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In the control signal process theory, the state equation is an important approach for mod-
elling, analyzing and designing a wide range of systems. Furthermore, the state equation is
often the most efficient form from the standpoint of computer simulation for highly com-
plex systems. The existing researches exploit the fact that for networks containing depen-
dent sources, bridging elements and coupling elements, the derivation of the closed-form
state equation becomes rather complicated. On the other hand, a simple and valuable uni-
fying approach of finding the state equations for complicated physical systems is success-
fully presented in the paper. The new unifying approach needs only the substitution
theorem and the author’s invented simple matrix operations. The main fascinating pecu-
liarity of this approach is exposed in its systematic, graphic and human structure that
improves the shortcomings of those traditional approaches. One comparative example is
proposed to show the distinguished advantages our method offers over existing methods.
In order to demonstrate the practical applicability, the paper has investigated an electronic
operational-amplifier circuit that can be easily stabilized by our approach.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It’s universally known that the state equation plays an important role to investigate the significant properties of physical
systems, such as controllability, observability and stability in the control and signal process theory [9]. There are five fun-
damental reasons for representing the physical systems in state equation: (1) this form lends itself most easily to analog
or/and digital computer programming, (2) the extension of the analysis to nonlinear and/or time varying systems is quite
easy, (3) many system-theoretic concepts are readily applicable to systems, (4) it allows us to handle multi-input multi-out-
put systems within precisely the same notational framework that we will utilize for single-input single-output systems, and
(5) it allows us to determine the internal behaviors of the physical systems easily while still giving the input–output infor-
mation we desire.

The state equation can also be skillfully utilized to design the controller that globally exponentially stabilizes the control
system via the famous approaches, such as our recent researches [3–8] of applying singularly perturbed approach [16,17] and
feedback linearization approach. However, the existing researches [1,2,12, p. 683,10, p. 521,15] show that for networks con-
taining dependent sources and coupling elements, the derivation of the closed-form state equation becomes rather compli-
cated. Especially, these processes presented by Nise [14, p. 130] and Ziemer et al. [19] are too complicated and troublesome to
. All rights reserved.
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be accepted. In order to solve these shortcomings, the simple unifying approach, as a means of finding the state equations of
the control systems, has been derived in this paper. Moreover, the simple unifying approach, proposed in this paper, needs
only the substitution theorem and simple algebraic techniques which have been not appeared in any researches. For the sake
of convenience, the simple unifying approach of finding the state equations is expressed by Chen’s Electric Unifying Approach
(C.E.U.A.). In order to emphasize the significant contributions and practical application of C.E.U.A., three comparative exam-
ples and one amplifier circuit are proposed to be in comparison with those existing methods.

2. The Chen’s Electric Unifying Approach

The main structure of the C.E.U.A. is shown as below:

STEP 1: View the branch capacitor voltages vCk
ðtÞ and the branch inductor currents iLk

ðtÞ as state variables. Utilizing the
substitution theorem, the capacitors Ck (inductors Lk) are replaced with the current sources iCk

ðtÞ (the voltage
sources vLk

ðtÞ), respectively. The use of the substitution theorem prevents the derivative terms iCk
ðtÞ and C dvC/dt

from appearing in the system and hence the following modified node voltage method (mesh-current method) could
be applied.

STEP 2: Using the transforming technique of the voltage source and the current source changes all voltage (current) sources
to be current (voltage) sources. If the voltage (current) source is not in series (parallel) with a resistor, we can put a
zero (infinite) resistor RCCC to be in series (parallel) with the voltage (current) source. It’s worth noting that the tra-
ditional node voltage method (mesh-current method) cannot solve these cases.

STEP 3: According to the following matrix equations, list the node-voltage matrix equations (mesh-current matrix
equations):
Y11 �Y12 � � � �Y1N

�Y21 Y22 � � � �Y2N

..

. ..
. ..

.

�YN1 �YN2 � � � YNN

2
66664

3
77775

V1

V2

..

.

VN

2
66664

3
77775 ¼

�IS11 � IS12 � � � �
�IS21 � IS22 � � � �

..

.

�ISN1 � ISN2 � � � �

2
66664

3
77775 ð2 - 1aÞ

Z11 �Z12 � � � �Z1N

�Z21 Z22 � � � �Z2N

..

. ..
. ..

.

�ZN1 �ZN2 � � � ZNN

2
66664

3
77775

I11

I22

..

.

INN

2
66664

3
77775 ¼

�VS11 � VS12 � � � �
�VS21 � VS22 � � � �

..

.

�VSN1 � VSN2 � � � �

2
66664

3
77775 ð2-1bÞ

where Vi, i = 1,2, � � � ,N, and Iii, i = 1,2, � � � ,N, are called the node voltages and the mesh currents, respectively. More-
over, Iii, i = 1,2, � � � ,N, are in clockwise direction.
STEP 4: If the dependent current (voltage) variables are involved in the node-voltage matrix equations (mesh-current
matrix equations), then the dependent variables must be transferred to be node-voltage variables (mesh-current
variables) and moving-term operations are immediately executed. In general, an electrical systems with a depen-
dent source will increase complexity in applying network analysis to find the state equations [14]. On the other
hand, this problem will be easily solved by the C.E.U.A.

STEP 5: Utilizing the simple matrix operations replaces the node-voltage variables (mesh-current variables) with the input
variables Vsk(s), the state variables VCk

ðsÞ, ILk
ðsÞ and the desired variables ICk

ðsÞ, VLk
ðsÞ. These simple matrix opera-

tions are summarized item by item as follows:

(1)
(2)



(3)
2466 C.-C. Chen et al. / Chaos, Solitons and Fractals 42 (2009) 2464–2472
(4)
(5)
(6)
STEP 6: Move those inputs terms Vsk(s) to the left side of the matrix equations. View the variables ICk
ðsÞ, VLk

ðsÞ as new node-
voltage variables (mesh-current variables) to construct a new node-voltage equations (mesh-current equations).
Apply the Cramer’s rule and the L’Hospital’s rule to obtain the variables iCk

ðvLk
Þ.

STEP 7: Replace the variables iCk
ðvLk
Þ with Ck

dvCk
dt Lk

diLk
dt

� �
, respectively, to obtain the state equation.

3. Significant contributions of the Chen’s Electric Unifying Approach

Be short of the length of the paper, we only put forth those significant contributions in this section.
When we investigate the AC small-signal analysis of the difference amplifier circuits, the symmetric method is adopted

for the traditional approaches [13,18]. A mortal wound of the traditional approach is that both difference transistors and col-
lector resistors need to be absolutely equivalent. The constraint is impractical and never to be satisfied now, even in future.
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On the other hand, it’s easy to be solved neatly via the C.E.U.A. For example, evaluate the voltage gain vo/vs of the non-sym-
metric difference amplifier shown in Fig. 1. The relative small-signal equivalent circuit is immediately derived in Fig. 2.
Applying the C.E.U.A. yields
1
Rs
þ 1

rp1
0 0

gm1
1

rp2
þ gm2 0

0 0 1
Rc2

2
664

3
775

v1

v2

vo

2
64

3
75 ¼

vs
Rs

0
0

2
64

3
75 ð3-1Þ
Hence the voltage gain is facile to be obtained via the Cramer’s rule by the following equation
vo

vs
¼ �gm1gm2rp1rp2Rc2

ð1þ gm2rp2ÞðRs þ rp1Þ
ð3-2Þ
In general, when an F.E.T. (a B.J.T.) is connected in common-source (common-emitter) amplifier structure, the capacitor Cgd

(Cl) of its high-frequency hybrid-p equivalent circuit appears in the feedback path from the amplifier output to its input. The
bridging element of Cgd (Cl) complicates the analysis of the high-frequency response. The traditional approach [13,18] uti-
lized the approximate method based on the famous Miller’s theorem to solve the upper 3-db frequency of the amplifier. For-
tunately, in view of the merits of the C.E.U.A., we need not use the Miller’s theorem to get the solution. The unprecedented
undertakings of terminating the utilization of the Miller’s theorem will mark a new epoch in the analysis and design of the
high-frequency response of the electronic amplifier. A demonstrated example is shown in Fig. 3. The high-frequency hybrid-
p equivalent model is drawn in Fig. 4. Without using the Miller’s theorem, we apply the Gray–Searle method [11] based on
the C.E.U.A. to find the upper 3-db frequency of Fig. 4. First, obtain the contribution of the capacitor Cl while reducing the
capacitor Cp and the input signal source to zero and determine the equivalent resistance Req�Cl seen from Cl. Adding an indi-
vidual current source it to these two ends of the capacitor Cl, shown in Fig. 5, we immediately get the node-voltage matrix
equations via the C.E.U.A. as follows:
1
Rs
þ 1

rp
0

gm
1
Rc

" #
v1

v2

� �
¼
�it

it

� �
ð3-3Þ
Hence the equivalent resistance Req�Cl is evaluated, using the Cramer’s rule, by the following equation
Req�Cl ¼
v t

it
¼ v2 � v1

it
¼ RcðRsrpgm þ Rs þ rpÞ þ Rsrp

Rs þ rp
ð3-4Þ
10V

Q
1 Q

2

10V
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C

~
+

_
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vo

c2R

sR

Fig. 1. The non-symmetric difference amplifier.
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Fig. 2. The small-signal equivalent circuit of Fig. 1.
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Fig. 3. The common-emitter amplifier.
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Fig. 5. The circuit of determining equivalent resistance Req�Cl .
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Fig. 4. The high-frequency model of Fig. 3.
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Secondly, similar procedures are repeated for the capacitor Cp and the equivalent resistance Req�Cp seen from Cp can be di-
rectly derived as follows:
Req�Cp ¼ Rskrp ð3-5Þ
From the Gray–Searle method, we see that the upper 3-db frequency is given by
xH ¼
1

Req�Cl � Cl þ Req�Cp � Cp
ð3-6Þ
4. Demonstrated example

Consider the following complicated electric system with dependent source shown in Fig. 6. Applying the C.E.U.A. to derive
the state equations as follows:

STEP 1: View the branch capacitor voltages vC1(t) and the branch inductor currents iL1(t) as state variables.
Utilizing the substitution theorem, the capacitor C1 and inductor L1 are replaced with the current source
iC1 ðtÞ and the voltage source vL1 ðtÞ, respectively, as shown in Fig. 7.

STEP 2: To apply the C.E.U.A., we put a zero resistor RCCC to be in series with the voltage source. Using the trans-
forming technique of the voltage source and the current source, Fig. 8 can be redrawn to be in Fig. 9.

STEP 3 and STEP 4: List the node-voltage matrix equations and move the dependent source term to the left side of the
matrix equations:



R

~
+
_v s

+

_
v  C1

1 i  L1

L1

C1

R2

i  R1 i  C1
R3

i  C1k2

i  R1k1

+_

Fig. 6. The complicated electric system.
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i  R1k1

+_

i  L1

+_ v  L1

i  C1

Fig. 7. The equivalent system of Fig. 6 with substitution theorem.
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Fig. 8. The s-domain equivalent system of Fig. 7.
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Fig. 9. The equivalent circuit of Fig. 8.
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1
RCCC
þ 1

R1
þ 1

R2
þ k1

R1R2
� 1

R1
� k1

R1R2
� 1

R2

� 1
R1

1
R1
þ 1

R3
� 1

R3

� 1
R2
� k1

R1R2
� 1

R3
þ k1

R1R2

1
R2
þ 1

R3

2
664

3
775

v1

vC1

v3

2
64

3
75 ¼

vs
RCCC

�iC1 � vL1
R3

vL1
R3
þ k2iC1

2
664

3
775 ð4-1Þ
Multiplying the first row of the matrix equations with RCCC, we obtain
1 0 0
� 1

R1

1
R1
þ 1

R3
� 1

R3

� 1
R2
� k1

R1R2
� 1

R3
þ k1

R1R2

1
R2
þ 1

R3

2
664

3
775

v1

vC1

v3

2
64

3
75 ¼

vs

�iC1 � vL1
R3

vL1
R3
þ k2iC1

2
64

3
75 ð4-2Þ
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STEP 5: Utilizing the author’s invented matrix operations to replace the node-voltage variables (mesh-current variables)
with vs, vC1, iL1, iC1, vL1:
1 0 0
� 1

R1

1
R1

1

� 1
R2
� k1

R1R2

1
R2
þ k1

R1R2
� R3

R2
� 1

2
664

3
775

v s

vC1
�v3þvL1þvC1

R3
ði:e: � iL1Þ

2
64

3
75 ¼

v s

�iC1

� vL1
R2
þ k2iC1

2
64

3
75 ð4-3Þ
STEP 6: Move input term vs to the left side of the matrix equations. View the variables iC1(s), vL1(s) as new node-voltage vari-
ables to construct a new node-voltage equations:
�1 0
k2 � 1

R2

" #
iC1

vL1

� �
¼

� vs
R1
þ vC1

R1
� iL1

� 1
R2
� k1

R1R2

� �
vs þ 1

R2
þ k1

R1R2

� �
vC1 þ R3

R2
þ 1

� �
iL1

2
4

3
5 ð4-4Þ

Apply the Cramer’s rule to calculate iC1, vL1 as follows:

iC1

vL1

� �
¼

vs
R1
� vC1

R1
þ iL1

1þ k1
R1
þ k2R2

R1

� �
v s þ �1� k1

R1
� k2R2

R1

� �
vC1 þ �R3 � R2 þ k2R2ð ÞiL1

2
4

3
5 ð4-5Þ
STEP 7: Replace the variables iC1 and vL1 with C1
dvC1

dt L1
diL1
dt

� �
, respectively, to obtain the state equations:
dvC1
dt

diL1
dt

" #
¼

� 1
R1C1

1
C1

�k1
R1L1
� k2

R1L1
R2 � 1

L1

ðk2�1ÞR2�R3
L1

" #
vC1

iL1

� �
þ

1
R1C1

1
L1
þ k1

R1L1
þ k2R2

R1L1

" #
vs ð4-6Þ
5. Comparative example

To be in comparison with those traditional existing methods, one example is proposed to exploit the significant contri-
butions for C.E.U.A. [10, p. 521] and [14, p. 130] show that for networks containing dependent sources and coupling ele-
ments, the derivation of the closed-form representation will become rather complicated for applying the existing network
analysis to find the state equations. The following example is proposed to show that based on the C.E.U.A., these problems
are easily overcome via simple matrix algebra. Following the procedures of C.E.U.A. item by item, the state equation can be
easily to be list as follows.

Consider the electrical network with dependent source shown in Fig. 10 [14, p. 130].

STEP 1

STEP 2
v o

+ _v  C1

C

R

i  C1

Input

Output

v s

v  C2

i  C2

R

R

3R

C

741μ
+

_

~
+
_

Fig. 10. A unstable electric system.
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STEP 3
1
R1
þ 1

RCCC
0

0 1
R2

" #
v1

v2

� �
¼

iS � iC þ vL
RCCC

iC þ 4vL

" #
STEP 4 and STEP 5
1
R1
þ 1

RCCC
0

1
R2

� 1
R2

" #
v1

�v2 þ v1

� �
¼

iS � iC þ vL
RCCC

iC þ 4vL

" #

1
R1
þ 1

RCCC

� �
� RCCC 0

1
R2

� �
� RCCC � 1

R2

2
64

3
75 v1�vL

RCCC
ði:e: iLÞ
vC

� �
¼

iS � iC � vL
R1

iC þ vL 4� 1
R2

� �
2
4

3
5

STEP 6
� 1
R1

�1

4� 1
R2

1

" #
vL

iC

� �
¼

iL � iS

� 1
R2

vC

" #
STEP 7
vL ¼ L diL
dt ¼ 1

4� 1
R1
� 1

R2

� �
iL þ

� 1
R2

4� 1
R1
� 1

R2

� �
vC þ �1

4� 1
R1
� 1

R2

� �
iS

iC ¼ C dvC
dt ¼

1
R2
�4

4� 1
R1
� 1

R2

� �
iL þ

1
R2

4� 1
R2

� �
4� 1

R1
� 1

R2

� 1
R2

0
@

1
AvC þ

4� 1
R2

4� 1
R1
� 1

R2

� �
iS

8>>>>><
>>>>>:
Remark 1. Be due to the effect of the dependent source, the procedure (STEP 3) in [14, p. 131] is too complicated to be
manipulated.
6. Practical application

Consider the following unstable system shown in Fig. 10. Our goal is to design a controller such that the overall system is
stable. Applying the C.E.U.A. and the virtual grounded property of the operational amplifier, the state equations and the out-
put equation are facile to be obtained immediately as follows:
v o

+ _v  C1

R

Input

Output

v s

v  C2

10K

741μ
+

_

10K

10K 30K

0.1μ0.1μ

741μ
+

_
10K

741μ
+

20K

741μ
+

_

10K

10K

10K

10K
v  C2

_

10K

10K

10K

10K

20K
v  C1-0.5

r(t)

r v  C10.5 v  C2
__

_

Fig. 11. Feedback-controlled system with stabilizable controller.
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dvC1
dt

dvC2
dt

" #
¼

3
RC

1
RC

�7
RC

�2
RC

" #
vC1

vC2

� �
þ

0
1

RC

" #
v s :¼ AX þ Bv s

½vo� ¼ ½4 0 �
vC1

vC2

� �
:¼ CX
Based on the state feedback approach, our controller is given by
v s ¼ r � KX ¼ r � k1 k2½ �
vC1

vC2

� �
The characteristic equation of the feedback-controlled system is
jsI � ðA� BKÞj ¼ s2 þ s
k2 � 1

RC

� �
þ 1þ k1 � 3k2

R2C2

� �
¼ 0
According to the Routh–Hurwitze criterion, we can choose k1 = 1 and k2 = 0.5 such that the feedback-controlled system is
stable. Fig. 11 shows the hardware implementation of the feedback-controlled system with desired controller, where we
choose R = 10 kX and C = 0.1 lF.

7. Conclusion

The peculiarities of simplifying the investigation of designing and finding the state equations of the complicated physical
systems are unprecedented for the C.E.U.A. It’s our belief that, from the aforementioned significant contributions of the
C.E.U.A., the C.E.U.A. has a situation with great potentialities of taking the place of those traditional approaches in future.
Moreover, the C.E.U.A. will be skillfully utilized in the fields of the power electronics, the power system analysis, etc.
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