

First, all sulfated proteins from UniProtKB/SwissProt22 (release

53.0) were collected; 115 of them were experimentally anno-

tated. As indicated in Table 1, the numbers of secreted and

membrane-bound tyrosine sulfated proteins were 103 and eight,

which contained 138 and 17 sulfotyrosine sites, respectively.

Table 3 summarizes the sequence logos,36 average ASA, and

secondary structure formed from the 9-mer sulfated and the

9-mer non-sulfated sites in the constructed data set. As the flank-

ing sequences (position 24 to 14) of the sulfotyrosine sites

(position 0) are graphically visualized as sequence logos36 of the

protein sequence and the secondary structure (SS), examining

the sequence logos reveals that the sequences that surround the

sulfated sites are more acidic and more strongly conserved than

those around non-sulfated sites. Furthermore, Accessible Surface

Area (ASA) is higher at the sulfotyrosine site than at the flank

sites.

On the basis of the 3D structures from the protein data bank

(PDB),26 Table 2 demonstrates that two sulfotyrosine residues in

PDB proteins were observed in helical regions, while the others

were observed in the loop. Furthermore, the ASA percentages of

some sulfotyrosine residues exceeded those around the sulfated

site, indicating that the sulfotyrosine is usually on the protein

surface. Additionally, the locations of sulfotyrosines in PDB pro-

teins classified them into three broad types (main chain of pro-

tein complex, small peptide, or inhibitor), as displayed in Figure

S2 (see Supporting Information). The figure also indicates the

sulfotyrosine residues located on the structure surface. The 3D

structure is consistent with the sequence analysis that is given in

Table 3, potentially explaining why the ASA feature is critical

to predicting the sites of sulfotyrosine.

Algorithm

Predictive Performance of Cross Validation–Individual Feature

Although SVM is effectively ignores irrelevant features in high

dimensional feature sets, proper attribute selection may further

increase the accuracy of the SVM algorithm. In previous studies,

methods for predicting sulfotyrosine sites have focused on the

conservation of the protein sequence: an optimal discriminative

set of conserved protein sequences and structural properties had

not been identified.19 The predictive accuracy was used to evalu-

ate four individual properties (SEQ(20-d), SEQ(PWM), ASA,

Figure 2. Performance of the models trained with various features

and different window sizes in five-fold cross-validation. (A) The

predictive accuracies of the models trained with SEQ(20-d),

SEQ(PWM), ASA, and SS based on various window sizes. (B) The

predictive accuracies of the models trained with SEQ(20-d),

SEQ(PWM), ASA, SS, SEQ(20-d)1ASA, SEQ(20-d)1SS, SEQ

(20-d)1ASA1SS, SEQ(PWM)1ASA, SEQ(PWM)1SS, and SEQ

(PWM)1ASA1SS based on various window sizes. Abbreviation:

SEQ(20-d), protein sequence encode by 20-dimentional method;

ASA, Accessible Surface Area; SS, secondary structure;

SEQ(PWM), protein sequence encode by positional weighted matrix

(PWM) method. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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and SS) of the residues to determine the optimal subset of such

properties. The average predictive accuracy of individual attrib-

utes, except SEQ(PWM), was low. As shown in Figure 2A and

Table 4, that of SEQ(PWM) was 89.58%, that of SEQ(20-d)

was 84.93%, that of ASA was 76.24%, and that of SS was only

72.35%. A model trained with a window size 9 (24 to 14)

based on SEQ(PWM) performed best in predicting sulfotyrosine

(91.30%).

Predictive Performance of Cross Validation–Combinations

of Feature Sets

The predictive performance of models trained with the combined

attributes was also estimated. The average prediction accuracy

increased to 85.62% when the SEQ(20-d) was coupled with

ASA, as given in Table 4. However, the predictive accuracy of

SEQ(20-d)1 ASA was not satisfactory. Since the number of

dimensions in SEQ(20-d) was 20 times that in ASA, the weight

of SEQ(20-d) exceeded that of ASA in the prediction of the sites

of sulfated tyrosine. Thus, the predictive performance was

dominated by the sequence feature. The weight of ASA was

increased five-fold, 10–fold, and 20-fold, and the average accu-

racy did not significantly change for SEQ(20-d)1ASA_5X (five-

fold), but improved to 86.06%, and 87.35% for SEQ(20-

d)1ASA_10X (10-fold), and SEQ(20-d)1ASA_20X (20-fold),

suggesting that ASA notably improved the predictive accuracy

to 92.21% when its weight increased to 20-fold in window size

9 (24 to 14) (Table 4 and Fig. S3, see Supporting Information).

For this reason, the weight of ASA is important in predicting

the sites of sulfotyrosine. However, the number of dimensions in

SEQ(PWM) equaled that of to ASA, balancing the weights to

enable sulfated and non-sulfated tyrosine to be classified.

Although the average accuracy of SEQ(PWM)1ASA was not

better than that of SEQ(PWM), a model trained with

SEQ(PWM)1ASA with window size 9 (24 to 14) was the

most accurate (94.20%), as given in Figure 2B and Table 4. The

AUC (area under curve) of the ROC curve was 0.9702 in the

model that had been trained with SEQ(PWM)1ASA in window

size 9 (24 to 14), which is the best value among all of the

models, as given in Figure S4 (see Supporting Information).

Additionally, the secondary structure (SS) feature did not mark-

edly improve the predictive accuracy. The best predictive model

Table 5. The Parameters and Predictive Performance of the Trained Models with Different Features Which

Achieve the Highest Accuracy.

Sulfated

residue

Number of positive

training set Training features Window size Parameters Pr Sn Sp Acc MCC

Tyrosine 69 SEQ(PWM) 1ASA 24 to 14 Ca 5 32768, Gb 5 0.00048828125 95.52 92.75 95.65 94.20 0.88

aCost value.
bGamma value

Table 4. Prediction Accuracy of the Models Trained with Various Parameters and Different Window Size in

Five-Fold Cross-Validation.

Training features

Window size

Average accuracy9 11 13 15 17

SEQ(20-d) 87.13 86.03 86.36 82.45 82.69 84.93

SEQ(PWM) 91.30 88.97 90.91 87.27 89.42 89.58

ASA 71.74 77.94 75.45 78.18 77.88 76.24

SS 69.57 72.79 64.55 82.73 72.12 72.35

SEQ(20-d)1ASA 90.10 82.35 85.45 83.64 86.54 85.62

SEQ(PWM)1ASA 94.20b 85.29 88.18 84.55 86.54 87.75

SEQ(20-d)1SS 87.68 85.29 83.64 83.64 77.88 83.63

SEQ(PWM)1SS 88.41 89.71 84.55 79.09 85.58 85.47

SEQ(20-d)1ASA1SS 84.78 85.29 87.27 84.55 82.69 84.92

SEQ(PWM)1ASA1SS 83.33 85.29 77.27 74.55 81.73 80.44

SEQ(20-d)1ASA_5Xa 87.66 87.82 77.69 86.15 88.52 85.57

SEQ(20-d)1ASA_10Xa 88.31 87.82 88.46 85.38 80.33 86.06

SEQ(20-d)1ASA_20Xa 92.21 85.9 82.31 86.15 90.16 87.35

Average accuracy 85.88 84.65 82.47 82.95 83.24

The ROC curves are given in Figure S4 (see Supporting Inforamation).
aASA_NX: The weight of ASA increase to N folds.
bThe best accuracy.
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was trained using a window size 9 (24 to 14) in sulfotyrosine

prediction. Table 5 presents the number of training data, training

features, window size, SVM cost and gamma values, precision,

sensitivity, specificity, accuracy, and MCC of the best trained

model.

Predictive Performance of Balanced and

Unbalanced Dataset

In cross-validation, balanced positive and negative datasets were

utilized to train models. However, for this purpose, sampling a

negative dataset absolutely randomly is difficult because the

number of the negative sets is much more than those positive

sets. To avoid the tendentiousness in negative set extraction and

reduce the false positive rate, the negative set for five-fold cross

validation was collected randomly. Its size was separately one,

two, three, four, five, six, seven, eight, nine, and 10 times that

of the positive set. These unbalanced datasets are for training

only, and then testing is conducted with a dataset whose posi-

tive/negative ratio is an estimate of the ratio in an unmodified

dataset (has a positive/negative ratio of about 1/40). The results

suggest that higher accuracy and specificity were related to more

negative sets, as given in Figure 3 and Table 6. However, the

sensitivity was approximately inversely proportional to the num-

ber of negative dataset (see Fig. 3). The accuracy and specificity

almost reached their respective maximum values (Ac 5 96.55%

and Sp 5 97.78%), when the ratio of the number of the positive

set to that of the negative set was to 1:8. At this ration, the sen-

sitivity had dramatically decreased to 75.56% (see Fig. 3). A

trade-off had to be made between specificity and sensitivity.

Although the accuracy at the ratio 1:2 was lower than that at

1:8, the sensitively remained at 86.67% and also high accuracy

and specificity were maintained. Furthermore, the MCC value

was the highest. Therefore, to gain the higher prediction sensi-

tivity and the lower false positive rate, the model that had been

trained with 1:2 unbalanced dataset based on SEQ(PWM)1ASA

(window size 5 9) was selected as the best model herein.

Figure 3. The performance of balanced and unbalanced dataset

based on SEQ(PWM)1ASA in window size 9 (24 to 14).

Table 6. The Accuracies of Balanced and Unbalanced Dataset.

Training feature: SEQ(PWM)1ASA

Window size: 9 (24 to 14)

Positive dataset:Negative dataset ACC Se Sp MCC

1:1 91.03 86.67 91.12 0.72

1:2 95.86 86.67 96.32 0.87

1:3 94.48 86.67 94.85 0.82

1:4 94.48 75.56 95.59 0.77

1:5 94.48 75.56 95.59 0.77

1:6 95.17 75.56 97.06 0.74

1:7 95.17 75.56 97.06 0.74

1:8 96.55 75.56 97.78 0.86

1:9 96.55 75.56 97.78 0.86

1:10 95.87 64.44 97.78 0.78

Table 7. Independent test in Sulfinator1 and SulfoSite.

SwissProt_ID Real Sulfotyrosine sites Sulfotyrosine predicted in Sulfinator Sulfotyrosine predicted in SulfoSite

CCKN_CANFA Y52 Y52 Y52

FMOD_BOVIN Y20, Y38, Y53, Y55, Y63, Y65 Y38, Y42, Y45, Y47, Y62, Y64 Y38, Y55

FMOD_HUMAN Y20, Y53, Y55 Y38, Y39, Y42, Y45, Y47 Y20, Y39

HIS1_HUMAN Y46, Y49, Y53, Y55 Y46, Y49 Y46, Y49

LUM_MOUSE Y20, Y21, Y23, Y30 – Y23

OMD_HUMAN Y39, Y416, Y417 – Y31, Y39, Y51

PSK1_ORYSI Y80, Y82 Y80 Y80, Y82

PSK1_ORYSJ Y80, Y82 Y80 Y80, Y82

PSK2_ORYSI Y110, Y112 – Y110, Y112

PSK2_ORYSJ Y110, Y112 – Y110, Y112

SIAL_HUMAN Y313, Y314 Y259, Y263, Y265, Y271, Y275,

Y278, Y290, Y293, Y297, Y299

Y265, Y271, Y305

Pr – 23% 73%

Sn – 19% 52%

Sp – 80% 94%

Acc – 65% 84%

The words in bold: the sulfotyrosine sites are recovered by the indicating methods.
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Testing

Predictive Performance of Independent Test by the Model
Trained by SEQ(PWM)1ASA

Eleven sulfated proteins (CCKN_CANFA, FMOD_BOVIN,

FMOD_HUMAN, HIS1_HUMAN, LUM_MOUSE, OMD_

HUMAN, PSK1_ORYSI, PSK1_ORYSJ, PSK2_ORYSI,

PSK2_ORYSJ, SIAL_HUMAN) in UniProtKB/SwissProt release

55.0, which were not available in UniProtKB/SwissProt release

53.0 were used for an independent test in SulfoSite, as given in

Table 7. The independent test set involved 31 experimentally

sulfated tyrosines and 98 non-sulfated tyrosines. Table 7 reveals

that the system herein can predict the number of 16 sulfotyro-

sines (true positive), and only six predictions are false positive.

The sensitivity and specificity of prediction are 52 and 94%,

respectively. Generally, the performance in the independent test

is just a little lower than those obtained in cross-validation,

because that the over-fitting can usually not be completely pre-

vented. Although the predictive accuracy in the independent test

is not as high as that in cross-validation, the performance dem-

onstrated in Tables 7 and 8 is acceptable. The precision and ac-

curacy in the independent test are 73 and 84%, respectively,

which are much better than test in Sulfinator19 (precision 5
23%, accuracy 5 65%), suggesting that combination of

sequence (encoded in PWM) and ASA is effective in sulfated

protein prediction.

Predictive Performance of Model Trained Only With

SEQ(PWM) in Independent Test

To confirm further the effectiveness of ASA in the prediction of

sulfotyrosine sites, another model based on SEQ(PWM) with

window size 9 (24 to 14) was trained using un-balanced (posi-

tive: negative 5 1:2) datasets. Significantly, our final model

(trained by SEQ(PWM)1ASA) is also better in the forecasting

of sulfotyrosine sites in an independent test than is the

Table 8. Comparison Between Sulfinator1 and SulfoSite.

Sulfinator SulfoSite

Number of sulfated protein for training 125 115a

Separating experimental and potential

sulfotyrosine sites in training dataset

No Yes

Nonhomologous dataset No Yesb

Features used for prediction Protein sequence Protein sequence, Accessible Surface Area

Method Hidden Markov Model Support Vector Machine

Cross-validation performance Acc 5 98% Acc 5 94.2 %

Independent testc Acc 5 65%

(Sn 5 19%, Sp 5 80%, Pr 5 23%)

Acc 5 84%

(Sn 5 52%, Sp 5 94%, Pr 5 73%)

aExperimental tyrosine sulfated protein. Those sulfotyrosine annotated as ‘‘by similarity’’, ‘‘potential,’’ or ‘‘probable’’

are not included.
bThe number of nonhomologous dataset is shown in Table S1 in Supporting Information.
c31 positive sites and 98 negative sites were tested in Sulfiator and SulfoSite.

Table 9. Comparison Between Final Model (SEQ(PWM)1ASA) and SEQ(PWM) Model

with Independent Test.

SWISS-PROT_ID Real Sulfotyrosine sites The model trained by SEQ(PWM) The model trained by SEQ(PWM)1ASA

CCKN_CANFA Y52 Y52 Y52

FMOD_BOVIN Y20, Y38, Y53, Y55, Y63, Y65 Y42 Y38, Y55

FMOD_HUMAN Y20, Y53, Y55 Y39 Y20, Y39

HIS1_HUMAN Y46, Y49, Y53, Y55 Y49 Y46, Y49

LUM_MOUSE Y20, Y21, Y23, Y30 Y23 Y23

OMD_HUMAN Y39, Y416, Y417 Y31, Y39, Y51 Y31, Y39, Y51

PSK1_ORYSI Y80, Y82 Y80, Y82 Y80, Y82

PSK1_ORYSJ Y80, Y82 Y80, Y82 Y80, Y82

PSK2_ORYSI Y110, Y112 Y110, Y112 Y110, Y112

PSK2_ORYSJ Y110, Y112 Y110, Y112 Y110, Y112

SIAL_HUMAN Y313, Y314 Y265, Y271, Y305 Y265, Y271, Y305

Pr – 63% 73%

Sn – 39% 52%

Sp – 93% 94%

Acc – 80% 84%

The words in bold: the sulfotyrosine sites are recovered by the indicating models.
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SEQ(PWM) model, as shown in Table 9, revealing that the

accuracy can be improved by combining protein sequence

(encoded using the PWM method) and ASA, as given in Figure

2 and Tables 4 and 9.

Several Cases Studies to Evaluate Performance of SulfoSite

Recently, tyrosine sulfation has been found to be prevalent in

human chemokine receptors and important in human disease.37

Yu et al., demonstrates Tyr10 and Tyr18 of C-C chemokine re-

ceptor type 1 (CCR1) can be sulfated by TPST.2 The CCR1 pro-

tein sequence was inputted into our system to identify sulfotyro-

sine sites. Subsequently, sulfated Tyr10 and Tyr18 of CCR1

were specifically detected, as shown in Figure S5 (see Support-

ing Information). Furthermore, the PTM of proteins by phospho-

rylation is well-known to be the most abundant type of cellular

regulation.38 The tyrosine phosphorylation of proteins in the

cytoplasm has critical roles in multiple biological processes.9,39

It is because phosphotyrosine and sulfotyrosine are isobaric, dis-

tinguishing between phosphorylation and sulfation modifications

on tyrosine residue is typically difficult, even though the

sequence logos and ASA surrounding the sulfotyrosine and

phosphotyrosine sites are different.40 Table S7 (see Supporting

Information) shows the amino acid sequences in the flanking of

sulfotyrosine are more consensus than phosphotyrosine. It also

demonstrates that sulfotyrosine has a higher ASA percentage.

Figure 4. Web interface of SulfoSite. [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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Moreover, 1973 experimental phosphotyrosine sites from Uni-

ProtKB/SwissProt release 55.0 were used to evaluate our system.

Largely phosphotyrosine sites cannot be miscalculated as sulfo-

tyrosine sites in SulfoSite. The false positive rate is only 4.7%.

Implementation

As mentioned earlier, the best model was trained with sequence

(PWM) and Accessible Surface Area in window size 9 (24 to

14) was selected to utilize in the sulfotyrosine prediction sever.

To avoid the biased extraction of the negative set, the un-bal-

anced (positive: negative 5 1:2) trained model was applied in

SulfoSite web site. The SulfoSite web server provides user-

friendly input and output interfaces, as shown in Figure 4. Sev-

eral proteins in FASTA format could be inputted to the system.

The predictions are presented in a diagramed that includes sul-

fated position, flanking amino acids, and the ASA probability,

which were predicted by RVP-Net (see Fig. 4). The training

dataset and independent test used in SulfoSite also can be down-

loaded for analysis.

Conclusion

Because of the levity of sulfotyrosine,2 the characterization of

protein sulfation modification has been hampered by the lack

of specific, definite methods for its site determination. This

investigation developed the SulfoSite web server, a high-per-

formance sulfotyrosine predictor based on the SVMs method

with protein sequence and Accessible Surface Area (ASA). The

proposed system is comparable to several previous meth-

ods,12,16,18,19 none of which consider structural information

about the protein. Not only was the conservation of the protein

sequence considered, but also the solvent accessibility and sec-

ondary structure around the sulfotyrosine sites were tested. The

3D structure data (information on ASA and secondary struc-

ture) for sulfation proteins were limited, so two effective tools,

RVP-Net20 and PSIPRED,28 were used to compute the ASA

percentage and secondary structure, respectively, based on pro-

tein sequence. Finally, the model trained by SEQ(PWM)1ASA

was selected as the best predictive model in the SulfoSite web

site. The method herein is 94.2% accurate in sulfotyrosine pre-

diction in five-fold cross-validation. Tables 7 and 8 compare

the performance of our approach with that of Sufinator.19 The

comparison demonstrates that SulfoSite has much better predic-

tive performance than Sulfinator in an independent test. The

use of more training data in SulfoSite may be responsible for

its higher accuracy than Sulfinator. The nonhomologous dataset

in SulfoSite may also mitigate the over-fitting problem in Sulfi-

nator.

Several cases studies suggest that our method performs well

not only in detecting sulfotyrosine sites but also in distinguish-

ing sulfotyrosine from phosphotyrosine sites (Fig. S5 and Table

S7 in Supporting Information). On the basis of the above, this

developed system can facilitate the characterization of protein

tyrosine sulfation.

Availability

The SulfoSite program is available at http://SulfoSite.mbc.

nctu.edu.tw/.
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